
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Quantum control of surface acoustic wave phonons

Permalink
https://escholarship.org/uc/item/9s52q8g2

Author
Satzinger, Kevin Joseph

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9s52q8g2
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY of CALIFORNIA
Santa Barbara

Quantum control of surface acoustic wave phonons

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

by

Kevin Joseph Satzinger

Committee in charge:

Professor Andrew N. Cleland, Chair

Professor Leon M. Balents

Professor David M. Weld

June 2018



The dissertation of Kevin Joseph Satzinger is approved:

Professor Leon M. Balents

Professor David M. Weld

Professor Andrew N. Cleland, Chair

June 2018



Copyright © 2018
by Kevin Joseph Satzinger

iii



Acknowledgements

This has been a long journey, and I am overflowing with gratitude for the numerous
people who have contributed to this work, directly and indirectly.

The person I must thank the most is Andrew Cleland, who has been my graduate
advisor since I started at UCSB in 2012. His immense technical knowledge, street smarts,
and leadership have (almost) always steered me in the right direction. I admit the move
to Chicago in 2015 was challenging, both personally and professionally, but it was also
a great opportunity to build a new group and lab from the foundation. In the end,
we came out of it stronger. I am so thankful I had the opportunity to work on this
project. I remember reading about Aaron O’Connell’s work [70, 71] in college, which
really attracted me to UCSB. Pushing quantum mechanics forward like this is a dream
come true, and it was all possible thanks to Andrew.

I also want to thank everyone involved in this special journey to Chicago. Leon Balents
and David Weld have graciously served on my committee from afar, and I appreciate that
they have been there to support me. Many people went out of their way to accommodate
us, especially Jennifer Farrar, Novia Pagone, and Mary Pat McCullough. The other
people who moved to Chicago have a special place in my heart: Greg Peairs, my comrade-
in-arms from the beginning; Peter Duda, whose heroic efforts to run the new cleanroom
enabled all the fabrication in this thesis; and everyone from the Awschalom group who
blazed the trail before us.

Andrew, Greg, and I faced some daunting challenges when we arrived in Chicago to
empty rooms and numerous cardboard boxes. We were fortunate to be joined by such
bright, hard-working new colleagues: Hung-Shen Chang, an inspirational figure always
willing to learn and teach; Ming-Han Chou, who took up the mantle of aluminum nitride
sputtering; Joel Grebel, who never gives up; Rhys Povey, natural leader and Mathematica
wizard; and Youpeng Zhong, who made an even larger move from Zhejiang and set up
our electronics for qubit experiments. Glory awaits all of you.

Over the years, we were joined by two outstanding postdocs. Étienne Dumur was
instrumental in setting up our dilution refrigerator, and we worked out the coupling
mechanism for the D line together. Audrey Bienfait’s creative perspective was always
welcome, and she taught me about amplifiers and noise. I wish them luck in their journeys
in quantum acoustics.

I also had the opportunity to work closely with some younger students. Ivan Gutierrez
and Ben November, Chicago undergraduates, really rose to the occasion and meaningfully
contributed to a wide range of projects. Chris Conner, who started as a graduate student
in 2017, quickly mastered many important experimental techniques; we worked together
on the contents of chapter 4. I am sure you all have bright futures.

An important benefit of moving to Chicago was the presence of the Awschalom and
Schuster groups. David Awschalom had my back, and Dave Schuster’s enthusiasm and
creativity really helped push this project forward. It was great to work with Sam Whiteley
and Agnetta Cleland on acoustics and flip-chip integration. Nate Earnest and Ravi Naik

iv



helped me feel welcome at Chicago way back in 2013 when I first visited (I’m glad we’re
all finally graduating).

I wouldn’t have succeeded at Chicago without the foundation of my education at
UCSB. Amit Vainsencher and Joerg Bochmann welcomed Greg and me into the fold
and worked with us on piezoelectric optomechanics. They taught me many important
lessons, scientific and otherwise. I benefited from the outstanding fabrication facilities
and engineers at UCSB, chiefly the guidance of Brian Thibeault and the persistence of
Brian Lingg. The Martinis group always provided support for our efforts, and I especially
thank Erik Lucero for the photography tips, Dan Sank for the detailed microwave/filter
discussions, and Andrew Dunsworth for qubit fabrication and design advice. I also want
to thank my classmates and friends from UCSB. I wish I could have stayed with you,
and it means a lot that our relationships persisted despite the distance.

Finally, I want to thank everyone who helped prepare me for graduate school in the
first place. This was a worthy challenge, and I couldn’t have done it without you. Thank
you to my professors and friends from college and to the mentors of my undergraduate
research experiences. Thank you to all my teachers, friends, and family. You took the
time to shape me into the person I am.

v



Curriculum Vitæ

Kevin Joseph Satzinger

Education

2018 Ph.D., Physics, University of California, Santa Barbara
National Science Foundation Graduate Research Fellowship, 2012-2015

2012 B.S., Physics & Mathematics, Truman State University, Kirksville, MO
Valedictorian, Outstanding Student in Physics, Honors Scholar
Barry M. Goldwater Scholarship, 2011

Professional Experience

2015-2018 Visiting graduate student researcher, Institute for Molecular Engineer-
ing, University of Chicago

2012-2015 Graduate student researcher, Department of Physics, University of Cal-
ifornia Santa Barbara

2011 Intern, Advanced Silicon Technology Group, Massachusetts Institute of
Technology Lincoln Laboratory

2010 Intern, National Nanotechnology Infrastructure Network REU, School
of Engineering and Applied Sciences, Harvard University

2009 Intern, National Science Foundation REU, Department of Physics, South-
ern Illinois University Carbondale

Publications

“Quantum control of surface acoustic wave phonons,” K. J. Satzinger et al., Submitted
(2018)

“Simple and reusable non-galvanic flip-chip integration for hybrid quantum systems,” K.
J. Satzinger et al., In Preparation (2018)

“Coherent control of spins with Gaussian acoustics,” S. J. Whiteley, G. Wolfowicz, C. P.
Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, F. J. Heremans, A.
N. Cleland, D. I. Schuster, G. Galli, D. D. Awschalom, Submitted (2018)

vi



“Bi-directional conversion between microwave and optical frequencies in a piezoelectric
optomechanical device,” A. Vainsencher, K. J. Satzinger, G. A. Peairs, A. N. Cleland,
Applied Physics Letters 109, 033107 (2016)

“The importance of cantilever dynamics in the interpretation of Kelvin probe force mi-
croscopy,” K. J. Satzinger, K. A. Brown, R. M. Westervelt, Journal of Applied Physics
112, 064510 (2012)

“High spatial resolution Kelvin probe force microscopy with coaxial probes,” K. A.
Brown, K. J. Satzinger, R. M. Westervelt, Nanotechnology 23, 115703 (2012)

vii



Abstract

Quantum control of surface acoustic wave phonons

by

Kevin Joseph Satzinger

Quantum behavior in a macroscopic mechanical resonator is of great scientific and tech-

nological interest, but it is a substantial experimental challenge to realize. In particular,

surface acoustic waves have emerged in recent years as a likely platform for coupling

disparate quantum systems together. In this thesis, we present a surface acoustic wave

resonator strongly coupled to a superconducting qubit. We begin by describing simple

experiments with surface acoustic waves. Next, we discuss the design of a qubit and

tunable coupler circuit to maintain good qubit performance in the presence of a surface

acoustic wave resonator on an incompatible substrate. We then explain how to bring to-

gether devices on separate chips in a simple, accessible flip-chip assembly. Finally, we put

these elements together to establish quantum control of surface acoustic wave phonons.

We demonstrate good qubit performance and strong, tunable coupling to the acoustic

mode. We show ground state cooling of the surface acoustic wave resonator with proba-

bility at least 99.5%. Finally, we illustrate quantum superposition in the surface acoustic

wave resonator, conducting Wigner tomography of a superposition |0〉 + |1〉, which we

find has fidelity 0.945± 0.006.
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Chapter 1

Introduction

To begin, we review the basic ideas of this thesis and some previous work.

1.1 Overview

The superposition of quantum states is one of the hallmarks of quantum physics, and clear

demonstrations of superposition have been achieved in a number of quantum systems.

However, macroscopic mechanical systems have remained a challenge, with only indirect

demonstrations of mechanical state superpositions, in spite of the intellectual appeal and

technical utility such a capability would bring [86, 90, 56]. This is due in part to the

highly linear response of most mechanical systems, making quantum operation difficult,

as well as their characteristically low frequencies, making it difficult to reach the quantum

ground state. Linear resonant systems are traditionally challenging to control at the level

of single quanta, as they are always in the correspondence limit [13].

1



The recent advent of engineered quantum devices in the form of qubits has enabled

full quantum control over some linear systems, in particular electromagnetic resonators

[43, 96]. A number of experiments have demonstrated that qubits may provide similar

control over mechanical degrees of freedom, including qubits coupled to bulk acoustic

modes [70, 20], surface acoustic waves [38, 62], and flexural modes in suspended beams

[1, 55, 103, 59]. Of particular note are experiments in which a superconducting qubit is

coupled via a piezoelectric material to a microwave-frequency bulk acoustic mode [22],

where the ground state can be achieved at moderate cryogenic temperatures, and demon-

strations include controlled vacuum Rabi swaps between the qubit and the mechanical

mode [70, 20]. However, the level of quantum control and measurement has been lim-

ited by the difficulty of engineering a single mechanical mode with sufficient coupling

and quantum state lifetime. More advanced operations, such as synthesizing arbitrary

acoustic quantum states and measuring those states using Wigner tomography, remain

a challenge.

Here we report a significant advance in the level of quantum control of a mechanical

device, where we couple a superconducting qubit to a microwave-frequency surface acous-

tic wave resonance, demonstrating ground-state operation, vacuum Rabi swaps between

the qubit and the acoustic mode, and the synthesis of mechanical Fock states as well as

a Fock state superposition. We map out the Wigner function for these mechanical states

using qubit-based Wigner tomography. We note that a similar achievement has recently

been reported with an experiment coupling a superconducting qubit to a bulk acoustic

2



mode [21].

In the rest of this chapter, we review some fundamental concepts and related work

mentioned above. In the next two chapters, we discuss the two key elements to our

experiment: surface acoustic waves and superconducting qubits. In chapter 4, we explain

how to bring them together with a simple flip-chip technique. In chapter 5, we present

our experimental results coupling a surface acoustic wave resonator to a superconducting

qubit. We conclude with chapter 6, a summary of the key lessons from this work and a

discussion of possible future directions.

1.2 Harmonic oscillator

The harmonic oscillator is a classic element of physics, permeating all levels. A simple

example is a mass m on a spring with stiffness k, which exhibits harmonic motion at its

resonant angular frequency ω =
√
k/m. The mass has position x relative to its equi-

librium position and momentum p = m
dx

dt
. This brings about the classical Hamiltonian

[36]

H =
1

2m
p2 +

k

2
x2. (1.1)

1.2.1 Quantum mechanics

We can also consider the harmonic oscillator subject to quantum mechanics [83]. It may

seem odd to consider quantum behavior in something macroscopic like a mass on a spring,

3



but in this thesis, we will demonstrate characteristically quantum behavior in a closely

related mechanical system. The Hamiltonian H and the variables x and p are promoted

to quantum operators with the commutation relation [x, p] = i~. This can be recast into

the familiar “ladder” form, using

a =

√
mω

2~

(
x+

i

mω
p

)
, (1.2)

which satisfies [a, a†] = 1, to arrive at

H = ~ω
(
a†a+

1

2

)
. (1.3)

In this form, we naturally see the structure of the quantum system. The energy eigen-

states |n〉 are eigenstates of a†a with eigenvalue n; these are also called Fock states.

A final concept to mention is the coherent state |α〉, which is an eigenstate of a with

eigenvalue α [83]:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (1.4)

We can generate a coherent state using a classical drive, which we explore experimentally

in chapter 5.

Besides the wavevector |ψ〉, wavefunction ψ(x) = 〈x|ψ〉, or density matrix ρ, an

alternative representation of a resonator state is the Wigner function W (x, p), a real-

valued quasiprobability distribution [100, 40]. It can take on negative values, which are

a signature of non-classical behavior. We define it in terms of a density matrix ρ; for a

pure state |ψ〉, ρ = |ψ〉〈ψ|. By definition,

W (x, p) =
1

π~

∫ ∞
−∞
〈x+ y|ρ|x− y〉e2ipy/~ dy. (1.5)

4



We can recover the actual probability distributions P along x and p by integrating away

the opposite variable:

P (x) =

∫ ∞
−∞

W (x, p) dp (1.6)

P (p) =

∫ ∞
−∞

W (x, p) dx (1.7)

(1.8)

We revisit Wigner functions when we characterize quantum states in a macroscopic me-

chanical resonator in chapter 5.

1.2.2 Normal modes in solids

When we bring a collection of atoms together to make a solid, the motion of every

atom becomes coupled together. These interactions give rise to many characteristic

frequencies and normal modes of vibration [36].1 For small amplitudes, each of these

normal modes acts as an independent harmonic oscillator with its own frequency and

displacement profile. The subject of this thesis is to take one particular normal mode, a

4 GHz vibration on the surface of a crystal, and cause it to exhibit quantum behavior.

The notion of quantum behavior in mechanical normal modes dates back over a

century, when Einstein [31] and later Debye [25] used models composed of independent

harmonic oscillators to explain the low-temperature behavior of the specific heat of solids

1In quantum experiments with trapped ions, normal modes of motion in arrays of several trapped
ions are used to generate entanglement between ions [93].

5



[72]. The relevant phenomenon was what happens when the thermal energy kBT becomes

small compared to the single-phonon energy ~ω. In the Einstein model, all the modes have

the same frequency, while the Debye model uses a reasonable distribution of frequencies.

The familiar Debye temperature TD corresponds to the energy of the highest-frequency

mode in the solid.

From low temperature heat capacity measurements, it was apparent that these normal

modes behave quantum mechanically and can approach their ground states of motion.

One wonders to what extent such a mechanical mode can exhibit quantum behavior such

as quantum superposition. In this thesis, we explore this question in great detail.

1.3 Ground state cooling

About a decade ago, there was a flurry of interest in attempting to cool a macroscopic

mechanical resonator to the quantum ground state. The first demonstration, mentioned

above, involved a 6 GHz resonator coupled to a superconducting qubit at cryogenic tem-

peratures [70]. We discuss this further below, but first we mention a different set of

experiments that use active cooling to supplement cryogenic refrigeration.

1.3.1 Experiments with active cooling

Since 2010, there have been many examples of ground state cooling, which is usually

taken to mean measuring an average phonon number 〈n〉 < 1.2 Many of these use an

2One could have a stricter criterion, such as 〈n〉 < 0.5 or � 1. The achievement in Ref. [70] had
〈n〉 ≤ 0.07, rather persuasive. In chapter 5, we demonstrate 〈n〉 ≤ 0.005.
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active cooling scheme based on cavity optomechanics, where the mechanical mode of

interest (angular frequency ωm) is parametrically coupled to an electromagnetic mode

(angular frequency ωe � ωm), such as a microwave or optical resonance [4]. The origin

of this coupling is that the motion x of the mechanical mode shifts the electromagnetic

angular resonance frequency ωe: ∂ωe/∂x 6= 0.

Instead of exclusively relying on direct refrigeration (kBT � ~ωm), these experiments

use the optomechanical interaction to bring about cooling, primarily sideband cooling.

The basic idea is to illuminate the electromagnetic mode with red-detuned radiation at

angular frequency ωe − ωm. Under the right circumstances, a mechanical phonon and a

red-detuned photon can combine their energy, generating a photon with energy ~ωe in the

electromagnetic mode. This process removes one phonon, slightly cooling the mechanical

mode.

We briefly summarize several pioneering examples. In Ref. [91], Teufel et al. strongly

couple a 10 MHz vibration of a suspended metal drum to a 7.5 GHz superconducting LC

resonator at a temperature of 15 mK. Sideband cooling brings the phonon occupation

to 〈n〉 = 0.34 ± 0.05. Chan et al. [16] use a silicon optomechanical crystal coupling co-

localized mechanical (3.7 GHz) and optical (195 THz, 1540 nm) modes. Starting at 20 K,

they use sideband cooling to achieve 〈n〉 = 0.85 ± 0.08. As a last example, in Ref. [73],

Peterson et al. suspend a silicon nitride membrane with a 1.5 MHz mechanical mode

in an optical Fabry-Pérot resonator at 70 mK. They use sideband cooling and measure

〈n〉 = 0.20 ± 0.02, reaching the quantum backaction limit for their experiment. There
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are many more example of ground state cooling that have been achieved, many building

directly on these works.

1.3.2 Coupling to qubits

We now address an alternative approach, the one we will take in this thesis, first demon-

strated in Ref. [70]. There are two key ingredients. The first is to use a GHz frequency

mode at mK temperatures, realizing kBT � ~ωm. If the mechanical mode thermalizes

to the cryostat temperature, it will automatically be very close to the quantum ground

state, without the need for active cooling. The second ingredient is to couple to a highly

nonlinear system, in this case a superconducting qubit. The qubit can be used to as-

sess the state of the mechanical resonator, in particular how close it is to the quantum

ground state. This also allows the experiment to rapidly transcend ground state cooling:

nonclassical states can be generated by a qubit and then imprinted on the mechanical

resonator.

In Ref. [70], O’Connell et al. use a 6.2 GHz vibration of a suspended parallel plate

capacitor made with piezoelectric aluminum nitride. It is capacitively coupled to a super-

conducting phase qubit. O’Connell et al. demonstrate ground state cooling, 〈n〉 ≤ 0.07,

and furthermore the swapping of a photon from the qubit into the resonator, generating

a single phonon state. This experiment is limited by the short lifetime of the resonance

(6 ns), and the qubit lifetime is short as well (17 ns), but they still achieve strong coupling;

the time to swap a single photon/phonon is 4 ns.
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Recently, a complementary effort with much longer mechanical lifetimes has emerged.

Chu et al. [20] use acoustic overtones in a 420 µm thick sapphire plate. The primary modes

are separated by a free spectral range of 13.2 MHz, and they also couple to spurious Bessel

modes close to each primary mode. They use a disk of aluminum nitride on the sapphire

surface to couple these modes to the electric field of a 3D transmon. They measure

〈n〉 ≤ 0.02 and demonstrate similar phonon control to Ref. [70], although the lifetimes

involved are much longer (∼10 µs), with much slower interactions. Very recently, this

group has substantially improved their devices by using a curved surface to extricate

their primary mode from the spurious modes [21]. Their work is complementary to what

we present in this thesis, with many similar achievements, but in bulk acoustic waves.

1.4 Surface acoustic waves

Surface acoustic waves are vibrations localized near the surfaces of elastic solids. We

discuss them at length in chapter 2, and we demonstrate coupling between a supercon-

ducting qubit and a surface acoustic wave resonator in chapter 5. Here, we just discuss

some related work in the realm of coupling qubits and surface acoustic waves.

Surface acoustic waves are a mature technology for many classical applications, and

there are hopes that they could be very useful in emerging quantum technologies. The

idea is that surface acoustic waves are easily controlled, and they should also be able to

couple to a wide variety of disparate quantum systems [87, 3, 99].

Over the past few years, there have been several experiments coupling superconduct-
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ing qubits to surface acoustic waves in various ways. This comes about rather naturally:

the main technology to interact with surface acoustic waves is a transducer made of an

interdigital capacitor, and that capacitor can be integrated with a qubit circuit. In these

experiments, the capacitance of the transducer constitutes part of the capacitance of a

transmon superconducting qubit. This brings about a strong interaction between the

qubit and surface acoustic waves.

Gustafsson et al. [38] made the first demonstration of such a transmon/transducer

hybrid. By tuning the qubit to the transducer frequency (4.8 GHz), they efficiently emit

single phonons. They also interrogate the qubit with a separate transducer coupled

to a transmission line. In Ref. [62], Manenti et al. use a similar device, but with a

lower frequency transducer (520 MHz). In this case, they place the transducer between

two acoustic mirrors, making an acoustic resonator. The acoustic waves are at a much

lower frequency than the qubit, but they still observe some non-resonant interactions,

including time-domain measurements showing the qubit interacting with an acoustic

pulse bouncing back and forth between the mirrors. Finally, in Ref. [65], Moores et al.

bring these two ideas together, placing the qubit/transducer in an acoustic resonator at

4.3 GHz. They observe spectroscopic evidence of strong coupling between the qubit and

several acoustic modes.
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Chapter 2

Surface acoustic waves

The main subject of this thesis is a surface acoustic wave (SAW) resonator that we couple

to a superconducting qubit. In this chapter, we describe some fundamental concepts

of surface acoustic wave devices. We go over classical experiments with a variety of

resonators. Finally, we consider how to couple such a resonator to a qubit.

2.1 Introduction

Surface acoustic waves are vibrations confined near the surface of an elastic solid [79, 42,

66]. Since the 1960s, many technological applications of electromechanical surface acous-

tic wave devices at radio frequencies have emerged. SAW devices are now ubiquitous,

with billions of devices manufactured each year.1

Two main characteristics make SAW devices technologically viable: their relatively

1Applications include radar, ultrasonics, sensors, mobile phones, GPS receivers, RFID tags, and
garage door openers.
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slow propagation speed (a few km/s, 10−5 times the speed of light), and the ease of

manipulating them with simple lithographically-defined metal patterns. The operation

frequency is set lithographically by the wavelength of the metal patterns. Taken together,

these features allow the construction of physically compact devices many wavelengths in

extent, enabling structures like delay lines (4 mm at 4 km/s is 1 µs), pulse compressors,

and various other filters.

2.1.1 Rayleigh waves

There are various types of surface acoustic waves, but here we concern ourselves with

the simplest and most common, Rayleigh waves [79].2 Here, we sketch a discussion from

Ref. [66]. Consider an acoustic plane wave in an infinite isotropic elastic medium with

angular frequency ω and wavevector ~k. The displacement ~u takes the form

~u(~r, t) = ~u0 exp[i(ωt− ~k · ~r)]. (2.1)

The direction of ~u0 compared to ~k determines the polarization of the wave; it is natural

to consider separately transverse (shear) waves (~u0 and ~k orthogonal, with speed vt) and

longitudinal waves ( ~u0 and ~k parallel, with speed v`). Longitudinal waves are faster than

transverse waves in the same medium (v` > vt).

We construct a Rayleigh wave out of two plane waves. Consider a semi-infinite

isotropic elastic medium with its surface in the xy plane, as depicted in Fig. 2.1a. The

boundary condition is that the surface z = 0 is stress-free. We add a transverse plane

2Rayleigh waves are also important in seismology; they come from earthquakes.
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Figure 2.1: Rayleigh waves. a, Schematic showing a Rayleigh wave propagating along
the z = 0 surface in the x direction. b, Illustration of the displacement of a Rayleigh
wave. The color shows the amplitude of the displacement z component, and the arrows
show the displacement vector field. This is actually calculated using the finite element
simulation we will revisit in Fig. 2.4.
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wave with wavevector |~kt| = ω/vt to a longitudinal wave with wavevector |~k`| = ω/v`.

We seek to generate a wave propagating along the x direction, with no y dependence; the

displacements should vary as exp(−ikRx). This imposes a constraint on the components

of ~kt and ~k`: x component equal to kR, zero y component, and z component constrained

by the magnitudes listed above. Demanding that the amplitude decays as we descend

beneath the surface forces the z components to be nonzero and imaginary. This means

kR > |~kt| > |~k`|, so the speed vR = ω/kR is less than the bulk wave speeds (vR < vt < v`).
3

Finally, the stress-free boundary condition determines the relative amplitude and phase

of the transverse and longitudinal components. We arrive at the following displacement,

a Rayleigh wave:

~u(~r, t) = A(uxx̂+ uz ẑ) exp[i(ωt− kRx)] (2.2)

ux = γ exp(akRz)− exp(bkRz) (2.3)

uz = i
[
γa exp(akRz)− b−1 exp(bkRz)

]
, (2.4)

where a, b, and γ are positive, dimensionless, real numbers dictated by ω and material

properties, and A is proportional to the displacement amplitude. This wave propagates

along the surface in the x direction with maximum displacement at the surface. The

amplitude exponentially decays as we descend into the bulk; the characteristic decay

length approximately equals to the wavelength λR = 2πvR/ω = 2π/kR. We plot an

3Here, for example, ~kt = kRx̂ +
√
|~kt|2 − k2

Rẑ, and kR > |~kt|. The positive imaginary z component

makes exp[−ikt,zz] give exponential decay into the bulk (z < 0).
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example in Fig. 2.1b. Note that the x and z displacements are 90° out of phase, so each

element follows an elliptical path.

2.1.2 Piezoelectricity

Certain anisotropic materials with particular symmetry properties and charge distribu-

tions exhibit a very important property, piezoelectricity, where strain S is accompanied

by polarization ~P [24, 23].4 The familiar electric displacement field ~D = ε0 ~E + ~P , where

~E is the electric field. Ordinarily, this can be computed as ε · ~E with a suitable dielectric

tensor ε. Similarly, the stress T is ordinarily related to the strain S by T = c ·S, where

c is the stiffness tensor.

However, in a piezoelectric material, these are coupled together. There are various

ways of expressing the relationship; here we use “stress-charge form” with a piezoelectric

coupling tensor e. In this form, we calculate the stiffness tensor at constant electric field

and the dielectric tensor at constant stress, as those are the independent variables. The

relationship is given by [23]

~D = ε · ~E + e · S (2.5)

T = −et · ~E + c · S, (2.6)

where et denotes the transpose of e. These equations say that a strain brings about an

electric displacement field, and an electric field brings about a stress.

4We denote tensor quantities like S with bold-face letters.
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This applies to our discussion of Rayleigh waves: on a piezoelectric substrate, the

traveling acoustic wave is principally a wave of strain, but it takes a wave of polarization

along for the ride. This allows us to control surface acoustic waves using voltages applied

to patterned metal transducers, which we discuss below.

2.1.3 Piezoelectric Rayleigh waves

Note that we only discussed Rayleigh waves on an isotropic solid, but similar waves exist

in anisotropic media, including piezoelectric substrates; these are called piezoelectric

Rayleigh waves. It is important to consider the electrical boundary condition on the

surface of the piezoelectric substrate. For a non-metallized surface, there are no free

charges on the surface, and there will be a voltage wave in the vacuum above the surface.

For a metallized surface, the conductor shorts out surface potentials. On a piezoelectric

substrate, this slows down the wave speed by a fraction ∆v/v.

This is closely related to the piezoelectric coupling strength of the material, though it

is specific to surface acoustic waves. We use the standard piezoelectric coupling coefficient

K2 = 2∆v/v to summarize the piezoelectric coupling strength of a material. This is a

simplification compared to examining the details of the piezoelectric coupling tensor e

or its strain-charge form sibling d.
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2.1.4 Piezoelectric materials

There are many different piezoelectric materials of technological interest. Several experi-

ments mentioned in chapter 1 use aluminum nitride [70, 12, 94, 20]. This is a reasonably

robust material that can be deposited in thin films with controlled stress [32] and even

grown epitaxially in some circumstances [95]. Although these were not experiments with

surface acoustic waves, we can get an idea of the piezoelectric coupling strength by ex-

amining the coefficient K2 for aluminum nitride; it is about 0.5% [14].

Quartz, crystalline silicon dioxide, is a common material for SAW devices [66]. The

usual crystal orientation, called ST-X, has favorable temperature stability properties near

room temperature. It has been observed to be very low-loss at cryogenic temperatures

[37, 61, 80]. It is a relatively weak piezoelectric material, K2 = 0.12%, though this

increases the plausibility of making good superconducting qubits on quartz [62]. Gallium

arsenide is another weak piezoelectric material, with K2 = 0.07% [38]. It is not widely

used in industrial SAW devices, but it has been used in some experiments with surface

acoustic waves coupled to qubits [39, 38, 65].

Lithium niobate is the other common material for SAW devices [66]. There are

various crystal orientations for different applications. Here we concern ourselves with

a very popular orientation, the 128°Y-X crystal cut, a rotated Y cut where the waves

propagate along the crystal X direction. This has several favorable properties: very

strong K2 = 5.4% (roughly 50 times that of quartz or gallium arsenide), a relatively

high wave speed v = 4.0 km/s, transducers with small internal reflections, and minimal
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coupling to bulk waves [42]. Another popular orientation worth mentioning is Y-Z, which

has minimal diffraction [66]. Lithium niobate has some very interesting properties besides

strong piezoelectricity: ferroelectricity, pyroelectricity, and many useful optical properties

[101, 102]. In this thesis, all of our surface acoustic devices use lithium niobate, 128°Y-X.

See appendix E for fabrication information.

2.2 Surface acoustic wave resonators

The subject of this thesis is surface acoustic wave resonators, where waves are trapped

between two mirrors, and we will just have one transducer inside each resonator. We

show an example of such a resonator in Fig. 2.2. There are many other sorts of SAW

devices, typically involving more than one transducer communicating through resonant

or traveling modes [66], but we will not discuss them further. Here we describe the

essential operation and properties of the components that constitute surface acoustic wave

resonators; for more details, see Refs. [42, 41, 66]. Also see appendix A for information

about numerically modeling these devices.

2.2.1 Mirrors

A good surface acoustic wave mirror will reflect almost all of the incoming acoustic waves.

This is a bit challenging to do without inadvertently scattering some of the incoming

waves into other modes, such as bulk acoustic waves. A very successful approach is to

use a Bragg-style mirror made of a periodic structure where each period reflects a small
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a

100 µm

b c 1 µm

1 µm

Figure 2.2: Surface acoustic wave resonator. a, Optical micrograph of a typical
Fabry-Pérot style resonator. The transducer (center) has two electrodes for measure-
ments (above and below). There are two large mirrors (left and right). b-c Scanning
electron micrographs of the corner of a mirror (b) and the top of a transducer (c).
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amount (|r| ∼ 1%) of the incoming wave amplitude.5 If the period lines up correctly

with the acoustic wavelength, there is constructive interference, yielding nearly 100%

reflection over a fractional bandwidth ∆f/f ≈ 2|r|/π. This frequency band is called the

“stop band.” Intuitively, larger reflection per line |r| gives a larger stop band because

most of the wave is reflected in ≈ 1/|r| periods, and if that number of periods is smaller,

a wider range of wavelengths can “line up” with the mirror long enough to be reflected.

Ordinarily, a mirror is made of several hundred thin metal lines or shallow grooves

etched into the substrate. Having thicker metal or deeper grooves tends to increase the

reflection per line |r|, but taking this too far leads to loss from scattering into bulk

acoustic waves. A typical thickness or depth is about 1% of the acoustic wavelength λ,

although that is often unreasonably thin for GHz frequency devices where λ ∼ 1 µm.

On weak piezoelectric materials, such as quartz, the reflections are dominated by

mechanical scattering from the mass loading of the metal lines or etched grooves. For

metal lines on strong piezoelectric substrates, such as lithium niobate, in addition to

mechanical reflections, there are reflections caused by the metal lines shorting out the

surface potential under them, slowing down the effective wave speed. If the metal is

sufficiently thin, this is the dominant effect. In the devices we discuss below, there is a

comparable contribution from mechanical and piezoelectric reflections.

Another important consideration for these piezoelectric reflections is the electrical

connectivity of the metal lines, whether they are connected together (short-circuit) or

individually floating (open-circuit). This determines the phase of the piezoelectric re-

5The reflection per period r is conventionally an imaginary number.
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Figure 2.3: Calculated reflection Γ from a lossless acoustic mirror. Left: Re-
flection magnitude |Γ| = |P11|. Right: Reflection phase ∠Γ = ∠P11. a, Vary |r| with
N = 500. The mirrors in our devices, below, have r ≈ −0.03i. b, Vary the sign of r with
N = 500. c, Vary N with r = −0.03i.
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flections. How this compares to the phase of the mechanical reflections depends on the

substrate and crystal orientation. In our case, with 128Y-X lithium niobate, we use open-

circuit lines in our mirrors to maximize reflection |r|, while the lines in the transducer

are approximately short-circuit, giving smaller |r|.

Four important parameters in a mirror are its reflection per line r, number of lines

N , period p, and effective wave speed v.6 Maximal reflections occur when the period

is half a wavelength (p = λ/2 = πv/ω), giving a center angular frequency ωm = πv/p.

In Fig. 2.3, we show calculated mirror reflections Γ = P11, magnitude and phase, for a

variety of r and N values, assuming a center frequency of 4 GHz. These are calculated

with the coupling-of-modes method; see appendix A. Note in particular the dependence

of the stop bandwidth on |r|, the reflection phase on the sign of r, and the dependence

of the maximum reflection magnitude and out-of-band ripples on N .

2.2.2 Transducers

Surface acoustic wave transducers allow us to launch and detect surface acoustic waves

electronically, interfacing with currents and voltages. SAW devices use transducers made

of periodic interdigital capacitors. The periodic geometry allows a transducer to interact

with waves which appropriately align with the fingers of the transducer, similar to the

Bragg mirror discussed above.

In this interdigital transducer, the fingers alternate between positive and negative

polarity; the positive fingers are electrically connected to one electrode, and the negative

6The loss in the mirror is also important in real devices, but not for this discussion.
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fingers are electrical connected to the other. When a voltage is applied across the trans-

ducer, a periodic electric field develops between the two sets of fingers. This is spatially

well-matched to a surface acoustic wave with the same wavelength as the transducer. As

discussed above, this electric field brings about a mechanical stress in the substrate. If

we apply an AC voltage with frequency corresponding to the transducer wavelength, the

transducer efficiently launches surface acoustic waves. We illustrate this in Fig. 2.4a-c.

The reverse process also works, so the transducer can also detect surface acoustic waves.

We can understand a lot about a transducer by studying its admittance

Yt(ω) = iωC + Ya(ω), (2.7)

where C is the interdigital capacitance and Ya(ω) is a complex, frequency-dependent

“acoustic” admittance characterizing the transduction. To gain some intuition, we study

a very simple model of a lossless, non-reflective transducer [66]. It has wavelength λt,

effective wave speed vt, center angular frequency ωt = 2πvt/λt, aperture W (the finger

overlap length), and Nt pairs of fingers. We just look at the real part Re[Ya(ω)]; the

imaginary part is its Hilbert transform. Re[Ya(ω)] has a characteristic “sinc squared”

shape:

Re[Ya(ω)] = Y0

[
sin[πNt(ω − ωt)/ωt]
πNt(ω − ωt)/ωt

]2

. (2.8)

The prefactor Y0 is somewhat involved; it is proportional to εeffωtWN2
tK

2, where εeff is

the effective dielectric constant of the substrate (also called ε∞ in the SAW literature).

We illustrate the particularly-important dependence on the number of finger pairs Nt in

Fig. 2.4d. Having more finger pairs increases the resonant response at the expense of
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Figure 2.4: Interdigital transducers. a, Schematic of an interdigital transducer
(perspective view). One side of the interdigital capacitor is blue, and the other is red.
The black sine wave represents a surface acoustic wave. b-c, Side view of a finite element
simulation of a simple interdigital transducer (COMSOL). As in a, there are three finger
pairs. The simulation has periodic boundary conditions. b, Electric potential in the
presence of a DC voltage applied across the transducer. The associated electric field ~E
brings about a stress T which can drive acoustic waves. c, Volumetric strain showing
the acoustic wave excited by resonant drive (AC voltage near 4 GHz). The geometry is
also distorted according to the simulated displacement profile (the amplitude is greatly
exaggerated). d, Calculated admittance Re[Ya(ω)] for a simple transducer with different
numbers of finger pairs Nt. The transducer has wavelenth λt = 1 µm and speed vt =
4 km/s. The admittances are normalized to the Nt = 10 maximum.
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bandwidth. The fractional bandwidth is roughly ∆f/f ≈ 1/Nt. This is a similar story

to the mirror bandwidth: a transducer with fewer finger pairs can align well with a wider

range of acoustic wavelengths.

Note also the proportionality with εeffK
2. We mention above that lithium niobate has

a piezoelectric coupling strength K2 about 50 times that of quartz and gallium arsenide.

It also has a much higher dielectric constant εeff, about 10 times higher. This makes

its admittance response overwhelmingly larger for the same geometry. For this reason,

lithium niobate devices can work well with relatively few finger pairs (Nt ∼ 10), allowing

devices with a wide bandwidth. On the other hand, quartz typically devices require many

more finger pairs (Nt ∼ 100), resulting in narrow bandwidth.

2.2.3 Fabry-Pérot resonators

The easiest way to construct a surface acoustic wave resonator is to place two mirrors

relatively far apart (distance Lr ∼ 100λ) and place a wide-bandwidth transducer (several

finger pairs) in the middle. This acts analogously to an optical Fabry-Pérot resonator.

The first relevant frequency range is the mirror stop band. In that band, acoustic waves

are efficiently reflected by the mirrors, creating an “echo chamber” where the waves can

bounce back an forth. At certain frequencies, these reflections interfere constructively,

bringing about electromechanical resonances. Since the mirrors are relatively far apart

in space, these resonances will be relatively close together in frequency, with frequency
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spacing roughly v/L.7 We previously showed such a resonator in Fig. 2.2. We will discuss

these in more detail below in the context of some experiments.

2.2.4 Single-mode resonators

For the quantum experiment in chapter 5, we just want to couple to one electromechanical

resonance. To keep things simple, we can construct a resonator designed to have a single

mode in the ≈100 MHz mirror bandwidth. This overall makes the experiment easier and

also increases the coupling somewhat. The main price is lower quality factor, as the

mirrors are more lossy than the open surfaces featured in the multimode Fabry-Pérot

designs.

They are also somewhat more difficult to design. The fundamental idea is simple:

bring the mirrors closer together so that the frequency spacing between the modes exceeds

the mirror stop bandwidth. The difficulty is mainly because the phase of the mirror

reflection is somewhat complicated (see Fig. 2.3). It is not simply 0° or 180° as one might

expect, and it is frequency-dependent. We also must take into account the internal

reflections inside the transducer. Without careful consideration, it is possible to end up

with zero or two modes instead of one.

In our design, we adopt a continuous grating structure where the transducer and

mirrors are right next to each other [30]. In addition to considering the reflections in

the transducer and the phase of the mirror reflection, we also need to compensate for

7This is for the case that the transducer only couples to one mode symmetry (even or odd with
respect to the center of the resonator); the actual free spectral range for all modes is v/(2L).

26



the differing effective speeds in the transducer and mirrors. We use parameters from

cryogenic measurements of the easier Fabry-Pérot resonators and a reliable numerical

model to design our single-mode resonator (see appendix A). See Ref. [41] for a parallel

discussion of designing this type of resonator.

2.3 Classical experiments

We have discussed surface acoustic wave resonators from a theoretical point of view,

but before we can tackle the quantum experiment in chapter 5, we perform some simple

classical measurements to establish a good understanding.

2.3.1 Room temperature measurements

Fortunately, most of these devices work at room temperature, although there is substan-

tial ohmic loss in the very thin (25 nm to 30 nm) aluminum films, especially in the long,

narrow transducer lines. We use a probe station outfitted with microwave probes (GGB

Picoprobe 40A) to conduct fast, calibrated measurements of many devices. This is shown

in Fig. 2.5a. In the next few sections, we explore measurements of those devices.

We conduct a short/open/load/through calibration of the two probes using a vector

network analyzer and a dedicated calibration substrate (GGB CS-5) with precise cali-

bration standards. This allows us to remove the effects of the SMA interfaces, cables,

and probes from our vector network analyzer measurements. We show an example cal-

ibration standard being measured in Fig. 2.5b. In Fig. 2.5c, we show an example of a

27



2 mm
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a

b c

Figure 2.5: Room temperature measurements with microwave probes. a,
Photograph of two microwave probes measuring transmission through the transducer of
a Fabry-Pérot resonator. The red/orange colors are from optical diffraction. b, Probes
measuring a calibration standard, in this case a “through” 50 Ω transmission line. c,
Example validation measurement. Following the calibration measurements, we reposition
the probes on a “through” 50 Ω transmission line and measure it. The results are very
close to the ideal values. We plot all four Sij parameters: magnitude on the left, phase on
the right, transmission (S21, S12) on the top, and reflection (S11, S22) on the bottom. This
is raw data directly from the network analyzer following calibration. The manufacturer
states the electrical delay through this transmission line is 1.13 ps, which gives a phase
shift of −8° at 20 GHz.
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validation measurement where, after calibration, we re-measure the “through” standard.

We find that this calibration gives excellent results for measurements of all four scatter-

ing parameters Sij. These-high quality measurements were instrumental to developing

a quantitative understanding of these devices (and many other electromechanical and

microwave devices).

2.3.2 Modeling experimental results

It is very useful to construct a simple but comprehensive model of these devices. This al-

lows us to understand the experiments and also is essential to designing more complicated

devices, such as single-mode resonators. We use a standard approach for modeling SAW

devices, the P -matrix [66]. For detailed information about P -matrices, see appendix A.

The core idea is to construct 1-dimensional electromechanical models of individual com-

ponents (like mirrors, transducers, and open space) and then cascade them together to

make a more complicated device like a resonator. We use robust, established electrome-

chanical models, together with design parameters and material properties. In practice,

we fine-tune the material property values to fit models to experimental data.

We walk through the modeling process in Fig. 2.6. We present the calibrated trans-

mission S21 measured through a transducer in a resonator, as depicted in Fig. 2.5a.

Fig. 2.6a shows the transmission over a wide frequency range. We fit this to a series

RLC embedding circuit. Most of this impedance is actually inside the transducer. The

capacitance is dominated by the interdigital capacitance of the transducer, and the re-
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sistance and inductance is dominated by the thin, narrow fingers. However, we keep the

model simple by putting the resistance and inductance in lumped elements in series with

the SAW device model. We observe that the fitted capacitance is somewhat lower than

the design value (about 30% lower), which we attribute to the distributed resistance in

the fingers.

We then move to a more sophisticated model by including the admittance of the

transducer alone (as if the mirrors weren’t there), as shown in Fig. 2.6b-c. This is put in

the circuit as an acoustic admittance Ya(ω) in parallel with the capacitor. We refine the

RLC embedding circuit and adjust the effective speed vt of the transducer.

Finally, we add the mirrors, using a much more complicated Ya(ω) constructed from

our P -matrix model. We adjust the effective speed in the open space (vs) and mirrors

(vm), the reflection per line in the mirror r, and the loss in the open space (ηs) and mirrors

(ηm) (see appendix A). In these devices, the transducer is very small (Nt = 5 finger pairs),

so we use a very simple non-reflective model. This is shown in Fig. 2.6d, where we zoom

on the resonant region. We observe good agreement between the experiment and model.

We can learn more about the device by peeling apart the components of our model

from Fig. 2.6c and looking at them individually. This allows us to escape the details of

the embedding circuit and the scattering matrix and instead focus on the SAW behavior.

We do so in Fig. 2.7. In Fig. 2.7a, we replot the experimental transmission magnitude

|S21|. In Fig. 2.7b, we show the real part of the acoustic admittance of the models. Each

peak from the full model corresponds to a resonance.8 We also look at the transducer

8The peaks in the admittance are actually local maxima in |S21|, but there are corresponding
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Figure 2.6: Fitting transmission through a surface acoustic wave resonator.
Apply models to calibrated vector network analyzer measurement of a device pictured
in Fig. 2.5a. Left: Transmission magnitude |S21|. Right: Transmission phase ∠S21. a,
Wide-frequency plot with the simple RLC model (transmission through a series RLC).
b-c, With theRLC model incorporating the transducer admittance (but not the mirrors).
c, With the complete model.
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alone. Since it only has Nt = 5 finger pairs, it has a very broad bandwidth, around

1 GHz. By design, its response is basically uniform over the frequency range of interest.

The resonances in Fig. 2.7a-b come about from the mirrors. Interference among reflected

waves frustrates the transducer response except at the resonance frequencies, where it is

enhanced. This is quite clear looking at Fig. 2.7c, where we plot the magnitude of the

mirror reflection. The stop band coincides with the frequency range where the resonances

occur.

This modeling technique will resurface in chapter 5, where we use a superconducting

qubit to measure the frequency dependence of a SAW resonator and then model its

response.

2.3.3 Varying parameters

Here, we discuss several different device designs. We focus on the devices shown in

Fig. 2.5a.9 We can fit each of these with similar fidelity to the model described at

length in the previous section, just updating the design parameters, adjusting the em-

bedding RLC (accommodating variation in probe contact resistances and transducers),

and slightly adjusting the various material properties (less than 1%). For clarity and

simplicity, we just plot the transmission magnitude |S21| of the experimental data. This

emphasizes the main lesson from each experiment. However, in analyzing these experi-

ments quantitatively, it is critical to include the transmission phase.

impedance peaks that go with the dips in |S21|.
9We also performed rather comprehensive experiments with 700 MHz devices. Later efforts were more

focused on cryogenic measurements, although we still measured many devices at room temperature.
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Figure 2.7: Model of a surface acoustic wave resonator. Examination of the model
developed in Fig. 2.6. a, Experimental transmission magnitude |S21| associated with the
model. b, Real part of the acoustic admittance Ya for the full model (with many peaks)
and the transducer alone (approximately constant) c, Magnitude of the mirror reflection
Γ.
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Distance between mirrors

As we discuss above, the distance between the mirrors determines the frequency spacing

between the resonances. It also affects the electromechanical coupling: if we keep the

same transducer and bring the mirrors closer together, a larger fraction of the device

is covered by the transducer, so the electromechanical coupling is stronger. We show a

simple experiment in Fig. 2.8. Decreasing the distance between the mirrors makes the

resonances deeper (due to stronger coupling) and further apart in frequency, as expected.

Mirror pitch

In these devices, the transducer has a very large bandwidth; the frequency range where

the resonances occur is determined by the mirror stop band. In Fig. 2.9, we show two

devices with slightly different mirror periods, shifting the mirror stop band as expected.

Mirror duty cycle

The mirror duty cycle should have a substantial effect on the piezoelectric reflections [66].

We test this here, shown in Fig 2.10. As expected (with open-circuit mirrors), we see the

strongest reflections with the 60/40 duty cycle (wider metal lines). This manifests itself

in the larger stop bandwidth.

These large ≈100 MHz bandwidths are very convenient, and they are possible thanks

to the strong piezoelectric coupling in lithium niobate. We also note that larger |r| (and

hence stop bandwidth) is not universally beneficial; if |r| is pushed too far, it can bring

about excessive scattering into bulk modes. We also suspect that the metal film and
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Figure 2.8: Resonators with different distances between the mirrors. Calibrated
vector network analyzer measurements of devices pictured in Fig. 2.5a. Three devices of
each type are plotted together in different shades. a, 700 µm. b, 500 µm. c, 300 µm.
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Figure 2.9: Resonators with different mirror periods. Calibrated vector network
analyzer measurements of devices pictured in Fig. 2.5a. Three devices of each type are
plotted together in different shades. Black: 0.50 µm. Red: 0.48 µm.

associated interfaces are lossier than the empty surface.

2.3.4 Cryogenic measurements

Cryogenic measurements are much more involved; we wirebond a chip into a sample

mount and cool it down in a dilution refrigerator (see appendix D). As the devices cool

down, we observe much lower loss thanks to superconductivity and diminished material

loss. We show measurements of an example device in Fig. 2.11, one of the square dies

on the left side of Fig. 2.5a. This device has the same design as the device in Fig. 2.10a.

Note the much deeper dips: the typical quality factor increases from about 4 × 103 at

room temperature to 4 × 104 at 7 mK. We also observe that at low power, such that

the mean phonon number is around 1, the quality factor diminishes to about 2 × 104.

This is consistent with related experiments on quartz [61]. Another interesting feature

is that the lower-frequency resonances exhibit unexpected splitting, as though we couple
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Figure 2.10: Resonators with different mirror duty cycles. Calibrated vector net-
work analyzer measurements of devices pictured in Fig. 2.5a. Three devices of each type
are plotted together in different shades. Insets: Scanning electron micrographs showing
one wavelength (two periods) of each grating of aluminum lines. a, 60/40 (metal/space).
b, 50/50. c, 40/60.
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to a family of spurious modes. This could be investigated further using a 2-dimensional

generalization of the P -matrix model techniques [92].

2.3.5 Other measurement configurations

All of these experiments measure transmission through the transducer, from one electrode

to the other. Alternatively, we can have an uninterrupted transmission line with one end

of the transducer connected to the transmission line and the other end grounded. This

is called a “tee” network, and it is pictured in Fig. 2.12.

The “tee” configuration has several benefits. First, we ordinarily have high transmis-

sion through the transmission line, just slightly loaded by the transducer capacitance to

ground. In principle, this could allow frequency multiplexing, with several devices on

one transmission line (like the coplanar waveguide resonator experiment in chapter 4).

In the “through” configuration, dips in |S21| correspond to impedance maxima, while in

the “tee” configuration, dips correspond to admittance maxima. As we discuss below,

we are ultimately interested in the admittance maxima, and those are emphasized in

the “tee” configuration. This works very well for cryogenic measurements, where the

aluminum is superconducting. However, we observe that for room temperature mea-

surements, ohmic loss substantially damps the admittance maxima, so the “through”

configuration is typically better for room temperature measurements.
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Figure 2.11: Cryogenic measurements of SAW resonances. Microwave trans-
mission magnitude |S21| through the sample with arbitrary offset from attenuation and
amplification. Note that the transmission phase, not pictured, is also very important
to analyze. Top: Broad scan showing the full stop band. Lower left: Zoomed-in scan
of several lower-frequency resonances showing the unexpected splittings. Lower right:
Zoomed-in scan of central resonances.
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Figure 2.12: Tee measurement configuration. Photograph of a wirebonded sample
with four resonators. Upper right: For room temperature measurement. Center: Fabry-
Pérot style resonator. Upper left and lower right: Single-mode resonator prototypes.
The chip is a 6 mm square.
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2.4 Considerations for coupling to a qubit

Our goal is to couple one of these surface acoustic wave resonances to a superconducting

qubit. As we mention earlier, several previous experiments have attempted this [38,

62, 65]. The approach was to use a weak piezoelectric substrate (quartz or gallium

arsenide) as a compromise so the qubit and SAW device could inhabit the same substrate.

To get strong coupling despite the weak piezoelectricity, the interdigital transducer is

made an integral part of the qubit, constituting much of its capacitance. This is a

reasonable approach, and it is also similar to the experiments coupling superconducting

qubits to bulk waves, where the aluminum nitride in the transducer participates in the

qubit capacitance [70, 20]. However, it imposes some difficulties for the qubit. The fine

interdigital geometry is empirically quite lossy for qubits, and the piezoelectric substrate

presents loss as well. Moreover, the qubit is always exposed to the transducer, which can

bring about loss over a wide frequency range.

We pursue an alternative, establishing a separation between the qubit and transducer

so that the transducer does not participate in the qubit capacitance. Further, we use

tunable coupling so that the qubit and transducer can be isolated from each other on

demand. These ideas will be explored in more detail in the coming chapters.

2.4.1 Series and parallel resonances

Superconducting qubits are circuits, so it would be useful to pursue a simple circuit

model for our resonator. As we mention earlier, these electromechanical resonances have
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Figure 2.13: Equivalent circuits for electromechanical resonances. a,
Butterworth-Van Dyke circuit model with a series RLC in parallel with the transducer
capacitance. b, “Parallel BVD” circuit model with a parallel RLC in series with the
transducer capacitance. c, Calculated admittance Y (real and imaginary parts) using
each circuit model, starting from ωs/2π = 4 GHz, Zs = 10 kΩ, Q = 104, and Ct = 1 pF.
d, Calculated impedance Z = 1/Y using each circuit model (same parameters as c). As
indicated in the legend, the black and red solid lines show the BVD, and the blue and
orange dashed lines show the parallel BVD. They are in close agreement.

corresponding peaks in admittance and impedance at slightly different frequencies. The

admittance peaks occur at the mechanical eigenfrequencies, and the impedance peaks are

pulled slightly higher by the transducer capacitance. Here, we discuss two simple circuit

models with very similar behavior.
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Traditional Butterworth-Van Dyke Model

The first is the Butterworth-Van Dyke (BVD) model [15, 29], shown in Fig. 2.13a. The

transducer capacitance Ct is in parallel with a series resonant circuit of Rs, Ls, and Cs.

This is easy to generate from the acoustic admittance Ya(ω); the series RLC is simply

a fit to a peak in the acoustic admittance [66]. This is readily generalized to multiple

modes by adding more series resonant circuits in parallel. This perspective emphasizes

the series resonance (that is, the admittance peak), which has characteristic impedance

Zs =
√
Ls/Cs and angular frequency ωs = 1/

√
LsCs. However, the circuit also has an

impedance peak, which occurs when the RLC admittance cancels out the transducer

capacitor admittance.

In our experiment, we want to avoid allowing the transducer to participate in the

qubit capacitance, and we want tunable coupling; both of these point toward inductive

coupling. This works most naturally coupling to a series resonance, so for our purposes,

the traditional Butterworth-Van Dyke circuit is a good choice.

Parallel Butterworth-Van Dyke Model

There is a complementary circuit we wish to mention, which we will refer to as the

“parallel BVD,” depicted in Fig. 2.13b. The transducer capacitance Ct is in series with

a parallel resonant circuit of Rp, Lp, and Cp. In this perspective, we emphasize the

parallel resonance (that is, the impedance peak), which has characteristic impedance

Zp =
√
Lp/Cp and angular frequency ωp = 1/

√
LpCp. This is a good way to look at an
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electromechanical resonance when using capacitive coupling.

These two circuits are not precisely equivalent, but they are very close.10 We show

an example in Fig. 2.13. We can transform between the two circuits working under the

assumption that the quality factors Qs =
√
Ls/Cs/Rs = Zs/Rs and Qp = Rp/

√
Lp/Cp =

Rp/Zp are equal.11 For example, we transform from a traditional BVD (Ct, Rs, Ls, Cs) to

a parallel BVD (Ct, Rp, Lp, Cp). The parallel resonance angular frequency ωp is given by

ω2
p =

1

LpCp
=

1

LsCs

(
1 +

Cs
Ct

)
. (2.9)

Immediately, we have the product LpCp. At this frequency, we demand that both models

give impedance 1/(iωpCt) +Rp, implying

Rp =
1

ω2
pC

2
tRs

. (2.10)

Finally, assuming Qs = Qp = Q, we obtain

Zp =
Rp

Q
=

1

ω2
pC

2
tRsQ

=
1

ω2
pC

2
t Zs

, (2.11)

giving us the quotient Lp/Cp = Z2
p . This completes the transformation. We observe good

agreement between the circuit models, with the series resonance clearly displayed in the

admittance, and the parallel resonance clearly displayed in the impedance.

If we consider the experiment of O’Connell et al. [70], for example, using this model

makes the circuit analysis much simpler. Ignoring the resistors, we start with a traditional

BVD based on the parameters from their Fig. 1: Ct = 0.19 pF, Ls = 1.043 µH, and

10Our transformation becomes worse with low quality factors; the two circuits agree on ωp but start
to disagree on ωs.

11This is not necessarily the case, especially in strongly-coupled surface acoustic wave devices. For
example, when the series and parallel resonances are at substantially different frequencies, they see
different mirror reflections Γ.
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Cs = 0.655 fF. Using Eqn. 3.31 of Ref. [71] with a qubit capacitance Cq = 1 pF and

coupling capacitance Cc = 0.5 pF, we calculate coupling Ω/2π = 106 MHz.12

Using the transformation above, we arrive at Lp = 12.33 pH and Cp = 55.21 pF.

Using the parallel BVD, the circuit looks like two parallel LC circuits (the qubit, and Lp

with Cp) connected by a capacitance, the series combination of Cc and Ct. Then we can

use our Eqn. 3.21 to calculate Ω/2π = 2g/2π = 106 MHz, in agreement.

2.4.2 Piezoelectricity and characteristic impedance

We will discuss inductive coupling in more detail in the coming chapters, but here we

discuss it in the context of designing our surface acoustic wave resonator. The relevant

parameter is the characteristic impedance of the series RLC equivalent circuit to our

resonance, Zs =
√
Ls/Cs. The inductive coupling strength is larger for smaller charac-

teristic impedance, or larger series capacitance Cs (see chapter 3). The series capacitance

is roughly proportional to the piezoelectric coupling strength K2 times the transducer ca-

pacitance [66]. As discussed above, both of these are much larger for lithium niobate than

quartz or gallium arsenide; the product K2εeff is about 500 times larger. This immensely

improves the coupling. The consequence is that we can have a relatively noninvasive

coupling circuit between the qubit and resonator while still achieving strong coupling.

This allows us to achieve the desired separation and isolation for the qubit.

12This Ω is equal to 2g the way we define g in chapters 3 and 5.
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Chapter 3

Superconducting qubits

A superconducting quantum bit (qubit) [26] is the key ingredient to generating and

measuring quantum states in our experiments. We can use classical control pulses to

manipulate and measure the quantum state in a qubit, and coupling it to a surface

acoustic wave resonator enables experiments with nonclassical states of motion. In this

chapter, we describe the essential features of the qubit we will use in chapter 5.

3.1 Overview

Qubits [76] are two-level quantum systems which we can control and measure. We will

identify two basis states, |g〉 and |e〉, referring to the ground state and first excited state

of a real system. The quantum state |ψ〉 of a qubit can be an arbitrary superposition of

those two states (or, more generally, a statistical mixture of states).

Superconducting qubits are made from electromagnetic resonators with very low losses
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at cryogenic temperatures. A low temperature T ∼ 10 mK gives us two important prop-

erties: minimal loss thanks to superconductivity (kBT � ∆, where ∆ is the supercon-

ducting gap of the relevant material), and cooling the circuits to the quantum ground

state (kBT � ~ω0, where ω0 is the angular frequency of the resonance).

3.1.1 Ideal qubits

An ideal qubit is a perfect two-level system. It can be mapped to a spin-1
2

particle in a

magnetic field; we construct operators from the Pauli operators σx, σy, and σz. A simple

Hamiltonian is

H = −1

2
~ωqσz, (3.1)

where the eigenstates are |g〉 = | ↑z〉 (spin up along z) and |e〉 = | ↓z〉 (spin down along

z). Another way to express this is with σ± = (σx∓σy)/2, where (neglecting an irrelevant

constant offset)

H = ~ωqσ+σ−. (3.2)

Jaynes-Cummings model

The Jaynes-Cummings model [44, 40, 88] describes interactions between a two-level sys-

tem and a harmonic oscillator, typically cast as an atom with dipole moment d ∼ σ−−σ+

in an electric field E ∼ a−a†. We use this model to understand the interactions between

a qubit and a mechanical resonator, and also separately for qubit readout. The coupling
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Hamiltonian has the basic form Hc ∼ −d · E; here we use the simple form

Hc = −~g(σ− − σ+)(a− a†) = ~g(−σ−a+ σ−a
† + σ+a− σ+a

†), (3.3)

where g is the coupling strength, incorporating the prefactors from d and E.1 We will

use the rotating-wave approximation, in which we neglect the σ−a and σ+a
† terms.2 We

arrive at the full Jaynes-Cummings Hamiltonian in the rotating-wave approximation,

HJC = ~ωra†a−
1

2
~ωqσz + ~g(σ−a

† + σ+a), (3.4)

where we include the harmonic oscillator (ωr, a) and qubit (ωq, σ) along with the coupling

term. This is the form we use to describe the interaction between a qubit and a mechanical

resonator in chapter 5.

In some circumstances, we deliberately keep the qubit and oscillator detuned by

angular frequency ∆, so ωq = ωr + ∆. If ωr � |∆| � |g|, we are in the so-called

“dispersive limit.” We use this for qubit readout, where we couple the qubit to a detuned

electromagnetic resonator. We can use these approximations to recast Eqn. 3.4 following

an expansion in g/∆, arriving at [88, 85]

Hd = ~ωra†a−
1

2
~ωqσz − ~

g2

∆
σza

†a. (3.5)

1Unfortunately, there is a collision of notation between the qubit ground state |g〉 and the coupling
strength g.

2This is on the basis that the qubit and oscillator frequencies are fairly close together, so those
processes are highly nonresonant (adding or removing two excitations at once). On the other hand, the
σ−a

† and σ+a terms are close to resonant (swapping an excitation between the qubit and oscillator).
This is a good approximation for the experiments in this thesis, although sometimes these terms can be
important [84].
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We define the dispersive shift3 χ = −g2/∆. There are two useful interpretations of this.

Hd = ~ (ωr + χσz) a
†a− 1

2
~ωqσz (3.6)

Hd = ~ωra†a−
1

2
~
(
ωq − 2χa†a

)
σz (3.7)

In Eqn. 3.6, we interpret it as a qubit-state-dependent shift of the oscillator frequency;

it is pulled ±χ depending on the qubit state. We will use this to measure the qubit

state. In Eqn. 3.7, it is the qubit frequency that shifts; it is pulled −2χn, where n is the

number of excitations in the resonator; this is called the “AC Stark shift.” This is useful

for using the qubit to measure the population of the oscillator, and it is also related to

the dephasing the qubit experiences during measurement due to spread in the oscillator

population n.

3.1.2 LC resonators

A circuit consisting of an inductor L and capacitor C connected together forms an LC

resonator with resonance angular frequency ω0 = 1/
√
LC, the circuit realization of the

simple harmonic oscillator discussed in chapter 1. Convenient variables are the capacitor

charge Q = CV and the inductor flux Φ = LI, with voltage V and current I. This brings

about the Hamiltonian

H =
Q2

2C
+

Φ2

2L
. (3.8)

3We will need a different formula for a transmon qubit dispersively coupled to a resonator; see below.
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Under the right circumstances, this resonator can exhibit quantum behavior, in which

case we consider Q and Φ operators. They have the familiar commutation relation

[Q,Φ] = i~, (3.9)

and we may transform the Hamiltonian into the convenient form

H = ~ω0

(
a†a+

1

2

)
(3.10)

a =
1√
2~

(√
C

L
Φ + i

√
L

C
Q

)
(3.11)

[a, a†] = 1. (3.12)

Transmission line resonators

A convenient way to make a microwave resonator is using a segment of transmission

line. In this work, we will use quarter-wave coplanar waveguide resonators [64, 45].

We will discuss one flavor of these in great detail in chapter 4. Here, we just mention

that transmission line segments can host electromagnetic resonances. For quarter-wave

resonators, the two ends have opposite boundary conditions; one is short-circuited and

the other open-circuited. As the name suggests, the fundamental resonance occurs at

the frequency where the resonator’s length equals one quarter of the electromagnetic

wavelength. The input impedance of the resonator looks quite different depending on

which end you look into. If the far end is short-circuited, the input impedance near

resonance is close to a parallel LC (impedance maximum). On the other hand, if the far

end is open-circuited, the equivalent circuit is a series LC (admittance maximum) [75].
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We use such a quarter-wave resonator for readout, with the qubit on the open-circuit

end (seeing a parallel LC) and the measurement circuit on the short-circuit end (seeing

a series LC).

3.1.3 Josephson junctions

The resonances discussed so far are linear—all their energy levels are equally spaced.

This is problematic for our aspiration to make a qubit, where we focus on just two levels

with a unique energy splitting ~ωge. The solution is to incorporate a Josephson junction

[48, 49], which acts as a dissipationless nonlinear inductor. There are many different

sorts of superconducting qubits; here we will just discuss some Josephson junction basics

[53] and introduce the type of qubit we use in this work, the transmon [54, 88, 7, 17].

Junction inductance

In a simple model of a superconductor [53], we describe a condensate of Cooper pairs [6]

with an order parameter ψ(~r) with constant magnitude |ψ(~r)|2 equal to the Cooper pair

density n. Of interest is the phase φ of the order parameter, where ψ(~r) =
√
neiφ(~r).

A Josephson junction is a small interruption to the superconductor, small enough

to allow Cooper pairs to quantum tunnel through it (∼ nm). We implement Joseph-

son junctions using a thin insulating layer of amorphous aluminum oxide between two

aluminum electrodes; see appendix E for details. This interruption allows the supercon-

ducting phase φ to differ on either side; this phase difference δ is very important to the

behavior of a Josesphson junction, as is the junction’s critical current Ic. We illustrate
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this in Fig. 3.1a. These are related to the current I through and voltage V across the

junction by the Josephson relations:

I = Ic sin(δ) (3.13)

V =
Φ0

2π

dδ

dt
, (3.14)

where Φ0 =
h

2e
is the flux quantum. To get to the inductance, differentiate Eqn. 3.13

with respect to time and substitute the expression for dδ/dt into Eqn. 3.14, so

V =
Φ0

2πIc

1

cos(δ)

dI

dt
= Lj

dI

dt
, (3.15)

defining an effective inductance Lj. We also define Lj0 =
Φ0

2πIc
(the inductance when

δ = 0), so Lj =
Lj0

cos(δ)
. This is nonlinear (changing I changes δ and hence Lj) and

can take on a wide range of values depending on δ. Josephson junctions also have some

capacitance Cj between the electrodes. This can be important, but in this case, we can

mostly ignore it. Our qubit has a much larger geometric capacitance in parallel with its

junctions. We also use a Josephson junction as a tunable inductor in our coupler circuit

(see below); it operates in a regime where its capacitance is not relevant.

DC squids

A DC superconducting quantum interference device (squid) consists of two Josephson

junctions in parallel inside a superconducting loop [53]. A symmetric DC squid, composed

of two identical junctions a and b with critical current Ij, acts like a single junction whose

critical current depends on the external magnetic flux Φext through the superconducting
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c d

Figure 3.1: Josephson junctions. a, Schematic of a tunnel-barrier Josephson junction
with phase δ, current I, and voltage V . Two pieces of superconductor (gray) are separated
by a thin insulating barrier (white). b, Circuit diagram for a including the parallel
capacitance Cj. c, DC squid composed of two symmetric junctions with critical currents
Ij, phases δa and δb, and external flux bias Φext. d, Equivalent single junction for c,
where the effective critical current Is depends on Φext.

loop.4 The effective junction’s phase is δs = (δa + δb)/2, and the critical current is

Is = 2Ij cos

(
π

Φext

Φ0

)
. (3.16)

This is shown in Fig. 3.1c-d. We will use a DC squid in the qubit to make it frequency

tunable.

RF squids

An RF squid consists of one Josephson junction interrupting a superconducting loop,

which we use in the context of a tunable inductive coupler [17, 35, 50, 68, 78]. Here, an

external magnetic flux Φext through the superconducting loop manipulates the phase δ

4Some junction asymmetry is inevitable, and it can be quite useful, but we do not employ it here.
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Figure 3.2: RF squids. Left: Circuit diagram of an RF squid with loop inductance L`,
junction critical current Ic and phase δ, and external flux bias Φext. Right: Plots from
Eqn. 3.17 for different values of L`/Lj0, listed in the legend. The junction inductance
Lj = Lj0/ cos(δ). The junction becomes high-impedance at δ = π/2 and 3π/2, and the
junction inductance is −Lj0 at δ = π. For L` > Lj0, the junction cannot be biased to
δ = π.

across the junction, tuning its effective inductance Lj. Consider also the inductance L`

of the loop itself. Then the relationship between the phase and the external flux bias is

governed by [35]

δ +
L`
Lj0

sin(δ) = 2π
Φext

Φ0

. (3.17)

We display this graphically in Fig. 3.2.

3.1.4 Transmon qubits

The transmon [54, 88] is a specific type of superconducting qubit where a Josephson

junction (Ic) is shunted by a capacitor (C). This is a very successful approach to making
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the qubit insensitive to charge noise. Essentially, the qubit energy levels are not changed

very much in the presence of an external voltage, so the qubit energy ~ωge is very stable,

substantially increasing the coherence time.

The transmon is governed by the Hamiltonian

H =
Q2

2C
− Φ0

2π
Ic cos(δ). (3.18)

Note the similarity to the LC circuit Hamiltonian, Eqn. 3.8. The junction phase δ is

closely related to the inductor magnetic flux Φ; they are both time integrals of the voltage.

Sometimes, a metaphorical flux Φ =

∫
V (t) dt =

Φ0

2π
δ is attributed to the junction [85].

As is conventional, we identify a charging energy EC =
e2

2C
and a Josephson energy

EJ =
Φ0

2π
Ic. The transmon design demands EJ � EC ; this is the condition that makes

the qubit insensitive to charge noise. Then the qubit angular frequency ωge =
√

8EJEC/~.

This circuit is an anharmonic oscillator, acting like a particle in a cosine potential

rather than a quadratic one. In addition to the ground state |g〉 and first excited state |e〉,

we also must remember the second excited state |f〉, and there are yet more states above

that. The anharmonicity η = ωef −ωge is determined by the capacitance; η = −EC/~. A

typical value is around η ≈ 2π × (−200 MHz). This nonlinearity allows us to isolate the

two lowest levels, realizing a qubit. Note there is a tension between avoiding charge noise

(EJ � EC) and having sufficient anharmonicity to isolate the lowest two levels (large

EC). Conveniently, charge noise is exponentially suppressed in EJ/EC , which makes it

possible to strike a favorable balance. The choice of EJ and EC is also constrained by

the desired qubit frequency.
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ba

Figure 3.3: Xmon transmon qubit. a, Cartoon layout showing a basic design for an
Xmon transmon qubit, a coplanar waveguide segment (blue) forming a capacitance to
ground (gray) and a DC squid (red junctions). b, Circuit diagram.

We use planar transmon qubits based on the Xmon design [7, 85, 52, 17]. An Xmon

is a “split transmon,” where a DC squid plays the role of a tunable junction. One

side of the DC squid is grounded, and the other connects to one plate of a low-loss

capacitor made of a segment of coplanar waveguide (see Fig. 3.3). The circuit, then, is

a capacitance Cq ≈ 100 fF and a DC squid inductance Lq ≈ 10 nH in parallel to ground.

This corresponds to a frequency ωge/2π ≈ 5.0 GHz, anharmonicity η/2π ≈ −190 MHz,

and a characteristic impedance Zq
0 =

√
Lq/Cq ≈ 300 Ω.

3.2 Control and readout

Two critical capabilities are manipulating and measuring the qubit state. We use well-

established methods, primarily drawing from Refs. [85, 52, 18]. An optical micrograph

of the particular qubit we use is shown in Fig. 3.4.
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0.5 mm

Readout
Resonator

Qubit

Bandpass filter
OutIn

XY

Z

Figure 3.4: Qubit circuit: readout and control. Optical micrograph showing the
essential readout and control elements of our qubit circuit. Top: Bandpass filter, made
of a coplanar waveguide. Upper left: Input line for readout pulses, capacitively coupled
to bandpass filter. Upper right: Output line for readout pulses, galvanically coupled
to bandpass filter with low QF ≈ 20. Center: Meandering readout resonator. Bottom:
Qubit with labeled control lines, XY and Z. The line exiting the bottom of the image
goes through the tunable coupler network to ground (not pictured).
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3.2.1 Control

We have two control lines for the qubit, the XY line for resonant driving and the Z line

for controlling the qubit frequency.

XY line

The XY line is configured to deliver microwave pulses up to around 5 GHz. These pulses,

when resonant with the qubit frequency ωge/2π, drive transitions between the |g〉 and

|e〉 states. The line itself is a coplanar waveguide that ends in an open circuit near the

qubit capacitor. This brings about a small capacitance CXY . There is a balance between

achieving strong enough coupling to quickly drive the qubit (reasonable pulse times are

around 20 ns) without exposing the qubit to appreciable noise or loss.5 The loss the qubit

experiences through this capacitance can be summarized by a coupling quality factor [85]

Qc =

(
Cq
CXY

)2
Zq

0

ZTL
0

, (3.19)

where ZTL
0 = 50 Ω is the coplanar waveguide (transmission line) characteristic impedance.

We estimate the pictured CXY ≈ 30 aF, corresponding to Qc ∼ 108.

By finely controlling the amplitude, phase, frequency, and shape of the pulses, we

can achieve arbitrary unitary transformations on the qubit state with microwave pulses.

Another matter to keep in mind is the presence of the |f〉 state; we are careful to avoid

exciting transitions between |e〉 and |f〉 and account for the effect of |f〉 on the desired

transitions between |g〉 and |e〉 [19].

5Crosstalk is also a concern in systems with multiple qubits.
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Z line

The Z line is a lower-frequency line delivering signals from DC up to around 200 MHz.

The line is a coplanar waveguide that ends in a short to ground in the proximity of the

qubit DC squid. Current flowing through the line brings about a magnetic flux bias

Φext through the DC squid, tuning its effective critical current. This allows us to control

the qubit frequency ωge/2π. It is crucial that these signals be low-noise; any noise in

the current transfers directly to noise in the qubit frequency, which manifests itself as

dephasing. We use a separate DC line, setting the “idle” flux bias for an entire pulse

sequence, combined with arbitrary ≈200 MHz waveforms using a bias tee (see appendix D

for details). We also must take care to achieve enough mutual inductance to the DC squid

(∼1 pH gives 1 Φ0 of range from ±1 mA of current in the Z line) while not exposing the

qubit to loss through the transmission line.6

These is also a similarly-configured control line for the tunable coupler, G, which is

discussed below.

3.2.2 Readout

Qubit measurement is a difficult problem; we ordinarily want the qubit to be isolated

from the environment, but occasionally we need to extract enough information from it

to perform a projective quantum measurement. The method we employ is discussed in

6Ideally, the qubit itself would not couple to this bias line, but in practice there is inevitably some
stray mutual coupling. With careful design, this can be much less than the ∼1 pH mutual inductance to
the squid loop [52, 78]. There is a distinction between the DC current circulating in the squid loop and
the microwave-frequency qubit current passing through the junctions in parallel.
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great detail in Ref. [85]; here we provide a brief overview.

Dispersively coupled readout resonator

Earlier, we described the dispersive limit of the Jaynes-Cummings Hamiltonian. To

perform readout, we dispersively couple the qubit to a dedicated readout resonator,

which is in turn strongly coupled to a measurement transmission line. The idea is rooted

in Eqn. 3.6, where the resonator frequency depends on the state of the qubit. Put

another way, the qubit impedance loads the readout resonator, and due to the qubit’s

nonlinearity, the qubit impedance depends on whether it is in |g〉 or |e〉. We can readily

measure the resonator frequency with a microwave transmission experiment. We measure

the microwave transmission S21 at one frequency, near ωr/2π, and we observe a different

value of S21 depending on the qubit state.

In this case, the readout resonator is a coplanar waveguide resonator, roughly 1 GHz

above the qubit frequency with coupling g/2π ≈ 100 MHz brought about by a capacitor

Cr ≈ 10 fF. One important detail is that the expression for the dispersive shift shown

above, χ = −g2/∆ (derived for a two-level qubit), needs to be corrected to take into

account the transmon second excited state, |f〉 [54]:

χ = −g
2

∆

1

1 + ∆/η
. (3.20)

In addition to the dispersive shift χ, another important parameter is the rate κr at

which energy leaves the readout resonator into the measurement transmission line. This
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is also the rate at which the resonator may be excited by an external drive, so it has

important implications for the duration of the measurement. It is beneficial to have the

readout process take less than ≈1 µs.7 The measurement duration will typically be a

few times 1/κr, suggesting κr ∼ 1/(100 ns) to 1/(10 ns). Optimal visibility (difference

between S
|g〉
21 and S

|e〉
21 ) is obtained when χ = κr/2. If χ is too small, the resonance

dips overlap too much, and if χ is too large, the dips are so far apart that they aren’t

distinguished by measuring at the midpoint frequency.8 An experimentally reasonable

range for χ/2π is about 0.5 MHz to 5 MHz, which lines up well with the values for 1/κr

mentioned above. However, there is a price to larger χ and κr: despite the large detuning

∆, the qubit can still lose energy through the transmission line; this is called “Purcell

decay.”

Bandpass filter

The main focus of Ref. [45, 85] is getting fast readout (large χ and κr) without burdening

the qubit with appreciable loss. This is accomplished by using a second resonator in

between the readout resonator and the transmission line. This second resonator is a

bandpass filter: it facilitates the transfer of energy into the measurement transmission

line near the readout frequency but suppresses it near the qubit frequency.

This is an added complication; it is possible to perform great experiments with a

7Longer readout times provide better signal to noise ratio, but taking too long is problematic because
of energy decay in the qubit. It is also beneficial to have a fast measurement time, perhaps ≈100 ns, for
the repetitive measurements needed for error correction schemes.

8The latter problem is not too bad; the readout resonator can be probed at ω
|g〉
r or ω

|e〉
r instead. It

would just be faster to measure with larger κr.
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similar readout resonator without a bandpass filter [8, 67, 82]. In our experiment, it

was not obvious whether we would have long qubit lifetime T1 in the presence of our

mechanical resonator, so we included the filter to make the readout faster. As in Ref. [85],

we use a quarter-wave coplanar waveguide with weak capacitive coupling to an input

line (Qin ≈ 1000) and strong galvanic coupling to an output line (QF ≈ 20). As in

Ref. [51, 52], we use inductive coupling between the readout resonator and filter (see

chapter 4 for a related discussion). The filter enhances κr by a factor of roughly QF while

keeping the qubit safe from Purcell decay. It presents stronger coupling to the output

transmission line at its resonance frequency (close to the readout resonator frequency)

but suppressed coupling to the output at the qubit frequency.

3.3 Coupling

Our goal is to couple our qubit to a mechanical resonator. In chapter 2, we discuss some

considerations from the perspective of a surface acoustic wave resonator. Here, we touch

on a few common ways of coupling qubits and resonators. For a more detailed account,

especially about the tunable inductive coupling scheme we use, see Ref. [68].

3.3.1 Capacitive coupling

One natural way of coupling circuits is with capacitors. Simply placing two transmons

in proximity will engender a usable coupling capacitance Cc between them; see Fig. 3.5a.
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a b c

Figure 3.5: Simple coupling circuits. a, Circuit diagram of two LC resonators with
coupling capacitance Cc. b, Circuit diagram of two LC resonators with mutual induc-
tance M . c, Circuit diagram of two LC resonators coupled through a shared inductor
M .

The coupling g for the circuit in Fig. 3.5a is

g =
1

2

Cc√
(C1 + Cc)(C2 + Cc)

√
ω1ω2. (3.21)

Capacitive coupling involves one element driving a voltage across another; it is most

natural when considering parallel resonances (impedance maxima). For fixed ωi (i = 1, 2)

and Cc, g is larger for smaller Ci (that is, larger Zi =
√
Li/Ci). As discussed above, we

use capacitive coupling between our qubit and readout resonator.

3.3.2 Inductive coupling

Another way is with inductors. We discuss this in detail in chapter 4 in the context of

coupling a resonator to a transmission line. One implementation uses mutual inductance

M : two inductors in proximity, where current I through one brings about magnetic flux

Φ = MI through the other. Another implementation is using a small shared inductance

through which both devices pass current; then the coupling comes about from the small

voltages induced across the shared inductor. These are shown in Fig. 3.5b-c. In both
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cases, the coupling g is

g =
1

2

M√
L1L2

√
ω1ω2. (3.22)

Inductive coupling involves one element driving current through another; it is most nat-

ural when considering series resonances (admittance maxima). For fixed ωi and M , g

is larger for smaller Li (that is, smaller Zi =
√
Li/Ci). Inductive coupling is favorable

for coupling to our mechanical resonator, both from the surface acoustic wave device

perspective (see chapter 2) and from a hybrid integration perspective (see chapter 4).

We use both implementations of inductive coupling in our tunable coupler circuit, which

we discuss next.

3.3.3 Tunable inductive coupling

We can make things a bit more complicated by demanding that we be able to tune the

coupling, to turn it on and off at will. This is very useful in experiments, and we will use

it extensively in chapter 5 to control the interactions between our qubit and mechanical

resonator. In the context of Josephson circuits, tunable inductive coupling is a natural

choice. As discussed above, we can use Josephson junctions and superconducting loops

in various configurations to create inductances that are controlled by external magnetic

flux biases.

We use the gmon architecture [17, 35, 67, 82, 68], which is based on the Xmon

transmon discussed above. There are two essential ingredients beyond the transmon

itself. First, instead of directly grounding the qubit’s DC squid, we ground it through a
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small linear inductor Lg.
9 Second, we use that linear inductor to couple the qubit to an

RF squid. The RF squid mediates the interaction between the various devices coupled to

it. We control an external flux bias Φext through the RF squid, allowing us to tune the

effective inductance Lj of its junction. We operate in a regime where the nonlinearity of

the coupler junction is not important, but it can be [35, 50].

To make the discussion concrete, we focus on the specific circuit that we use, shown

in Fig. 3.6. This will be discussed further in chapter 5, in the context of coupling to a

mechanical resonator. The coupler circuit is a segment of coplanar waveguide, shorted

to ground on each side. The coplanar waveguide center trace is interrupted by a single

Josephson junction, constituting an RF squid (including the current return path in the

ground plane). We generate an external flux bias Φext using a shorted control line, G,

similar to the Z line discussed earlier for biasing the qubit DC squid.

The left branch, Lg1, is galvanically attached to the qubit DC squid and the coupler

RF squid. This shared inductance to ground allows the qubit and coupler to interact.

The right branch, Lg2, will be coupled with mutual inductance to a mechanical resonator;

that is the subject of chapter 5. For the moment, the important point is that the qubit

and resonator will be coupled if qubit current flows through Lg2. We control the path of

the qubit current using the coupler junction inductance Lj. Biasing the junction phase

to δ = π/2 makes Lj very large, so the qubit current goes to ground through only Lg1,

and the coupling is turned off. The coupling is maximized for δ = π, where Lj = −Lj0,

9It is important to keep Lg much smaller than the qubit DC squid inductance Lq. This maintains
the transmon nonlinearity and puts the coupler circuit at a low-voltage node, minimizing dielectric loss.
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in which case much of the qubit current goes to ground through Lg2, bringing about the

desired coupling.

Remark about crossovers

As an aside, we remark that the aluminum crossovers connecting the ground plane patches

are very important to the functionality of the coupler. In designing a circuit like this,

it is necessary to pay close attention to the flow of currents, including in the ground

plane. The ground plane is cut into several pieces by the various coplanar waveguides,

and the crossovers serve to connect them back together. See appendix E for fabrication

information.

3.4 Single-qubit calibration and experiments

In this section, we go over some basic qubit experiments conducted on the single-qubit

device we have been discussing. This is the same device we use in chapter 5, though

here the experiments don’t involve the mechanical resonator. We follow methods dis-

cussed in Refs. [85, 18], including detuned DRAG microwave pulses and flux pulse shape

corrections.

3.4.1 Readout

As discussed above, we perform qubit readout using a dispersively coupled readout res-

onator and bandpass filter. To begin, we show a broad transmission S21 measurement
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Readout
Qubit

Coupler

Figure 3.6: Tunable inductive coupling circuit. a, False-color optical micrograph
of our qubit and tunable coupler network. The coupler flux bias is controlled by the G
control line. Blue: Qubit. Purple: Coupler. Also see Fig. 3.4. Note this view is rotated
and reflected with respect to Fig. 3.4; see chapter 5. b, Circuit diagram. We indicate
the path of the qubit current with the coupling off (orange) or on (red).
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through the readout circuit in Fig. 3.7a-b. We observe the broad (≈300 MHz) peak ex-

pected for the bandpass filter (QF ≈ 20) with the narrow dip of the readout resonator

centered on the filter. For subsequent measurements, we use custom electronics to mea-

sure the complex transmission amplitude I + iQ (see appendix D).

We initially set up the readout frequency at the center of the dip with sufficiently low

power to avoid saturating the qubit. This allows us to locate the qubit spectroscopically,

where we scan the frequency f of a long (∼5 µs) microwave pulse on the qubit XY line

while monitoring the readout transmission. When f ≈ ωge/2π, the qubit is partially

excited, shifting the readout resonator frequency. We observe this as a peak in |I + iQ|,

allowing us to determine ωge. Knowing ωge, we proceed with standard qubit experiments

such as Rabi oscillations and tuning up XY microwave pulses for π and π/2 pulses.10

With a functional π pulse, we can prepare the qubit in |g〉 or |e〉. We measure the

readout transmission as a function of frequency with the qubit prepared in |g〉 and |e〉

in Fig. 3.7c-d. The frequency offset between the resonances is 2χ/2π. As indicated in

Eqn. 3.20, this depends on the qubit frequency ωge = ωr + ∆. Separately, as described

in Ref. [85], we measure the readout resonator ringdown time 1/κr = 10 ns. Given the

accessible range of χ values, this κr is larger than optimal.

We optimize the readout by tuning the input power, pulse duration, pulse frequency,

and qubit frequency during the readout sequence. We repeated prepare the qubit in

|g〉 or |e〉 and then measure the demodulated amplitude I + iQ of the readout pulse (see

10We also spectroscopically measure ωef , which is used in shaping the XY pulse envelopes. We optimize
the XY pulses using the DRAG parameter α and a frequency offset [19].
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appendix D). We observe adequate discrimination, a visibility of about 92%.11 This could

be improved with a smaller κr (decreasing the coupling between the readout resonator

and bandpass filter) and a quantum-limited amplifier on the output [85].

3.4.2 Crosstalk

Crosstalk is the undesired side effects of signals in the control lines. Our circuit is

relatively simple, just one qubit; the main crosstalk consideration is between the Z and

G bias lines. Current IZ in Z is meant to apply a flux bias ΦZ to the qubit DC squid

(controlling the qubit frequency), but it also causes some flux ΦG to the coupler RF squid

(controlling the coupling); the opposite is true of current IG in G. This can be expressed

in an inductance matrix, noting these are currents in the bias lines, not in the loops

themselves. We also allow offsets Φ0
i , the apparent flux through loop i with IZ = IG = 0:[

ΦZ

ΦG

]
=

[
MZZ MZG

MGZ MGG

] [
IZ
IG

]
+

[
Φ0
Z

Φ0
G

]
. (3.23)

Determining [Mij] and [Φ0
i ] is very useful. The flux crosstalk in this design is substantial,

and this calibration allows us to independently choose ΦZ and ΦG. We use this primarily

for determining the DC biases mentioned above.

There are some complications in determining these crosstalk parameters. Measuring

the qubit frequency is relatively easy, but measuring the coupling (here, the coupling

to a mechanical resonator) is difficult; it would be better to do this calibration without

involving the mechanical resonator. Also, as we discuss in more detail below, even in the

11When we attempt to prepare |g〉, we observe Pe ≈ 0.02, and for |e〉, Pe ≈ 0.94. This is also affected
by the qubit thermal |e〉 population, which we measure to be about 1.7% in chapter 5.
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Figure 3.7: Readout data. a, Wide-frequency S21 measurement through the readout
circuit showing the broad transmission peak of the filter and narrow dip of the readout
resonator, measured with a vector network analyzer. The dip at 6.07 GHz is from a
traveling wave parametric amplifier [60] (see appendix D). The overall level is arbitrary,
dictated by the attenuation and amplification in the signal path. b, Zoomed-in scan
near the readout resonator, as in a. c-d, Zoomed-in scan near the readout resonator,
measured with qubit measurement electronics (see appendix D). Blue: Qubit prepared in
|g〉. Red: Qubit prepared in |e〉. We measure the demodulated transmission amplitude
I + iQ. We offset the magnitude to match a-b and subtract a line from the phase to
account for signal delay. The frequency separation equals 2χ/2π, here about 3 MHz.
Note χ depends on the detuning ∆ = ωge − ωr.
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absence of flux crosstalk, we still expect the coupler setting to influence the qubit fre-

quency, as it changes the inductance the qubit sees to ground. Moreover, when changing

DC biases, the qubit frequency also moves the readout resonator frequency, changing the

optimal readout configuration.

We get around this by simply measuring the readout resonator instead. In our device,

bias IZ causes resonator frequency shifts of around 8 MHz, and IG about 1 MHz. These

shifts are periodic in the bias currents, as the squid flux responses are Φ0-periodic. In

the ωr(ΦZ ,ΦG) landscape, there is a convenient saddle point at ΦZ = 0 and ΦG = Φ0/2

repeated every Φ0/2 in ΦZ and Φ0 in ΦG. We measure the readout transmission S21 at

the saddle point frequency as a function of IZ and IG. This is shown in Fig. 3.8. The

minima in transmission |S21| cross at the saddle points, allowing us to identify current

points (IZ , IG) with flux values ΦZ = nzΦ0/2 and ΦG = (ng +1/2)Φ0. From these points,

we deduce [Mij] and [Φ0
i ] from Eqn. 3.23:[

MZZ MZG

MGZ MGG

]
=

[
0.823 0.017
0.079 0.812

]
pH;

[
Φ0
Z

Φ0
G

]
=

[
−0.041
0.456

]
Φ0. (3.24)

There are also precise calibration techniques for measuring crosstalk from the arbi-

trary waveforms discussed above, using Ramsey interferometry [68]. In this device, the

crosstalk is bad enough that those techniques failed; we use estimates from the DC-

calibrated [Mij] when necessary. Future designs could improve this substantially. MGZ ,

where current IZ brings about flux ΦG, is especially large, due to the large size of the

coupler loop and its proximity to the Z line.
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Figure 3.8: Linear flux crosstalk. Readout transmission magnitude |S21| (vector
network analyzer, arbitrary offset) measured at the saddle point frequency versus bias
currents IZ and IG. Overlaid: Linear constant-flux contours from Eqn. 3.23 with fitted
parameters.

3.4.3 Linear circuit model

It is also useful to experimentally characterize the various circuit elements of the device.

This allows us to validate the design and also will be used in chapter 5 together with

the circuit model of the mechanical resonator discussed in chapter 2. We have several

unknown parameters, primarily in the inductor network of the tunable coupler. In order

to estimate those, we measure the qubit frequency ωge/2π as a function of coupler flux

bias ΦG, while we maintain ΦZ = 0. This is plotted in Fig. 3.9

We then fit this to the linear circuit model shown in Fig. 3.6. We incorporate the

ΦG dependence by assuming the coupler junction inductance follows Lj = Lj0/ cos(δ),

where we calculate the junction phase δ from ΦG and the inductances using Eqn 3.17. To
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Figure 3.9: Qubit frequency measurement. Black points: Spectroscopically-
determined qubit frequency ωge/2π as a function of coupler flux bias ΦG. Blue line:
Linear circuit model fit.

reduce the number of fit parameters, we fix Lj0 = 1.0 nH based on room temperature and

cryogenic DC measurements of test junctions. It would also be informative to measure

ωef/2π in this scan; this helps constrain the qubit capacitance [68]. We arrive at the

following parameters: Cq = 110 fF, Lq = 10.1 nH, Lg1 = 0.303 nH, and Lg2 = 0.403 nH.

Note that the fitted Lg2 includes all of the inductance to the right of the coupler junction

in Fig. 3.6a. These are reasonably consistent with our design parameters.

3.4.4 Lifetime and coherence

Here, we present a few basic qubit measurements. This is the same device described

in chapter 5, although in these measurements we do not interact with the mechanical

resonator. In Fig. 3.10a-b, we measure the qubit energy lifetime T1 from 3.5 GHz to

4.5 GHz. We observe a fairly consistent T1 ≈ 20 µs. As we show in chapter 4, this is

consistent with low-power internal quailty factor measurements of coplanar waveguide

resonators with similar fabrication processes (Qi ≈ 5× 105).
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We next consider dephasing. We perform these experiments at the qubit operation

point used in chapter 5, where ωge/2π = 4.04 GHz. Note the qubit frequency at the flux-

insensitive point is 4.7 GHz. In Fig. 3.10c, we show the results of a Ramsey experiment.

Although in chapter 5 we simply refer to a dephasing time T2,Ramsey, it is more precise to

separate exponential decay (Tφ,1, from white noise and energy relaxation) and Gaussian

decay (Tφ,2, from 1/f noise), using an envelope exp[−t/Tφ,1 − (t/Tφ,2)2] [8]. Our fit

suggests Tφ,1 = (9± 2) µs and Tφ,2 = (2.9± 0.1) µs (fit uncertainties). This lifetime and

coherence time performance is consistent with previous experiments using similar qubit

designs and fabrication techniques [8, 17, 51].
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Figure 3.10: Qubit lifetime and coherence times. Upper left: Time-domain mea-
surements of qubit lifetime T1 over a wide range of qubit frequencies. The qubit is
excited with a π pulse, and we bias the qubit to the desired frequency for a time t before
measuring the qubit. The coupler flux ΦG is set to minimize coupling the the surface
acoustic wave device; see chapter 5. Black circles are fitted T1 values. Many T1 fits are
≈20 µs, above the plot range. Lower left: Fitted T1 values. Line: Calculated T1 = Q/ω
for Q = 5 × 105. Right: Ramsey experiment to determine Tφ1 and Tφ2. The qubit is
excited with an Xπ/2 pulse, we wait a time t, we perform a second π/2 pulse with rela-
tive phase φ = ωfringet, and we measure the qubit. Line: Fit to sinusoid with envelope
exp[−t/Tφ,1 − (t/Tφ,2)2].
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Chapter 4

Flip-chip integration

So far, we have discussed SAW resonators and superconducting qubits in isolation. In

this chapter, we explore a technique for combining two separate chips into a flip-chip

assembly. This is a key enabling technology for the experiments in chapter 5.

4.1 Hybrid quantum systems

We have a glaring problem: we fabricate the SAW resonators on lithium niobate, due to

its strong piezoelectricity, but it is doubtful a good superconducting qubit could survive

on lithium niobate.1 Instead, we prefer to fabricate the qubits on sapphire, which is

chemically inert, low-loss, and robust—and for which we have an established, reliable

fabrication procedure.

This is a common sort of problem when trying to bring disparate technologies to-

1Such a qubit would rapidly lose energy into bulk acoustic waves, and there would be substantial
fabrication difficulties. This has been done, though the work is unpublished [2].
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gether, including hybrid quantum systems [70, 90, 103, 87, 56, 20]. Different quantum

systems have their own strengths and weaknesses. They also have their own materials

constraints and fabrication issues. It would be useful to make separate devices for the

different systems and then integrate those devices together.

4.2 Flip-chip integration

One approach to doing this is judiciously attaching two separate chips face to face:

flip-chip integration. This is an established technology developed for semiconductor in-

tegrated circuits decades ago [57].

4.2.1 Metal bump bonding

In the context of integrated circuits, the main goal is to create many galvanic contacts

between the two chips. This is accomplished with a soft metal “bump bonds,” frequently

made of indium. Indium is popular for cryogenic infrared sensors, as it has favorable

low-temperature properties [74].

More recently, flip-chip technology has gained attention in the superconducting qubits

community [81, 33]. As experiments scale from tens to hundreds of qubits in 2-dimensional

arrays, it becomes difficult to route the necessary control wiring to each qubit. One so-

lution is to use a flip-chip assembly with signals transferring between the two chips,

allowing some separation between the control wiring and the qubits themselves. Indium

is a natural choice, being well-established for cold flip-chip assemblies, and indium is
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a superconductor (Tc = 3.4 K). The fabrication is somewhat involved, requiring layers

under the indium to prevent diffusion and surface treatments to avoid oxidation. It is

also necessary to have indium on both chips.

4.2.2 Epoxy spacers and glue

We use an alternative technique that is much simpler and more accessible, with the

added benefit that it is easy to undo so that chips can be reused. The price we pay is

abandoning galvanic connections between the chips. This is a technique for small-scale

experiments in hybrid quantum systems, not for building a quantum computer.

The idea is to use photolithography to pattern epoxy spacers on one chip. The

thickness of the spacers will determine the distance between the chips; about 1 µm to

100 µm is accessible, depending on the application. We then manually apply a small

amount of photoresist (acting as glue) to the periphery of one chip. Next, we place

the chips in a standard contact mask aligner, meant for photolithography, and use that

to align the chips and bring them together. This is easiest with at least one visibly-

transparent substrate.

This involves just one lithographic process beyond what is needed to fabricate the

individual chips, and no specialized equipment or materials are needed. We use photore-

sist as glue; since it dissolves easily in acetone, we are able to cleanly separate and reuse

chips that have been bonded together.
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4.3 Test experiment: coplanar waveguide resonators

Superconducting circuits are very sensitive to material loss [69, 64, 77, 97], and the

photoresist involved in this procedure could be problematic for qubit performance. We

test this with a simple experiment where we embed superconducting coplanar waveguide

resonators in a glued flip-chip assembly. Testing these sorts of resonators is a good proxy

for qubit measurements [98, 28]. We use a standard “hanger” measurement configuration

where we measure the transmission coefficient S21 through a transmission line that is

coupled to a coplanar waveguide resonator—but the resonator and transmission line are

on separate chips.

4.3.1 Coupling method

As we have mentioned, there will be no galvanic connection between the chips, so the

chips will communicate through electromagnetic fields. There are two natural choices,

capacitive coupling (electric fields) and inductive coupling (magnetic fields).

Capacitive coupling

Capacitive coupling is easy to see: simply make a parallel-plate capacitor using a large

electrode on each chip. The resultant capacitance is approximately ε0A/d for overlap

area A and chip separation d. It is easy to design such a capacitor to be unaffected by

substantial lateral misalignment using a cross geometry, though it is clearly very sensitive

to chip separation d. There’s another problem. This capacitance alone is not enough to
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drive a voltage across an impedance on the electrically-floating chip. It is necessary to

involve another capacitance on the other side of the load, probably a large capacitance

between the electrically-floating chip’s “ground plane” and the actually-grounded ground

plane of the other chip.

Inductive coupling

We adopt the alternative, mutual inductive coupling M . We have an inductor L on each

chip, and current I through one inductor brings about magnetic flux Φ = MI through

the other inductor. This integrates well with our goals of coupling to a series resonance

(admittance maximum—see chapter 2) with tunable coupling (see chapter 3). Inductive

coupling naturally works without galvanic connections, without the need to drive voltage

between the ground planes.

Before looking at the details of the implementation, we first consider inductive cou-

pling in general, with more depth than the discussion in chapter 2. The simplest circuit

is depicted in Fig. 4.1a. Note the sign convention on the currents Ii, both going into the

network: this is the convention for an impedance matrix Z, different from an ABCD

matrix [75]. The voltages and currents are related by[
V1

V2

]
=

[
L1 M
M L2

] [
dI1/dt
dI2/dt

]
= iω

[
L1 M
M L2

] [
I1

I2

]
= Z

[
I1

I2

]
, (4.1)

where we identify the impedance matrix Z. This circuit is equivalent to the one shown in

Fig. 4.1b, with an important distinction: Eqn. 4.1 still holds for the circuit in Fig. 4.1a

even if the ground wires are not connected. We use this equivalence in the tunable
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coupling circuit (see chapter 2 and chapter 5): a shared inductance to ground is like

having a mutual inductance.

4.3.2 Hanger network calculations

In this coplanar waveguide resonator experiment, we wish to use the “hanger” configu-

ration mentioned above. The relevant circuit is shown in Fig. 4.1d, where the currents

Ii have the convention of the ABCD matrix, which we will calculate shortly. This will

allow us to analyze the device in greater detail later. To aid in keeping all the signs cor-

rect, also refer to Fig. 4.1c, which is just Fig. 4.1a rearranged to look like the “hanger”

geometry.

ABCD matrix

The ABCD matrix also relates the voltages and currents at each port, in the following

way [75]: [
V1

I1

]
=

[
A B
C D

] [
V2

I2

]
. (4.2)

This is useful for cascading 2-port networks using matrix multiplication, but here, we just

use it because it is convenient for this particular calculation. Note that, unlike with the

scattering matrix S, we consider the total voltages Vi and Ii, not incoming and outgoing

amplitudes.

Now we solve for the ABCD matrix of the network in Fig. 4.1d. Immediately, I1 = I2

because the current in that line has nowhere else to go; this means C = 0 and D = 1.
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Considering the impedance Z and then the inductance Lc, we have

V3 = −I3Z (4.3)

V3 = iωLcI3 + iωMI2. (4.4)

This allows us to eliminate I3:

I3 = − iωM

iωLc + Z
I2. (4.5)

Considering the voltage across the inductance Lf ,

V1 − V2 = iωLfI2 + iωMI3 (4.6)

=

(
iωLf +

ω2M2

iωLc + Z

)
I2, (4.7)

at which point we have the whole ABCD matrix. We now take Lf → 0 so that we get

the desired identity matrix when M → 0.2 We also define Zr = iωLc + Z, incorporating

the coupling inductor back into what will be our hanging resonator. With that, we have

the full ABCD matrix: A = D = 1, C = 0, and

B =
ω2M2

Zr
. (4.8)

This has a simple equivalent circuit, solely a series impedance B, depicted in Fig. 4.1e.

2This is essentially “absorbing” Lf back into the feed transmission line, which is quite appropriate if
we have not changed the transmission line geometry, which will mostly be the case. We will also take
into account small impedance mismatches (such as a bit of extra inductance) below.
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a b c

d e

Figure 4.1: Circuits for inductive coupling. a, Simple circuit model of a two-
port microwave network consisting of two inductors, L1 and L2, with mutual inductance
M . The currents Ii and voltages Vi are configured as in an impedance matrix Z. b,
Equivalent “tee” network to the circuit in a. c, The same circuit in a deformed to bring
us closer to the “hanger” circuit model employed in this coplanar waveguide resonator
experiment. d, “Hanger” circuit model, drawn for calculating the equivalent ABCD
matrix. The feed waveguide has inductance Lf with mutual inductance M to a coupling
inductor Lc which is connected in series with an impedance Z. e, Equivalent circuit
model for d determined with the ABCD matrix.

83



Quarter-wave resonator

We use an open-circuit quarter-wave coplanar waveguide resonator [75], depicted in

Fig. 4.2a. The transmission line has characteristic impedance ZTL
0 , effective relative

permittivity εeff, and loss α.3 This has a series resonance suitable for inductive cou-

pling; a convenient lumped-element equivalent circuit shown is in Fig. 4.2b, valid near

the resonance frequency f0 = ω0/2π. In terms of the transmission line properties,

` =
πc

2ω0
√
εeff

(4.9)

L =
ZTL

0 π

4ω0

(4.10)

C =
1

ω2
0L

(4.11)

R = ZTL
0 α`, (4.12)

where c is the speed of light in vacuum, so the phase velocity in the transmission line is

v = c/
√
εeff. Note that the characteristic impedance of this resonance, Zr

0 =
√
L/C =

π
4
ZTL

0 , is different from the characteristic impedance of the underlying transmission line.

We connect this to the “hanger” geometry discussed earlier in Fig. 4.2c-d. In this

configuration, the Zr of Eqn. 4.8 is

Zr = iωL+
1

iωC
+R. (4.13)

In this experiment, the “coupling inductor” is actually a small length of transmission line

3The effective relative permittivity is related to the substrate relative permittivity. For a small
coplanar waveguide on a substrate with relative permittivity εsub, εeff = (1 + εsub)/2. It is a bit more
complicated in the flip-chip geometry.
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near the shorted end of the resonator; we just incorporate it into the same equivalent

lumped inductance L for the whole resonator.

Quality factors

It is very useful to characterize these resonators in terms of of quality factors. The internal

quality factor Qi is determined by loss in the resonator; in terms of the transmission line

attenuation,

Qi =
β0

2α
=

ω0

2αv
, (4.14)

where β = ω/v [75]. Near the quarter-wave resonance frequency ω0, we consider β and

α in terms of the fractional frequency shift ∆ω/ω0 = δx:

β` =
π

2

ω

ω0

=
π

2
(1 + δx) (4.15)

α` =
β0`

2Qi

=
π

4Qi

. (4.16)

The coupling quality factor Qc quantifies how energy leaves the resonator into the

coupled transmission line. We calculate this using the lumped-element model in Fig. 4.2.

We replace the measurement transmission line on each side with an impedance ZTL
0 =

50 Ω to ground. Current through the inductance Lf goes through both ZTL
0 ’s in series,

so they present a load Z = 2ZTL
0 . Using Eqn. 4.1, we find an equivalent impedance ZL

of the inductance L with mutual coupling M to Lf and Z:

ZL = iωL+
ω2M2

iωLf + Z
≈ iωL+

ω2M2

Z
. (4.17)
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a b

c d

e

Figure 4.2: Quarter-wave resonator. a, One-port network, looking into an open-
circuit quarter-wave resonator with length `. b, Equivalent series RLC circuit for a near
its resonance frequency. c, Open-circuit quarter-wave resonator inductively coupled to a
transmission line in a “hanger” arrangement. The coupling inductor would actually be a
small length of transmission line. d, “Hanger” arrangement with the equivalent circuit
from b. e, Lumped-element model for calculating the coupling quality factor Qc, made
from d with no internal loss (R = 0) and the measurement transmission line replaced
with a lumped-element impedance Ze = 2ZTL

0 .
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This suggests an equivalent series RLC circuit for the resonator loaded by the transmis-

sion line, also shown in Fig. 4.2. The loading series resistance at resonance is RL =
ω2

0M
2

2ZTL
0

,

giving a quality factor

Qc =
Zr

0

RL

=
π

4
ZTL

0

2ZTL
0

ω2
0M

2
=
π

2

(
ZTL

0

ω0M

)2

. (4.18)

Transmission S21

We calculate the transmission S21 through the measurement waveguide analogously to

Refs. [63, 64], where they use capacitively-coupled, short-circuit quarter-wave resonators.

The input impedance of an open-circuit transmission line segment of length ` is [75]

Zr = ZTL
0

1 + i tan(β`) tanh(α`)

tanh(α`) + i tan(β`)
. (4.19)

We apply Eqn. 4.15 and 4.16 and expansions of tan and tanh:

Zr ≈
4QiZ

TL
0

π

1− i 1
2Qiδx

1− i 8Qi

π2δx

(4.20)

=
πZTL

0

4Qi

1 + i2Qiδx

1 + iπ
2δx

8Qi

(4.21)

≈ πZTL
0

4Qi

(1 + i2Qiδx) . (4.22)
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This goes into Eqn. 4.8, where we approximate B ≈ ω2
0M

2/Zr.
4 Finally, we use the

simple formula for 1/S21 transmitting through a series impedance B [75]:

1

S21

= 1 +
B

2ZTL
0

(4.23)

≈ 1 +
Qi

Qc

1

1 + i2Qiδx
. (4.24)

As in Ref. [64], we consider a small impedance mismatch ∆Z in series with B, where

we assume ∆Z is approximately constant near ω0. When performing the experiment,

the overall level of |S21| is offset by attenuation and amplification; it will also be slightly

offset due to ∆Z. When we normalize S21 to S̃21 by assuming the transmission just off

the resonance should give |S̃21| = 1, this also involves ∆Z. It scales the second term in

Eqn. 4.24 by a complex number near unity, 1 +
∆Z

2ZTL
0

. We absorb the magnitude into a

rescaled coupling quality factor Q∗c and leave the phase in the form eiφ, as in Ref. [64],

conveniently arriving at the same expression for the normalized inverse transmission,

1

S̃21

≈ 1 +
Qi

Q∗c
eiφ

1

1 + i2Qiδx
. (4.25)

Below, we use this function to fit the experimental data for Qi and Q∗c (which we will

just refer to as Qc).

4Expanding ω2 = ω2
0(1 + 2δx + (δx)2), the terms in δx will be dominated by the Qiδx term in

Eqn. 4.22.
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Photon number

It is useful to know the steady-state energy in the resonator as a function of input power

P . Suppose we are driving the measurement line with power P (voltage amplitude

V =
√

2PZTL
0 ) at the resonance frequency ω0. We first calculate the current I2 through

the impedance B in Fig. 4.1e:

I2 =
S21V

ZTL
0

=
Qc

Qi +Qc

V

ZTL
0

. (4.26)

Next, we convert this to the resonator current I3, using Eqn. 4.5 with Zr = R at ω0:

I3 = −iωM
Zr

I2 = −iω0M

R

Qc

Qi +Qc

V

ZTL
0

. (4.27)

We now convert this to the total energy U stored in the resonator,

U =
1

2
L|I3|2 =

1

2
L

(
ω0M

R

Qc

Qi +Qc

V

ZTL
0

)2

. (4.28)

We substitute out L (using Eqn. 4.10), R (usingQi =
π

4

ZTL
0

R
), and ω0M (using Eqn. 4.18):

U =
1

2
× π

4

ZTL
0

ω0

× π

2

(ZTL
0 )2

Qc

×
(

4

π

Qi

ZTL
0

)2

×
(

Qc

Qi +Qc

V

ZTL
0

)2

(4.29)

=
2Qc

ω0

(
Qi

Qi +Qc

)2

P. (4.30)

Finally, we convert this energy to an average photon number

n =
U

~ω0

=
2Qc

ω0

(
Qi

Qi +Qc

)2
P

~ω0

. (4.31)
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4.3.3 Implementation: simulations of mutual inductance

We use two coplanar waveguides (a simple, well-understood geometry), one on each chip,

overlaid to achieve strong mutual inductance. This also makes the couplers gradiometric,

insensitive to uniform magnetic flux. We study this coupling method using finite element

simulation (Sonnet). The geometry is shown in Fig. 4.3, which we model as two inductors

L with mutual inductance M (see Fig. 4.1). It consists of two matching, shorted coplanar

waveguide segments on separate sapphire substrates, as in the flip-chip geometry.

We use the simulation to calculate the impedance matrix Z [75] of the two port

network at 5 GHz. For this circuit, the impedance matrix has the form of Z in Eqn. 4.1

with L1 = L2 = L. We then calculate the mutual inductive coupling strength M/L =

Z21/Z11.5 We consider two coplanar waveguide sizes. In both cases, the center trace

width w = 20 µm. We use two different ground plane spacings s, 10 µm (which gives a

convenient characteristic impedance near 50 Ω) and 40 µm (which gives stronger mutual

inductance in this geometry). We plot the simulated M/L for these two geometries as a

function of the relative position of the two inductors. We simulate the effects of lateral

misalignment ∆y and inter-chip spacing d. The results are shown in Fig. 4.3. This

geometry maintains good coupling even in the presence of several µm of misalignment in

any direction. As a function of chip spacing d, M/L decreases much more slowly than

1/d, which is the dependence a parallel plate capacitance would have.

The value M/L ≈ 0.5 is also quite favorable for such a simple geometry. It is compa-

5There is actually a minor sign issue here. The Sonnet simulation geometry has one inductor “turned
around” compared to the circuit model, so really M/L = −Z21/Z11 the way we want to define it.
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rable to the mutual inductance attained in Ref. [67], where they interleave loops of narrow

wires in the same plane using air bridge crossovers. For adjacent coplanar waveguides in

the same plane, it is difficult to exceed M/L ≈ 0.1.

4.3.4 Device details

We now turn to the actual experiment, eight coplanar waveguide resonators inductively

coupled to a transmission line on a separate chip.

Design

The coupling geometry we describe above is very flexible. We can access several orders

of magnitude of coupling quality factor Qc, from around 102 to 106. We set out to

demonstrate this by designing eight coplanar waveguide resonators. The resonators are

all composed of coplanar waveguide with center trace width w = 20 µm and ground plane

spacing s = 10 µm, which gives a characteristic impedance ZTL
0 ≈ 50 Ω on sapphire.

Each has a slightly different length (and hence frequency), so we can interrogate them

individually.

The coupler designs for the resonators are listed in Table 4.1. All the couplers have

center trace width w = 20 µm, matching the rest of the resonator waveguide. Resonator 1

has a very aggressive coupler to push Qc near 102, where we increase the ground plane

spacing. As we go down the table, we adjust the coupler to be less aggressive (decreasing

M , increasing Qc). In resonators 5-8, we introduce an intentional offset ∆y. This allows

us to increase Qc and also provides an experiment for how misalignment affects the
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a b

c

Figure 4.3: Simulations of inductive coupling. a, Top-view schematic of an inductor
made of a shorted coplanar waveguide segment with center trace width w, ground plane
space s, and length ` (gray is metal). b, Perspective-view schematic similar to our Sonnet
simulation geometry. Two inductors (as in a) are overlaid on top of each other, facing
opposite directions. The red inductor (with port 1), is suspended distance d above the
blue inductor (with port 2). In the simulation, vacuum is between the red and blue layers,
and sapphire is outside the two layers. c, Finite element simulations with a geometry
like in b subject to various alignment conditions. We study two coplanar waveguide
geometries, s = 40 µm and 10 µm, both with w = 20 µm. Left: We vary the vertical
spacing d between the chips. M/L decreases much more slowly than ∼ 1/d. Right: We
vary the lateral misalignment ∆y between the chips, with d = 6.5 µm fixed. M/L is close
to constant for ∆y < 5 µm and falls off slowly after that. M/L actually changes sign for
s = 10 µm at ∆y > 26 µm because opposite spaces of the coplanar waveguide start to
line up.
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Resonator Coupler space sc (µm) Coupler length `c Offset ∆y (µm) Design Qc

1 40 300 0 2.3× 102

2 10 300 0 6.9× 102

3 10 100 0 6.0× 103

4 10 40 0 3.2× 104

5 10 40 5 4.5× 104

6 10 40 10 6.3× 104

7 10 40 15 1.5× 105

8 10 40 20 5.9× 105

Table 4.1: Coupler design information for the eight coplanar waveguide resonators.

coupling, something we investigated in the simulations in Fig. 4.3.

Fabrication

We lay out the design with a coplanar waveguide crossing the center of the bottom

chip (again w = 20 µm and s = 10 µm). The eight resonators are laid out on the

second, smaller chip in a 4×2 array, each with the appropriate coupler above the central

waveguide. We include room for the epoxy and glue, which will be discussed below.

The primary fabrication process is depositing 100 nm aluminum on a clean, double

side polished sapphire wafer and then etching a pattern (primarily the various coplanar

waveguides) into the aluminum using photolithography and inductively coupled plasma

etching. We then pattern SU-8 epoxy spacers on the periphery of each resonator chip

using photolithography. These fabrication processes are detailed in appendix E. The

spacers are about 6.5 µm thick, and once hard baked, they are quite robust, immune to

solvents like acetone. We dice the sample into individual chips after defining the epoxy

spacers. The completed chips are shown in Fig. 4.4. In this case, we fabricate both halves
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of the assembly on the same wafer, but that is not necessary; we will demonstrate this

by combining two different materials in chapter 5.

Flip-chip assembly details

We bond two chips together in a standard manual mask aligner (Karl Suss MJB4). We

use the mask vacuum to suspend one chip (here, the larger 6 mm× 6 mm chip) upside

down. A machined acrylic plate serves to transfer the vacuum from the metal mask

holder to the chip. This chip remains fixed in place during the bonding procedure. It is

important that this chip be double side polished and transparent (visible light is easiest,

though in principle this could be done through silicon with an infrared camera).

The second chip has the resonators and the epoxy spacers. The epoxy pattern is also

designed to “wall off” the region where we will apply glue to prevent it from spreading

to the resonators. For the glue, we use nLOF 2070 photoresist, though surely other

choices would work. It is a good viscosity for manual application, it fills the gap between

the chips well, and it easily dissolves in acetone. We do observe that after two thermal

cycles to mK temperatures, it becomes very brittle. We apply the glue manually using

a splintered wooden handle from a cotton swab, watching under a binocular microscope

while holding the chip with tweezers. We use about 10 nL of glue, covering roughly 2 mm

along two opposite edges. This requires a bit of finesse.

We increase the “thickness setting” dial to lower the sample chuck all the way down.

We then load the second chip onto the mask aligner’s sample chuck and raise the contact

lever to engage the sample vacuum, while keeping the sample about 1 mm below the
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10 mm

1 mm

1 mm

Figure 4.4: Aligning chips in the manual mask aligner. Left: Photograph of
the flip-chip bonding process. The two chips (outlined in false color) are loaded in the
mask aligner. We observe the chips through the microscope objective to carry out the
alignment. Right: Composite optical micrographs of complete chips. Colored outlines
correspond to the outlines on the left. Top: 6 mm× 6 mm bottom chip with measurement
transmission line running from left to right, between two pads for wirebonds. Bottom:
4.5 mm× 4 mm top chip with eight coplanar waveguide resonators.

suspended chip. We then iteratively align the sample (translation and rotation) while

raising it up to the suspended chip using the “thickness setting” dial. A photograph

showing the chips in the aligner under a microscope objective is shown in Fig. 4.4. As

the chips become close, the photoresist clearly contacts the suspended chip and starts to

spread out. The chips are in good contact when attempting to raise the sample no longer

spreads out the photoresist, and optical interference patterns become visible (due to the

suspended chip being pushed against the acrylic plate).
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Figure 4.5: Flip-chip assembly. Photograph illustrating the flip-chip assembly (per-
spective view). Left: Smaller chip (4.5 mm× 4 mm) with eight coplanar waveguide res-
onators. Center: Larger chip (6 mm× 6 mm) with the measurement transmission line.
Right: Completed assembly, the one we cool down and measure.

At this point, the flip-chip assembly is quite fragile; handling it can easily misalign the

chips by ∼10 µm. It is necessary to cure the photoresist glue with a bake. We accomplish

this safely by leaving the assembly clamped inside the mask aligner and heating the

acrylic plate with a hot air gun (Aoyue 852). We estimate the chip temperature reaches

about 60 ◦C from a hot air temperature of 100 ◦C. We heat the acrylic plate for 10

minutes and then let it cool for 10 minutes before removing the assembly; now it is safe

to handle. We show a photograph of the completed assembly in Fig. 4.5.

In this process, we have a typical lateral misalignment of up to about 2 µm and

rotation misalignment of up to about 0.5 mrad (0.03°). If the alignment is unsatisfactory,

it is easy to separate the chips by soaking the assembly in acetone, and then bonding can

be attempted again. We find that the inter-chip spacing is consistently less than 10 µm;

spacing exceeding that is easily discerned in an optical microscope at high magnification.
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In Fig. 4.6, we illustrate typical alignment and inter-chip spacing.

4.3.5 Experimental results

We wirebond the assembly shown in Fig. 4.5 and cool it down to 7 mK in a dilution

refrigerator. We measure the microwave transmission through the device with a vector

network analyzer (Agilent PNA-L). The input line is heavily attenuated and filtered, and

the output line is amplified with a cryogenic amplifier (Low Noise Factory HEMT) and

room temperature amplifiers (Miteq AFS3). See appendix D for details.

We first measure over a broad frequency range, shown in Fig. 4.7. We observe the

eight desired resonances near 6 GHz as designed. The resonators with aggressive coupling

(the deepest dips) are at higher frequencies than expected, likely from an error accounting

for the inductance of the couplers or the loading from the transmission line. Fortunately,

each resonance is still individually resolvable. There is also an unwanted resonance of

unknown origin at 4.5 GHz. We measure its Qi ≈ 6 × 104 and Qc ≈ 5 × 104. It may

be a slotline mode in the transmission line, a parallel-plate mode between the chips, a

circulating mode around the perimeter of the floating chip, or something else.

We next zoom in on each of the eight resonances and measure them at high power.

These results are shown for three representative resonators in Fig. 4.8. These measure-

ments all have the same input power, so the photon number varies substantially for each

resonator depending on its Qc, and this also impacts the Qi. We summarize the fitted

Qc values in Table 4.2 and Fig. 4.9. We achieve the desired range, reasonably consistent
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Resonator chip (sapphire)

Measurement waveguide chip (sapphire)

SU-8
SU-8

Figure 4.6: Flip-chip alignment. a-c, Scanning electron micrographs near grazing
incidence showing a completed assembly. Based on optical microscopy, this is a typical
sample. b-c, Zooming in near the corners of the resonator chip to see the SU-8 epoxy
(labeled) and spacing between the chip. In b, there is a gap of about 2.1 µm (total space
8.3 µm). In c, there is no discernable gap (total space 6.2 µm). This different suggests
a tilt of about 0.5 mrad. d-e, Representative alignment marks of completed assemblies,
viewed through the back of the 6 mm sapphire chip with an optical microscope. d,
The coplanar waveguide resonator device cooled down and measured in this chapter.
Alignment error is about 2 µm. e, The surface acoustic wave and qubit device used in
chapter 5. Alignment error is less than 0.5 µm. The arrays of lines at the bottom of
d and e are Vernier scales with 0.25 µm graduation difference. Typical planar rotation
error (not pictured) is less than 0.5 mrad.

98



3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Frequency (GHz)

15

10

5

0

5

10

15
|S

21
| (

dB
, a

rb
. o

ffs
et

)

Figure 4.7: Broad scan. Transmission magnitude through the device over a broad
frequency range. The eight designed resonances are around 6 GHz, and there is an ad-
ditional unwanted resonance at 4.5 GHz. The smooth ripples are typical, attributed to
impedance mismatches in the measurement signal path such as SMA connections and
wirebonds. This is raw data; the overall level is arbitrary, dictated by the attenuation
and amplification in the signal path. The frequency spacing of this scan is 31.25 kHz.

with the design values.

For the three highest-Qc resonances, we repeat this measurement for a wide range of

powers. The low-power measurements, where the energy in the resonator is near ~ω0,

suggest how qubits might perform in a similar situation [64, 28]. The results are plotted

in Fig. 4.10. The internal quality factor has the typical power dependence, plateauing

at high photon number and decreasing by roughly an order of magnitude at low photon

number. We observe low power Qi ≈ 5×105, consistent with previous results with similar

fabrication [64]. This suggests that the flip-chip assembly, including the copious epoxy

and glue, is not detrimental to the resonator performance. As we will see in chapter 5,

the qubit performance we observe is consistent with these Qi measurements.
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Figure 4.8: Representative high-power scans. We plot normalized microwave trans-
mission S̃21 for resonances 1 (a), 4 (b), and 8 (c). Points are experimental data, and
light lines are from fits to Eqn. 4.25. Left (black): Magnitude. Center (red): Phase.
Right (blue): Complex-valued 1/S̃21. Note the differing frequency scale. The three mea-
surements occur at the same input power, resulting in vastly different photon numbers,
about 1.6× 103 (a), 1.1× 105 (b), and 4.0× 106 (c).
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Figure 4.9: Coupling quality factors. Comparison of design and measurement cou-
pling quality factors Qc. Uncertainty in the fitted Qc values is about 2%, smaller than
the data points.

Resonator Design Qc Measured Qc

1 2.3× 102 1.6× 102

2 6.9× 102 5.3× 102

3 6.0× 103 4.7× 103

4 3.2× 104 1.1× 104

5 4.5× 104 1.1× 104

6 6.3× 104 3.3× 104

7 1.5× 105 1.2× 105

8 5.9× 105 4.5× 105

Table 4.2: Design and measured coupling quality factors Qc for the eight coplanar waveg-
uide resonators.
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Figure 4.10: Power dependence of internal quality factor. Measured internal
quality factors Qi versus photon number for the three highest-Qc resonators. Uncertainty
in the fitted Qi values is about 10%.
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Chapter 5

Quantum control of surface acoustic

wave phonons

In the previous three chapters, we have separately considered SAW resonators, supercon-

ducting qubits, and flip-chip integration. In this chapter, we bring these ideas together

to experimentally realize quantum control of SAW phonons. We explain the hybrid de-

vice, a superconducting qubit and a SAW resonator on separate chips, and then present

experimental results, culminating in the characterization of the quantum superposition

|0〉+ |1〉 in the SAW resonator.

5.1 Device description

We use a hybrid device composed of two chips. The first is a 2 mm× 4 mm lithium

niobate chip with the single-mode SAW resonator, discussed in chapter 2. The second
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is a 6 mm× 6 mm sapphire chip with the superconducting qubit, tunable coupler, and

control wiring, discussed in chapter 3. The device is illustrated in Fig. 5.1. The control

lines are labeled in Fig. 5.1d. Each line corresponds to a coplanar waveguide on the

sapphire chip. On the left is the readout chain, described in detail in chapter 3, which

is connected to separate input and output lines. Along the bottom are the qubit and

coupler control lines: XY to resonantly drive the qubit, Z to tune the qubit frequency,

and G to tune the coupler inductance.

On the right is a dedicated microwave line, D, for resonantly driving the SAW res-

onator. It has its own small inductive coupler to the SAW transducer. The coupling

between the D line and the SAW resonator can be quantified by a coupling quality factor

Qc; it is designed to be ∼ 105, much higher than the internal quality factor of the res-

onator (< 104), so very little energy leaves the resonator through this line. As discussed

in chapter 3, driving a linear system such as our acoustic resonance with a classical con-

trol pulse brings about a coherent state |α〉. This dedicated drive line will prove very

useful in some experiments, but distinctly quantum behavior will come from interactions

with the qubit.

The qubit and coupler circuit is characterized in chapter 3. The coupling between

qubit and resonator comes from a mutual inductance M = 0.13 nH between two overlaid

planar inductors, one on each chip. This is the same inductive coupling mechanism used

in chapter 4. As described in chapter 3, we use the G control line to tune the coupling

between the qubit and SAW resonator. The coupler circuit is essentially a current divider;
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Figure 5.1: Device description. a, False-color optical micrograph of a transmon qubit
(left, blue) and a SAW resonator (right, red transducer, orange mirrors) which interact
via a tunable coupler (center, purple). The device is viewed from below through the trans-
parent sapphire substrate, with the SAW resonator viewed through the sapphire chip on
a separate lithium niobate substrate, the two separated by about 7 µm. b, Scanning
electron micrograph of the SAW resonator with false color on the patterned aluminum
film. Red: Upper left corner of the transducer. Orange: Mirror. c, Photograph showing
the flip-chip assembly. Right: 2 mm× 4 mm lithium niobate chip with SAW resonator
(red) connected to coupling inductors (horizontal lines). Center: 6 mm× 6 mm sapphire
chip with qubit, coupler, and control wiring. Left: Flip-chip assembly. The SAW res-
onator lithium niobate chip (dark rectangle) is inverted, aligned, and affixed to the qubit
sapphire chip (see Supplementary Information). d, Schematic circuit diagram, drawn in
perspective. Each labeled control line corresponds to an external control or measurement
line. The resonator is on a separate chip, represented by the small gray rectangle floating
above the qubit plane. The overlaid inductors experience mutual inductive coupling. e,
Qubit-resonator coupling g/2π calculated for a range of coupler flux bias values ΦG using
the linear circuit model in d with parameters extracted from experiments.
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it controls whether current from the qubit passes through the right coupling inductor,

which is coupled to the SAW resonator. Current in the G control line changes the

magnetic flux ΦG through the coupler loop. This flux bias changes the phase δ across the

coupler junction, setting its inductance Lj = Lj0/ cos(δ) (here, Lj0 = 1.0 nH). When we

make Lj large (δ ≈ π/2), all of the qubit current goes through the left coupler inductor,

so the coupling is turned off. For small Lj, some qubit current goes through the right

coupling inductor, where it interacts with the SAW resonator. It turns out the coupling

is maximized when δ = π, so Lj = −Lj0.

As in chapter 4, there is no galvanic connection between the two chips, but our

coupling scheme does not require one. This brings about a large capacitance of around

5 pF between the electrically-floating “ground plane” of the SAW chip and the actually-

grounded ground plane of the qubit chip, but we avoid applying any voltage across that

capacitance.

5.2 Basic characterization

In this section, we present experimental results involving basic interaction between the

qubit and SAW resonator. The essential qubit readout and control characterization for

this device is in chapter 3; for those experiments, the coupling is turned off. Here, we

use the qubit to characterize the coupling and the SAW device.
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5.2.1 Wide frequency scan

First, we look at a broad frequency range, 3.5 GHz to 4.5 GHz. We excite the qubit to

|e〉, bias it to the desired frequency, and set the coupling to the desired level. We then

wait for a time t before measuring the qubit excited state probability Pe. The results

are displayed in Fig. 5.2. We consider three representative coupler settings spanning our

full tuning range. In Fig. 5.2a, the coupling is minimized; this dataset is also shown in

chapter 3. We observe T1 ≈ 20 µs. This is consistent with the low-power internal quality

factors of the coplanar waveguides measured in chapter 4, Qi = 5× 105.

We repeat the experiment with a moderate coupling setting (Fig. 5.2b) and with the

coupling maximized (Fig. 5.2c). We take crosstalk into account by calibrating the qubit

frequency as a function of ΦZ under each of the three coupler settings independently,

but we do not compensate for the effect of the applied ΦZ pulse on the coupling due to

crosstalk. The latter effect is quite small: the qubit frequency is very sensitive to ΦZ

here, so only small pulses are needed, while the coupling is much less sensitive to ΦZ . We

also perform qubit Ramsey experiments (see chapter 3) for these three coupler settings,

at 3.5 GHz, 4.0 GHz, and 4.5 GHz. In each case, T2,Ramsey ≈ 1 µs to 3 µs. This T1 and

T2,Ramsey performance is consistent with previous experiments using similar qubit designs

and fabrication techniques [8, 17, 51].

Having nonzero coupling shortens the qubit lifetime and makes it strongly frequency-

dependent, as the transducer converts electromagnetic energy from the qubit into acoustic

waves. The characteristic sinc-shaped transducer response (see chapter 2) is visible in the
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Figure 5.2: Qubit T1 scans. a-c, Time-domain measurements of qubit lifetime T1

over a wide range of qubit frequencies. The coupler flux ΦG is different for each scan: a
0.35Φ0, b 0.44Φ0, and c 0.5Φ0. Black circles are fitted T1 values. In a, many T1 fits are
≈20 µs, above the plot range. d, Fitted T1 values plotted on a logarithmic scale, colored
a black, b blue, and c red. Gray line: Calculated T1 = Q/ω for Q = 5× 105.
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T1 maxima at 3.55 GHz, 3.75 GHz, 4.15 GHz, and 4.35 GHz. The features near 4.0 GHz

involve the SAW mirrors, and we take a closer look there next.

Coupling on/off ratio

As a brief aside, an interesting figure of merit for a tunable coupling scheme is the “on/off

ratio,” the maximum coupling rate divided by the minimum coupling rate. We obtain a

lower bound on the on/off ratio from the results in Fig. 5.2. We focus on the behavior

at 3.850 GHz, where the transducer efficiently launches traveling phonons. This is the

qubit’s dominant loss mechanism at 3.850 GHz in Fig. 5.2b and c. At that frequency,

with the coupling minimized, T1 = 19.8 µs, and with the coupling maximized, T1 = 54 ns.

This suggest a lower bound of (54 ns)−1/(19.8 µs)−1 = 366 for the on/off ratio.

5.2.2 Focusing near the resonance

We repeat the scan from Fig. 5.2b with finer frequency resolution near 4.0 GHz. This

is where we expect the SAW mirrors to work, based on the design (λ = 1.0 µm, v =

4.0 km/s) and the experiments in chapter 2. We set ΦG = 0.44Φ0; this is convenient

because the coupling is large enough to clearly display the frequency dependence of the

SAW device, but it is small enough to not exhibit resonant swapping between the qubit

and the SAW resonance. The dominant decay channel for the qubit is acoustic loss from

the transducer. We plot the qubit loss 1/Q = 1/(ωgeT1) as a function of qubit frequency

ωge/2π in Fig. 5.3a, both with high resolution data at ΦG = 0.44Φ0 (moderate coupling)

and low resolution data at ΦG = 0.35Φ0 (minimum coupling, from Fig. 5.2a). The
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Figure 5.3: Characterization and modeling of SAW admittance. a, Measured
qubit loss 1/Q as a function of qubit frequency ωge/2π. Blue: ΦG = 0.44Φ0 (moderate
coupling). Purple: ΦG = 0.35Φ0 (minimum coupling). b, Real part of SAW resonator
acoustic admittance Re[Ya], calculated with a numerical model (see Supplementary In-
formation). Red line: Admittance of the full resonator model. The SAW resonance is
the large peak at 3.985 GHz. Pink dashed line: Admittance calculated for the transducer
alone, without the mirror structure. c, Magnitude of the model mirror reflection.
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minimum-coupling 1/Q is near 1/(5× 105), as discussed earlier, and does not have much

frequency dependence. However, the moderate-coupling 1/Q exhibits a strong frequency

dependence. As we’ll see, we can account for most of this frequency dependence with a

model of the SAW device.

Modeling the SAW device

We observe a striking resemblance between the measured qubit loss 1/Q and the expected

admittance of the SAW device. As discussed in chapter 2 and detailed in appendix A, we

use a 1-dimensional electromechanical numerical model of the SAW device, the P -matrix

[66]. With the coupling small enough to avoid resonant swapping, the real part of the

SAW acoustic admittance Re[Ya(ω)] essentially presents a frequency-dependent loss to the

qubit. From the circuit model perspective (see Fig. 5.1d), it’s like a frequency-dependent

resistance R through which the qubit is driving current. From the acoustic perspective,

the qubit is driving the transducer, which converts energy into acoustic waves, where it

is “lost” from the qubit.

In Fig. 5.3b-c, we illustrate the frequency dependence of a P -matrix model of the

SAW device. Fig. 5.3b shows the admittance of the resonator model, which is based on

the design parameters and fine-tuned to match the observed 1/Q frequency dependence.

The SAW transducer itself can efficiently emit phonons over a wide range of frequencies,

roughly from 3.8 GHz to 4.1 GHz, owing to its small number of finger pairs (20 pairs)

[66]. The SAW mirror reflects efficiently in the mirror stop band from 3.96 GHz to

4.04 GHz. The resultant interference frustrates the transducer emission except when
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a resonance condition is met, in this case at the single SAW resonance frequency of

ωr/2π = 3.985 GHz. The resonator admittance near that resonance can be approximated

by an equivalent resonant electrical circuit, constituting the Butterworth-van Dyke model

(see chapter 2) [66]. Outside the mirror stop band, the mirror reflection decreases rapidly,

and the transducer is free to emit traveling phonons. The qubit sees this as increased loss,

especially from 3.85 GHz to 3.90 GHz, where the transducer is most efficient. The ripples

in the out-of-band mirror reflection arise from the finite extent of each mirror (500 lines).

These features are clearly displayed in the measured qubit loss. The qubit also weakly

couples to unidentified resonances near 3.8 GHz. The SAW resonance at 3.985 GHz will

be the focus of the rest of the chapter.

The full model is composed of a transducer model and a mirror model, both using the

coupling-of-modes method [66]. We begin with the lithographically-determined device

parameters and standard material parameters from Ref. [66]. We tune the mirrors’ effec-

tive wave speed vm and amplitude reflection per line rm to reproduce the apparent stop

band observed in Fig. 5.3a. We tune the transducer’s speed vt and reflection rt to place

the resonance at 3.985 GHz and reproduce the apparent asymmetric transducer response.

We introduce uniform propagation loss η in both the transducer and mirror and adjust the

loss so that the quality factor Q of an approximating series RLC circuit fitted to the peak

in the model admittance Ya(ω) is consistent with the resonator lifetime T1r measurement

(see below). These are the values used in Fig. 5.3: vm = 4027.0 m/s, vt = 4012.5 m/s,

rm = −0.032i, rt = −0.015i, and η = 851 Np/m. The reported speed for a nonmetal-
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lized surface at room temperature is 3979 m/s. The mirror and transducer parameters

are expected to differ; the metal lines in the mirror are electrically floating, which gives

stronger reflectivity. These values are consistent with cryogenic measurements of similar

SAW resonators using a vector network analyzer (see chapter 2). The model series RLC

circuit gives an equivalent Cs = 12.10 fF, Ls = 131.8 nH, and Rs = 0.890 Ω.

5.3 Resonant experiments

At this point, we have established basic qubit and coupler functionality, and we have

located the SAW resonance. We now proceed to experiments involving resonant interac-

tions between the qubit and SAW resonance. As discussed in chapter 3 and appendix B,

this is a realization of the Jaynes-Cummings model with the rotating wave approximation

[40, 43]. The Hamiltonian of interest is

H = ~ωra†a+ ~ωgeσ+σ− + ~g(σ+a+ σ−a
†), (5.1)

with SAW resonance frequency ωr/2π = 3.985 GHz and lowering operator a, qubit fre-

quency ωge/2π (up to 4.7 GHz) and lowering operator σ−, and coupling rate g/2π (be-

tween +1.2 MHz and −7.3 MHz). This neglects interactions with other aspects of the

SAW admittance Ya(ω): in these experiments, we avoid unwanted qubit loss by normally

keeping the coupling small, only pulsing the coupling on when deliberately interacting

with the SAW resonance.
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5.3.1 Strong, tunable coupling to a single mechanical mode

We begin with some basic experiments focusing on the SAW resonance. First, we perform

qubit spectroscopy near the SAW resonance under different coupling conditions. The

qubit is biased to ωge = ωr + ∆ (detuning ∆), and then we drive the qubit XY line with

a microwave pulse at frequency f near ωr/2π.1 Finally, we measure the qubit.

We execute 2D scans over detuning ∆ and drive frequency f . We repeat this experi-

ment subject to the same three representative coupler settings used in Fig. 5.2, spanning

the full tuning range of coupling strength |g|. The results are shown in Fig. 5.4a. In

the minimum-coupling experiment, we simply observe a diagonal line tracking the qubit

frequency; there is no visible interaction with the resonance. However, as we turn up the

coupling, an avoided crossing emerges, characteristic of the resonant interaction. With

the qubit tuned near the resonance (|∆| . |g|), the qubit and SAW resonance hybridize

appreciably. We achieve a maximum coupling rate |g|/2π = (7.3± 0.1) MHz.

Next, we employ that maximum coupling in a simple time domain experiment, Rabi

swapping. In this experiment, we first excite the qubit to |e〉, so the qubit/resonator

system is in the state |e, 0〉 (qubit excited, zero phonons in the resonator). Next, we

maximize the coupling and bias the qubit to detuning ∆. We allow the qubit and res-

onator to interact for a time τ and then measure the qubit. We plot the results, scanning

detuning ∆ and interaction time τ , in Fig. 5.4c. We observe the signatures of strong

1The pulse has a 500 ns long rectangular envelope. The 500 ns duration is the source of the apparent
linewidth of about 2 MHz in the data in Fig. 5.4a. The amplitude is chosen so that the pulse is approxi-
mately a π pulse for the qubit in isolation (taking |g〉 to |e〉 when resonant with the qubit). This is why
the measured qubit |e〉 probability Pe reaches close to 1.0.
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Figure 5.4: Qubit interaction with a single mechanical mode. a, Qubit spec-
troscopy near the resonator frequency for three different coupler settings. The qubit is
biased to ωr +∆ and driven with a 500 ns long pulse at frequency f ; qubit |e〉 probability
Pe is plotted. Top: Minimum coupling, g/2π = (0.0± 0.1) MHz (ΦG = 0.35Φ0). Middle:
Moderate coupling, g/2π = (−2.3± 0.1) MHz (ΦG = 0.44Φ0). Bottom: Maximum cou-
pling, g/2π = (−7.3± 0.1) MHz (ΦG = 0.5Φ0). b, Rabi-swap pulse sequence. The qubit
is excited to |e〉, and then the qubit is biased to ωr + ∆ while the coupling strength is
maximized. The qubit and resonator interact for a time τ , and the qubit state is then
measured. c, Rabi-swap experiment results. Probability Pe for the qubit |e〉 state versus
detuning ∆ and interaction time τ . The color scale on the right applies to both a and c.
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coupling between the qubit and a single mode, the SAW resonance: high-contrast oscil-

lations in the characteristic chevron pattern, where there is a photon-phonon exchange

each half-oscillation, and the period of oscillations reaches a maximum of 2π/(2|g|) at zero

detuning. We also see the edge of the SAW mirror stop band around ∆/2π = −27 MHz;

this is present in Fig. 5.3 at 3.958 GHz as well. The number and amplitude of the swaps

is primarily limited by the resonator lifetime T1r.

We can understand this swapping in terms of the Jaynes-Cummings Hamiltonian,

Eqn. 5.1. As before, we use the simple product basis states |g, n〉 and |e, n〉, where g and

e refer to the qubit ground state and first excited state, respectively, and n refers to a

phonon Fock state of n phonons. These are also eigenstates of Eqn. 5.1 when the coupling

g = 0.2 However, when the coupling g 6= 0, the eigenstates are combinations of |g, n+ 1〉

and |e, n〉 (with the exception of the ground state, which is simply |g, 0〉). In the Rabi

swapping experiment, we begin in the state |e, 0〉, and when we turn on the interaction

(by maximizing the coupling |g| and setting the detuning ∆ = 0), we observe swapping

between |e, 0〉 and |g, 1〉. That is because |e, 0〉 is not an eigenstate of Eqn. 5.1 when the

coupling g 6= 0. Instead (setting ∆ = 0 for simplicity), the one-excitation eigenstates

are |ψ±1 〉 = 1√
2

(|g, 1〉 ± |e, 0〉), and the energy splitting between those eigenstates is 2~g

(this is where the avoided crossing comes from). We can then express the initial state

in terms of eigenstates: |e, 0〉 = 1√
2

(
|ψ+

1 〉 − |ψ−1 〉
)
. Due to the energy splitting between

the eigenstates, during time evolution following the Hamiltonian, the system oscillates

2Unfortunately, there is a collision of notation between the qubit ground state |g〉 and the coupling
rate g/2π.
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between |e, 0〉 and |g, 1〉. See appendix B for information on calculating the evolution in

the presence of imperfections like loss and dephasing.

We use this experiment to define an important operation, a single-phonon swap,

which exchanges the amplitudes of |e, 0〉 and |g, 1〉. This is executed by setting the qubit

frequency to ωr and turning on the coupling for approximately 37 ns.3

5.3.2 Quantum ground state

As discussed in chapter 1, these modes near 4 GHz should be very close to their ground

states if they are thermalized under 50 mK.4 However, empirically, superconducting

qubit circuits don’t quite thermalize to the refrigerator temperature, for reasons such as

thermal radiation, quasiparticles, or other noise in the input or output lines [9, 34, 46].

It also isn’t necessarily the case that a mechanical mode would thermalize. This means

it is important to measure just how close the qubit and resonator get to their respective

ground states.

Qubit population

To start, we focus on measuring the qubit’s thermal |e〉 population. We adopt a technique

called Rabi population measurement from Refs. [34, 20]. Driven transitions between |e〉

and the transmon second excited state |f〉 are used to quantify the |e〉 population by

measuring the amplitudes of Rabi-like oscillations. We use a resonant pulse at frequency

3The swap time is nominally 2π/(4|g|), which is 34 ns for g/2π = 7.3 MHz; we end up with 37 ns in
the experiment because of the ∼ ns risetime in the Z and G control pulses.

4For all the experiments in this chapter, the mixing chamber RuOx thermometer reads <7 mK.
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ωef/2π; the amplitude is normalized to the amplitude which approximately swaps |e〉

and |f〉, calibrated separately. The |f〉 thermal population is assumed to be negligible,

as validated by these experiments.

Initially, the qubit state is well-described by the density matrix

ρq = (1− εq)|g〉〈g|+ εq|e〉〈e|+ 0|f〉〈f |, (5.2)

where εq � 1 is the qubit’s thermal |e〉 population, the quantity we wish to determine.

We proceed with two experiments. The pulse sequences and results are shown in Fig. 5.5.

First, we probe εq directly. We begin by applying a pulse at ωef/2π. We vary the am-

plitude of this pulse in different experimental runs. This exchanges some of the |e〉

population with the (initially zero) |f〉 population. We now wish to measure the oscilla-

tions of the final |e〉 population as a function of pulse amplitude. We accomplish this by

executing a standard π pulse, which completely exchanges the |g〉 and |e〉 populations,

and then we measure the qubit |g〉 population directly.5 The result is oscillations in |g〉

probability Pg with pulse amplitude. The peak-to-peak amplitude Ae of this oscillation

is closely related to εq. However, it is affected by readout bias and visibility, so we need

a second experiment to accurately determine εq.

The previous experiment was essentially measuring εq subject to readout imperfec-

tions, and we cancel those imperfections by also measuring 1 − εq in a similar manner.

5In our configuration, the readout actually distinguishes between “|g〉” and “not |g〉,” so the |e〉 and
|f〉 populations are “lumped together.” It is possible to reliably distinguish |g〉, |e〉, and |f〉 in single-
shot readout with better optimization of the readout circuit and amplification chain [84]. In the other
experiments, |f〉 population is negligible, but it is very important here.
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Figure 5.5: Qubit and resonator thermometry. a, Rabi population sequence for the
excited state measurement. Following an optional swap operation, the qubit is driven
with a pulse at ωef with variable amplitude and then an Xπ pulse. b, Excited state
measurement results. The small-amplitude oscillations indicate small initial excited state
populations. c, Pulse sequence for the ground state measurement, the same as a with
an additional Xπ pulse before the ωef pulse. d, Ground state measurement results. The
large-amplitude oscillations show near-unity initial ground state populations. In b, d:
Left/blue: Qubit alone (no swap). Right/red: Swap. Points are from measurements;
lines are cosine fits. Negative values on the horizontal axis correspond to e/f pulses with
relative phase of π radians.
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The experiment begins with a standard π pulse, after which the qubit state looks like

ρq = εq|g〉〈g|+ (1− εq)|e〉〈e|+ 0|f〉〈f |. (5.3)

We then proceed in the same manner as before, driving transitions between |e〉 and |f〉

and then deducing the |e〉 population by executing a π pulse and measuring the |g〉

population. This produces much larger-amplitude oscillations (peak-to-peak amplitude

Ag), as 1− εq ≈ 1.

Finally, we combine these results to calculate the qubit’s thermal |e〉 population,

εq =
Ae

Ae + Ag
. (5.4)

In our case, Ag is very close to 1, so the correction is not very important. However,

the idea is to compensate for linear readout bias and visibility, where the measured

probability Pmeasured is related to the actual probability Pactual by

Pmeasured = vPactual + P0, (5.5)

subject to visibility v and bias P0. Roughly, taking the amplitudes of the oscillations

removes the bias P0, and then Eqn. 5.4 cancels out the visibility v:

Ae
Ae + Ag

=
vεq

vεq + v(1− εq)
= εq. (5.6)

Performing this experiment, as shown in Fig. 5.5, we determine that the qubit’s thermal

|e〉 population εq = 0.0169± 0.0002.

SAW resonator population

We have a similar situation in the SAW resonator; its initial state is well-described by

ρr = (1− εr)|0〉〈0|+ εr|1〉〈1|+ 0|2〉〈2|, (5.7)
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Figure 5.6: Swapping of small thermal excited state populations. The qubit
and resonator begin in their equilibrium states, near |g, 0〉 with small thermal excitations
εq and εr. The qubit is biased to ωr (detuning ∆ = 0) while the coupling strength is
maximized. The qubit and resonator interact for a time τ , and the qubit state is then
measured. The small oscillations show the exchange of the qubit thermal population
with the smaller resonator thermal population.

where εr � 1 is the SAW resonator’s thermal |1〉 population. The idea is to use our

swap operation (which exchanges |e, 0〉 and |g, 1〉 populations) to switch εr and εq, and

then use the qubit to find εr. As an initial experiment, we attempt to observe this

exchange in the time domain. We simply turn on the coupling and set the detuning

∆ = 0 for interaction time τ and then measure the qubit. The results are shown in

Fig. 5.6. We observe oscillations at the same frequency as the Rabi swaps in Fig. 5.4, but

the |e〉 populations are all much lower, as the only energy in the system is small thermal

excitations. This experiment suggests εr < εq (the SAW resonator is “colder” than the

qubit), so the coming swap-and-measure experiment should give us an upper bound on

the SAW resonator thermal population εr.

Combining the initial qubit (Eqn. 5.2) and resonator (Eqn. 5.7) density matrices, we
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obtain

ρ = (1− εq)(1− εr)|g, 0〉〈g, 0|+ (1− εq)εr|g, 1〉〈g, 1|

+ εq(1− εr)|e, 0〉〈e, 0|+ εqεr|e, 1〉〈e, 1|.
(5.8)

Following a swap operation, the |e, 0〉 and |g, 1〉 populations are exchanged. There is

a nuance here: the swap operation involves the hybridization of the single-excitation

states |e, 0〉 and |g, 1〉, but there is also hybridization of the two-excitation states |e, 1〉

and |g, 2〉. The resultant swapping between |e, 1〉 and |g, 2〉 occurs at a faster rate (by a

factor of
√

2). These thermal populations ε ∼ 10−2, so terms in Eqn. 5.8 then fall into

three categories: O(1), O(ε ∼ 10−2), and O(ε2 ∼ 10−4). The |e, 1〉 term is O(ε2), so it is

insignificant compared to the O(ε) |g, 1〉 and |e, 0〉 terms. Under the approximation that

the swap does nothing to the small |e, 1〉 population, we obtain

ρswapped = (1− εq)(1− εr)|g, 0〉〈g, 0|+ εq(1− εr)|g, 1〉〈g, 1|

+ (1− εq)εr|e, 0〉〈e, 0|+ εqεr|e, 1〉〈e, 1|.
(5.9)

We then perform a partial trace to find the qubit’s state in isolation,

ρq,swapped = 〈0|ρswapped|0〉+ 〈1|ρswapped|1〉 (5.10)

= [(1− εq)(1− εr) + εq(1− εr)] |g〉〈g|+ [(1− εq)εr + εqεr] |e〉〈e| (5.11)

= (1− εr)|g〉〈g|+ εr|e〉〈e|. (5.12)
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Following the swap operation, the qubit has taken on the thermal population from the

resonator. Since we know εr < εq, imperfections in the swap and subsequent heating in

the qubit would make our measurement in the qubit higher than the initial resonator

population. However, these effects should be small; the swap has high contrast (above

90%), and the duration of the Rabi population measurement sequence (≈100 ns) is much

shorter than the qubit’s characteristic thermalization time (T1 ∼ 10 µs).

We carry out the experiment, first executing a swap and then immediately proceeding

with the Rabi population measurement sequence. The results are plotted in Fig. 5.5. We

obtain a post-swap qubit excited state population of 0.0049 ± 0.0002, an upper bound

on the resonator thermal |1〉 population εr. This suggests the SAW resonator is at least

99.5% in its quantum ground state of motion.

5.3.3 Single-phonon T1 and T2

We now turn to the SAW resonator single-phonon lifetime T1r and coherence time T2r.

The T1r measurement is simple. We excite the qubit to |e〉 with an Xπ pulse, swap that

into the resonator (nominally creating |1〉), let that state decay for a time t, swap the state

back into the qubit, and measure the qubit. The results are shown in Fig. 5.7. We observe

the expected exponential decay, consistent with energy lifetime T1r = (148± 1) ns. The

probability at t = 0 is about 0.7; this is less than 1.0 because of loss (primarily in the

resonator) during the swaps. The point at t = 0 is closely related to Fig. 5.4c at detuning

∆ = 0 and interaction time τ ≈ 70 ns. This lifetime, together with the maximum coupling
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Figure 5.7: Single-phonon evolution. Top: Energy lifetime T1r experiment (points)
plotted with exponential-decay fit. Bottom: Coherence time T2r experiment (points)
plotted with decaying sinusoidal fits. Inset: Pulse sequence. The qubit is excited with an
Xπ (for T1r) or Xπ/2 (for T2r) pulse, we execute a swap, we wait a delay time t, we execute
another swap, and we measure the qubit. For the T2r experiment, the qubit measurement
is preceded by a second π/2 pulse (blue: Xπ/2, red: Yπ/2) for qubit tomography (see
below).

|g|/2π = (7.3± 0.1) MHz, is the main limitation on the subsequent experiments. It is

dominated by loss in the transducer and mirrors, which could include scattering into bulk

acoustic modes and other material losses in the interfaces and aluminum lines.

Next, we measure the single-phonon coherence time T2r. This experiment involves

generating a quantum superposition of |0〉 and |1〉 and observing how it decays; it is

affected by the energy lifetime T1r measured above, and it also detects any additional

dephasing brought about by instability in the resonance frequency. Here, we pay close

attention to the phases and frequencies. We excite the qubit with an Xπ/2 pulse, bringing

it to 1√
2

(|g〉 − i|e〉). We then execute a swap (nominally creating 1√
2

(|0〉 − i|1〉), although

there is some subtlety in the relative phase because of the difference between the resonator

and qubit idle frequencies) and wait for a time t.
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During the wait, the qubit is idling at ωge/2π = 4.038 GHz. The phase reference

frame of the experiment is rotating at the qubit idle frequency, so the relative phase of

the SAW resonator state should evolve at the idle detuning frequency ∆/2π = 53 MHz.

We then swap the state back into the qubit. At this point, directly measuring the

qubit |e〉 probability Pe will result in exponential decay with T1r. Instead, we need

to perform a second π/2 pulse before measuring the qubit. That measurement strongly

depends on the phase alignment of the π/2 pulse and the superposition state in the qubit.

We actually perform full tomography on the qubit (see below for details) to measure it

along the X and Y directions. These measurements are shown in Fig. 5.7. We observe

the expected exponentially-decaying oscillations, 90° out of phase. The oscillations are at

the idle detuning frequency ∆/2π = 53 MHz, exhibiting quantum interference between

the resonator state and the qubit tomography pulses. We obtain T2r = (293± 1) ns,

where the ratio T2r/T1r ≈ 2 is consistent with little to no additional phase decoherence,

as expected for a harmonic oscillator.

Towards |2〉

It would be very interesting to successively excite the qubit and swap excitations into the

qubit several times to realize more exotic quantum states, as has been demonstrated with

a qubit and a coplanar waveguide resonator [43]. Our device is right on the threshold

of having this capability. We illustrate this by attempting to create the two-phonon

Fock state |2〉 by twice exciting the qubit and swapping its excitation into the SAW

resonator. We show the result in Fig. 5.8. The experiment is limited by the resonator
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Figure 5.8: Generation of the |2〉 state. Left: Qubit evolution nominally starting in
|e, 1〉. Black points: Experiment. Gray line: Numerical model. Red dashed line: Time
when the resonator is closest to |2〉. Inset: Experiment pulse sequence. The qubit is
excited (Xπ), that is swapped into the resonator, the qubit is excited again (Xπ), and
then the qubit interacts with the resonator for time τ . Right: The phonon number
probability distribution at the red dashed line in a calculated from the numerical model.

lifetime T1r, which is comparable to the duration of the pulse sequence to generate |2〉,

about 100 ns. We do observe higher-frequency oscillations in the initial interaction, as

expected in the Jaynes-Cummings model. The experiment is in excellent agreement with

our numerical model of the system (see appendix B). The resonator state is closest to |2〉

at the minimum in Pe near interaction time τ = 26 ns. At that time, the resonator state

suggested by the model is a statistical mixture

ρr = 0.145|0〉〈0|+ 0.382|1〉〈1|+ 0.473|2〉〈2|. (5.13)

5.3.4 Qubit tomography

Our qubit measurement naturally distinguishes between the qubit energy eigenstates |g〉

and |e〉, which we identify with the Z basis, but it is also useful to measure qubits along
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the X and Y directions. Measuring along all three directions gives the full qubit density

matrix; this is referred to as qubit tomography. This was touched on in the discussion

of the phonon coherence time T2r experiment (see above). Here, we discuss it in greater

detail and present additional experiments.

To conduct qubit tomography, the standard qubit |e〉 probability Pe measurement

follows a tomography microwave pulse. We repeat the experiment using each of these

tomography pulses: Xπ/2, X−π/2, Yπ/2, Y−π/2, Xπ, X−π, Yπ, Y−π, and no pulse. The nega-

tive phase pulses ensure a symmetric measurement. For example, the qubit measurement

along the Y direction is [P (X−π/2)+(1−P (Xπ/2))]/2. Put that way, in Figs. 5.7 and 5.9,

blue is measurement along -Y, and red is measurement along X. The tomography allows

construction of a Bloch vector representing the qubit state with entries (〈σX〉, 〈σY 〉, 〈σZ〉),

where 〈σi〉 = 2P (i) − 1 is the expectation value of the Pauli operator i, and P (i) is the

measured probability of the qubit along direction i = X, Y, Z.

We conduct additional experiments with qubit tomography to study the interaction

between the qubit and SAW resonator. In Fig. 5.9a, we show Rabi swapping between

|e, 0〉 and |g, 1〉. Ideally, the X and Y measurements would be at Pe = 0.5; imperfections

in state preparation or the swap pulses introduce errors resulting in small oscillations

about Pe = 0.5 at the idle detuning frequency. We also plot the length of the qubit

Bloch vector, which becomes small halfway through a swap, when the qubit is near a

uniform statistical mixture. This is because we only measure the qubit, while some

of the energy is left unmeasured in the resonator. The Bloch vector recovers on each
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Figure 5.9: Qubit tomography and interaction with the SAW resonator. Top
row: Qubit tomography results. Black, blue, and red show measurement along Z, -Y, and
X, respectively. a, Resonant Rabi swapping, as in Fig. 5.4c at ∆ = 0. The qubit starts in
|e〉. Top: Qubit tomography. Bottom: Bloch vector length calculated from tomography.
b, Resonant Rabi swapping with the qubit starting in 1√

2
(|g〉 − i|e〉). c, Measurement

of the phase of superposition states after swapping in and out of the resonator. Top:
Qubit tomography of the final state with constant and sinusoidal fits. Bottom: Final
state phase θ, measured from the X axis, with unity-slope linear fit.
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oscillation, suggesting entanglement between the qubit and resonator. In Fig. 5.9b, we

show a similar experiment with the qubit starting in the superposition 1√
2

(|g〉 − i|e〉).

Following one swap, the qubit is near the ground state, and as the state swaps back

into the qubit, we observe large X and Y oscillations, showing that the superposition

persists. In Fig. 5.9c, we demonstrate control of the phase of the superposition of the

SAW resonator. The qubit starts in 1√
2

(
|g〉 − ieiφ|e〉

)
. The state is swapped into the

resonator, we wait 5 ns, and then the state is swapped back to the qubit. We then

measure the final state phase θ; it equals φ plus an offset determined by the relative

phase accumulated during the sequence.

5.3.5 Coherent states

So far, we have been exciting the SAW resonator by taking energy from the qubit. We

have another, more direct way: the D control line shown in Fig. 5.1, discussed earlier.

In brief, a microwave input line ends in a shorted coplanar waveguide with weak mutual

inductive coupling to the transducer in the SAW resonator, so a resonant microwave pulse

excites the resonance. This is used to execute coherent displacements of the resonator

state by complex amplitude α, represented by the operator Dα = exp
(
αa† − α∗a

)
.

We conduct two experiments with displaced resonator states. Fig. 5.10a has the qubit

interact with a coherent state |α〉; for larger α, we see the higher frequencies characteristic

of higher harmonic oscillator levels. In Fig. 5.10b, the resonator is prepared in (nominally)

|1〉 prior to the displacement. We see excellent agreement between the experiment and
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numerical model. One interesting feature present in the experiment, but not captured by

the model, is the weak revivals around 0.2 µs and |α| = 5. This may involve interactions

with higher qubit levels; the model only uses two. For this modeling, we use 50 harmonic

oscillator levels; otherwise, it is as discussed in appendix B. We use the numerical model

to create a prediction of the experimental results using the pulse sequence and parameters

from the previous experiments.

We need a calibration between the experimental pulse amplitude and the displacement

amplitude α. We take a slice of the experiment in Fig. 5.10a where the interaction time

τ is precisely the duration of our swap pulse. We fit the experiment to the numerical

model (see appendix B) with one parameter; that parameter is the calibration to convert

between experimental pulse amplitudes and α values.

5.3.6 Wigner tomography

Wigner tomography [58, 5, 10, 40, 43, 96] is a way of experimentally mapping out the

Wigner function of a harmonic oscillator coupled to a qubit. This contains the same

information as the density matrix; it is a direct characterization of the quantum state.

Here, we take a close look at the states |0〉, |1〉, and a superposition 1√
2

(|0〉+ |1〉) (see

above for a discussion about the phase of this superposition state). We closely follow

the experimental methods of Ref. [43], though here we have a mechanical resonator and

tunable coupling.
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Figure 5.10: Qubit interaction with displaced SAW resonator states. Left:
Experiment. Right: Numerical model prediction. The qubit begins in |g〉 and interacts
with a displaced resonator state. a, Initial resonator state Dα|0〉 = |α〉. b, Initial
resonator state Dα|1〉.
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Experiment overview

The Wigner function is a real-valued function of α. It is proportional to the phonon

number parity of the resonator state after it is displaced by −α (note the sign). Consider

the density matrix ρ of an initial resonator state we wish to characterize. Displacing the

state by −α, it becomes

ρ′(−α) = D−αρD
†
−α = D−αρDα. (5.14)

Considering its diagonal entries ρ′nn, we compute the phonon number parity

Π =
∞∑
n=0

(−1)nρ′nn. (5.15)

Finally, here is the expression for the Wigner function:

W (α) =
2

π

∞∑
n=0

(−1)nρ′nn(−α). (5.16)

In practice, these sums are truncated at some N above which ρ′nn is negligible for every

α; here we use N = 9.

The main experimental challenge is deducing the phonon number parity; following

Ref. [43], we use time-domain resonant interactions with the qubit. First, as before, we

prepare the desired state in the resonator. Second, we displace the resonator state with

complex coherent amplitude −α; this amplitude is the parameter we will be scanning

(real and imaginary part, or equivalently, magnitude and phase). Third, we allow the

qubit and resonator to interact for a time τ , and finally, we measure the qubit (just |e〉

probability, not qubit tomography). This is very similar to what we show in Fig. 5.10.

For each desired resonator state, we scan the interaction time τ , Re[α], and Im[α]. From
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here, we analyze each α value individually to determine W (α).

Example

Here, we consider one representative “pixel” of the Wigner tomography for |1〉, in par-

ticular −α = 0.5. The associated experiment is the time evolution of the qubit |e〉

probability as the qubit interacts with the displaced resonator state; this is plotted in

Fig. 5.11. This is closely related to the experiment in Fig. 5.10b. When we calculate the

“numerical model” data for Fig. 5.10, we use the model to predict what would happen

based on our knowledge of the system parameters and pulse sequence.

Here, we do something different. This procedure does not know about the state prepa-

ration or displacement. We ask the model, “Which initial phonon probability distribution

Pn best explains the observed qubit evolution Pe(τ)?” To answer this question, we use

a least-squares optimization to find the probability distribution Pn (n = 0, 1, . . . 9) that,

when inserted into our model, generates Pe(τ) closest to the experimental observation.

In Fig. 5.11, we plot the fitted distribution Pn and the evolution Pe(τ) it implies. We

do this same calculation for each displacement −α, generating a set of probability distri-

butions {Pn(−α)}, from which we calculate the Wigner function W (α) using Eqn. 5.16.

For further details, see appendix C.

Wigner functions

We perform this experiment and analysis on |0〉, |1〉, and a superposition 1√
2

(|0〉+ |1〉).

The results are displayed in Fig. 5.12, along with the independent predictions of the
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Figure 5.11: Example qubit time evolution. Left: Example Wigner tomography
experiment showing the qubit evolution as it interacts with a displaced resonator |1〉
state (black points). Inset: Mechanical state synthesis and Wigner tomography pulse
sequence. If needed, the qubit is excited to the desired state, which is then swapped into
the resonator. To determine the Wigner function W (α), the resonator state is displaced
with coherent amplitude −α. The qubit interacts with the displaced resonator state for
a time τ before it is measured, allowing the phonon number distribution of the displaced
state to be determined. Right: Example phonon number distribution Pn resulting from
a fit to the experiment (red line in the left plot).

numerical model. We observe excellent agreement between the experimental results and

the predictions, with the key features of the Wigner functions clearly displayed, including

negative values (characteristic of non-classical states) and a distinct dependence on the

phase of α for the superposition state.

As we have discussed, there is some nuance about the phase of the superposition state.

We demonstrate complete control of that phase in Fig. 5.9c. For the Wigner tomography

experiment, we generate the superposition from the qubit state 1√
2

(|e〉 − i|g〉). The

details of the pulse sequence will bring about a somewhat arbitrary phase shift, the time

integral of the detuning ∆(t). This manifests itself in a rotation of the Wigner function;

we manually rotate the result 90° to align it with 1√
2

(|0〉+ |1〉), as in Ref. [43].

134



Figure 5.12: Wigner tomography of SAW resonator quantum states. Top:
Experimental results. Bottom: Prediction of the numerical model.

Density matrices and fidelities

We convert the measured Wigner functions into density matrices. We use 4× 4 matrices

(n = 0, 1, 2, 3), as we expect the populations above n = 1 will be very small. We ask the

model, “Which density matrix, subject to a set of displacements {−α}, best explains the

observed probability distributions {Pn(−α)}?” Again, we use least-squares optimization

to accomplish this; see appendix C for details. From the density matrix ρ and the desired

resonator state |ψ〉, we calculate the fidelity F =
√
〈ψ|ρ|ψ〉.

We print the density matrices calculated from the experiment below. We have not

rotated the superposition state, and we calculate its fidelity by comparing it to the closest

state of the form 1√
2

(
|g〉+ eiφ|e〉

)
(in this case, φ = π/2). Each entry, real and imaginary
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part, has an uncertainty of roughly 0.01.

ρ0 =


0.971 −0.023i 0.001 + 0.001i 0.008i
0.023i 0.002 0.001− 0.004i −0.005− 0.001i

0.001− 0.001i 0.001 + 0.004i 0.011 −0.002− 0.013i
−0.008i −0.005 + 0.001i −0.002 + 0.013i 0.016

 (5.17)

This gives a fidelity F (|0〉) = 0.985± 0.005. The numerical prediction has fidelity 0.998,

primarily limited by thermal occupation.

ρ1 =


0.231 0.001 + 0.047i −0.001i 0.001 + 0.003i

0.001− 0.047i 0.737 0.004 + 0.051i 0.002i
0.001i 0.004− 0.051i 0.020 −0.004− 0.014i

0.001− 0.003i −0.002i −0.004 + 0.014i 0.012

 (5.18)

This gives a fidelity F (|1〉) = 0.858± 0.007. The numerical prediction has fidelity 0.879,

primarily limited by loss in the SAW resonator.

ρ0+1 =


0.610 −0.399i 0.008− 0.005i 0.002− 0.003i
0.399i 0.377 0.007− 0.010i −0.009 + 0.001i

0.008 + 0.005i 0.007 + 0.010i 0.003 −0.002− 0.003i
0.002 + 0.003i −0.009− 0.001i −0.002 + 0.003i 0.010

 (5.19)

This gives a fidelity F
(

1√
2
(|0〉+ i|1〉)

)
= 0.945 ± 0.006. The numerical prediction has

fidelity 0.962, primarily limited by loss in the SAW resonator.

136



Chapter 6

Conclusion

Having presented the background and experimental results in detail, we finally take a step

back to review the key results of this thesis and briefly discuss the outlook for follow-up

research.

6.1 Summary

Surface acoustic wave devices represent a mature technology in classical signal processing,

and there are hopes that they could be useful in emerging quantum technologies. In this

thesis, we have taken a significant step in that direction.

We begin by discussing surface acoustic wave resonators with strong electromechani-

cal coupling. This strong coupling comes from the outstanding piezoelectric properties of

lithium niobate, and it allows us to couple a surface acoustic wave resonator to a super-

conducting qubit without compromising qubit performance. We then describe supercon-
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ducting qubits, a promising technology for quantum computing, in particular discussing

tunable inductive coupling, which is crucial for protecting the qubit from unwanted in-

teractions and loss. Motivated by the need to couple two quantum devices on separate

substrates, we explore a simple technique for flip-chip integration, which is meant to be

accessible to any lab capable of contact photolithography.

Finally, we bring our qubit and surface acoustic wave resonator together in a flip-

chip assembly with tunable coupling. We demonstrate good qubit performance, clear

measurement and modeling of the surface acoustic wave device, and strong tunable cou-

pling. The surface acoustic wave resonator is cooled to the quantum ground state of

motion with at least 99.5% probability. We measure the properties of a single phonon

and closely examine the interaction with the qubit. We also examine coherent states of

the surface acoustic wave resonator. We then apply several experimental techniques to-

gether to conduct Wigner tomography, fully characterizing several surface acoustic wave

quantum states. Most significantly, we demonstrate the quantum superposition |0〉+ |1〉

with fidelity 94.5± 0.6%.

6.2 Outlook

We hope this work can serve as a foundation for a wide variety of novel quantum ex-

periments. Our hybrid architecture is naturally scalable, and it could be adapted to

experiments with bulk acoustic waves [20] and electro-optomechanical devices [12, 94].

This experiment is relatively simple, coupling a qubit to a single mechanical mode. The
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main limitation here is the phonon energy lifetime T1r = 148 ns together with the maxi-

mum coupling rate |g|/2π = 7.3 MHz. There is room for improvement in both of these,

for example from refining the design and fabrication of the surface acoustic wave res-

onator and using a more aggressive coupling circuit. Such improvements may enable

natural extensions of this work involving more exotic mechanical quantum states in one

or more acoustic modes.

Another research direction is to use traveling surface acoustic waves launched and

detected by transducers with tunable inductive coupling to superconducting qubits. This

is a natural arena for bringing numerous quantum optics experiments into the acoustic

domain using phononic “flying qubits.” There may also be technological applications

such as filtering and other manipulations of tightly-confined, slowly-propagating quantum

signals.

Finally, this work represents a key piece in the “hybrid quantum systems” puzzle.

Many other systems, such as optical photons and spins in semiconductors, can couple

to surface acoustic waves. Integration of several of these systems in one experiment is a

worthy, challenging goal.
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Appendix A

Surface acoustic wave modeling

We use a standard approach for modeling SAW devices, the P -matrix (see Ref. [66],

especially appendix D). This is essential for both designing devices and understanding

experiments.

A.1 P -matrix

The P -matrix is a 3×3 matrix where each element is frequency-dependent (we’re implic-

itly working in the frequency domain). It is reminiscent of the n-port microwave network

scattering matrix S [75]. The P -matrix represents a device with two acoustic ports, to

the left (port 1) and right (port 2), and one electrical port (port 3).
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A.1.1 Definition

The P -matrix relates incoming and outgoing waves at the three ports. This is easiest

to think of in terms of a transducer, where incident acoustic waves can reflect, transmit,

or be converted into electrical signals, and incident electrical signals can reflect or be

converted into acoustic waves. An acoustic wave is described by a complex amplitude

A, proportional to (and in phase with) the surface potential accompanying the acoustic

wave, such that the power in the wave is 1
2
|A|2. We identify an amplitude for the incoming

and outgoing waves at each acoustic port (1 and 2), as well as the current I and voltage

V at the electrical port (3). The P -matrix is defined according toA1,out

A2,out

I

 =

P11 P12 P13

P21 P22 P23

P31 P32 P33

A1,in

A2,in

V

 . (A.1)

This is illustrated in Fig. A.1a.

A.1.2 Physical interpretation

The upper-left portion (indices 1 and 2) is essentially a 2-port scattering matrix for

acoustic waves, in close analogy to the microwave scattering matrix S. These are the

only nonzero elements in passive components such as open spaces and mirrors (see below).

The lower-right element P33 is the electrical admittance Y of the device; in the absence

of incident acoustic waves (Ai,in = 0), I = P33V . This includes the capacitance C of the

transducer in parallel with the acoustic admittance: Y (ω) = iωC + Ya(ω).

The other elements Pi3 and P3i are related to transduction. For a short-circuited
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a

b

c

Figure A.1: P -matrix diagrams. Based on figures from Ref. [66], appendix D. a,
Illustration of the definition of the P -matrix, relating the current I and voltage V at the
electrical port with the ingoing and outgoing surface acoustic waves A at each acoustic
port. b, Cascading two P -matrices P a and P b together into a composite P matrix. Port
2 of a is placed on port 1 of b, and their electrical ports are tied in parallel. c, Generating
a 2-port microwave network from two P matrices. Port 1 of a is placed on port 1 of b,
and we generate the 2-port admittance matrix Y .
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transducer (V = 0) with an acoustic wave incident on port 1 (A2,in = 0), the induced

current in the transducer is I = P31A1,in. On the other hand, for an applied voltage V

with no incident acoustic waves (Ai,in = 0), we get outgoing acoustic waves Ai,out = Pi3V .

Due to reciprocity, we have several constraints between the elements:

P21 = P12 (A.2)

P31 = −2P13 (A.3)

P32 = −2P23. (A.4)

A.2 Device components

A useful SAW device is composed of several different components, such as transducers,

open spaces, and mirrors. It is useful to model them separately and combine them to

make a full model of a device.

A.2.1 Open space

Open space isn’t really considered a component in Ref. [66], but we found it helpful. This

is closely analogous to a transmission line as a part of a microwave network. This could

be made more complicated by considering the small reflections brought about by loss,

but it works very well as it is. Here P21 = P12 are nonzero, primarily just phase factors,

and the other elements are zero. In terms of the wave speed v and length L,

P21 = exp[−iωL/v] . (A.5)
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A.2.2 Mirror

As discussed in chapter 2, we make acoustic Bragg mirrors out of periodic lines. Each

line reflects a small amplitude (|r| ∼ 1%). For an acoustic wave with wavelength λ close

to the periodicity of the mirror, near-unity reflections occur.

In our simulations, we use the coupling-of-modes model, which is based on the cou-

pling of the left-moving and right-moving acoustic modes inside the grating. This lets us

easily use similar models for the transducer and mirrors. The calculations are somewhat

involved and beyond the scope of this thesis. For details, see Ref. [66], section 8.2.

The mirror has a frequency range where it works well (fractional bandwidth ∆f/f ≈

2|r|/π). In that range, |P11| and |P22| are close to 1, while |P21| and |P12| are small.

Outside that range, the situation reverses; the mirror becomes increasingly “transparent.”

The other elements Pi3 and P3i are zero.

A.2.3 Transducer

Transducers have the added complication of transduction, so port 3 actually gets in-

volved. We describe a simple case, the symmetric, lossless, non-reflective transducer, as

in Ref. [66] chapter 5. In this case, P11 = P22 = 0 and P21 = P12 = exp[−iωNλ0/v], with

N transducer periods and wavelength λ0. Note that, although P11 = P22 = 0 for this

“non-reflective” transducer model, in the presence of an electrical load on transducer’s
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electrical port, it may still reflect acoustic waves (I gets a contribution from P31A1,in,

and A1,out gets a contribution from P13V , where V may be nonzero). The calculations

for transduction are also beyond the scope of this thesis, but expressions for the other

elements Pi3 and P3i can be calculated.

As mentioned above, we actually use a more complicated model that allows for internal

reflections within the transducer, the coupling-of-modes model.

A.2.4 Loss

We incorporate loss in a simple way by adding an imaginary component to the wavevector

k, which equals ω/v in the lossless case. In chapters 2 and 5, we refer to losses η in Np/m.

For example, for lossy space, we use

P21 = exp[−i(ω/v − iη)L] = exp[−ηL] exp[−iωL/v] , (A.6)

whereby the amplitude is multiplied by a factor exp[−ηL].

A.3 Composite devices

With 2-port microwave networks, it’s easy to cascade networks one after the other using

matrix multiplication of their ABCD matrices [75]. We can combine P -matrices in a

similar way, although it isn’t quite so simple.
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A.3.1 1-port admittance

For a device with one transducer (and hence one electrical port), such as a one-port

resonator, often all you need to know is its admittance. As discussed above, that is

simply P33.

A.3.2 Cascading

We can cascade two P -matrices into one composite P matrix. In this case, we have two

devices, a and b, with a’s port 2 placed at b’s port 1, and their electrical ports tied in

parallel. This is shown in Fig. A.1b.

We combine them into a composite device with a P -matrix described by

P11 = P a
11 + P b

11(P a
12)2/D (A.7)

P22 = P b
22 + P a

22(P b
12)2/D (A.8)

P12 = P b
12P

a
12/D (A.9)

P13 = P a
13 + P a

12(P b
11P

a
23 + P b

13)/D (A.10)

P23 = P b
23 + P b

12(P a
22P

b
13 + P a

23)/D (A.11)

P33 = P a
33 + P b

33 − 2P a
23(P b

11P
a
23 + P b

13)/D − 2P b
13(P a

22P
b
13 + P a

23)/D (A.12)

(D = 1− P a
22P

b
11). (A.13)

This is associative but not commutative. We implement these equations in straightfor-

ward Python code centered around a class for P -matrices. It is convenient to overload an
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operator, such as __pow__, to cascade two P -matrix objects, returning a new composite

object. In typical use, we make a resonator using separate objects for the mirrors, spaces,

and transducer, making a final object as shown below.

1 resonator = mirror ** space ** transducer ** space ** mirror

2 admittance = resonator.P33

A.3.3 2-port devices

Instead of cascading two P -matrices into a composite P -matrix (tying their electrical

ports in parallel), we may instead keep the electrical ports separate and calculate the

effective 2-port microwave network of the two electrical ports. This is useful for delay

lines and filters. It is easiest to calculate the admittance matrix, which can then be

converted to other forms, such as an S matrix or ABCD matrix [75].

Consider two devices, a and b, with a’s port 1 placed at b’s port 1 (different from the

cascade case). This is pictured in Fig. A.1c. Now we convert this to an admittance matrix,

effectively assuming there are no external incoming acoustic waves. The admittance

matrix is defined by [
Ia
Ib

]
=

[
Y11 Y12

Y21 Y22

] [
Va
Vb

]
. (A.14)

147



We calculate the admittance matrix using

Y11 = P a
33 − 2P b

11(P a
13)2/(1− P a

11P
b
11) (A.15)

Y22 = P b
33 − 2P a

11(P b
13)2/(1− P a

11P
b
11) (A.16)

Y12 = Y21 = −2P a
13P

b
13/(1− P a

11P
b
11). (A.17)

For example, to make a symmetric delay line (two transducers separated by some space),

we could use code like this, where cascade_to_Y implements the above equations. In this

example, half_delay_line has the space by port 1 and the transducer by port 2.

1 half_delay_line = space ** transducer

2 admittance_matrix = half_delay_line.cascade_to_Y(half_delay_line)

Devices like this will also have unwanted capacitive coupling between the transducers;

this can be manually inserted into the model admittance matrix (consider the equiva-

lent π network) [75]. With careful design, this electrical crosstalk can be minimized.

Additionally, since the acoustic waves are much slower than electromagnetic waves, the

electrical crosstalk happens on a much faster timescale. This makes it possible to filter it

out, either directly in a time domain experiment, or using Fourier analysis in a frequency

domain experiment.
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Appendix B

Numerical quantum simulation

To understand and analyze the qubit/resonator experiments in Chapter 5, we use a

simple numerical model of an open quantum system subject to the Jaynes-Cummings

Hamiltonian. This is easy to simulate with the Python library QuTiP [47].

B.1 Physics

B.1.1 Hamiltonian

We capture the essential features of the experiments with a relatively simple model, a 2-

level qubit coupled to a 10-level harmonic oscillator in the Jaynes-Cummings model with

the rotating wave approximation [40]. In the reference frame rotating at the resonator

frequency ωr, we have the following Hamiltonian [43],

H = ~∆σ+σ− + ~g(σ+a+ σ−a
†), (B.1)
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with detuning ∆ = ωge − ωr, coupling g, qubit lowering operator σ−, and harmonic

oscillator lowering operator a. Using this rotating frame makes the forthcoming numerical

integration much faster. Note that the second excited state of the transmon is often

important because of the transmon’s relatively weak anharmonicity, but here we can

ignore it. In this experiment, we can choose ∆ and g rather freely.

B.1.2 Master equation

We are modeling an open quantum system [40, 76]; the loss in the resonator is a partic-

ularly important effect. For a pure state |ψ〉 evolving subject to a Hamiltonian H, we

integrate the Schrödinger equation,

d

dt
|ψ〉 = − i

~
H|ψ〉. (B.2)

To instead calculate the evolution of a (possibly) mixed state ρ, we integrate the Liouville-

von Neumann equation,

d

dt
ρ = − i

~
[H, ρ] , (B.3)

which is equivalent to the Schrödinger equation for a pure state ρ = |ψ〉〈ψ|. Finally,

generalizing to an open quantum system, we integrate the Lindblad master equation,

d

dt
ρ = − i

~
[H, ρ] +

∑
n

(
cnρc

†
n −

1

2

{
c†ncn, ρ

})
, (B.4)

where cn, known as “collapse operators” [47], “Lindblad operators,” or “quantum jump

operators” [76], allow us to simulate effects like loss and dephasing. In this case, we use

σ−/
√
T1, σz/

√
2Tφ, and a/

√
T1r for qubit decay, qubit dephasing, and resonator decay,
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respectively.

B.2 Python implementation

We implement this in Python 2.7.13, NumPy 1.11.3, and QuTiP 4.1.0. Below we list

some simple code including the actual values used in Chapter 5. First, we define some

parameters and basic operators.

1 t1_q = 20.67e3 # ns

2 tphi_q = 2.09e3 # ns

3 thermal_q = 0.017 # thermal population

4 visibility = 0.97 # readout: Pe_exp = Pe_ideal * visibility

5

6 n_levels = 10 # harmonic oscillator levels

7 t1_r = 148 # ns

8 thermal_r = 0.005 # thermal population

9 g = 2*np.pi*0.00732 # 2*pi*GHz

10

11 sigma_minus = qutip.tensor(qutip.sigmam(), qutip.identity(n_levels))

12 sigma_plus = qutip.tensor(qutip.sigmap(), qutip.identity(n_levels))

13 sigma_x = qutip.tensor(qutip.sigmax(), qutip.identity(n_levels))

14 sigma_y = qutip.tensor(qutip.sigmay(), qutip.identity(n_levels))

15 sigma_z = qutip.tensor(qutip.sigmaz(), qutip.identity(n_levels))

16 a = qutip.tensor(qutip.identity(2), qutip.destroy(n_levels))

Here is a simple function that generates a Hamiltonian H/~ for a given coupling and

detuning, both in units of 2π ×GHz.

1 def hamiltonian(g, delta):

2 H0 = delta*sigma_plus*sigma_minus

3 return H0 + g*(sigma_plus*a + sigma_minus*a.dag())

Here are some collapse operators for master equation evolution.
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1 t1_collapse_q = sigma_minus / numpy.sqrt(t1_q)

2 tphi_collapse_q = sigma_z / numpy.sqrt(2*tphi_q)

3 t1_collapse_r = a / numpy.sqrt(t1_r)

4 collapse = [t1_collapse_q, tphi_collapse_q, t1_collapse_r]

Here are initial states, approximate thermal states very close to the ground states.

1 rho_r = qutip.Qobj(numpy.diag([1-thermal_r, thermal_r] +

2 [0]*(n_levels-2)))

3 rho_q = qutip.Qobj(numpy.diag([thermal_q, 1-thermal_q]))

4 rho_composite = qutip.tensor(rho_q, rho_r)

From here, we perform various operations on the quantum state rho_composite.

Discrete operations A such as π pulses (sigma_x) and displacement pulses (built from

qutip.displace) are executed by transforming rho to A*rho*A.dag(). These are inter-

leved with master equation evolution (with the coupling and detuning set appropriately).

Here is an example using qutip.mesolve, evolving rho subject to some Hamiltonian H

and a list of collapse operators collapse. This returns a data structure that contains the

calculated density matrix at each point in times, though it can also return expectation

values of operators (listed in the last argument) instead.

1 times = numpy.linspace(0, 1000, 1001) # ns

2 result = qutip.mesolve(H, rho, times, collapse, [])
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Appendix C

Wigner tomography

Here we describe some details of the Wigner tomography data analysis discussed in

chapter 5. For details about the master equation numerical model, see appendix B.

C.1 Probability distribution fits

In the experiment, we measure the qubit-resonator interaction for different displacements

α of the resonator state in resonator phase space, where α is complex valued. For each α

value and each resonator state, we record the qubit state after different interaction times

with the displaced resonator state. We then use the master equation model to deduce

the diagonal elements of the displaced resonator state’s density matrix, ρ′nn(α), which

constitute a probability distribution Pn(α) (here, n = 0, 1, . . . , 9).

We measure the qubit state prior to the evolution to establish an initial mixed state in

the qubit (typical Pe ≈ 0.03). We use a cost function which takes a candidate distribution

153



of resonator populations Pn, generates the evolution of Pe predicted by the model, and

returns the summed squared error between Pe as predicted by the model and Pe as

measured in the experiment. We numerically minimize this function to arrive at a fitted

Pn(α). We assess the uncertainty in Pn by numerically calculating the second derivative

of the error with respect to each probability in a distribution. The statistical uncertainty

in each probability Pn is approximately 0.004.

C.2 Convert Wigner functions to density matrices

We use all of the Pn(α) values to determine the density matrix ρ of each state. We

fit to 4 × 4 density matrices using 15 real parameters (expanding in generalized Gell-

Mann matrices [11]). We convert the 4 × 4 matrices into 10 × 10 to accommodate

the displacement operations. We minimize a cost function which takes 15 real values,

converts them into a candidate density matrix ρ, displaces ρ by each experimental α

value, and compares the diagonal elements of the displaced ρ to the experimental Pn(α)

values. In this case, we directly obtain variance-covariance matrices which establish

the uncertainties in each parameter (typically ≈ 0.008, which translates to a similar

error in each element of ρ). The fitted density matrices typically have small negative

eigenvalues due to noise (≈ −0.02); we truncate these to zero and renormalize the density

matrices. Finally, we compute the fidelities by comparing to the ideal pure states |ψ〉,

F =
√
〈ψ|ρ|ψ〉. We estimate the error in the fidelity using Monte Carlo error propagation;

the dominant source is from fitting ρ, not Pn(α).
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Appendix D

Experimental setup

In this appendix, we document some details of the experimental setup, primarily for the

qubit experiments in chapters 3 and 5. This setup is based on Refs. [85, 52], built using

custom electronics designed by John Martinis at UCSB.

The cryogenic experiments in chapters 2 and 4 use similar wiring, including magnetic

shields, heavy attentuation on the input lines, a cryogenic HEMT amplifier, and (in the

case of chapter 4) IR filtering. They use a vector network analyzer with suitable room

temperature attenuation and amplification.

Below, we describe each type of signal line. We display a schematic showing each

element and filter in Fig. D.1.
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Figure D.1: Schematic of experimental setup. Each type of signal line is displayed
with the corresponding filters. The temperatures correspond to stages of the dilution
refrigerator. These lines have 0 dB attenuators at 50 K and at several stages between 4 K
and the mixing chamber stage.
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D.1 Flux bias (Z, G)

We separately generate DC signals and pulses; the DC signals are heavily filtered, and

the pulses pass through attenuators and filters. They are combined with custom bias

tees at the mixing chamber stage.

We generate the qubit Z and coupler G flux pulses using a custom digital to analog

converter (DAC) board with 1 Gs/s sampling rate followed by 110 MHz Gaussian filters.

The DC biases for the flux lines are generated by a low-noise voltage source (FastBias

card) controlled by a DAC board. The voltage is converted to a current at 4 K with an

RC filter acting as a bias resistor, 1.5 kΩ for Z and 0.75 kΩ for G (smaller to compensate

for insufficient mutual coupling on our device).

D.2 Microwave pulses (XY, D, readout)

To generate microwave pulses, we use additional custom DAC boards. Each signal line

uses two DAC channels, filtered with 240 MHz Gaussian filters, driving the I and Q

ports of an IQ mixer to modulate a continuous wave microwave source (local oscillator).

They are calibrated to minimize the microwave transmission at the carrier frequency, and

typically pulses at slightly different frequencies are generated using sideband modulation.

The qubit (XY) and SAW resonator (D) share a microwave source at 3.9 GHz, and the

readout microwave source is at 5.3 GHz. The low pass filter at the mixing chamber stage

is 4.9 GHz for XY and D and 7.5 GHz for readout.
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Not pictured in Fig. D.1, the D line also has a circulator to allow reflection measure-

ments, with the reflected output going through another circulator to a cryogenic HEMT

amplifier. We do not employ this functionality in this thesis.

D.3 Output signal chain

The output from the readout network is first amplified by a traveling wave parametric

amplifier (TWPA) [60] (MIT Lincoln Laboratory) in a magnetic shield at the mixing

chamber stage. It uses a microwave pump at 5.98 GHz, generated by a separate microwave

source. This is added to the TWPA input using a−10 dB directional coupler. The TWPA

output is amplified by a cryogenic HEMT amplifier (Low Noise Factory).

After one room temperature amplifier (Miteq AFS3), the pump signal is large enough

to saturate a second amplifier. We filter out the pump using a custom dissipative notch

filter tuned to pass the readout signal at 5.38 GHz and reject the pump signal. This

is just some carefully-assembled SMA adapters and attenuators. We then amplify the

signal again (Miteq AFS3). This signal is demodulated using the same local oscillator

used to generate the readout pulses. The demodulated signals I and Q are read by a

custom analog to digital converter (ADC) board with 1 Gs/s sampling rate. These signals

are integrated over time (a few hundred ns) to generate the readout amplitude I + iQ.
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Appendix E

Fabrication

In this appendix, we describe the fabrication techniques used to make the devices in

chapters 2, 4, and 5. All of this fabrication took place at the Pritzker Nanofabrication

Facility at the University of Chicago. Remember to think clean thoughts.

E.1 Surface acoustic wave devices

Completed devices are shown in Fig. E.1.

E.1.1 Substrate

All of the surface acoustic wave devices discussed in this thesis are fabricated on lithium

niobate substrates. We use crystal cut 128°Y-X and chemically reduced (“black”) wafers

[89]. The chemically reduced wafers have bad optical properties, but they work well for

SAW devices and make fabrication much easier:
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0.5 mm

75 µm

1 µm

Figure E.1: Completed surface acoustic wave resonators. a, Optical micrograph
of a completed chip of the same design as the one used in chapter 5. The upper and
lower regions contain the alignment marks, SU-8 pattern, and space for glue. b, Optical
micrograph of the chip in a, zoomed in on the surface acoustic wave resonator. The
transducer, center, has short coplanar waveguides connected to each side. c, Scanning
electron micrograph showing the transducer and mirror (the exact device used in chap-
ter 5). d, Photograph of the array of resonators designed for flip-chip coupling, prior to
dicing. The SU-8 is visible as white highlights, especially in the right half of the image.

160



• They do not stick to hot plates due to thermally-induced polarization.

• They do not exhibit violent electrostatic discharge between patterned electrodes

when heated.

• They are easier to image in an SEM.

Lithium niobate is much more brittle than silicon or sapphire, so care must be taken

to avoid shattering the sample. Avoid accidentally chipping the edges. When placing a

sample on a hot plate above 115 ◦C, first place it on a 115 ◦C hot plate for 30 s to avoid

thermal shock.

E.1.2 Metal pattern

For 4 GHz devices, the wavelength λ is 1 µm, necessitating 250 nm wide metal lines and

spaces. We create those patterns with electron-beam lithography. We use a liftoff process

to avoid roughening the substrate surface with an etch process.1 In this case, we use a

poly(methyl methacrylate) (PMMA) bilayer to attempt to achieve an undercut, but a

single PMMA layer should also work. We define the entire metal pattern in one layer,

including ground planes and coupling circuitry.

PMMA application

1. Sonicate in acetone and isopropyl alcohol (IPA) and rinse with deionized (DI) water.

1We also made 700 MHz devices using photolithography and inductively coupled plasma etching
(see qubit process below). The devices worked very well, but we observed the etch roughened the
underlying lithium niobate surface. We measured (with atomic force microscopy) root-mean-square
roughness 0.2 nm before processing and 0.5 nm after the etch.
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2. Heat on 115 ◦C hot plate for 10 minutes.

3. Spin on PMMA 495K A4 (5000 rpm, 45 s) (150 nm).

4. Heat on 180 ◦C hot plate for 5 minutes.

5. Spin on PMMA 950K A2 (1500 rpm, 45 s) (100 nm).

6. Heat on 180 ◦C hot plate for 5 minutes.

7. Thermally evaporate gold conduction layer (10 nm, 0.05 nm/s).

Exposure

We expose using a Raith EBPG5000 Plus at 100 kV. We write fine features at 5 nA to

15 nA and coarse features (such as inductors, ground planes, and alignment marks) at

100 nA to 150 nA. A typical dose is 400 µC/cm2, where writing a (2 mm)2 ground plane

takes around 2 minutes. It is critical to use proximity effect correction; we use GenISys

BEAMER and TRACER.

Development

1. Remove gold with Gold Etchant TFA (Transene) (10 s) and rinse with DI water.

2. Develop in mixture of 1 part IPA, 1 part methyl isobutyl ketone (MIBK), 60 s.

3. Rinse in IPA, 60 s.

Metalization

The transducers, mirrors, and circuitry are all defined by patterned aluminum, a familiar

and friendly superconductor. We use electron-beam evaporation to deposit the aluminum,
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typically at 1× 10−7 mbar and 0.2 nm/s. Immediately before loading in the evaporator,

we perform a downstream oxygen clean which etches ≈10 nm PMMA to remove resist

residue. Deposit at normal incidence without sample rotation.

Liftoff

We use an overnight (12 hours) liftoff in acetone, although heated N-methyl-2-pyrrolidone

(NMP) should also work. It proved helpful to do liftoff with the sample suspended

face-down, and (with the sample in a clean acetone solution and with all of the visible

extraneous aluminum gone) to use sonication. We then rinse with IPA and DI water.

To remove PMMA residue from the metal lines, we perform another downstream oxygen

clean.

E.1.3 Flip-chip spacers

For flip-chip devices, we pattern the SU-8 spacers on the lithium niobate devices following

the metal pattern (see below), prior to dicing.

E.2 Qubits and coplanar waveguide resonators

We fabricate the qubit and coplanar waveguide resonator devices on double side pol-

ished c-axis sapphire. We first coat the substrate in a blanket aluminum film and then

etch a pattern into the aluminum with photolithography and inductively coupled plasma

(ICP) etching. The qubit devices have several additional liftoff steps to define crossovers,
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alignment marks, Josephson junctions, and bandages. These processes are adapted from

refs. [28, 52]. The qubit process is illustrated in Fig. E.2.

E.2.1 Base metal pattern

1. Sonicate in acetone and IPA and rinse with DI water.

2. Heat on 200 ◦C hot plate for 10 minutes.

3. Deposit 100 nm aluminum (1× 10−7 mbar, 0.2 nm/s).

4. Photolithography (AZ MiR 703).

5. ICP etch the aluminum (Cl2/BCl3/Ar).

6. Soak in DI water for 10 minutes to passivate residual Cl.

7. Downstream oxygen clean, etching ≈0.1 µm photoresist.

8. Sonicate in 80 ◦C NMP and rinse with IPA and DI water.

Aluminum etch

We etch the aluminum in an Advanced Vacuum / PlasmaTherm Apex ICP etcher with

the following parameters. The larger exposed areas (easily visible to the naked eye)

visibly clear in about 12 s.

ICP Power 400 W
Bias Power 33 W

Pressure 5 mTorr
Cl2 Flow 30 sccm

BCl3 Flow 30 sccm
Ar Flow 10 sccm

Time 24 s
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0.2 mm 0.2 mm 0.2 mm
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1 µm1 mm

Figure E.2: Qubit fabrication. a-c, Optical micrographs summarizing the qubit fab-
rication process. a, The base aluminum is patterned. b, The SiO2/aluminum crossovers
are complete. c, The junctions and bandages are complete. d, Composite optical micro-
graph of a full complete die. e-f, Scanning electron micrographs (perspective view) of
fabricated Josephson junctions. e, Typical qubit junction. f, Typical coupler junction.
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E.2.2 Crossovers and alignment marks

For the qubit devices, we follow the base metal pattern with several liftoff layers. Each

photolithography layer uses AZ MiR 703 resist for simple “tear”-style liftoff. Each deposi-

tion uses electron beam evaporation at about 1× 10−7 mbar. Each liftoff step (including

the Josephson junctions) uses the same NMP process (see below).

1. SiO2 for crossover dielectric (200 nm, 0.3 nm/s).

2. Al for crossover metal (230 nm, 1 nm/s), preceded by in situ Ar ion mill.

3. Ti+Au for alignment marks (10 nm at 0.1 nm/s and 150 nm at 0.2 nm/s).

4. Josephson junctions (see below), not preceded by in situ Ar ion mill.

5. Al for bandages (200 nm, 1 nm/s), establishing galvanic connections between the

base metal and the junction metal, preceded by in situ Ar ion mill.

E.2.3 Josephson junctions

This process is adapted quite directly from ref. [52]; see more details there. In this process,

we create a freestanding bridge [27] of PMMA using a bilayer of PMMA on methacrylic

acid (MAA) copolymer. In our case, we observed a more reliable process when we use

the “bandage” technique [28] instead of ion milling the Dolan bridge PMMA pattern.

We use the same process to make the qubit and coupler junctions simultaneously.

PMMA application

1. Sonicate in acetone and IPA.
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2. Heat on 115 ◦C hot plate for 10 minutes.

3. Spin on MAA EL9 (1500 rpm, 45 s) (500 nm).

4. Heat on 160 ◦C hot plate for 10 minutes.

5. Spin on PMMA 950K A4 (2000 rpm, 40 s) (300 nm).

6. Heat on 160 ◦C hot plate for 10 minutes.

7. Thermally evaporate gold conduction layer (10 nm, 0.05 nm/s).

Exposure

We expose using a Raith EBPG5000 Plus at 100 kV and 1 nA. We use a dose of

2000 µC/cm2 for contact pads, 1850 µC/cm2 for removing PMMA and MAA, and 350 µC/cm2

for removing MAA only (for undercuts). We do not use proximity effect correction.

Development

1. Remove gold with Gold Etchant TFA (Transene) (10 s) and rinse with DI water.

2. Develop in mixture of 3 part IPA, 1 part MIBK, 40 s.

3. Rinse in IPA, 10 s.

Metalization

1. Downstream oxygen clean (etching ≈10 nm PMMA).

2. Pump in evaporator load lock for 12 hours.

3. Deposit 65 nm aluminum (1× 10−7 mbar, 1 nm/s, 60° tilt).

4. Oxidize at 30 mbar (15% O2 in Ar) for 50 minutes.
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5. Deposit 100 nm aluminum (1× 10−7 mbar, 1 nm/s, normal incidence).

E.2.4 Repeated processes

We list these procedures with optional DI water rinses. Skip those rinses if the sample

has both gold and aluminum exposed to avoid electrochemical reactions.

Photoresist pattern

We use this standard process to pattern AZ MiR 703 positive i-line photoresist for both

the etch and “tear” liftoff processes used above. We use a Heidelberg MLA150 maskless

aligner at 375 nm with a typical exposure of 100 mJ/cm2 to 200 mJ/cm2 depending on

the underlying materials.

1. Sonicate in acetone and IPA and rinse with DI water.

2. Heat on 115 ◦C hot plate for 10 minutes.

3. Spin AZ MiR 703 (4500 rpm, 30 s) (900 nm).

4. Heat on 90 ◦C hot plate for 1 minute.

5. Expose pattern.

6. Heat on 115 ◦C hot plate for 1 minute.

7. Develop in AZ 300 MIF, 1 minute.

8. Rinse in DI water.

If the pattern is for liftoff, we perform a downstream oxygen clean, etching ≈100 nm

photoresist, immediately prior to deposition.
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Liftoff

This is for both the photoresist “tear” liftoff and the PMMA junction liftoff. Preheat

the NMP solutions and use a heated water bath rather than a hot plate. We suspend

the sample face-down and do not use sonication.

1. Soak in 80 ◦C NMP, 3 hours.

2. Spray with NMP to remove most of the film/resist (≈30 s).

3. Soak in new 80 ◦C NMP, 1 hour.

4. Rinse in IPA, then DI water.

Flip-chip spacers (SU-8)

This process creates robust, solvent-resistant epoxy spacers using negative SU-8 photore-

sist. Once cured, it is very difficult to remove. Our spacers are 6.5 µm thick.

1. Sonicate in acetone and IPA and rinse with DI water.

2. Heat on 115 ◦C hot plate for 10 minutes.

3. Spin SU-8 3005 (300 rpm, 10 s, then immediately 4000 rpm, 45 s).

4. Heat on hot plate: 65 ◦C for 30 s, then immediately 95 ◦C for 2 minutes.

5. Expose pattern (375 nm, 500 mJ/cm2).

6. Heat on hot plate: 65 ◦C for 30 s, then immediately 95 ◦C for 2 minutes.

7. Develop in SU-8 developer, 90 s.

8. Rinse in new SU-8 developer, 30 s, then IPA, 30 s.

9. Downstream oxygen clean (etching ≈100 nm photoresist).
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10. Heat on 160 ◦C hot plate for 5 minutes to cure.
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