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Abstract 

Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and pro-
duction. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the 
production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared 
with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops 
such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from 
other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new 
biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can 
support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such 
a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum trans-
formation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize 
available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to 
sorghum research, as well as those wishing to include non-food and forage applications in their research.

Keywords:   Agrobacterium, biofuels, bioinformatic resources, genetic engineering, genetic resources, sorghum transformation

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is the world’s fifth lar-
gest cereal crop by acreage and production (FAOSTAT, https://
www.fao.org/faostat/en/#data). It is an important staple food 
in the semi-arid tropics of Asia and Africa. Globally, sorghum 
is used for animal feed, fodder, and high-value products such 
as syrup and bioethanol. Harboring traits such as tolerance to 

drought, waterlogging, and salinity make it a highly productive 
crop in environmental conditions that restrict the cultivation 
of other cereals (Hadebe et al., 2017; Huang, 2018). Sorghum 
has also been the source of exciting advances in fundamental 
biology such as the discovery of a metabolon for dhurrin bio-
synthesis (Laursen et al., 2016) and a new gene and chemistry 
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involved in conferring Striga resistance (Gobena et al., 2017). 
Although sorghum holds great promise, it is still underutil-
ized. In this review, we will present the current state of re-
search employing sorghum as a multipurpose feedstock for 
the bioeconomy, summarize available research tools with a 
focus on transformation and genetic engineering, and identify 
promising areas for future research.

Cultivated sorghum (Fig. 1A) can be classified into five basic 
races: bicolor, guinea, caudatum, kafir, and durra, which are 
differentiated by the phenotype of their mature panicles and 
spikelets (Harlan and Wet, 1972) (Fig. 1B). Sorghum bicolor (L.) 
Moench subsp. bicolor contains all the cultivated sorghum var-
ieties (Dahlberg, 2000). Sorghum can also be classified based 
on its agronomic characteristics into forage, biomass, sweet, 
and grain types (Table 1). Forage sorghum is tall, and the bio-
mass is used to feed livestock. Important traits of forage sor-
ghum include digestibility, nutrient content, and palatability. 

Biomass sorghum is bred to maximize vegetative yields, with 
reports of up to 61 Mg ha–1 (Snider et al., 2012), but, unlike 
forage sorghum, palatability is not a concern. Some of the ori-
ginal biomass breeding stock was derived from forage sorghum, 
so high-biomass sorghums can also be produced for forage 
(Venuto and Kindiger, 2008). Dedicated biomass sorghum is 
used to produce biofuels and chemicals from the lignocellulosic 
biomass (cell wall), fibers for biomaterials, and biogas via anaer-
obic digestion (Reddy and Yang, 2005; Wannasek et al., 2017; 
Silva and Vermerris, 2020). Sweet sorghum accumulates large 
amounts of soluble sugars (sucrose, glucose, and fructose) in its 
stems and was initially identified as an alternative sugar source 
in areas unsuitable for sugarcane production. Besides its use for 
syrup production, it can also be used for biofuel production and 
high-sugar forage (Rooney et al., 2007). Sorghum is typically 
a photoperiod-sensitive plant, requiring short days (8  h/16  h 
light/dark) to transition from the vegetative to the reproductive 
stage. Hybrid grain sorghum is photoperiod insensitive, meaning 
it can flower rapidly even in the summer in temperate regions, 
and therefore has shorter stature and reaches maturity earlier 
(Smith and Frederiksen, 2000). Grain sorghum is grown for its 
seeds and is used as a staple food mainly in the semi-arid tropics 
of Asia and Africa, as animal and poultry feed, as well as a sugar 
source for distillation into alcohol. Recently, grain sorghum has 
become more popular in other countries because of its health 
benefits, such as reducing rates of cardiovascular disease, obesity, 
and certain types of cancer (reviewed in Awika and Rooney, 
2004). Certain genotypes contain 3–4 times more anthocyanin, a 
plant pigment which has antioxidant properties, compared with 
other grains (Awika et al., 2004). It is also a gluten-free alterna-
tive for people with celiac disease. However, in countries such 
as the USA, grain sorghum is primarily used to feed livestock 
and produce pet food, with approximately one-third of its pro-
duction being directed to produce biofuels (United Sorghum 
Checkoff Program, https://www.sorghumcheckoff.com/).

Independent of the usage type, sorghum is an attractive crop 
for cultivation in a wide range of environments (tropical, sub-
tropical, and temperate regions) and in soils that are considered 
marginal for other food crops such as maize (Fu et al., 2016; 
Ameen et al., 2017). Sorghum can grow in mineral-rich soils 
with pH values that limit profitable cultivation of other crops 
(Smith and Frederiksen, 2000). It also requires less water and 
exhibits drought and waterlogging tolerance (Rosenow et al., 
1983; Promkhambu et al., 2010; Varoquaux et al., 2019). As an 

Fig. 1.  Sorghum plant morphology (A) and panicle and spikelet 
phenotypes of the five basic races (B). The race bicolor is the most 
primitive of the cultivated races and has upright semi-open panicles, with 
long and clasping glumes. Commercially cultivated sorghum tends to be a 
mixture of these major races. The race guinea originated in humid regions 
of West Africa and has open, elongated panicles, which helps decrease 
mold infection. Caudatum originated in eastern Africa and has panicles 
ranging from compact to open, with shorter, asymmetric, glumes that 
expose the grain. On the other hand, kafir, which originated in southern 
Africa, has tighter and longer panicles. Durras have compact panicles and 
originated in southern Sahara.

Table 1.  Characteristics of sorghum groups

 Forage Sweet Grain Biomass 

Height 
(m)

1.8–3.6 >3 0.6–1.2 3.5–6

Traits Single or multicut harvest, digest-
ibility, nutrient content, palatability

Large amount of soluble 
sugars in stems

Photoperiod sensitive and insensi-
tive, high grain yield

Photoperiod sensitive, dual-purpose, 
high lignocellulosic biomass

Uses Livestock feed Syrup and biofuel produc-
tion, high-sugar forage

Seed as staple food in some regions, 
livestock feed and biofuel production

Biofuel, biogas, and biomaterial 
production

https://www.sorghumcheckoff.com/
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adaptive mechanism, sorghum becomes dormant during severe 
drought conditions and resumes growth when re-exposed to 
water (reviewed by Assefa et al., 2010). Another post-flowering 
drought adaptation is known as non-senescence or stay-green 
(Borrell et al., 1999, 2000; Borrell and Hammer, 2000). The 
stay-green trait allows delayed remobilization of nitrogen in 
the leaves, maintaining photosynthetic activity and carbohy-
drate supply to the developing grain, which results in higher 
biomass and grain yield (Borrell et al., 1999, 2000; Borrell and 
Hammer, 2000). For instance, stay-green sorghum hybrids can 
produce 47% more post-anthesis biomass under drought con-
ditions (Borrell et al., 2000). Along with drought tolerance, 
sorghum is also heat tolerant (Craufurd and Peacock, 1993; 
Nguyen et al., 2013), which is particularly relevant, considering 
climate change predictions that include reductions in rainfall 
and increases in temperature in many cereal-growing regions.

Sorghum as a multipurpose feedstock for 
the bioeconomy

While sorghum is an important staple food and forage crop 
globally, it has potential as a feedstock for renewable fuel and 
bioproducts (U.S. Department of Energy, 2016, https://www.
energy.gov/eere/bioenergy/2016-billion-ton-report). For it 
to be a viable feedstock, agronomic and biomass compositional 
traits will likely need to be further developed to make the 
economics of the manufacturing processes comparable with 
those for fossil fuel-derived products (Baral et al., 2019; Yang 
et al., 2020, 2021). This is exemplified by the US Department 
of Energy Bioenergy Research Centers, which have been 
funded since 2007 to investigate all aspects of advanced biofuel 
production process (https://genomicscience.energy.gov/cen-
ters/). Sorghum is one of three DOE flagship biomass crops, 
and open research questions include biomass improvement 
and co-production of valuable chemicals. Sorghum’s versatility 
in multiple processing configurations is one of its key appeals 
(Stamenković et al., 2020). For example, biodiesel can be pro-
duced from sorghum grains after pressing and transesterifying 
lipids (Ved and Padam, 2013). Starch from the grain or the 
sucrose-rich juice from the stems of sweet sorghum can be 
used for fermentation into biofuels and bioproducts. Beyond 
this, sorghum, especially the photoperiod-sensitive varieties, 
can produce large amounts of aerial lignocellulosic biomass 
that can also be used as a sustainable and economically feas-
ible feedstock for conversion. Because of sorghum’s versatility, 
designing an ideal sorghum ideotype is challenging (Yang et 
al., 2021). Instead, it is more likely that a range of sorghum 
varieties will continue to be developed, with their phenotype 
tuned to the desired downstream market.

Target traits for biomass improvement: the cell wall

The cell wall is a crucial organelle for cell structure and pro-
tection, and is made up mainly of cellulose, hemicelluloses, and 

lignin. Cellulose, which constitutes 25–35% of the sorghum 
biomass, is made of β-1,4-glucose chains, which in turn form 
crystalline fibrils via hydrogen bonding (Ioelovich, 2008; Polko 
and Kieber, 2019). Hemicelluloses are a collection of branched 
hetero-polysaccharides (Ebringerová et al., 2005), but in the 
sorghum cell wall, glucuronoarabinoxylans dominate, making 
up ~35% of the total biomass (Anglani, 1998; Xu et al., 2018). 
Lignins are complex branched polyphenolics, made up of 
monolignol subunits derived from phenylalanine and tyro-
sine metabolism, and are found only in some secondary cell 
walls (Boerjan et al., 2003). Sorghum lignin content varies be-
tween ~2% and 11% of dry matter depending on the cultivar 
(Brenton et al., 2016), and is a key factor affecting forage palat-
ability and biorefinery efficiency.

During biomass processing in a biorefinery, cellulose, hemi-
celluloses, and soluble sugars can be converted to monosac-
charides, which can then be utilized as a carbon source by 
microbes. Most microbes preferentially use hexose sugars 
(such as the glucose in cellulose) over pentose sugars (such 
as the xylose and arabinose in xylan), so biomass with a high 
hexose:pentose ratio, namely reduced xylan, is preferable 
(Brandon et al., 2020). Branched hemicelluloses such as xylan 
require multiple enzymes to hydrolyze them to monosacchar-
ides, so hemicelluloses with fewer branches, or altered branch 
frequency, may also be preferable (Gao et al., 2020). However, 
the cell wall should not be weakened so much that the plant 
lodges in the field or is more susceptible to pathogens and 
pests. Susceptibility to lodging and diseases due to cell wall 
modifications have proved difficult to predict, with some plants 
with engineered walls being more resistant to pathogens (re-
viewed by Miedes et al., 2014).

In addition to sugar engineering, lignin can be modi-
fied for biomass improvement. An ideal biomass feedstock 
would have low lignin, since it both physically shields poly-
saccharides from polysaccharide-degrading enzymes and re-
duces enzymatic efficiency via non-specific binding. With 
the advent of designer lignins and use of microbes that can 
consume phenolics as a carbon source, monolignols are in-
creasingly considered high-value intermediates for the 
production of important biochemicals (Eudes et al., 2014; 
Karlen et al., 2016; Baral et al., 2019). Therefore, the de-
sired biomass phenotypes (the sorghum biomass ideotype) 
will vary depending on the final target product. As a plant 
breeding problem, this variability highlights the need for 
seed producers to be able to respond rapidly to needs in the 
supply chain beyond their direct market (farmers), as the 
bioeconomy develops.

The isolation of naturally occurring lignin mutants has al-
ready proved beneficial for commercial sorghum cultivars. 
Nineteen Brown midrib (Bmr) mutant loci have been identified 
in sorghum, though only 3–4 loci are considered of agronomic 
interest due to their lower lignin content and higher potential 
for biomass conversion (Porter et al., 1978; da Silva et al., 2018). 
Engineering approaches that re-route the lignin biosynthetic 
pathway have been demonstrated in a number of plant species 

https://www.energy.gov/eere/bioenergy/2016-billion-ton-report
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(Fu et al., 2011; Eudes et al., 2014; Wilkerson et al., 2014; Yan 
et al., 2018). Restricting engineering to specific cell types has 
been successful in reducing lignin while avoiding stem weak-
ness (Yan et al., 2018).

Beyond biomass: oils, bioproducts, and novel 
materials

In addition to being a source of starch and lignocellulose to 
produce biofuels, sorghum has the potential to function as a 
factory for other bioproducts or their precursors, and this will 
be important for the economic success of advanced biofuels. 
Compared with microbial production systems, in planta pro-
duction of chemical compounds can reduce inputs, costs of 
post-production conversion steps, and the amount of pathway 
engineering needed (Yang et al., 2020). Proposed examples in-
clude pharmaceuticals (artemisinin and cannabidiol), materials 
(e.g. latex), insecticides (e.g. limonene), and plastic precursors 
[e.g. polyhydroxybutyrate (PHB)]. Modeling has shown that 
the added value of bioproducts can lower biofuel production 
costs to prices competitive with fossil fuels, as well as providing 
a better farmgate price for growers (Yang et al., 2020). Another 
promising route for sorghum metabolic engineering is to 
target triacylglycerol (TAG) accumulation in leaves for oil pro-
duction, which can be used for biodiesel production. Although 
vegetative organs represent most of the above-ground biomass, 
leaves accumulate <1% lipids (Yang and Ohlrogge, 2009), so 
plant oil production relies on seeds rich in TAG. However, up 
to an 8.4% increase of TAG in leaf tissues has been achieved in 
sorghum by simultaneous overexpression of the genes encoding 
the maize transcription factor WRINKLED1, Umbelopsis 
ramanniana acyltransferase UrDGAT2a, and Sesamum indicum 
oil body protein OLEOSIN-L, providing a basis for further 
improvements in levels of extractable oil for commercial pur-
poses (Vanhercke et al., 2019).

Lignin valorization is another attractive option to add value 
to compounds from waste products in a biorefinery (Mottiar 
et al., 2016). Potential high-value applications of lignin range 
from synthesis of lignin nanotubes for gene delivery (Ten et al., 
2014) to development of lignin-based antibacterial products 
for pharmaceutical and biomedical industries, demonstrating 
the wide range of properties that can be exploited (Grossman et 
al., 2020). Lignin precursors have been re-routed in tobacco to 
produce intermediates that can be converted by an engineered 
microbial chassis to produce high-value compounds pyrogallol 
and cis,cis-muconic acid (Wu et al., 2017). Similar approaches 
could be applied to re-route higher levels of valuable inter-
mediates in sorghum, although it will require better under-
standing of the regulation of cell wall biosynthesis pathways. 
Lignin valorization into phenolic compounds such as eugenol 
is also of great interest. Eugenol can be used in food, cosmetics, 
and pharmaceutical industries, and its high demand can lead to 
high market value (Martinez-Hernandez et al., 2019). Techno-
economic analysis (TEA) and life cycle assessments (LCA) 

have shown that lignin valorization into eugenol and other 
methoxyphenols can reduce the cost of ethanol production 
by up to 23% and reduce greenhouse gas emissions by up to 
78% compared with the petrochemical industry (Martinez-
Hernandez et al., 2019). As demonstrated by this and other 
examples (Yang et al., 2020), TEA and LCA are important re-
sources to guide decisions on which compounds should be tar-
geted for genetic engineering, based on their economic value.

Finally, novel materials can be produced from biomass. For 
example, cellulose derived from lignocellulosic material can be 
broken into nanofibers, which have nanostructure favorable 
to high mechanical performance of nanofiber networks and 
composite materials (Sehaqui et al., 2010). Cellulose nanofibers 
are a great renewable material for the manufacturing of ultra-
filtration membranes and can also be used as barrier layers in 
packaging material, among other useful applications (Forde et 
al., 2016). Additionally, both hemicelluloses and pectins have 
been suggested for use in a range of materials which include 
medical devices (Zheng et al., 2020), superconductors (Di 
Giacomo et al., 2015), and biodegradable packaging (Gouveia 
et al., 2019; Mendes et al., 2020). Collaborations between sor-
ghum researchers and material scientists to develop new uses 
for biomass components or to engineer improvements are 
likely to be fruitful.

Barriers to using sorghum in biotechnology 
applications

There are three major barriers to the use of engineered sor-
ghum: technical challenges around sorghum transformation, 
general societal concerns about engineered crops, and specific 
concerns about sorghum gene flow to weedy relatives. We will 
not dwell on the GMO issue here because it is reviewed in 
depth in the literature.(McHughen and Wager, 2010; National 
Academies of Sciences, Engineering, and Medicine, 2016; 
Wolt, 2017; Callaway, 2018; Spicer and Molnar, 2018; Waltz, 
2018; Zhang et al., 2020).

Though we describe many examples of existing transgenic 
sorghum technology, to our knowledge, there is no trans-
genic sorghum grown commercially. One main reason for 
the limited use of transgenic sorghum in the USA is con-
cerns about gene flow to its sexually compatible wild weedy 
relatives such as Johnsongrass (S. halepense), S. bicolor subsp. 
drummondii, and S. bicolor subsp. verticilliflorum via pollen dis-
persal and subsequent cross-pollination and hybridization. 
These wild relatives can easily hybridize with the cultivated 
sorghum to produce the noxious weed shattercane (Ejeta 
and Grenier, 2005). Strategies to limit gene flow, such as male 
sterility, could be implemented, as could agronomic strat-
egies which monitor for compatible weedy species within 
the range of pollen flow. For example, in sorghum, it has 
been estimated that after 700 m, very little, if any, outcrossing 
would be expected (Schmidt and Bothma, 2006). It is also 
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important to note that most of the discussed modifications 
would likely be considered ‘null’; that is, they would not be 
expected to give weedy relatives a selective advantage. This 
makes regulation more straightforward than traits such as 
herbicide tolerance.

The rapid development of transgenic sorghum varieties will 
be necessary to complement gains from traditional sorghum 
breeding, as humanity faces increasing challenges from cli-
mate change, degraded soils, and increased population. In the 
next section, we will give an overview of the transformation 
methods adopted for sorghum biotechnology thus far and dis-
cuss the main bottlenecks that need to be addressed to have 
efficiencies comparable with other grasses and move the field 
forward.

Sorghum transformation

The limited ability to transform sorghum is the major bar-
rier to the widespread adoption of sorghum as a research 
model and as feedstock for the growing bioeconomy. 
Sorghum transformation is technically challenging, com-
paratively costly and time-consuming, and limited to a few 
genotypes. Sorghum is highly recalcitrant to tissue culture 
and transformation, mainly because of genotype-dependent 
responses, production of phenolic compounds, short-term 
plant regeneration ability, and acclimatization issues (the 
ability of plants to survive the transfer from in vitro culture to 
soil) (Maheswari et al., 2006; Altpeter et al., 2016). Here, we 
describe the achievements so far, and outline research ques-
tions that would help resolve existing barriers to sorghum 
engineering.

Since transgenic sorghum was first described (Casas et al., 
1993), many improvements have been reported (Fig. 2). Casas 

and colleagues used immature embryos from the genotype 
P898012 to induce callus formation for particle bombard-
ment, and obtained a transformation efficiency of 0.3% (Casas 
et al., 1993). Since then, the process has been improved using 
the genotype Tx430, and reached efficiencies of up to 46.6% 
(Belide et al., 2017). Using Agrobacterium tumefaciens to intro-
duce the transgene via infection, transformation efficiency has 
increased from 9.7% in the initial studies (Zhao et al., 2000) 
to 33.2% (Wu et al., 2014). An important factor for tissue cul-
ture and, consequently, transformation success, is genotype se-
lection. For the past 10 years, the grain sorghum inbred line 
Tx430 has been routinely used due to its consistently high 
callus induction and regeneration frequencies (Howe et al., 
2006; Gurel et al., 2009; Liu and Godwin, 2012; Wu et al., 2014; 
Liu et al., 2015; Belide et al., 2017). However, Tx430 was dir-
ectly compared with seven bioenergy parental sorghum lines 
using the protocols from Liu and Godwin (2012) and Wu et 
al. (2014). While Tx430 had high callus proliferation accom-
panied by low phenolic release, lines PI329311 and Rio had 
the best regeneration rates (Flinn et al., 2020).

The explant source also plays a role in transformation ef-
ficiency. A variety of explants, such as immature and ma-
ture embryos, immature inflorescences, leaf discs, leaf whorls, 
and shoot meristems, have been used (Tables 2, 3). The most 
successful studies have used immature embryos due to their 
high embryogenic and regeneration competence (Tables 2, 
3). However, the plant needs to reach the reproductive stage, 
which is limited to specific seasons or periods of time, and 
the narrow time window of 10–15 d in which the immature 
seeds need to be collected. To overcome these drawbacks, Silva 
et al. (2020) tested leaf whorls from the genotypes Tx430 and 
P898012, since this material can be collected throughout the 
year. The protocol also saves at least 4 weeks, as the explants 

Fig. 2.  Timeline of advances in sorghum transformation. Cat, chloramphenicol acetyltransferase; NptII, neomycin phosphotransferase II.
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can be collected around 30 d after emergence, compared with 
70 d needed to collect immature embryos. Furthermore, the 
excision of leaf whorls is more technically straightforward than 
embryo isolation, allowing higher throughput.

Current transformation methods

To improve sorghum tissue culture and transformation, dif-
ferent genotypes, transformation methods, and explant sources 
have been tested over the years. The improvements resulted 
in reported increases in transformation efficiency from 0.3% 
to 46.6%, but these remain restricted to select genotypes, and 

hampered by the seasonality of explant availability. Thus far, 
four transformation methods have been reported for stable 
and transient gene expression in sorghum: electroporation; 
pollen-mediated transformation; particle bombardment; and 
the Agrobacterium-mediated method. Of these, particle bom-
bardment and Agrobacterium-mediated transformation have 
been widely tested (Fig. 3). In this section, we summarize these 
methods, including the extent of their published usage fol-
lowing the initial report, which we use as a proxy for robustness, 
in Tables 2, 3. We will focus here on the two most commonly 
used methods: particle bombardment and Agrobacterium-
mediated transformation.

Table 2.  Relevant literature regarding sorghum transformations and their use in research articles

References Explant Citationsa Use in research article methods (References) 

Electroporation
Ou-Lee et al., (1986) Protoplasts 105 0
Battraw and Hall, (1991) Protoplasts 36 0
Pollen sonication
Wang et al., (2007) Pollen 17 0
Particle bombardment
Casas et al., (1993) Immature embryos 125 5 (Casas et al., 1997; Emani et al., 2002; Jeoung et al., 2002; Grootboom et al., 

2008; Kumar et al., 2011)
Casas et al., (1997) Immature inflorescences 43 1 (Sato et al., 2004)
Able et al., (2001) Immature embryos 43 0
Tadesse et al., (2003) Immature embryos 49 2 (Grootboom et al., 2008; Brandão et al., 2012)
Grootbroom et al., (2010) Immature embryos 25b 1 (Grootboom et al., 2014)
Raghuwanshi and Birch, 
(2010)

Immature embryos 28 0

Liu and Godwin, (2012) Immature embryos 50 12 (Liu et al., 2013, 2015, 2019; Cardinal et al., 2016; Do et al., 2016; Belide et 

al., 2017; Lamont et al., 2017; Liu et al., 2017; Schnippenkoetter et al., 2017; 
Vanhercke et al., 2019; Flinn et al., 2020; Silva et al., 2020)

Brandão et al., (2012) Immature inflorescences 3b 0
Visarada et al., (2014)c Immature embryos and shoot 

buds
10 1 (Visarada et al., 2016)

Belide et al., (2017) Immature embryos 8 1 (Vanhercke et al., 2019)
Agrobacterium-mediated transformation
Zhao et al., (2000) Immature embryos 125 12 (Gao et al., 2005; Howe et al., 2006; Nguyen et al., 2007; Lu et al., 2009; 

Silva et al., 2011; Lipkie et al., 2013; Visarada et al., 2014; Wu et al., 2014; Cho 
et al., 2014; Elkonin et al., 2016; Assem et al., 2017; Kuriyama et al., 2019)

Carvalho et al., (2004) Immature embryos 76b 2 (Nguyen et al., 2007; Raghuwanshi and Birch, 2010)
Gao et al., (2005) Immature embryos 67 3 (Gurel et al., 2009; Liu et al., 2013; Chou et al., 2020)
Howe et al., (2006) Immature embryos 79 12 (Kumar et al., 2011; Mall et al., 2011; Kumar et al., 2012; Jiang et al., 2013; 

Dwivedi et al., 2014; Elkonin et al., 2016; Scully et al., 2016; Peña et al., 2017a, 
b; Cuevas et al., 2016; Pan et al., 2018; Kempinski et al., 2019)

Nguyen et al., (2007) Immature embryos 41 0
Gurel et al., (2009) Immature embryos 71 4 (Singh et al., 2012; Liu et al., 2013; Hayta et al., 2019; Kuriyama et al., 2019)
Wu et al., (2014) Immature embryos 64 7 (Cho et al., 2014; Magomere et al., 2016; Yamaguchi et al., 2016; Che et al., 

2018; Kuriyama et al., 2019; Flinn et al., 2020; Aregawi et al., 2020, Preprint)
Yellisetty et al., (2015) Shoot apical meristem - in 

planta

5 0

Do et al., (2016) Immature embryos 18 3 (Mookkan et al., 2017; Do et al., 2018; Char et al., 2020)
aCitation count checked on 12 November 20, based on CrossRef (source indicated when CrossRef was not available).
bCitation count based on Google Scholar metrics
cTested both particle bombardment and Agrobacterium-mediated transformation
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Table 3.  Main sorghum transformation methods, explants, genotypes, selectable markers, optimizations, and Agrobacterium strains, 
when appropriate, adopted for improvements in tissue culture and transformation efficiency

References Explantsa Genotypesa Agrobacterium 
straina 

SMa Max. TE Optimizations 

Particle bombardment
Casas et al., (1993) Immature embryos P898012 – Bar 0.29% Genotypes (IS4225, CS3541, M91051, Tx430, 

P898012, P954035, SRN39, and Shanqui red)
Able et al., (2001) Immature embryos SA281 – Bar 3 out of 4 

tested events
Genotypes (M35-1, SA281, QL41, and 
P898012), explant (immature embryos and 
leaf segments), promoters (Act1, CaMV35S, 
and Ubi) and biolistic parameters (acceleration 
pressure, distance to target tissue from expul-
sion point, aperture of helium inlet valve)

Tadesse et al., (2003) Immature embryos Ethiopian 
accession 
‘214856’

– Npt 1.30% Explants (immature and mature embryos, 
shoot tips, calli), promoters (Act1D, Adh1, 
CaMV35S, and Ubi1), selectable markers (Bar 
and Npt) and biolistics parameters (acceler-
ation pressure, target distance, gap width and 
travel distance)

Casas et al., (1997) Immature inflores-
cences

SRN39 – Bar 2.61% Genotypes (M91051, P898012, P954035, 
PP290, and SRN39), panicle length and bio-
listic parameters (particle size and material, 
DNA amount, acceleration pressure and target 
distance)

Grootbroom et al., 
(2008)

Immature embryos P898012 – Pmi 0.77% Selectable markers (Bar and Pmi)

Raghuwanshi and 
Birch, (2010)

Immature embryos Ramada – Hpt 0.09% Genotypes (32 sweet sorghum), tissue culture 
media composition (increase of cytokinin), se-
lectable markers (Hpt and NptII)

Liu and Godwin, (2012) Immature embryos Tx430 – NptII 20.70% Tissue culture media composition and biolistics 
parameters

Brandão et al., (2012) Immature inflores-
cences

CMSXS102B – Bar 3.33% Genotypes (nine accessions from Embrapa 
Maize and Sorghum National Research Center, 
Brazil), explant developmental stages (3–5 cm 
in length), biolistics parameters (in osmotic 
medium, acceleration pressure, microcarriers 
flying distance)

Visarada et al., (2014) Immature embryos CS3541 
and 296B

– Bar 0.25% Delivery method (Agrobacterium and par-
ticle bombardment), explant size, post-
bombardment treatments

Belide et al., (2017) Immature embryos Tx430 – NptII 46.60% Tissue culture media composition (addition of 
lipoic acid), explant size, selectable markers 
(Bar and NptII), method of subculture post-
bombardment

Silva et al., (2020) Leaf whorls Tx430 – NptII All 7 tested 
events

Genotypes (Tx430 and P898012) and tissue 
culture media composition (addition of acti-
vated charcoal and polyvinylpyrrolidone)

Agrobacterium-mediated transformation
Zhao et al., (2000) Immature embryos P898012 LBA4404 Bar 10.10% Genotypes (P898012 and PHI391), source 

of explant (grown in the field or greenhouse), 
tissue culture conditions and media compos-
ition

Carvalho et al., (2004) Immature embryos P898012 LBA4404 Hpt 3.50% Genotypes (Feterita Gesish, P898012, 
P967083, IS2329, Rio, Sugar drip, 
B-Wheatland, RTx430, and Candystripe), em-
bryo selection, tissue culture media compos-
ition, tissue culture conditions, Agrobacterium 
inoculation methods
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Particle bombardment
Particle bombardment, also called biolistics or the gene gun 
method, physically delivers DNA into intact cells or tissues. It 
is based on high-speed acceleration of DNA-coated gold or 
tungsten particles (Sanford et al., 1987). The method overcomes 
the host range restrictions faced when using Agrobacterium and 
viral vectors. Furthermore, since it does not introduce add-
itional non-plant-derived DNA elements into the plant (as with 
Agrobacterium-mediated methods), it can simplify transgenic crop 
regulation. Particle bombardment has also been used for plastid 
transformation. Since plastids are maternally regulated, this can 
also aid control of gene flow (Svab et al., 1990; Svab and Maliga, 
1993; Kumar et al., 2004; Dufourmantel et al., 2007; Lu et al., 
2013; Li et al., 2016). The method of Liu and Godwin (2012), 
currently the most widely prescribed for sorghum transform-
ation using particle bombardment (as judged by citation count 
in peer-reviewed literature outlined in Table 2), obtained a 

transformation efficiency of 20.7% with an optimized protocol 
using Tx430 immature embryos. Moreover, >90% of the trans-
genic plants exhibited normal growth and fertility. Adding lipoic 
acid to the medium and splitting the calli further enhanced the 
callus induction rate (Belide et al. 2017) (Table 3).

A major drawback of particle bombardment is the random 
integration of multiple copies of the transgene into the genome, 
which can lead to transgene rearrangements and silencing (re-
viewed by Kohli et al., 2003). However, optimization of the 
procedure can result in single or a low number of transgene 
copies (Yao et al., 2006). Random integration can also be miti-
gated by using approaches such as genomic safe harbors: sites in 
the genome that accommodate transgenes without unwanted 
interactions (Papapetrou and Schambach, 2016). For example, 
(Dong et al., 2020) have achieved targeted insertion of a 5.2 kb 
carotenoid biosynthesis cassette at two pre-determined gen-
omic safe harbors in rice. Therefore, this approach could 

References Explantsa Genotypesa Agrobacterium 
straina 

SMa Max. TE Optimizations 

Gao et al., (2005) Immature embryos C401 EHA101 Pmi 3.30% Genotypes (C401 and Pioneer 8505), tissue 
culture media composition

Howe et al. (2006) Immature embryos C2-97 NTL4 NptII 4.50% Genotypes (Tx430 and C2-97), Agrobacterium 
strains (C58C1, LBA4404, EHA101, C58, 
and NTL4), selection agent (geneticin and 
paromomycin)

Nguyen et al., (2007) Immature embryos Sensako 
85/1191

LBA4404 Hpt 5.00% Explant pre-treatment, tissue culture conditions 
and media composition

Gurel et al., (2009) Immature embryos P898012 LBA4404 Pmi 8.30% Genotypes (P898012, Tx430, 296B, and 
C401), explant pre-treatmemt, Agrobacterium 
strains (EHA101 and LBA4404), tissue culture 
media composition

Visarada et al., (2014) Immature embryos 
and shoot buds

CS3541 
and 296B

EHA105 Bar 0.23% Delivery method (Agrobacterium and particle 
bombardment), explant type (shoot buds and 
immature embryos), decontamination treat-
ments for removal of Agrobacterium

Wu et al., (2014) Immature embryos Tx430 AGL1 Pmi 33.20% Agrobacterium strains (AGL1 and LBA4404), 
selectable markers (PAT and Pmi), tissue 
culture media composition (increased copper 
sulfate and plant hormone BAP)

Yellisetty et al., (2015) Shoot apical 
meristem

SPV462 LBA4404 Hpt 36%b In planta method development

Do et al., (2016) Immature embryos P898012 AGL1 Bar 14.20% Genotypes (P898012, TBx623, Tx2737, 
Tx430, and Wheatland), Agrobacterium strains 
(AGL1, EHA101, and GV3101), promoters 
(CaMV35S, MAS, and Ubi), tissue culture 
conditions

Sato-Izawa et al., 
(2018)

Immature embryos Tx430 GV2260 Hpt 1.90% Explant pre-treatment and size

Selectable markers (SM): Bar, Bialaphos resistance; Hpt, Hygromycin phosphotransferase; Npt, Neomycin phosphotransferase; PAT, Phosphinothricin 
acetyltransferase; Pmi, Phosphomannose isomerase. Promoters: Act1D, Actin 1D; Adh1, Alcohol dehydrogenase isozyme 1; CaMV35S, Cauliflower 
mosaic virus 35S; MAS, Mannopine synthase; Ubi, Ubiquitin. Max. TE: maximum transformation efficiency. TE is generally defined as the total number of 
independent events regenerated divided by the total number of transformed explants, although it can be omitted or vary depending on the publication.
aResults from the most successful transformations or optimized conditions.
bResults from T1 from selected positive T0 plants.

Table 3.  Continued
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potentially be applied to any crop species. Another issue with 
particle bombardment is the variable transformation efficiency 
among genotypes. For example, the elite parental lines CS3541 
and 296B were transformed to increase stem borer resist-
ance, but the highest transformation efficiency obtained was 
0.25% (Visarada et al., 2014). Traditionally, the most extensively 
studied genotypes belong to the grain sorghum category, so 
reported advances are mostly applicable to that type of sor-
ghum. For example, a comparison of 32 sweet sorghum var-
ieties reported a transformation efficiency maximum of 0.09% 
(Raghuwanshi and Birch, 2010). To fully exploit sorghum as 
a multipurpose crop that supports the growing bioeconomy, 
it will be necessary to easily transform many sorghum types, 
including biomass and forage varieties. Finally, a recent study 
showed, using whole-genome sequencing, that particle bom-
bardment can frequently induce large-scale genome damage 
and rearrangement (J. Liu et al., 2019). This can be problematic 
both for researchers, as this may impact phenotype, and po-
tentially for regulators, as it may increase the risk of the crop 
being a food safety hazard. Therefore, Agrobacterium-mediated 
transformation, despite its drawbacks as discussed below, is still 
considered the preferred method of transformation by most.

Agrobacterium-mediated transformation
Agrobacterium tumefaciens mediated-transformation (reviewed 
by Gelvin, 2003) was initially used in eudicotyledonous plants, 
since monocotyledons are not natural hosts of A. tumefaciens. 
However, successful transformations of many monocots, such 
as barley, maize, rice, sorghum, and wheat, have now been 
achieved (Hiei et al., 1994; Ishida et al., 1996; Cheng et al., 
1997; Zhao et al., 2000). Agrobacterium-mediated transform-
ation is generally preferred when the goal is to produce plants 
with single- or low-copy inserts. This approach also has the 
advantage of resulting in minimal rearrangement of the inte-
grated transgene.

The first reported use of Agrobacterium for stable sor-
ghum transformation was from Zhao et al. (2000). Wu 
et al. (2014) optimized the resting and selection media by 
adding increased levels of copper sulfate and the plant hor-
mone 6-benzylaminopurine (BAP) to generate high-quality, 
fast-growing, and regenerable transgenic calli. They also tested 
different Agrobacterium strains and selectable markers. Tx430 im-
mature embryos infected by the Agrobacterium strain LBA4404 
resulted in transformation efficiencies of up to 12.4% when 
the selectable marker adopted was Phosphomannose isomerase 

Fig. 3.  Representation of transformation methods adopted for sorghum. GOI, gene of interest; CIM, callus induction media.
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(Pmi), and 13.4% when Phosphinothricin acetyltransferase (PAT) 
was used. Using the strain AGL1 and Pmi selection, efficien-
cies of up to 33.2% were obtained, which is the most effective 
Agrobacterium protocol reported so far. The authors also point 
out that the size of T-DNA impacts the quality event fre-
quency, as lower frequency was obtained when larger T-DNA 
was used (16.3 kb versus 7.9 kb). Quality events are defined as 
transformants with intact single copies of T-DNA integrated 
in the genome without the presence of a vector backbone.

Another optimization of transformation and regeneration 
with Agrobacterium was achieved by using standard binary vec-
tors containing the Bar gene as the selectable marker under 
the control of a Mannopine synthase (MAS) promoter and the 
Agrobacterium strain AGL1 to transform immature embryos from 
P898012 (Do et al., 2016). Activities of modified Cauliflower 
mosaic virus 35S (CaMV35S), maize Ubiquitin (Zm-Ubi), and 
MAS promoters were evaluated, and the highest transformation 
efficiency was achieved using MAS. Additionally, transform-
ation efficiency was significantly improved using a standard 
binary vector, while studies that achieved higher efficiencies, 
such as that of Wu et al. (2014), adopted superbinary vectors. 
Superbinary vectors have additional virulence genes from a Ti 
plasmid, which is beneficial for recalcitrant plants (Komari et 
al., 2006), but are challenging for vector construction, cloning, 
and transformation. The authors achieved a regeneration time 
frame of 7–12 weeks and an overall transformation efficiency 
of 14% (Do et al., 2016).

Improving Agrobacterium transformation efficiency with 
morphogenic regulators

To increase efficiency of transformation and expand the range 
of genotypes amenable to transformation, growth-stimulating 
morphogenic regulators have been used to induce somatic em-
bryogenesis in monocots (Lowe et al., 2016; Mookkan et al., 
2017; Nelson-Vasilchik et al., 2018). Morphogenic regulators 
are genes involved in developmental processes that control 
morphogenesis such as embryo and meristem development. 
Lowe et al. (2016) successfully introduced the morphogenic 
regulators Baby boom (Bbm) and Wuschel2 (Wu2) in maize, sor-
ghum, and rice using the Agrobacterium strain LBA4404 and 
in sugarcane using the strain AGL1. Although morphogenic 
regulators promote the induction of somatic embryogenesis, 
they also cause calli necrosis, preventing the regeneration of 
transgenic plants (Lowe et al., 2016). To overcome this, a CRE/
lox recombination system under the control of a desiccation-
induced gene (Rab17) was used to remove the region of the 
expression cassette containing Bbm and Wu2. Transgenic calli 
are then subjected to desiccation prior to regeneration, al-
lowing production of healthy transgenic plants. In sorghum, 
using Tx430 immature embryos as the starting material, the 
transformation efficiency improved from 1.9% to 18.3% when 
Bbm and Wu2 were introduced simultaneously (Lowe et al., 
2016).

Although morphogenic regulators represented a significant 
improvement, higher transformation efficiencies of 33.2% (Wu 
et al., 2014) and 46.6% (Belide et al., 2017) were obtained with 
the genotype Tx430 using traditional methods. The most com-
pelling argument for the morphogenic regulator method is the 
possibility of transforming genotypes that are currently recal-
citrant to transformation. However, to date in sorghum, this 
approach has been reported mostly in transformable cultivars 
(Lowe et al., 2016; Mookkan et al., 2017). Mookkan et al. (2017) 
used the Agrobacterium strain EHA101 to transform immature 
embryos from sorghum genotype P898012 with a vector con-
taining Bbm, Wu2, and the desiccation-inducible CRE/lox 
recombination system. They observed that calli transformed 
with Bbm and Wu2 reached up to 54.5% of green fluorescent 
protein (GFP) expression, while calli transformed with vectors 
without them did not show any GFP expression. Additionally, 
Nelson-Vasilchik et al. (2018) published a protocol using the 
genotype BTx623, besides the previously reported P898012, 
for Agrobacterium-mediated transformation with the same mor-
phogenic regulators, the Rab17pro:CRE/lox-inducible system, 
and Agrobacterium strains AGL1 and EHA101, and showed a 
regeneration rate of ~15%.

In planta transformation

Agrobacterium tumefaciens has also been used for in planta trans-
formation in sorghum, which allows the introduction of 
DNA directly into intact plant tissue, removing the depend-
ence on tissue culture and regeneration protocols. Yellisetty et 
al. (2015) reported an in planta transformation method where 
Agrobacterium strain LBA4404 was inoculated onto the shoot 
apical meristems of germinating sorghum seedlings, with 
transformation efficiencies of up to 36%. Despite these high 
reported efficiencies, the method has not been applied to fur-
ther studies (Table 2). Haploid egg cell transformation by floral 
dipping is widely used for A. thaliana and has been applied to 
other Brassicaceae species, flax, and even a grass Setaria viridis 
(Liu et al., 2012; Martins et al., 2015). However, in planta trans-
formation has not been established as a standard protocol for 
many species due to a lack of reproducibility (Hamada et al., 
2017). Fundamental understanding of why some plants, such as 
A. thaliana and Camelina sativa, are susceptible to Agrobacterium 
haploid egg cell transformation would be an important step 
forward in plant science, as this could lead to application of this 
method to other species, such as sorghum.

Transient expression

The methods discussed above are mainly used for stable trans-
formation, in which the genes are integrated into the host 
chromosomes and are inherited through subsequent generations. 
Stable transformation is particularly interesting if the goal is to 
engineer traits in the long term. However, for studies aiming at 
gene characterization, vector validation, or protein subcellular 
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localization, especially in recalcitrant species such as sorghum, 
transient expression is a valuable and time-saving tool. It al-
lows temporary expression of the introduced genes, which do 
not integrate into the host genome, but uses its transcriptional 
and translational machinery to synthesize the desired proteins. 
Transient expression generally reaches its maximum level be-
tween 18-48 h after transformation and persists for a few days 
(Abel and Theologis, 1994). Agrobacterium-mediated transform-
ation can also be successfully applied to transient expression. For 
example, Sharma et al. (2020) developed an in planta method 
using Agrobacterium for infiltration in leaves of 3- to 4-week-old 
sorghum, in which GFP expression was detected 3–4 d after 
infiltration. The method was also used to demonstrate clustered 
regularly interspaced short palindromic repeats (CRISPR)-
mediated genome editing as a promising approach to test single-
guide RNA (sgRNA) efficiencies in vivo (Liang et al., 2019).

Future needs for sorghum transformation

Although there has been progress, the technical challenges as-
sociated with sorghum tissue culture and transformation mean 
that efficiencies still lag behind most other monocot crops such 
as rice, which routinely reaches efficiencies of up to 90% (Hiei 
and Komari, 2008). To move the field forward, the main bottle-
necks that need to be addressed are genotype dependence, 
prevention of transgene flow to wild relatives, and achieving 
higher transformation efficiency reproducibly. Overcoming 
these bottlenecks will allow the efficient application of syn-
thetic biology principles, and the direct engineering of elite 
germplasm. In particular, this will enable the routine use of 
gene editing tools, including CRISPR/Cas systems and suc-
cessful metabolic engineering for high-value traits. Here, we 
highlight some key areas for future research.

Genotype independence

Currently, the inbred lines Tx430 and P898012 are the most 
used genotypes for transformation due to their higher em-
bryogenic capacity. This is limiting, particularly for commer-
cial purposes, where the engineering of elite cultivars would 
be beneficial. What underpins these genotypic differences in 
transformability is not known. However, overexpression of 
morphogenic regulators such as Bbm and Wus2 has the po-
tential not only to induce somatic embryogenesis in an ex-
panded range of genotypes, but also to bypass or accelerate 
tissue culture via de novo meristem formation as demonstrated 
in eudicots (Maher et al., 2020). Assessment of other morpho-
genic regulators such as Leafy cotyledon1 (Lec1), Lec2, Monopteros 
(MP), Shoot meristemless (STM), hormone biosynthetic genes 
such as Isopentenyl transferase (Ipt), and their combinations are 
all promising strategies.

Besides using morphogenic regulators, genotype independ-
ence can be achieved by using tissues other than embryos, 
which has been achieved in barley, cotton, and rice (Dey et al., 

2012; Ma et al., 2013; Han et al., 2021). For example, Han et 
al. 2021)successfully used microspores from barley anthers to 
induce callus formation for transformation and CRISPR/Cas 
gene editing. The diverse genetic backgrounds of the tested 
varieties indicated that the method was genotype independent 
and could be expanded to other species with established an-
ther culture protocols. Additionally, shoot apices from 3- to 
5-day-old seedlings have been used for Agrobacterium infection 
of cotton and rice for development of genotype-independent 
regeneration protocols (Dey et al., 2012; Ma et al., 2013).

Another approach for achieving genotype independence 
is to identify specific genes associated with tissue culture re-
sponses. Quantitative trait loci (QTL) mapping studies to iden-
tify genomic regions associated with callus induction and plant 
regeneration have been carried out in grasses such as barley, 
maize, and wheat (Amer et al., 1997; Mano and Komatsuda, 
2002; Salvo et al., 2018). Although these studies concluded that 
tissue culture response is a complex polygenic trait, further in-
vestigation of specific candidate genes is needed, especially in 
sorghum, to identify genetic mechanisms that control somatic 
embryogenesis and efficient regeneration response.

Improved transformation efficiency

Successful introduction of a wide range of genes of interest into 
sorghum will depend on efficient tissue culture and transform-
ation protocols. Currently, sorghum transformation typically 
uses indirect somatic embryogenesis, which goes through the 
callus stage. The maintenance of callus cultures is labor inten-
sive and a lengthy process that can induce somaclonal variation. 
Direct somatic embryogenesis is an alternative that has been 
achieved in maize and sugarcane (Taparia et al., 2012; Lowe et 
al., 2018), and could be applied to sorghum to shorten tissue 
culture time and increase efficiency. As shown in maize, intro-
duction of morphogenic regulators enables immature embryos 
to transition into somatic embryos in a few days and allows 
bypassing the callus stage (Lowe et al., 2018). Alternatively, the 
tissue culture method using leaf whorls reported by Silva et al. 
(2020) could be adapted to induce direct somatic embryogen-
esis as previously demonstrated in sugarcane (Desai et al., 2004; 
Taparia et al., 2012).

A promising alternative to somatic embryos is using em-
bryogenic cell suspension cultures, which have been used to 
transform switchgrass, with high efficiency of 85% (Ondzighi-
Assoume et al., 2019), and cotton, reaching transformation 
efficiency of ~19% (Ke et al., 2012). Efficient methods for 
maintaining sorghum cell cultures have potential to improve 
transformation efficiency by reducing somaclonal variation, 
decreasing false positives, and increasing the survival rate of 
transgenics. Additionally, cells with a synchronized cell cycle 
could be obtained, which may benefit CRISPR/Cas genome 
editing studies aiming for homology-directed repair (HDR). 
Cells have different abilities to repair double-stranded breaks 
using the non-homologous end joining (NHEJ) or HDR 
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pathways, and the phase of the cell cycle plays a major role 
in the choice of the pathway (Heyer et al., 2010). The HDR 
pathway activity is restricted to the late S and G2 phases of the 
cell cycle, while NHEJ occurs during the entire cell cycle . 
Therefore, cell suspension cultures can be a valuable tool not 
only to improve transformation efficiency, but also to increase 
genome editing efficiencies for targeting gene insertions, re-
placements, or stacking.

Other approaches to improve transformation efficiency 
involve the development of more efficient DNA delivery 
methods. Although progress has been made in Agrobacterium-
mediated transformation, engineering strains with increased 
virulence and a wider host range will be necessary to boost 
efficiency. Optimizations to avoid overgrowth of Agrobacterium 
in the tissue culture selection media will also be relevant 
(Ahmed et al., 2018). Another promising strategy is the use of 
nanoparticles to deliver DNA, which has already been demon-
strated in wheat and cotton leaves, resulting in strong protein 
expression (Demirer et al., 2019).

Genome editing

CRISPR/Cas-mediated genome editing can be applied 
broadly, including creating mutant collections of specific 
genes that have not been well characterized, creating vari-
ations for breeding purposes, and altering regulatory elements. 
CRISPR/Cas9-mediated gene editing in sorghum was first 
reported using Agrobacterium-mediated transformation to re-
store the function of an out-of-frame red fluorescence pro-
tein (DsRED2) through NHEJ (Jiang et al., 2013). Since then, 
CRISPR/Cas9 delivery by Agrobacterium has been adopted 
to mutate several sorghum genes (A. Li et al., 2018; Che et 
al., 2018; Char et al., 2020). To date, only one protocol for 
CRISPR/Cas9 genome editing using particle bombardment 
has been published (G. Liu et al., 2019).

Cas9 requires a 5ʹ-NGG-3ʹ protospacer adjacent motif 
(PAM) site upstream of the sgRNA-binding region in the 
genome. Other endonucleases, such as Cpf1 that targets T-rich 
regions (Zetsche et al., 2015), have not yet been exploited in 
sorghum. These alternative endonucleases broaden the range 
of sequences that can be targeted. In cases where the goal is 
generating precise point mutations, an alternative to the low-
efficiency HDR pathway is using the CRISPR base editors 
(Komor et al., 2016). CRISPR base editors allow cytosine to 
thymine or adenine to guanine base editing, and have been 
widely adopted to introduce targeted substitutions in other 
crops such as rice and wheat to improve important agricultural 
traits, such as flowering time and herbicide resistance (C. Li et 
al., 2018; Kang et al., 2018; Zhang et al., 2019; Li et al., 2020).

Prevention of transgene flow

Valid concerns about transgene flow to sorghum’s sexually 
compatible wild weedy relatives have dampened commercial 

interest in engineered cultivars. Therefore, techniques that pre-
vent transgene introgression or propagation through pollen 
should be prioritized. Alternatively, transgene-free methods 
for genome editing such as the delivery of a pre-assembled 
ribonucleoprotein (RNP) complex, which is done via proto-
plast transfection or particle bombardment, can be used (Woo 
et al., 2015; Svitashev et al., 2016; Liang et al., 2017). Particle 
bombardment would be the most suitable method for sor-
ghum as it does not require plant regeneration from proto-
plasts, an ongoing challenge for sorghum tissue culture. Distinct 
methods adopted in other species also have potential in sor-
ghum. For example, Zhang et al. (2016) generated transgene-
free and homozygous wheat mutants in the T1 generation by 
transiently expressing Cas9 in callus cells.

Another promising strategy to impede transgene flow into 
the wild would be the delivery of transgenes into chloroplasts 
to take advantage of their maternal inheritance. This avoids 
transgene transmission via pollen, closing a potential escape 
route into the environment (Daniell, 2002). Thus, chloroplast 
transformation would allow stable introduction of Cas9 into 
sorghum’s chloroplast genome to generate Cas9 lines that 
would not propagate the transgene via pollen.

Current genetic, genomic, and 
bioinformatic resources

Sorghum has several characteristics that make it an excel-
lent potential model species for grass research. It is a diploid 
(2n=20), which makes it more amenable to genetic and gen-
omic studies compared with polyploid bioenergy crops such 
as sugarcane. It also has a small genome size (~730 Mbp) com-
pared with maize (2.5 Gbp), sugarcane (~10 Gbp), and wheat 
(~17 Gbp) (Paterson et al., 2009). Extensive variations across 
cultivated and wild species have been identified, suggesting a 
rich genetic source for adaptation and engineering (Tao et al., 
2021). Additionally, sorghum is a C4 grass with high nitrogen 
and water use efficiency (Ghannoum et al., 2011) and comple-
ments other grass models such as rice and Brachypodium, which 
are C3 grasses. The wide genetic variation found within and 
among sorghum cultivars is also attractive as it can be exploited 
to improve the crop through breeding, population genetic, and 
quantitative genetic approaches (Satish et al., 2016). To support 
the adoption of a plant species as a research system, it is critical 
to have accessible resources, including germplasm collections, 
reference genome sequences with good quality functional an-
notations, and easy-to-use informatics tools that collate ex-
isting data. While sorghum does have some of these resources, 
there are still many gaps.

Genetic resources

The largest sorghum germplasm collection is maintained by 
the USDA Agricultural Research Service (ARS) National 
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Plant Germplasm System and consists of >40 000 accessions 
from 114 countries, of which many regional specific subsets 
have been genetically characterized (Cuevas et al., 2017, 2018; 
Olatoye et al., 2018; Cuevas and Prom, 2020; Faye et al., 2021). 
The International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT) in India also has a large collection 
of 37 904 accessions (Morris et al., 2013; Cuevas et al., 2017). 
A third collection with >16 000 accessions is kept by the 
National Crop Genebank of China. Information and sources 
of seeds can be identified via databases such as USDA-ARS 
GRIN (https://npgsweb.ars-grin.gov/gringlobal/search.aspx), 
Eurisco (http://eurisco.ecpgr.org/), and Genesys (https://
www.genesys-pgr.org/). Additional collections with particular 
relevance to the use of sorghum as a biomass crop include 
the biomass association panel (Brenton et al., 2016) and the 
nested association mapping population (Bouchet et al., 2017). 
These collections contain immense genetic diversity, which is 
essential for breeding programs that aim to develop cultivars 
better adapted to different conditions worldwide and also an 
important resource to elucidate molecular machineries that 
lead to traits of interest.

Furthermore, alleles not found in nature can be gen-
erated through mutagenesis (e.g. genotoxic chemicals or 
γ-irradiation) (Xin et al., 2008; Jiao et al., 2016; Chen et al., 
2019) or, more recently, through genome editing. Mutant 
lines are being added to these germplasm collections to create 
an even more diverse community resource. Increasingly, these 
mutant populations are accompanied by whole-genome 
sequences, allowing researchers to take a reverse genetics 
approach to identifying gene function (Addo-Quaye et al., 
2018).

Genomic resources

The first sorghum reference genome (from the grain sor-
ghum BTx623) was generated using whole-genome shotgun 
sequencing in 2009 (Paterson et al., 2009), and placed ~98% 
of the genes in their chromosomal context. More recently, 
BTx623 version 3.1.1 was released with improved assembly 
and annotation (McCormick et al., 2018). The high-quality 
reference genome of the sweet sorghum ‘Rio’ was also re-
cently released using Pacific Biosciences long-read sequencing 
(Cooper et al., 2019). The authors used it to explore the pos-
sible genomic differences between sorghum types, and revealed 
a high rate of non-synonymous and potential loss-of-function 
mutations in sweet sorghum. However, few changes in gene 
content and overall genome structure were observed (Cooper 
et al., 2019). Two additional genomes, BTx642 and RTx430, 
are also available on Phytozome (see below). An ongoing sor-
ghum pan-genome project at the DOE Joint Genome Institute 
(JGI) will explore this information further (Mockler, 2016).

Bioinformatic resources

Several bioinformatic resources host sorghum data (links and 
references described in Table 4). Sorghum breeders and re-
searchers can rely on bioinformatic resources such as Phytozome, 
the Plant Comparative Genomics portal of the DOE Joint 
Genome Institute (JGI) (Goodstein et al., 2012). This includes 
the latest sorghum reference genome (McCormick et al., 2018). 
Additionally, the Sorghum genome SNP database (SorGSD), 
a database with 62 million single nucleotide polymorphisms 
(SNPs) from 48 sorghum accessions, allows the user to search 

Table 4.   Bioinformatics resources available for sorghum research

Bioinformatic 
tool 

Purpose Website Source Reference 

Phytozome Reference genome and alignment searches https://phytozome.
jgi.doe.gov/pz/portal.
html#!info?alias=Org_Sbicolor

Joint Genome In-
stitute (JGI)

McCormick et al., 
(2018)

Plant Metabolic 
Network

Network of metabolic pathway data https://plantcyc.org/content/
sorghumbicolorcyc-7.0.1

Carnegie Institution 
for Science

Hawkins et al., 
(2021)

Gramene sorghum All sorghum resources as statistics, germplasm resources, 
metabolic pathways

https://archive.gramene.
org/species/sorghum/sor-
ghum_intro.html

Cold Spring Harbor 
Laboratory and 
Cornell University

Tello-Ruiz et al., 
(2018)

Sorghum FDB 
- Functional Gen-
omics Database

Integrated search for gene family classifications, gene annota-
tions, miRNA and target gene information, orthologous pairs 
in Arabidopsis, rice, and maize, gene loci conversions and a 
genome browser

http://structuralbiology.cau.
edu.cn/sorghum

Zhen Su’s group at 
China Agricultural 
University

Tian et al., (2016)

SbGDB Sequence-centered genome view with focus on gene struc-
ture annotation

http://www.plantgdb.org/
SbGDB/

Brendel group at 
Indiana University

–

Uniprot Proteomic data https://www.uniprot.org/
proteomes/UP000000768

UniProt Consor-
tium

–

Sorghum genomics 
- Functional Gene 
Discovery Platform

Search for lines containing natural and ems-induced vari-
ations in coding sequences

https://www.purdue.edu/
sorghumgenomics#

Purdue University –

https://npgsweb.ars-grin.gov/gringlobal/search.aspx
http://eurisco.ecpgr.org/
https://www.genesys-pgr.org/
https://www.genesys-pgr.org/
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sbicolor
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sbicolor
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sbicolor
https://plantcyc.org/content/sorghumbicolorcyc-7.0.1
https://plantcyc.org/content/sorghumbicolorcyc-7.0.1
https://archive.gramene.org/species/sorghum/sorghum_intro.html
https://archive.gramene.org/species/sorghum/sorghum_intro.html
https://archive.gramene.org/species/sorghum/sorghum_intro.html
http://structuralbiology.cau.edu.cn/sorghum
http://structuralbiology.cau.edu.cn/sorghum
http://www.plantgdb.org/SbGDB/
http://www.plantgdb.org/SbGDB/
https://www.uniprot.org/proteomes/UP000000768
https://www.uniprot.org/proteomes/UP000000768
https://www.purdue.edu/sorghumgenomics#
https://www.purdue.edu/sorghumgenomics#
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for synonymous and non-synonymous SNPs, their annota-
tion, geographic origin, and breeding information (Luo et al., 
2016). A valuable resource for sorghum improvement is the 
Sorghum Genomics Functional Gene Discovery Platform, 
which enables the identification of sorghum lines containing 
natural and chemical-induced variations in coding sequences 
(https://www.purdue.edu/sorghumgenomics/)(REF). The 
Sorghum Functional Genomics Database (SorghumFDB) 
also has a search feature with orthologous pairs in A. thaliana, 
rice, and maize, in addition to gene family classifications, 
gene annotations, loci conversions, miRNA and target gene 
information, and a genome browser (Tian et al., 2016). The 
PlantGDB, a resource for comparative plant genomics, has a 
section on sorghum (SbGDB), which includes gene struc-
ture annotation, sequence analysis tools, and annotated pro-
tein alignments. Also, sorghum metabolic network data can be 
found in SorghumbicolorCyc at the Plant Metabolic Network 
(PMN), a curated source of metabolic information from the 
literature and computational analyses (Schläpfer et al., 2017). 
Lastly, UniProt has sorghum protein sequences from genome 
sequencing projects (Saski et al., 2007; Paterson et al., 2009; 
Hawkins et al., 2021). These resources can assist researchers 
who are new to sorghum research to understand sorghum 
genome architecture and its variations, and to draw compari-
sons with other extensively studied species.

Conclusion

Sorghum has a bright future as a multipurpose crop that is 
suited to the challenging growth conditions that climate 
change will bring. Its extensive genetic diversity combined 
with relatively recent and limited domestication means that 
it also has an excellent potential for further improvement. 
Sorghum can become a model system for other grass species, 
particularly in areas such as abiotic and biotic stress responses, 
plant–microbiome interactions, and evolution. We see trans-
formation challenges as a major bottleneck to the development 
of sorghum as both a widely adopted research system and a key 
feedstock for the bioeconomy, and contend that research tack-
ling this problem is a high priority.
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