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Abstract

A generic binding model which can provide complete information for binding task
is presented in this paper. With information provided by this model, people can do
interconnection optimization concurrently with operation and variable binding, as well
as find better combination of FUs. Our method is not only much faster but also can
obtain better or competitive binding than complex previous works.

Categories and Subject Descriptors: B.5.2 [Hardware]: REGISTER-TRANSFER-
LEVEL IMPLEMENTATION
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1 Introduction

In recent years, behavioral (high-level) synthesis[l,

2] has been recognized as one of the major design

methodologies. It allows us to specify a design in a

purely behavioral form, devoid of any implementation

details. For example, we can describe a design us

ing Boolean equations, finite-state machines and other

conceptual models, then an implementation for the

design can be generated by automatic synthesis tools,

instead of tedious manual design.

Behavioral synthesis involves the transformation of

a design specification into a set of interconnected RT-

components[2] which can perform the specified be

havior and satisfy the specified constraints, such as

area, performance, power, etc. To achieve these goals,

three major synthesis tasks are applied during the

transformation[l]: allocation, scheduling, and bind

ing. The allocation determines the number of re

sources, such as registers, buses, and functional units(FUs),

which will be used in the implementation. The schedul

ing partitions the behavioral description into time in

tervals, called control steps. During each control

step, data are fetched from some registers, transformed

in FUs, and written back to some other registers. The

binding assigns variables to storage units, assigns op

erations to FUs, and makes sure that there are distinct

communication paths assigned for every datum trans

ferred between the storage and FUs. Here we define a

data-transfer as the movement of a set of data trans

ferred from a storage unit to an input port of an FU

or from an output port of an FU to a storage unit.

In this paper, we assume the binding task is per

formed after scheduling is done. The binding task

not only assigns the operations, variables, and data-

transfers to hardware components such that the hard

ware can perform the specified behavior correctly, but

also makes the assignment toward a better design qual

ity, such as smaller hardware cost(area), lower power

consumption, higher performance, or a combination

of some of the aboves. Figure 1 shows an example

of how the binding t«isk affects design quality. We

assume area is the major design quality concerned

here. Figure 1(b) and Figure 1(c) are two possible

implementations for the scheduled control/data-flow

graph(CDFG) in Figure 1(a). Either Figure 1(b) or
Figure 1(c) can be the optimal result. For example,

under technology 1 shown in Figure 1(d), Figure 1(c)

is the optimal result; on the other hand, under tech

nology 2, Figure 1(b) is the optimal result.

Owing to the complexity of the binding task, most

early synthesis systems[3, 4, 5, 6, 7, 8, 9, 10] decom

pose the binding task into several phases or subtasks,

for example, operation-to-FU assignment, variable-to-

storage assignment, and interconnection optimization,

then find the optimal solution or a near-optimal solu

tion in each phase or subtask. However, since there

are inter-dependencies among these subtasks, no opti

mal solution is guaranteed even if all of the subtasks

are solved optimally. Someother synthesis systems[ll,

12, 13, 14] start with an empty datapath and build the

datapath gradually by adding FUs, storages, or inter

connections as necessary. However, their algorithms

can't foresee better consequences, thus these construc

tive approaches often lead to not so good results. A

time-consuming iterative improvement [2] phase is

usually required by these systems[13].

Integer Linear Programming(ILP) model[15,16,17,

18] is the only way to find the optimal solution for

the binding task. However, since an ILP problem is

NP-complete[19], it would be very time-consuming to

solve a large design using ILP model[18]. On the other

hand, some researchers[20, 21,22, 23] proposed heuris

tic methods which can find good enough implementa

tions in reasonable time. They formulate the binding
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Figure 1: An example of binding

task as a 2-D placement problem. However, these 2-

D placement models have to start with pre-determined

resource allocation. Thus, some alternative implemen

tations, for example, using ALUs to replace adders and

subtracters or vise versa as shown in Figure 1 can not

be evaluated to find a better implementation.

In this paper, we present a generic binding model

which explicitly expresses the relation among variables,

operations, and data-transfers, as well as the rela

tion among partially bound data structure and com

ponents. Our model can provide following advantages:

• Starts without pre-determined resource alloca

tion, where all possible implementations can be

explored.

• Binds operations, variables, and data-transfers

concurrently to globally search the best imple

mentation.

• Works for arbitrary architectures, accepts arbi

trary component libraries, and can be employed

by most algorithms.

The rest of this paper is organized as following: We

define our binding model in Section 2. Then, we illus

trate how popular design rules are formulated by our

binding model in Section 3. A simple binding algo

rithm and a source exchange algorithm based on our

binding model are proposed in Section 4 and Section 5.

Our model is so powerful that even a simple algorithm

can produce competitive or better results than previ

ous complex binding algorithms. The experimental

results are shown in Section 6. Finally, we conclude

our contributions in Section 7.

2 The binding model

In general, the binding task tries to find an assign

ment with best design quality for variables, opera

tions, and data-transfers to implement a scheduled

CDFG. To perform the binding task, we first trans

form the scheduled CDFG into a register-transfer flow
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Figure 2: A scheduled CDFG and its corresponding
RTFG

graph(RTFG) which explicitly describes the relation

among variables, operations, and data-transfers, then

group those vertexes which will be bound to the same

hardware component into one cluster. The RTFG is

defined as following:

Definition 1 A register-transfer flow graph

(RTFG) is a directed graph {V,E) where

1. A vertex v represents an operation, a vari

able, or a data-transfer.

2. An edge e £ E indicates a relation between a

sink of a vertex and a source of another vertex.

3. Each vertex is associated with one or more clock

stamps indicating its life time.

Figure 2 shows an example of the transformation

from a scheduled CDFG to its corresponding RTFG:

Figure 2(a) is a CDFG which has two operations( -I-

and X ) and four input/output variables( VI, V2, ...

V4 ). Including the initial control step, it is scheduled

into three control steps( Co, Ci, and C2 ). Figure 2(a)

is transformed into a 13-vertex RTFG as Figure 2(b).

In Figure 2(b), vertex -H and vertex x represent op

erations, vertexes VI, V2, ... V5 represent variables,

and vertexes Tl, T2, ... T6 represent data-transfers.

Each operation or variable in Figure 2(a) is trans

formed into a vertexassociated with the corresponding

clock stamps in Figure 2(b). For examples, the oper

ation -H in Figure 2(a) is transformed into the vertex

-I- associated with a clock stamp Ci in Figure 2(b);

the variable V3 in Figure 2(a) is transformed into the

vertex V3 associated with clock stamps Co and Ci in

Figure 2(b). In addition, vertexes represent tempo

rary variables are added into the RTFG, for exam

ple, V5 associated a clock stamp Ci is added into the

RTFG. Finally, each data-transfers between variables

and operations is transformed into a vertex associated

with a corresponding time stamp. For example, the

data-transfer from variable V3 to operation x in Fig

ure 2(a) is transformed into the vertex T5 associated

with a clock stamp C2 in Figure 2(b).

Once the scheduled CDFG is transformed into a

RTFG, we can formulate the binding task as a clus

tering problem where we cluster all of the vertexes

in the RTFG into clusters such that vertexes which

are clustered together are bound to the same hardware

component. In most cases, this formulation implies:

1. Vertexes associated with same clock stamps can

not be clustered together, since a hardware com

ponent can't perform more than one job at the

same time.

2. Operations can not be clustered together if there

is no FU which can execute all of those opera

tions available.

However, there are some exceptions. For example, the

component library has a super-scalar FU which can

execute two additions concurrently, then two addition-

vertexes associated with the same clock stamp can be

clustered together.
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3 Some paradigms

Our binding model can work for arbitrary architec

tures, accept arbitrary component libraries, and be

employed by arbitrary algorithms. Any design rules

can be translated into corresponding clustering rules.

We now illustrate how popular d^ign rules are formu

lated in our binding model below.

3.1 Interconnection style

In case the design rule allows using only one-level

MUX interconnection between registers and FUs,

data-transfer vertexes should be clustered according to

their successors. Figure 3 shows an example of MUX-

base design: Oj is operation vertex, T,- is data-transfer

vertex, and Vj is variable vertex. The upper-right in

dex is clock stamp. T2 and T3 are clustered after V2

and V3 have been clustered.

On the other hand, when the design rule uses both

MUX eind bus interconnection, any data-transfer

vertexes whose clock stamps don't conflict with each

other can be clustered together to form an intercon

nection circuit. A data-transfer cluster with only one

successive cluster is bound to a MUX; otherwise, bound

to a bus. Figure 4 shows an example of this intercon

nection style.

Moreover, generalized interconnection model[6]

^ {gi I ( voj ® ' Co^

Tti vt;

Oi Og,

a 6'

vV 3; (y,5 (^5;
(a) RTFG clustering

Oa O4

Tt Tg T:

Vi V2 V3 V4 V5

(b) Corresponding implementation

Figure 4: Design using both MUX and bus

developed by Ly et. al. can also be implemented in

our model. In this case, any data-transfer vertexes

can be clustered together even they have same clock

stamps. We can cluster any data-transfer vertexes to

gether if the clustering is beneficial, under generalized

interconnection style.

3.2 Pipeline FU

We use Figure 5 to show how pipeline components are

interpreted in our model. In case there is no pipeline

multiplier in the component library, two multiplication

vertexes which have coincident clock stamps can not

be grouped into a cluster. For example, three opera

tion vertexes from the scheduled CDFG in Figure 5(a)

can only be clustered as in Figure 5(b) if there is no

pipeline multiplier available. On the other hand, in

case there are pipeline multipliers in the component

library, two multiplication vertexes which have coinci

dent clock stamps can be grouped into a cluster as long

as their first clock stamps are different. For example.
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Figure 5: Clusterings with and without pipeline FU

three operation vertexes for the scheduled CDFG in

Figure 5(a) can be clustered as in Figure 5(c) if there

are pipeline multipliers available.

3.3 Multi-function unit

Our model allows using multi-function units, for ex

ample, implementing an addition by using an adder,

add-subtractor, or ALU. Figure 6 shows an example of

using multi-function units. In case there is no multi

function unit in the component library, an RTFG as

shown in Figure 6(a) is clustered as in Figure 6(b). On

the other hand, in case there are add-subtractors avail

able, the RTFG shown in Figure 6(a) can be clustered

either as in Figure 6(b) or as in Figure 6(c), depend

on whose cost is smaller.

3.4 Multiclock and chaining

Our model can adopt multiclock and chaining. Once

an operation is scheduled to be executed in more than

Figure 6: Two clusterings

one clock cycles, more than one clock stamps are at

tached to the corresponding operation vertex in RTFG.

On the other hand, once two operations are scheduled

to be chained into one clock, the same clock stamp

is attached to both corresponding operation vertexes

and no variable vertexes are inserted between two op

eration vertexes. Figure 7 shows an example of multi-

clock and chaining in our binding model.

3.5 Custom-built components

Special custom-built components can be formulated

by certain rules on clustering, too. For example, given

a component library which has register that can per

form shifting, we can allow vertexes which represent

variable and vertexes which represent shift operations

to be clustered together. Similarly, superscaler FUs

or multiplication-adder can be formulated in this way,

3.6 Adopting popular binding algorithms

Basicly, what a binding algorithm does is to assign

operations and variables to hardware components and

organize data-transfers into interconnection circuits.

Thus, we can directly translate "assign an operation
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Algorithm Simple

begin
clusters = iniitalJiTFG-clustering-,
repeat

i = find^^eedC clusters );
repeat

k a inax_gain_cluster( i );
i a merge.clusterC i, k );

until no^ain.on-groving_seed( i );
until binding-Completed;
retumC clusters );

end

Figure 8; A simple binding algorithm based on our
model

or variable e to a hardware component C" in any al

gorithms into "put the vertex c into the cluster C in

our binding model, using the same process, cost func

tions, priorities, etc. Similarly, we can directly trans

late "combine data-transfers ei, C2, ..Cn into inter

connection C" into "put the vertexes ci, €2, •••, e„

into the cluster C". Therefore, our binding model can

work with any algorithms. However, our model can

cluster all the operations, variables, or data-transfers

concurrently. Therefore we can find better solution

than previous works did. In addition, the hardware

type for a cluster is determined at the end in our

model. Thus optimal allocation for the binding can

be obtained.

4 A simple algorithm

In this paper, we use a simple algorithm to show how

our binding model works. More algorithms based on

our binding model can be found in[24].

Figure 8 shows the simple binding algorithm. In

general, this algorithm starts with an initial RTFG

clustering in which each cluster contains only one ver

tex. However, the initial clustering also can be a clus

tering transformed from a partially completed imple-



mentation. In this case, those operations, variables, or

data-transfers which have been bound to same com

ponent are grouped into same cluster in the initial

clustering.

The simple algorithm grows one cluster at a time.

The procedure f ind_a_seed returns a seed cluster which

is going to be grown. The seed is created by merging

two clusters which have the best gain. The proce

dure max^ain-cluster returns the best cluster which

can be merged with the seed. Once a seed is de

termined, the algorithm keeps growing the seed un

til no more gains can be obtained. This select-seed-

and-grow loop(outer loop) is repeated until the whole

binding is completed.

Time complexity of the algorithm is O(n^) where n

is number of vertexes in the input RTFG. We compute

a gain table at the first time we execute f ind_a_seed.

The complexity of computing the gain table is O(n^).

Once the gain table is built, we only have to update

part of it(less than n items) at each time we exe

cute find_a_seed afterward. Thus, the complexity of

lind_ajseed is 0{n) except the first time. Moreover,

the inner loop is executed totally at most n times de

spite how many times the outer loop is executed, since

we need to merge clusters at most n times. Therefore,

the complexity of the algorithm

= compute gain table

•4- number of outer loop x lind_a_seed

-I- total number of inner loop x max^ain-cluster

= 0(n2) + 0{n) X0{n) -H 0(n) x 0(n)
= 0(n2)

We assume the maximum number of input/output

of an operation is constant m. When transform CDFG

into RTFG, at most m variable vertexes plus m data-

transfer vertexes can be created for each operation.

Thus, number of vertexes in the RTFG is less than

number of operations in the original CDFG multiplied

by constant (2m -1-1). That is, the complexity of the

algorithm is also O(Ar^) where k is number of the op

erations in the original CDFG.

The cost function we use to compute the gain for

merging clusters is not the design quality measures

like total area or a weighted sum of numbers of FUs,

registers, and MUX. Actually, ii « not necessary to

use the design quality measure as the costfunction for

proceeding binding. As long as it can lead to better

binding, any metrics can be used to direct the bind

ing process. Moreover, we may switch around several

metrics when necessary. More complicate cost func

tion, for example, using expert systems and incorpo

rating estimation tools to determine the gain for each

merging, can obtain even better results. On the other

hand, through different cost functions, our model not

only can work for area optimization binding, but also

can do poweroptimization binding or performance op

timization binding.

However, we only use simple cost functions in this

paper. To compete with previous works, which usu

ally evaluate design quality by number of drivers and

selector bits, the cost function we use is the number of

common sources and sinks of operation and variable

clusters as the primary key and component area as the

secondary key. On the other hands, to obtain designs

toward smaller area, the cost function we use is the

number of common sources and sinks as the primary

key and component area as the secondary key.

5 Source exchange

There are a lot of two-input operations whose sources

are commutative[25], for examples, additions, mul

tiplications, logic operators, etc. Properly exchanging

the sources of these operations can save a considerable

amount of selectors.

Figure 9 shows an example of how exchanging the



(a) Operations bound to the adder:

addi{ bus 1 , bus 2 )
add2i bus 2 , bus 3 )
add3{ bus 3 , bus 1 )

Before source exchange i After source exchange

Total selector bits » 6 Total selector bits = 4

Figure 9: An example of saving selectors by exchang
ing sources

sources can save a number of selectors. Three addi

tions as shown in Figure 9(a) are bound to an adder.

They source three buses. Under straightforward im

plementation as shown in Figure 9(b), six selector bits

are required. However, we can exchange the sources

of add2 as shown in Figure 9(c), where the function

ality of the design remains totally the same and only

four selector bits are required. In this example, two

selector bits are saved after the source exchange.

In previous works, Ly at. al.[6] exchange sources

of commutative operations according some heuristics

before running their binding algorithms. On the other

hand, Choi and Levitan[23] randomly exchange sources

of commutative operations trying to obtain better re

sults during their binding process. Different from their

works, we propose a linear-time post-binding algo

rithm. We optimize arrangement of commutative sources

after operations, variables, and data transfers are bound

to hardware components.

In our work, we first construct an incompatible

(a) Four operations
which are in a cluster:

Opi(5i.S2)
Op2{S\,Sz)
Opz{S2,Sa)
Opa{S2,S3)

(b) The corresponding
incompatible graph

@ Opi Opz ^

Figure 10: An incompatible graph example

graph defined below according to the relation among

the sources of the operations which are clustered to-

gether(going to be bound to the same FU). Then,

we use a red-black coloring algorithm to decide which

input-port a source component should connect to.

Definition 2 An incompatible graph {V, E) for the

operations in a cluster is an undirected graph where

1. A vertex u € U represents a component sourced

by the operations.

2. An edge e ^ E represents an operation in the

cluster.

3. Two vertexes connected by an edge e are two

sources of the operation. Two vertexesfsources)

are said to be incompatible if they are con

nected by an edge.

Since two sources of an operation can't connect to the

same input-port, two incompatible vertexes(sources)

should be bound(connect) to different input-ports.

Figure 10 shows an example of the incompatible

graph. As shown in Figure 10(a), four operations

Opi.. .Op4, which source four components Si .. .S4,

are in a cluster. Figure 10(b) shows the corresponding

incompatible graph. Each edge in Figure 10(b) repre

sents an operation in Figure 10(a). For example, the

edge Opi which connects Si and S2 in Figure 10(b)

represents the operation Opi which sources Si and S2

in Figure 10(a).



Algorithm Red-black-coloring

begin
repeat /♦ breadth-first spanning-tree */

V = select_seed( inpui-incompaiible-graph );
V.color =: red ;

repeat /* coloring-neighbor process */
if V.color = black then

neb_color = red

else

neb.color = black;
for i £ neighbor( v ) do

if i.color = no-color then

if 3 j € neighborC i ),
j.color = neb-color then
i. color = bLcolor;

else

begin

i.color = neb-color;

add^neueC i );
end

V = pop_queue();
until V = ^;

until alLvertexes-are-colored;
end

Figure 11: Red-black-coloring algorithm

Once we have the incompatible graph, we color each

vertex with red or black to decide which input-port

the vertex(source) should be bound(connect) to. Two

incompatible vertexes are colored with different colors

and vertexes(sources) have samecolor are bound(connect)

to the same input-port. However, there are some sources

which inevitably have to connect to both input-ports.

The correspond vertexes of these sources are colored

with both colors. For example, one of the sources Si,

S2, and S3 in Figure 10(a) has to connect to both

input-ports. Similarly, one of the vertexes Si, S2, and

S3 in Figure 10(b) has to be colored by both colors.

Finally, if we can find a coloring for the incompatible

graph with least number of bi-colored vertexes, we can

obtain a source arrangement with the least number of

selector bits.

To find a coloring with least number of bi-colored

vertexes for the incompatible graph is NP-complete.

Thus, we use a quick and effective red-black coloring

algorithm which can find a near optimal solution in

linear time complexity.

Figure 11 shows our coloring algorithm. It is ba-

sicly a breadth-first spanning-tree[26] algorithm. We

first select a un-colored vertex v as the seed and color

it red. Then, we color all of v's neighbors i with the

other colorneb.color or bi-color. If coloring an i with

neb.color causes color conflict with one of the i's

neighbors j, we color the i with bi-color. Otherwise,

we color the i with neb.color. Once we have colored

all of the neighbors of the seed v, we follow breadth-

first criterion to select a newly uni-colored( black or

red ) vertex as the next seed and repeat the coloring-

neighbor process( inner repeat loop ). Meanwhile, a

queue is used to keep the list of seed candidates. All

newly uni-colored vertexes are stored into the queue.

One candidate is popped out each time the inner re

peat loop needs a new seed. Once all candidates are

popped out, we again select a vertex with no color

as the next seed and start another outer repeat loop.

The outer loop continues until all of the vertexes are

colored. Moreover, the function select.seed selects

a vertex with no color as the seed and the function

neighbor returns all of the neighbors of the vertex

given.

Algorithm Red-black-coloring can find a near opti

mal solution within 0(n) time complexity, where n is

number of vertexes in the incompatible graph. Actu

ally, we obtained optimal solutions in almost all of our

experiments.

6 Experimental results

There are two major advantages of our work over pre-
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~bui= r SCHALLOC 12 6 IT

base Ours 8 6 6

r SCHALLOC n 6 TT
Ours 8 6 7

MUX- r HAL Tr~W
base Splicer 11 10

LYRA 9 r
Ours 9 8

Table 1: Differential equation of HAL — use 1 adder,
1 subtractor, 2 multipliers, and 1 comparator

1. We do interconnection optimization concurrently

with variable and operation binding.

2. Our method can find better trade-off among com

bination of FUs and interconnection.

To show the first advantage, we compare experi

mental results of previous works with ours, in terms

of number of components required and interconnec

tion cost. To demonstrate the second advantage, we

show some examples of using different combination of

FUs. Our experimental results are obtained by using

both of the algorithms in Section 4 and Section 5. We

use VCC4DP3 Datapath Library[27] to generate our

final implementations.

6.1 Comparison with previous works

To show the performance of our method, we compare

our results with previous works Schalloc[28], HAL[5],

Splicer[29], LYRA[8]. SPAID[10], Su and Xue[30],

STAR[13], and M<SiM[23].

Table 1 shows experimental results of the differ

ential equation example of HAL[5], using 1 adder, 1

subtractor, 2 multipliers, and 1 comparator. Both

bus-base(linear) and MUX-base(random topology) in

terconnection styles are tested. The forth column are

numbers of total MUX input, including selectors and

drivers. Table 2 shows experimental results of the 5th

order elliptic filter of Kung[31], using register files and

STAR

SPAID

MandM

Ours

STAR

SPAID

Ours

STAR

Ours

FU

2-H 2x

3-1- 2x

2-1- 2x

2-i- 2x

2-|- 1Xp
3-b 2Xp
2-H Ixp
1-b 1Xp
1+ IXp

MI I RF I mem I bus

Xp : pipeline multiplier

Table 2: Elliptic filter of Kung — bus interconnection

I Ours I 2-f
Xp : pipeline multiplier

3-t- 3x

3-1- 3x

2-|- 2x

3-H 2x

3-1- 2 X

Table 3: Elliptic filter of Kung — MUX interconnec
tion

8 STAR 2+ 2- 2x 61

Ours 2-|- 2— 2x 53

TT STAR 1-f 1- 2x
Ours l-H 1- 2x 40

16 STAR 1-1- 1- Ix
Ours I 1-1- 1- Ix I 23

input interval

MI RF mem bus

"61 7 14 1214 12

12 17

12 8

14 13

15 6

11 11

Table 4; Pipelined FDCT kernel of Mallon

FU I MI I RF I mem I bus
STAR 4-1- 2x 42 8 23 12

Ours 4+ 2x 35 8 19 12

STAR 3-1- 2x 25 6 20 10

Ours 3+ 2x 23 6 17 11

STAR 3-1- 2x 42 5 21 8

Ours 3-1- 2x 30 5 15 9

STAR 2-|- 2x 27 4 23 6

Ours 2-1- 2x 22 4 13 6

input interval

Table 5: Pipelined FIR of Park



FU

adder

subtracter

comparator

add-sub

ALU

multiplier

area(/im^)
Wm
41.6K

32.0K

48.0K

83.2K

112.0K

Table 9: Size of FUs in VCC4DP3 Datapath Library

bus-base interconnection. Table 3 shows experimental

results of the 5th order elliptic filter, using registers

and MUX-base interconnection. Table 4 and Table 5

show experimental results ofpipelined FDCT(Fast Dis

crete Cosine Transform) [22] kernel and pipelined FIR

filter[32], using register files and bus-base interconnec

tion. From these tables, we can see our method can

obtain similar or better results than previous'.

Since we don't use iterative improvement, our method

is relatively fast in addition to producing competitive

results. For example, using 110 MHz SUN SparcS, it

takes less than one second to obtain each FDCT imple

mentation. Compared to STAR[13], which can obtain

results similar to ours, it takes twelve minutes in av

erage to obtain an FDCT implementation using SUN

Sparc 1. Moreover, most of our designs are obtained

within 0.1 second.

6.2 Using multi-function units

It is a trade-off between using multi-function FUs and

mono-function FUs. Using multi-function FUs can re

duce the number of FUs required, since the utilization

of FUs is increased. However, a multi-function FU

may be much more expensive than a mono-function

FU. Thus, total FU cost for using less number of multi

function FUs may be higher than total FU cost for

using more mono-function FUs.

In addition to the cost for FUs, there is another

even bigger impact when using multi-function FUs.

Once we have multi-function FUs in a design, there

are more candidate for each operation to be bound to,

therefore we can choose an arrangement which needs

less number of MUX input and then better intercon

nection can be obtained. As the example shown in

Figure 1 (in Section 1), two ALUs are more expensive

than one adder plus one subtractor. However, each

operation can be bound to either FU as in Figure 1(c)

instead of bound to a specific FU as in Figure 1(b).
Thus, an implementationwith smaller total area may

be obtained, even though using multi-function units

doesn't improve FU utilization a little bit.

Table 6, 7, 8 show experimental results on trade

off multi-function FUs and mono-function FUs. The

area of each FU we used is shown in Table 9. The add-

subtractor can execute only addition and subtraction,

and cost only a little higher then the adder or the sub-

tractor. On the other hand, the ALU can execute all

general operations except multiplication and division,

and cost much higher then the adder, the subtrac

tor, or the comparator. Since there is no add-sub-

comparator available in VCC4DP3 Datapath Library,

using much expensive ALU is the only way for the

comparison operation to share FU with other opera

tions.

In Table 6, we test each design using (1) only mono-

function units, (2) mono-function units and add-subtractor,

(3) all types of FUs. The sixth column is total area of

all FUs used in each implementation. We can see total

FU cost for implementation using multi-function unit

is higher than that of implementation using mono-

function unit. However, due to saving in MUXes, bet

ter implementations may still be obtained by using

multi-function units. Similarly, Table 7 and Table 8

show more experimental results under various design

styles.



MUX- 1-1- 1 — 2 X Icmp
base 1 -b 1 ± 2 X Icmp

1 -f 2 X la/u

FU

1 + 1 — 2 X Icmp
1 + 1 ± 2 X Icmp
1 + 1 ± 2 X Icmp

total FU

cost(p^)
337.6K

344.0K

344.OK

total

area(/i^)
708K

676K

676K

FU

used

mono

add-sub

all

8 9 337.6K 728K mono

8 6 344.0K 676K add-sub

8 3 347.2K , 620K ail

Table 6: FU sharing of the differential equation example ( 4 C-step scheduling )

inter- total FU total FU
elk conn FU bus reg MI cost(p^) area(p^) used

8 bus- 3+ 3- 2x 19 10 55 468.8K 2106K mono

base
1—^ - 1

5 ± 3x 21
1 1

10 33 576.0K , 1800K ; all

1784K mono

5± 2x 10 I 31 464.OK 1620K all

13 bus- 14- 1- 2x 12 13 51 305.6K 1948K mono

base 3± 2x 1 13 14 41 368.0K j i868K all

13 MUX- 1+ 1- 2x

base 3± 2x

14 50 305.6K 1970K mono

13 41 368.0K 1826K all

16 MUX- I 1-1- 1- Ix
base 3 ± 1 x

16 bus- l-b 1- Ix 8 11 35 193.6K 14Q4K mono

base 3± Ix 11 11 24 256.OK 1262K all

10 32 193.6K 1302K mono

11 21 256.0K 1202K all

Table 7: FU sharing of the pipelined FDCT kernel using registers

inter- total FU FU
elk conn FU bus RF MI mem cost(p^) used

8 bus- 3-1- 3- 2x 19 8 34 12 468.8K 2082K mono

base 19
1 1

8
1 ^ '

34
1 ^ . 1

12 468.8K 2082K all

1984K

5± 2 464.0K 1808K

13 bus- H- 1- 2x 13 •BBI 14 305.6K 1938K 1 mono
base 3± 2x 13 7 21 15 368.OK 1648K

13 MUX- 1+ 1 - 2x - 7 35 15 305.6K ISSOK mono

base 2± 2x - , 6 34 14 320.0K 1752K all

16 bus- 1+ 1- Ix 11 1 5 23 11 1 193.6K 1254K mono

16 MUX- I 1-H 1- Ix
base 1-1- 3 ± 1 x

3i: Ix 256.0K 1052K

5 19 193.6K 1174K

5 5 296.0K 1022K

Table 8: FU sharing of the pipelined FDCT kernel using register files

mono

all



7 Concluding remarks

A binding model which can formulate any architec

tures is presented in this paper. This model provides

complete binding information that can help people

working on implementation details and fine tune their

binding algorithms.

With complete binding information provided by our

model, we have two major advantages: (1) We can do

interconnection optimization concurrently with oper

ation and variable binding. (2) We can find better

trade-off among combination of FUs and interconnec

tion.

A simple binding algorithm is proposed to demon

strate the performance of our model. Using our bind

ing model, even simple algorithms can obtain better

or competitive results than complex previous works.
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