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Abstract
Cold pools of air, which are formed by evaporating precipitation, play a critical role in the 
triggering of new precipitation. Despite their recognized importance, little effort has been 
devoted to building simple models of their dynamics. Here, analytical equations are derived for 
the radius, height, and buoyancy of a cylindrical cold pool as a function of time, and a scale 
analysis reveals that entrainment is a dominant influence. These governing equations yield 
simple expressions for the maximum sizes and lifetimes of cold pools. The terminal radius of a 
cold pool is relatively insensitive to its initial conditions, with a typical maximum radius of about
14 times the initial radius, give or take a factor of 2. The terminal time of a cold pool, on the 
other hand, can vary over orders of magnitude depending on its initial potential and kinetic 
energies. These predictions are validated against large‐eddy simulations.

1 Introduction

By evaporative cooling, convective precipitation can generate cold patches of boundary‐layer air.

These negatively buoyant air masses spread out radially, forming ‘cold pools’ that push up other 

boundary‐layer air at their edge and thereby trigger new convection. In particular, cold pools are 

responsible for triggering boundary‐layer updraughts that are wide enough to convect deeply and

precipitate (Khairoutdinov and Randall, 2006; Böing et al., 2012), leading to a chain reaction of 

deep convection, precipitation, cold pools, deep convection, and so on. Since cold pools trigger 

new updraughts by mechanical forcing (Torri et al., 2015; Jeevanjee and Romps, 2015), 

understanding cold‐pool dynamics is one of the keys to understanding tropical precipitation.

In this article, we develop an ‘integral’ or ‘box’ model of a uniform, cylindrical cold pool. Such 

models have been used with some success to study gravity currents in a wide range of 

applications (Huppert and Simpson, 1980; Dade and Huppert, 1995; Huppert, 1998; Harris et 

al., 2001; Ross et al., 2004; Hogg et al., 2005). Here, we develop the governing equations for a 

cold pool that is subject to entrainment, form drag, and surface fluxes of enthalpy and 

momentum. With these governing equations, we aim to develop a theory for the sizes and 

lifetimes of cold pools in the tropical atmosphere. Such a theory would be particularly relevant to
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global climate models, many of which have begun to include representations of cold pools in 

their convective parametrizations (Qian et al., 1998; Rozbicki et al., 1999; Grandpeix et 

al., 2009; Grandpeix and Lafore, 2010; Rio et al., 2013; Del Genio et al., 2015).

2 Cylindrical cold pool

Consider a cylindrical cold pool that is characterized by a radius R, height H, uniform density 

anomaly ρ′ (relative to the environmental air at the same height), and a radial velocity ur that is 

independent of z and proportional to the radial coordinate r. Let us denote the volume of a cold 

pool by V, which is related to R and H by

(1) 

We will denote the rate of change of the cold pool's radius as U ≡ dR/dt. Within the cold pool, the
radial velocity ur will be defined as

(2). 

By continuity,

(3). 

Therefore, the total kinetic energy of the cold pool is

(4). 

For R ≫ H, the specific kinetic energy is simply U2/4. The gravitational potential energy of the 
cold pool is simply

(5)
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Changes in volume occur through entrainment. We write this as

(6). 

where ɛ, which has units of m−1, is the fractional entrainment per distance traveled by the cold 
pool's front. For example, if a cold pool has a volume of 1 km3 and an entrainment rate of ɛ = 
10−4 m−1, then it will entrain 105 m3 as its radius increases by one metre. By entraining 
environmental air with zero density anomaly, entrainment tends to reduce the cold pool's density 
anomaly according to the following equation:

(7)

3 Sinks of energy

Our goal is to obtain a set of governing equations for the cold pool, including an equation for 

dU/dt. The gravity‐current box models constructed by Huppert and Simpson (1980), Ross et al.

(2004), and many others have neglected cold‐pool dynamics entirely. Instead, those studies have 

assumed that the cold pool's front moves at a speed U that is proportional to ; 

this is equivalent to assuming that the Froude number  is constant. This is a 

poor assumption because, in reality, the Froude number starts at zero (for an initially stationary 

cold pool), grows to positive values (as U grows), goes to infinity (as ρ′ goes to zero), and then 

becomes imaginary (for negative ρ′). In this study, all of the large‐eddy simulations (LES) of 

cold pools with surface enthalpy fluxes exhibit this behaviour, regardless of whether H and ρ′ are

calculated for the entire cold pool or just its head. Clearly, the assumption of a constant Froude 

number is inadequate for modelling cold‐pool dynamics.

We will find the governing equation for U by constructing the budget for the cold pool's total 

energy TE, which is the sum of its potential energy PE and its kinetic energy KE. If we can 
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determine the sources and sinks of TE, then we can write down the energy equation, which will 

take the form

(8)  

Only one dU/dt will appear in this equation, and it is generated by d/dt acting on U2 in the 
definition of KE. By rearranging, this will give us our prognostic governing equation for U.

There are five sinks of total energy, which are caused by entrainment, surface drag, form drag, 

other pressure forces, and surface enthalpy fluxes. These five sinks are described in the following

subsections.

3.1 Entrainment

Entrainment reduces kinetic energy by diluting the momentum. Consider a parcel with 

mass mand speed u. Its momentum is mu and its kinetic energy KE is mu2/2. If the parcel entrains

a mass dm with no momentum, then its mass goes to m + dm by conservation of mass and its 

speed goes to mu/(m + dm) by conservation of momentum. Therefore, KE goes to (1 − dm/m)KE.

By analogy, when the cold pool entrains a mass fraction ɛUdt, we will assume that the cold pool's

KE goes to (1 − ɛUdt)KE. Therefore, entrainment affects total energy by

(9). 

Note that entrainment will also ‘puff up’ the cold pool, leading to a lifting of the centre of mass 
of ρ′ and, as a result, an increase in PE. We assume, however, that this increase in PE is obtained 
at the expense of KE, so that this has no net effect on the total energy. (Note that turbulent 
entrainment can only occur if there is motion, i.e. positive KE, so this effect will never drive KE 
to negative values.)

3.2 Surface drag

Surface drag reduces kinetic energy by operating on the cold pool with a force opposite to its 

motion. Using a bulk formula for the surface momentum flux, surface drag reduces total energy 

according to



(10). 

where A is the area underneath the cold pool and cds=1.5 × 10−3 is the surface drag coefficient.

3.3 Form drag

Form drag, caused by pressure forces between the cold pool and the environment, also reduces 

kinetic energy. Dissipation of energy from form drag is given by the integral of cdfρU3/2 over the 

cold pool's outer boundary area 2πRH, where cdf is the form drag coefficient. This gives

(11)

The correct value for cdf is unknown. It will be treated as a tunable parameter and found by 
optimization.

3.4 Other pressure forces

Form drag is not the only force acting between the cold pool and its environment. There are other

pressure‐gradient forces that cannot be written with the standard drag‐law formulation used in 

Eq. 11. For example, a completely stationary cold pool will have, in addition to the standard 

definition of buoyancy, additional pressure‐gradient forces acting between it and its environment.

These forces act to accelerate the environment so that the boundaries of the cold pool may move 

without violating the continuity equation and they cause the cold pool to accelerate less rapidly 

than would be estimated from buoyancy alone. The ‘effective buoyancy’ (Davies‐Jones, 2003), 

which gives the net vertical acceleration due to density gradients, is particularly useful for 

understanding this process. Jeevanjee and Romps (2016) have calculated analytical expressions 

for effective buoyancy and have found that, for air at the surface, the difference between 

buoyancy and effective buoyancy is particularly pronounced: for a cylindrical cold pool at the 

surface with H = R, the effective buoyancy is only about a quarter that of the buoyancy. This 

does not mean, however, that only a quarter of the cold pool's initial PE is converted to the cold 

pool's KE. Instead, the cold pool treats the overlying environment like a flywheel, pumping 
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energy into it initially only to extract much of that energy as the cold pool is squashed by the 

descending environment. Rather than attempt to model this complicated dynamics in any detail, 

we will simply define α as the fraction of the cold pool's initial potential energy that is 

immediately or eventually converted to kinetic energy of the cold pool; 1 − α is the fraction that 

is permanently lost to the environment by pressure forces not attributable to form drag. Rather 

than write this as an explicit sink, we will simply introduce a factor of α in the definition of the 

cold pool's potential energy PE, modifying Eq. 5 to

(12). 

The correct value for α is unknown, other than the fact that it must be between zero and one. 
Like cdf, its value will be found by optimization.

3.5 Surface enthalpy fluxes

Surface enthalpy fluxes reduce the density anomaly ρ′ and therefore the potential energy. For 

surface fluxes of the density anomaly, we can write

(13)

where ρ′s is the density of air that would be in equilibrium with the surface. Since PE is 
proportional to ρ′, these surface enthalpy fluxes reduce TE according to

(14)
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4 Governing equations

We can now specify the right‐hand side of Eq. 8 as the sum of all of the sinks given by 

Eqs 9, 10, 11, and 14. This gives

Next, we need to write dPE/dt and dKE/dt in terms of U and dU/dt. For dPE/dt, we first need to 
get an expression for the total time derivative of ρ′, which we obtain by combining Eqs 7 and 13. 
This gives

(16) 

The equation for dPE/dt then becomes
(17) 

For dKE/dt, we can proceed in a similar way after taking the derivative of Eq. 4. This gives

(18) 
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Substituting the expressions for dPE/dt and dKE/dt from Eqs 17 and 18 into the left‐hand side of 
Eq. 15, we obtain

The other governing equations are

5 Simplified governing equations

Although Eqs 19-23 form a complete set of governing equations for the uniform, cylindrical cold

pool, they are too complicated to provide much insight. Fortunately, many of the terms can be 

dropped because they are negligible in magnitude. To find out which terms can be dropped, we 

first need to find the minimum height of the cold pool.

Note that Eqs 21 and 23 can be combined to give

(24)
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which, assuming a constant ɛ, integrates to

(25) 

where R0 and H0 are the initial radius and height, respectively. The minimum value of H occurs 
where dH/dR = 0, which, according to Eq. 24, is when R = 2/ɛ. As we will see in section 9, a 
typical value for the fractional entrainment rate is ɛ = 0.2 km−1. Therefore, the minimum Hoccurs 
around R = 10 km. Assuming R0=H0=1 km, Eq. 25 gives a minimum H of 60 m.

Now, let us turn our attention to the governing equation for ρ′, which can be written as

(26) 

where we have assumed that ρ′s < 0, meaning that the virtual potential temperature flux off the 
surface is positive. Assuming that ɛ = 0.2 km−1 and cds=1.5 × 10−3, 2cds/3H is equal to or larger 
than ɛ only if H < 5 m. As we just learned, however, H never gets smaller than about 60 m, which
is an order of magnitude larger than this threshold. Therefore, the second term in parentheses can
be dropped. Note that we cannot drop the last term because ρ′ can become very small compared 
with |ρ′s|. After dropping the 2cds/3H term, we can then use Eq. 25 to replace H in Eq. 26 and then
we can integrate, yielding

(27)

Note that this is an analytical expression for ρ′ as a function of R.

Next, we need to simplify Eq. 19, which is the governing equation for U. First, we will set the 

form drag coefficient cdf to zero; this will be justified in section 9. Second, we will discard all of 

the H3 terms. The H3 terms all stem from the contribution of vertical momentum to the cold pool's

kinetic energy. Intuitively, we know that the contribution of vertical momentum to the kinetic 

energy of a cylindrical cold pool is only relevant in the initial stages as it begins to fall, as some 

of the potential energy gets briefly routed through vertical kinetic energy on its way to becoming 
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horizontal kinetic energy. Indeed, all of the H3 terms in Eq. 19 are added to V terms and , 

which decreases rapidly in the initial stages of a cold pool. So, we throw away all of 

the H3 terms; this is tantamount to writing

(28)

rather than the full expression in Eq. 4. Of course, throwing away the H3 terms adds some error 
to the initial development of our theoretical cold pool. If we were interested in studying the 
initial stages of cold pools—say, for R in the range of R0 to 2R0—then this could be a problem. 
However, our focus here is on the lifetimes and eventual sizes of cold pools, not the initial stages 
of cold pools, so this approach will suit us fine. In addition, this approximation overestimates the
radial kinetic energy only for , which occupies an exceedingly small fraction of the cold 

pool's lifetime and maximum area: only ∼6 min of a lifetime that is measured in hours and only 
∼1% of the cold pool's eventual area.

At this point, the governing equation for U has been simplified to

(29)

On the right‐hand side, there are three sources and sinks of U, which are due to entrainment drag,
exchange of energy between PE and KE, and surface drag. As discussed above, H never becomes
small enough for cds/H to approach the magnitude of ɛ, so we may discard the third term on the 
right‐hand side. The middle term, however, requires more thought. The piece proportional to 
2/R is the force that accelerates the cold pool by converting gravitational potential energy to 
kinetic energy: cold‐pool spreading leads to descent that lowers its centre of mass. The piece 
proportional to ɛ is a force that decelerates the cold pool by converting kinetic energy to potential
energy: cold‐pool entrainment causes the cold pool to puff up and raise its centre of mass. 
For R < 2/ɛ, the centre of mass descends with time, accelerating the cold pool. For R > 2/ɛ, the 
centre of mass ascends with time, decelerating the cold pool. This is something of a strange 
notion: for R > 2ɛ, expansion of the cold pool saps it of kinetic energy. As we will see in 
section 9, the LES cold pools have an entrainment rate that tends to decrease at large R in a way 
that keeps ɛ equal to or less than 2/R, so this behaviour is largely avoided.

Qualitatively, the middle term on the right‐hand side of Eq. 29 has its biggest moment at the very

beginning of the cold pool's life. In the short time that it takes for the cold pool to increase its 
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radius from R0 to 2R0, about 75% of the initial potential energy is expended. For a cold pool 

with R0=H0=1 km and a 1 K temperature anomaly, this only takes about 6 min. Therefore, rather 

than try to model the detailed interactions between PE and KE, we will simply put all of the 

initial PE into KE at the very start. This allows us to drop the middle term on the right‐hand side 

of Eq. 29. By Eqs 12 and 28, we must give the cold pool an initial U equal to

(30) 

With the understanding that U is to be set to U0 as given by Eq. 30 at time t = 0, we now have

Integrating, again assuming a constant ɛ, we obtain

(31) 

which is an analytical expression for U as a function of R. Note that this describes a very simple 
process: the reduction of kinetic energy by entrainment.

Since this is a very simple equation, it can be written in many convenient forms. For example, 

we can solve for time t as a function of cold‐pool radius R,

(32) 

We can also write down an expression for R(t),
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(33) 

and an expression for U(t),

(34) 

Although there are many such equations that can be written down, the simplified theory for a 
cylindrical cold pool can be completely and succinctly described by the following three 
equations:

 

6 Radius and time of death

These equations can be used to predict the demise of cold pools. Let us define the termination—

or, more colloquially, the death—of a cold pool as the time when it ceases to be cold. To 

acknowledge the virtual‐temperature effect of water vapour, we can be more precise by defining 

the termination of a cold pool as the time when ρ′=0. Note that we will be using the equations 

derived in the previous section, which apply to an isolated cold pool over a flat surface with no 

mean wind; a mean wind, topography, or collisions with other cold pools could all hasten a cold 

pool's demise. Throughout the article, we will denote the terminal time and terminal radius as tρ

′=0 and Rρ′=0, respectively.

We can solve for the terminal radius by setting ρ′=0 in 37. This gives

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0038


(38) 

which, surprisingly, has no dependence on the entrainment rate. Note that, for cds=1.5 × 10−3, 
9/2cds equals 3000. Therefore, so long as R0|ρ′s| is not three orders of magnitude larger than H0ρ′0, 
the terminal R is very well approximated by the second term in parentheses. In fact, inspection of
cold‐pool transects from LES of radiative–convective equilibrium (Jeevanjee and Romps, 2015) 
reveals that H0/R0∼1 and ρ′0/|ρ′s|∼1. Therefore, we can safely simplify this expression to

(39) 

Due to the 1/3 exponent, the dependence of Rρ′=0 on H0/R0 and ρ′0/|ρ′s| is weak. If we take H0/R0≈1 
and ρ′0/|ρ′s|≈1, then

(40) 

Therefore, from pure physical reasoning, we can conclude that the terminal radius of a cold pool 
is about 14 times its initial radius. Figure 1 shows the dependence of Rρ′=0/R0 as a function of H0ρ
′0/R0|ρ′s|. Thanks to the 1/3 exponent in Eq. 38, the terminal radius varies over a small range (7–
31 km) even as H0ρ′0/R0|ρ′s| is varied over two orders of magnitude (from 0.1–10).

Using R = Rρ′=0 in Eq. 32 gives the time when the cold pool ceases to be cold:

(41) 
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While the terminal radius of a cold pool is constrained to lie within roughly a factor of 2 of 14R0, 
the terminal time can vary over a much larger range. This occurs because, in the expression for tρ

′=0, there is both a factor of 1/U0 and an exponential of Rρ′=0. Note that the terminal radius does not 
depend on U0 because the two processes that reduce ρ′—entrainment and surface fluxes—operate
on a per‐distance fashion. Therefore, a halving of U0leaves the terminal radius unchanged, but it 



doubles the terminal time. The sensitivity of tρ′=0is illustrated in Figure 2, which shows Rρ′=0 and tρ

′=0 as heat maps plotted on axes of H0ρ′0/R0|ρ′s| and gH0ρ′0/ρ, assuming R0=1 km and ɛ = 0.2 km−1. 
Both axes are chosen to range over two orders of magnitude, centred on the values obtained 
using R0=H0=1 km and ρ′0=|ρ′s|=1 K. As in Figure 1, Rρ′=0 varies by only a factor of 4 from its 
lowest value to its highest value (i.e. within a factor of 2 of 14 km). In contrast, tρ′=0 varies over a 
range covering more than three orders of magnitude, from about 10 min to 10 days.

Figure 2
Open in figure viewer  PowerPoint
(a) The terminal radius Rρ′=0 given by Eq. 38, plotted as a function of H0ρ′0/R0|ρ′s| and gH0ρ
′0/ρfor R0=1 km and ɛ = 0.2 km−1. Note that Rρ′=0 depends only on H0ρ′0/R0|ρ′s| and varies only over a 
factor of 4 for a factor‐of‐100 range in H0ρ′0/R0|ρ′s|. (b) The same, but for the terminal time tρ

′=0 obtained from Eq. 41. Unlike the terminal radius, the terminal time depends on both 
expressions and it ranges here over three orders of magnitude. The circles denote the locations in 
parameter space of the large‐eddy simulations presented in section 8.
Caption

Since Eq. 38 has no dependence on ɛ, it is tempting to think that entrainment plays no role in 

setting the terminal radius. On the contrary, entrainment plays a very important role in setting Rρ

′=0. In the derivation of Eq. 26 for ρ′, entrainment allowed us to neglect the piece of the surface 

flux that scales as ρ′ (this was the argument about H having a finite lower bound). Why were we 

able to neglect this term? After all, the surface enthalpy flux is proportional to ρ′−ρ′s, so it might 

seem odd that we could neglect the ρ′ part of this. The reason, though, is simple. Entrainment 

quickly reduces ρ′ towards zero and it does so without changing the total mass anomaly Vρ′. As a

result, entrainment ‘hides’ the coldness of the cold pool from the surface without changing the 

total amount of enthalpy needed from the surface to terminate the cold pool, which is 

proportional to the mass anomaly Vρ′. Therefore entrainment plays a vital role in generating 

Eq. 38 even though it does not show up explicitly there.

In fact, we can see this mechanism at work in Eq. 39. Noting that the initial cold‐pool 
volume V0is equal to , we can write 39 as

(42)

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0040
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0040
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0039
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0026
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0039
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-sec-0013
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0042
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-disp-0039
https://rmets.onlinelibrary.wiley.com/action/downloadFigures?id=qj2754-fig-0002&doi=10.1002%2Fqj.2754
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-fig-0001
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-fig-0002


In the numerator, V0ρ′0 is the cold pool's initial mass anomaly, which can only be reduced by 
surface fluxes. Since entrainment quickly hides the coldness of the cold pool (i.e. ), |ρ′s| is 

the density difference between the cold pool and the air in direct contact with the surface. 
Therefore, cd|ρ′s| in the denominator is proportional to the surface enthalpy flux. The cube root is 
explained by the fact that the integrated surface flux is proportional to the product of the cold‐
pool surface area (order R2) and the total translation of the cold pool over the surface (order R).

To quantify the effect of entrainment on Rρ′=0, we can recalculate the expression for Rρ′=0assuming 

zero entrainment. To do this, we need to start over from Eq. 26, set ɛ = 0 and retain the cdsρ′ term. 

The resulting expression is

This is practically the same as Eq. 13 of Ross et al. (2004), who derived a box model for cold 
pools by ignoring entrainment entirely. The one difference is the factor of 9/2 here, which is 3 in 
Ross et al. (2004), stemming from the mistake of using ur=U rather than ur=Ur/R. For small ρ′0/|ρ
′s|, Eq. 43 simplifies to Eq. 38. For large ρ′0/|ρ′s|, however, Eqs 43 and 38 differ substantially. If a 
cold pool with R0=H0=1 km is 2 K colder than its surroundings and if the ambient air–sea 
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temperature difference is 0.2 K, then ρ′0/|ρ′s| equals 10. In this case, Eq. 38predicts Rρ′=0=31 km 
while Eq. 43 predicts Rρ′=0=19 km. By hiding the cold pool's total thermal deficit (equivalently, 
its ρ′V), entrainment reduces surface fluxes and increases the terminal sizes of cold pools.

Before concluding this section, let us consider whether the initial condition assumed here—a 

static cylinder of cold air—is appropriate and generalizable to more realistic conditions. In a real 

rain event, there is a finite time during which cold air is generated and fed into the cold pool. 

Given a typical updraught speed of 10 m s−1 and an atmospheric scale height of 10 km, we might 

expect the duration of precipitation shafts to be about 10 km/10 m s‐1≈20 min. Indeed, this is the 

typical lifetime of precipitation shafts in the large‐eddy simulations of radiative–convective 

equilibrium performed by Jeevanjee and Romps (2015). Since 20 min is short compared with the

lifetimes of cold pools predicted here, the use of instantaneously generated cold pools is 

appropriate.

To apply Eqs 41 and 42 to cold pools that are measured in observations or LES, we must 

generalize the definitions of R0, V0, ρ′0, and U0 to those cases. For R0, this is straightforward: we 

can define R0 as the halfwidth of the precipitation shaft or, for non‐circular rain footprints, we 

can define R0 as the square root of the footprint divided by π. For V0, U0, and ρ′0, we can calculate 

these variables based on the air that flows laterally out of the rain shaft. For notational simplicity,

imagine that the rain shaft has a circular footprint of radius R0. Then the total initial cold‐pool 
mass (ρ0V0), mass anomaly (ρ′0V0), and kinetic energy ( ) are given by
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where zBL is the depth of the boundary layer, ρ0 is the density of boundary‐layer air, φ is the 
azimuth about the cold‐pool centre, T is the duration of the precipitation shaft, and  is the 

Heaviside unit step function. After solving these equations for V0, U0, and ρ′0, the results can be 
plugged into Eqs 41 and 42 to estimate the terminal time and radius.

7 Measuring in LES

To evaluate this theory, we will use large‐eddy simulations of individual cold pools initialized as 

cold cylinders of air. To keep track of a cold pool's evolution, we will use a passive tracer, the 

mixing ratio of which is initialized to one within the initial cold pool and zero outside. As in 

Romps and Kuang (2010), we will refer to this as the purity tracer. Since cold pools in LES do 

not retain a uniform, cylindrical shape, we must make some choices about how to calculate the 

cold pool's volume, radius, and density anomaly.

Let us define

where q is the purity mixing ratio and X is one of the following: 1, q, u, v, and ρ′. 
Here, u and vare the horizontal wind components and ρ′=ρ(x,y,z,t) − ρenv(z,t = 0), where ρenv(z,t = 
0) is the initial profile of density in the environment. In all of the LES, the instantaneous two‐
dimensional distributions of these quantities are saved every 2 min. From these quantities, we 
can define a cold‐pool height distribution h(x,y,t), total mass M(t), radial‐velocity 
distribution ur(x,y,t), density‐anomaly distribution ρ′(x,y,t), mean density anomaly ρ′(t), and 
radius R(t). To find the correct expressions for these variables, we will find the expressions that 
give the correct answers for a uniform cylinder. For a cylinder with uniform density ρ, uniform 
purity q, and depth h,

From this equation, we can see, for example, that 〈1〈2/ρ〈q〈 equals the cold pool's height h. 
Therefore, for the LES output, we define the cold‐pool height h(x,y,t) as

(47) 

where ρ is a constant representative density near the surface, and we define the total mass of the 
cold pool as
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(48) 

where A is the area over which 〈q〈 is above some threshold value (we use 0.01 kg m−2). 
Proceeding in the same way, we find that ur(x,y,t), ρ′(x,y,t), and ρ′(t) should be defined as

To borrow a phrase from computer science, we are ‘overloading’ the symbol ρ′ to mean different 
things in different contexts in order to simplify the notation. When ρ′ refers to a four‐dimensional
variable, it equals ρ(x,y,z,t) − ρenv(z,t = 0). When ρ′ refers to a three‐dimensional variable, it is 
given by Eq. 50. When ρ′ refers to a one‐dimensional variable, it is given by Eq. 51. In the text 
and figures that follow, context will make clear which definition is being used.

We define the cold‐pool radius R(t) somewhat differently, so that it captures the location of the 

cold‐pool front as accurately as possible. For a uniform cylinder, the radius R can be written as 

the following integral for any n≥1:

(52) 
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For a non‐uniform cold pool, this will give the distance from the centre to the edge that is 
farthest away in the limit of . Since this limit is noisy, we use n = 10, which gives an 

accurate and smooth R(t). The radius obtained in this way is very similar to the one obtained by 
taking the square root of the area of 〈q〈>0.01 divided by π. Finally, we diagnose the fractional 
entrainment rate ɛ as

(53)

8 The large‐eddy simulations

Table 1 describes the nine LES that are used for comparison with the theory developed in the 

previous sections. All of the simulations were initialized with a motionless, cylindrical cold pool 

with a uniform temperature perturbation defined relative to the environment at the same height. 

For computational feasibility, all of the cold pools have an initial height H0 and initial 

radius R0 equal to one kilometre; larger initial heights and radii would have required larger 

computational domains. Both the cold pool and the environment are dry and have a dry‐adiabatic

lapse rate. A small amount of random noise is added to the initial temperature field to break the 

symmetry. For each of the nine simulations, Table 1 specifies whether or not surface fluxes of 

momentum (i.e. drag) or enthalpy are communicated between the surface and the atmosphere. In 

either case, the fluxes are calculated using the bulk aerodynamic formula, i.e. −cdsρ|u|u or cdsρ|u|

(Tsurf−T), with a drag coefficient cds=1.5 × 10−3. The temperatures in Table 1 specify the initial 

cold‐pool surface air temperature Tcp, the initial environmental surface air temperature Tenv, and 

the surface temperature Tsurf. The identifying numbers (i.e. 1–9) assigned to each simulation in 

Table 1 will be used throughout the article.
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Table 1. A list of the large‐eddy simulations indicating whether or not surface drag was present, 
whether or not surface enthalpy fluxes were present, the temperature of the cold pool Tcp, the 
temperature of the environmental surface air Tenv, and the temperature of the sea‐surface Tsurf.

LES # Surface drag? Enthalpy fluxes? Tcp (K) Tenv (K) Tsurf (K)

1 No No 299 300 301

2 No Yes 299 300 301

3 Yes No 299 300 301

4 Yes Yes 299 300 301

5 Yes Yes 299 300 304

6 Yes Yes 299.75 300 301

7 Yes Yes 296 300 304

8 Yes Yes 296 300 316

9 Yes Yes 299.75 300 300.25

All of the LES are performed using Das Atmosphärische Modell (DAM: Romps, 2008), which is

a fully compressible large‐eddy model. All of the simulations are performed without radiation, 

without microphysics (all of the simulations are dry), and without planetary rotation. The 

domains have a model top at 3 km and a square horizontal domain that is sufficiently large to 

encompass the cold pool throughout the 3.5 h of simulation (38.4 km square for all of the 

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2754#qj2754-bib-0018


simulations). The horizontal grid spacing is Δx = Δy = 50 m and the vertical grid spacing is Δz = 

10 m for z < 600 m, Δz = 50 m for z > 1300 m, and smoothly transitioning in between.

9 Comparing LES and theory

Our objective in this section is to compare the cold‐pool theory with the large‐eddy simulations 

of cold pools. Before we can do that, however, we must use the LES to find the appropriate 

values of α (the fraction of gravitational energy converted to cold‐pool kinetic energy) 

and cdf (the form‐drag coefficient). For this purpose, we use LES 1 and our full theoretical 

equations 19-23 to find the best choice of α and cdf. We use LES 1 for this exercise because it is 

the simplest of all the LES, in the sense that it has neither surface drag nor enthalpy fluxes; 

including those surface fluxes would only increase the sources of potential error in the theoretical

calculation and therefore add error to the calculated best‐fitting α and cdf. Also, to reduce the 

treatment of entrainment as a potential source of error, we give the theoretical equations the 

actual ɛ(R) diagnosed from the LES.

Figure 3 plots the root‐mean‐square difference between R(t) calculated from Eqs 19-23 and R(t) 

calculated from Eq. 52. The best fits are obtained for cdf=0, indicating that form drag is 

negligible. This is an interesting result, especially in comparison with recent findings that cloud 

thermals experience significant drag (Romps and Charn, 2015), despite having, like cold pools, 

an internal vortex‐ring circulation. These results are not inconsistent, because wave drag was 

identified as a likely dominant source of drag for cloud thermals (Romps and Öktem, 2015), 

whereas there is no wave drag in these simulations with neutral stratification. (Waves can be 

supported on the interface between the cold pool and the environment, but there is no way for 

those waves to propagate away from the cold pool and therefore no way for them to remove 

momentum from the cold pool.) Also, it is important to note that the entrainment drag is 

calculated as if the entrained air has zero momentum, which may overestimate the entrainment 

drag and therefore give a best fit with a less‐than‐realistic cdf. As for α, although it is difficult to 

tell from Figure 3, the best fit occurs for a value of 0.7. In other words, 70% of the cold pool's 

gravitational potential energy is converted to kinetic energy of the cold pool, with the remainder 

going into the kinetic energy of the environment. These values of cdf=0 and α = 0.7 will be used 

in all theoretical calculations henceforth.
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Figure 3

For LES 1 (no surface fluxes of momentum or enthalpy and an initial 299/300/301 K temperature
distribution), the 3 h root‐mean‐square difference between the R(t) diagnosed from the LES and 
the R(t) governed by Eqs 19-23 for different values of (abscissa) α and (ordinate) cdf. The best fit 
occurs for cdf=0 and α = 0.7, which is highlighted with a white box; these values are used in all 
subsequent figures.

Figure 4(a) shows that the theoretical solution for R(t) using the full theory with ɛ(R) diagnosed 

from the LES is indeed a good fit to the LES. However, in order to use the simplified equations 

derived in section 5, we must pick a constant fractional entrainment rate. Figure 4(b) shows that 

the full theory—i.e. Eqs 19-23 from section 4—with a constant fractional entrainment rate of ɛ = 

0.2 km−1 is also a good fit to the LES. For comparison, the solutions with ɛ = 0.1 and 0.3 km−1 are 

shown; these are poor fits. Next, we can evaluate the simplified theory—i.e. Eqs 35-37 from 

section 5—by plotting their R(t) against the R(t) from the full theory. As argued in section 5, the 

full theory and simplified theory should agree quite well. Indeed, Figure 4(c) confirms this.
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Figure 4

 (a) A comparison of R(t) for (dashed black) LES 1 and (solid red) the full theory given by 
Eqs 19-23using the actual ɛ(R) diagnosed from the LES. (b) A comparison of R(t) for (dashed 
black) LES 1 and (solid red) the full theory using a constant ɛ equal to 0.1, 0.2, and 0.3 km−1. (c) 
A comparison of (dashed black) the full theory using constant ɛ and (solid red) the simplified 
theory given by Eqs 35-37 using the same constant ɛ. These panels demonstrate that the full 
numerical theory is an excellent match to the LES and very little error is introduced by assuming 
a constant entrainment rate or by using the simplified governing equations.

Now, what do these LES and theoretical cold pools look like from a bird's‐eye view? To give a 

sense for this, Figure 5 gives the plan view of h(x,y,t), ur(x,y,t), and ρ′(x,y,t) (multiplied by 

−ρ/T to convert it to a temperature perturbation) for LES 4 (arguably, the most realistic of the 

nine simulations) at 30 min intervals, along with the corresponding simplified theory from 

Eqs 35-37. Figure 6 plots the same information, but azimuthally averaged at 30 min intervals. Of 

course, there is a great deal of internal structure to real cold pools that cannot be captured by a 

uniform cylinder. Nevertheless, the simplified theory does a decent job of capturing the size and 

horizontally averaged properties of the LES cold pool. Note that, in the azimuthal averages, 

many of the largest discrepancies between the LES and theory occur at small radii, which make a

small contribution to the cold pool's area.
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Figure 5
Snapshots of cold‐pool properties from LES 4 in Table 3(i.e. with surface enthalpy fluxes, 
surface drag and an initial 299/300/301 K temperature distribution) and the corresponding 
theoretical solution using Eq. 36 for h, Eqs 2 and 31 for ur and Eq. 37 for ρ′, which is then 
multiplied by −ρ/Tto express it as a temperature perturbation T′.
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Figure 6
 (a)–(c) Azimuthal averages of cold‐pool height h, radial velocity ur and temperature anomaly T′ 
for LES 4 at 30 min intervals and (d)–(f) the same, but from the corresponding theoretical 
solution using Eq. 36 for h, Eqs 2 and 31 for ur and Eq. 37 for ρ′, which is then multiplied by 
−ρ/Tto express it as a temperature perturbation T′.
Caption

A key conclusion from section 5, codified in Eq. 35, is that R(t) is largely insensitive to drag and 

surface enthalpy fluxes. We can check this by comparing the R(t) from LES 1–4, which share the

same initial temperature distribution but differ in whether or not they have surface drag. 

These R(t) are plotted in Figure 7(a), where R(t) is on the abscissa to be consistent with the other 

panels. The dashed curves have no surface drag, while the solid curves do. The black curves have

no surface enthalpy flux, while the red curves do. The triangles denote where the cold pools 

terminate (i.e. cease to be cold); trajectories beyond those radii are plotted in pink. All of the cold

pools have very similar R(t), in agreement with the theory.
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Figure 7
As a function of cold‐pool radius R, (a) time, (b) cold‐pool density anomaly and (c) cold‐pool 
entrainment rate for LES 1–4 in Table 3(i.e. with an initial 299/300/301 K temperature 
distribution). Simulations with surface enthalpy fluxes are red; those without are black. 
Simulations with surface drag are solid; those without are dashed. Triangles denote where the 
cold pools cease to be ‘cold’ pools; curves beyond those points are faded to emphasize that those 
are no longer cold pools, strictly speaking. In (a), note that the four R(t) curves are very similar, 
indicating an insensitivity to surface enthalpy and momentum fluxes. In (c), note that the 
entrainment rates are also very similar, up to the point where cold pools start to have enhanced 
mixing due to patches of neutrally or positively buoyant air.

Significant deviations from a common R(t) occur only when the cold pools begin to have 
significant regions of , i.e. as they are dying. This only occurs for the red curves because 

only those simulations have surface enthalpy fluxes. Figure 7(b) shows the mean ρ′ as a function 

of radius. As the mean ρ′ approaches zero, the entrainment rate, shown in Figure 7(c), starts to 

grow rapidly. This occurs because the stratification between the cold pool and its environment is 

removed, allowing enhanced mixing by mechanical forcing and even by buoyant convection for 

regions of the ‘cold’ pool with ρ′<0.

For LES 1 and 3, which have no surface enthalpy fluxes, the total mass anomaly Vρ′ does not 

change in time, so the cold pool remains cold forever. It is intuitive that such a cold pool would 

continue to spread until it has blanketed the entire domain. Equation 29, however, suggests that 

this might not happen if ɛ exceeds 2/R. As discussed in section 5, this would cause PE to grow as 

the cold pool expands, which would happen at the expense of KE. If ɛ remained larger than 

2/R for long enough, this could grind the cold pool to a halt, leaving untapped PE sitting 

motionless in the atmosphere. This is an absurd result, so something must prevent this from 

happening. That ‘something’ is that ɛ must decrease with radius to stay roughly at or below a 
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bound of 2/R. This behaviour can be seen in the black curves in Figure 7(c). At about 7 km, 

2/Rbecomes small enough to equal ɛ, but ɛ decreases to stay at or under the 2/R bound for all R >

7 km.

Another set of key theoretical predictions consists of Eqs 38 and 41, which give expressions for 

the terminal radius Rρ′=0 and the terminal time tρ′=0. Figure 8 plots the terminal radius and time from

the seven LES with surface enthalpy fluxes against the corresponding predictions from 

Eqs 38 and 41, respectively. One‐to‐one lines are added for visual reference. Although not 

perfect, the simple theory does a good job of predicting the location and timing of cold‐pool 

death.

Figure 8
 (a) For LES 2 and 4–9, the radii at which the cold pools terminate (i.e. cease to be cold) are 
plotted against the corresponding theoretical prediction. Note that LES 1 and 3 are not included, 
because their lack of surface enthalpy fluxes means that they never cease to be cold (i.e. never 
achieve ρ′=0). (b) The same, but for the time at which the cold pools terminate.
Caption

It is interesting to note that LES 4, which has surface drag, terminates at a larger radius 

and later time than LES 2, which is the same in all respects except that it has no surface drag. 
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This may be counterintuitive, since it is natural to imagine that surface drag would slow down 

the cold pool, leading to an earlier demise at a smaller radius. On the contrary, the addition of 

surface drag reduces the low‐level wind speed relative to the bulk of the cold pool, thereby 

reducing the enthalpy fluxes. Since it is the zero crossing of ρ′ that terminates a cold pool, 

surface drag leads to a later termination at a larger radius.

10 Summary and discussion

With the goal of understanding the dynamics of real cold pools, we have derived the governing 

equations for a uniform, cylindrical cold pool. Inspection of the magnitudes of terms in the 

equations reveals that the cold‐pool dynamics has only a weak dependence on surface drag that 

can be neglected. With this and some other well‐justified approximations, the governing 

equations reduce to a very simple theory for cold‐pool dynamics, given by Eqs 35-37. The cold‐

pool radius is a function of time that depends only on the initial radius, the initial gravitational 

potential energy, and the fractional entrainment rate.

These equations make predictions for the lifetime and final size of cold pools, defining the 

demise of a cold pool as when it ceases to be cold on average. The expressions for those terminal

sizes and times are given by Eqs 38 and 41 for an initially stationary cold pool, or by 

Eqs 41 and 42 for a more realistic cold pool with initial values estimated according to Eqs 44-46.

Although entrainment reduces ρ′ dramatically, the terminal radius—defined as the cold‐pool 

radius when ρ′=0—has no dependence on the entrainment rate. By quickly ‘hiding’ the coldness 

of the cold pool from the surface, entrainment simplifies the estimation of surface fluxes without 

affecting the total enthalpy fluxes needed to terminate the cold pool; this leads to a very 

predictable terminal radius that does not depend on the precise value of the entrainment rate. The

equations show that the final radius is tightly constrained to be in the vicinity of ∼14 times the 

initial radius, while the terminal time can range over several orders of magnitude. Comparison 

with large‐eddy simulations, as shown in section 9, validates the simple theory and its 

predictions for cold‐pool sizes and lifetimes.

We can also compare our results with previous studies that have measured the sizes and lifetimes

of cold pools. Tompkins (2001) studies cold pools in a large‐eddy simulation of tropical 

unorganized convection and finds the mean maximum radius to be 8.6 km. It is important to 

note, however, that Tompkins (2001) uses a very different definition of cold‐pool radius. Here, 

we measure the radius as the distance from the centre of the cold pool to the outer perimeter of 

the original cold‐pool air, whether or not it is still ‘cold’; Tompkins (2001) measures the radius 

from the centre of the cold pool to the perimeter of the currently ‘cold’ air (specifically, air with 
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buoyancy less than −0.005 m s−2 or a potential temperature anomaly less than −0.15 K). Feng et 

al. (2015) study cold pools in an LES using a similar definition (with a buoyancy threshold of 

−0.003 m s−2) and find a similar result: a mean maximum radius of 6.4 km. As seen in Figure 5, 

the definition of radius used by Tompkins (2001) and Feng et al. (2015) gives a maximum radius

that is only about half as large as the terminal radius. If we account for this by doubling their 

reported maximum radii, we infer that they simulated cold pools with mean maximum radii of 

about 13–17 km. This agrees with the theory presented here, which predicts a ∼14 km terminal 

radius for a cold pool with an initial radius of 1 km and H0ρ′0/R0|ρ′s|∼1.

The theory also agrees well with the reported lifetimes. Tompkins (2001) reports a mean cold‐

pool lifetime of 2.5 h and a mean initial temperature anomaly of −1 K. Using this temperature 

anomaly to set ρ′, using a fractional entrainment rate of 0.2 km−1 (as diagnosed in section 9), and 

using an initial radius and height of 1 km, Eq. 41 predicts a lifetime of 2.8 h, which is in close 

agreement with 2.5 h. Feng et al. (2015) report a shorter lifetime of 1.2 h, but this agrees, at least 

qualitatively, with their smaller initial temperature anomaly of −0.5 K (see their figure 6(d)). 

Changing the temperature anomaly from −1 K to −0.5 K, while holding the other variables 

constant, reduces the lifetime predicted by Eq. 41 from 2.8 to 2.1 h. Differences in the air–sea 

temperature difference or in the initial cold‐pool height or radius could easily explain the 

remaining discrepancy.

It is more difficult to observe cold pool sizes in nature and even more difficult to measure their 

lifetimes. At least anecdotally, it appears that cold pools reach a wider range of sizes over the real

tropical oceans than they do in large‐eddy simulations of the tropical maritime atmosphere. For 

example, Black (1978), Zuidema et al. (2012), and Feng et al. (2015) observe real cold pools 

over tropical oceans with radii of 50–100, 20–30, and 5–25 km, respectively. As noted in the 

discussion of Eq. 38, it is difficult to generate a wide range of terminal radii by varying just the 

normalized height H0/R0 or the normalized density anomaly ρ′0/|ρ′s|, since they contribute to the 

terminal radius with only one‐third power. Instead, the variance in the initial radius in Eq. 38 or 

initial mass anomaly in Eq. 42 is likely the single largest contributor to the observed variance in 

the terminal radius. For example, assuming a plausible boundary‐layer depth H0 of 1 km and a 

plausible ratio of ρ′0/|ρ′s|=1, Eq. 38 would require an initial radius of R0=20 km to produce a 

terminal radius of 100 km. Of course, this does not imply a need for a single cylindrical rain shaft

that is 40 km across. By Eq. 42, it would also suffice to have five, nearby, 2 km radius rain shafts 

of 30 min duration that replenish the air in their boundary‐layer volume 20 times during their 

lifetime, which would be possible with modest radial winds of 10 m s−1 at the edge of the rain 

shafts.
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In the study of convection, convective entrainment is often cited as the biggest obstacle to 

developing advanced theories of convective updraughts (de Rooy et al., 2013). Based on the 

results shown here, we suspect that cold‐pool entrainment may prove to be as thorny an issue for 

cold pools as convective entrainment has been for convection. The similarities are striking. 

Consider, for example, that a bulk‐plume model treats updraughts as homogeneous at each 

height and our ‘bulk‐pool’ model treats cold pools as homogeneous at each time. Also, as in a 

bulk‐plume model, we have been forced to specify an entrainment rate that is motivated by 

empiricism rather than theory. Fortunately, a cold pool's terminal radius is independent of the 

entrainment rate, so the theory presented here for cold‐pool sizes is likely to stand the test of 

time. On the other hand, the equations given here for a cold pool's velocity U(t) and terminal 

time tρ′=0 are highly dependent on the chosen entrainment rate. Since ɛ may vary significantly with

initial radius or may evolve in important ways at larger radii (as suggested by the black curves in 

Figure 7(c)), the extrapolation of our results for U(t) and tρ′=0 to cold pools with R0much larger 

than those simulated here is not without risk. To know for sure how well these equations and 

assumptions apply to larger cold pools, more work is needed on simulating and observing a wide 

range of cold pool types and on developing theories for cold‐pool entrainment.
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