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Abstract

Internal Wave Generation by Convection

by

Daniel Michael Lecoanet

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eliot Quataert, Chair

In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This
can occur in the Earth’s atmosphere, where the troposphere is convective and the stratosphere is
stably stratified; in lakes, where surface solar heating can drive convection above stably stratified
fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor,
but the water above is stably stratified due to salinity gradients; possible in the Earth’s liquid
core, where gradients in thermal conductivity and composition diffusivities maybe lead to different
layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective
and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified
fluids. The characterization of the internal waves generated by convection is an open problem in
geophysical and astrophysical fluid dynamics.

Internal waves can play a dynamically important role via nonlocal transport. Momentum trans-
port by convectively excited internal waves is thought to generate the quasi-biennial oscillation
of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate
global climate models. Angular momentum transport by convectively excited internal waves may
play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of
a massive star, convectively excited internal waves may transport even energy to the surface lay-
ers to unbind them, launching a wind. In each of these cases, internal waves are able to transport
some quantity—momentum, angular momentum, energy—across large, stable buoyancy gradients.
Thus, internal waves represent an important, if unusual, transport mechanism.

This thesis advances our understanding of internal wave generation by convection. Chapter 2
provides an underlying theoretical framework to study this problem. It describes a detailed cal-
culation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by
turbulence. We use a Green’s function approach, in which we convolve a convective source term
with the Green’s function of different internal gravity waves. The remainder of the thesis is a
circuitous attempt to verify these analytical predictions.

I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code
suitable for this study. I helped develop the Dedalus code framework to study internal wave gen-
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eration by convection. Dedalus can solve many different partial differential equations using the
pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus’ ability to solve different
equations used to model convection in astrophysics. I consider both the propagation and damp-
ing of internal waves, and the properties of low Rayleigh number convective steady states, in six
different equation sets used in the astrophysics literature. This shows that Dedalus can be used to
solve the equations of interest.

Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astro-
physics code Athena in a standard Kelvin–Helmholtz instability test problem. Dedalus performs
admirably in comparison to Athena, and provides a high standard for other codes solving the fully
compressible Navier–Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convec-
tive adjacent to a stably stratified region, by studying convective mixing near carbon flames. The
convective overshoot and mixing is well-resolved, and is able to generate internal waves.

Confident in Dedalus’ ability to study the problem at hand, Chapter 6 describes simulations
inspired by water experiments of internal wave generation by convection. The experiments exploit
water’s unusual property that its density maximum is at 4◦C, rather than at 0◦C. We use a similar
equation of state in Dedalus, and study internal gravity waves generation by convection in a water-
like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill
theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately
reproduces the waves generated in the simulations, validating the calculations of Chapter 2.
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Chapter 1

Introduction

1.1 The Importance of “Sub-Grid Scale” Dynamics
An important characteristic of fluid dynamics is that features on small length scales can influ-

ence features on large length scales. For example, in two dimensional flows, small vortices merge
to form large vortices, concentrating energy on large scales (e.g., Pedlosky 1992). Small-scale
turbulent fluctuations can generate large-scale magnetic fields via the α-effect (Moffatt 1978). The
release of magnetic energy in small magnetic reconnection regions is thought to drive coronal mass
ejections (e.g., van Driel-Gesztelyi et al. 2014). A significant portion of the ocean’s tidal dissipa-
tion is due to rough topography of the ocean floor (Egbert & Ray 2000). The convective heat flux
in the Earth’s core may be limited by Ekman boundary layers (Julien et al. 2016). Stellar outflows
and explosions play a crucial role in galactic gas dynamics (Hopkins et al. 2014).

One is often most interested in the large scale features of a system. The influence of small scale
phenomena means the large scales cannot be studied in isolation. It is infeasible to capture the full
range of scales in astrophysical and geophysical systems using either experiments or numerical
simulations. For this reason, small-scale effects are always described using a model. In numerical
simulations, these are known as “sub-grid scale” models, as they describe effects not captured by
the chosen numerical discretization.

The goal of this thesis is to develop a sub-grid scale model of convective excitation of internal
waves. Although, as described in Chapter 2, internal waves are most efficiently excited on length
scales comparable to the dominant length scale of convection (i.e., large length scales), Chapter 6
shows that these waves are strongly damped. The waves which might have important dynamical
consequences are instead excited by small scale, high frequency convective motions. These small
scale fluctuations must be modeled, as it is currently infeasible to study their properties either
experimentally or numerically.

A sub-grid scale model of convective excitation of internal waves can be coupled with a model
for wave propagation, wave damping, and wave-mean flow interaction to study the effects the
waves have on their surroundings. The quasi-biennial oscillation (QBO) is thought to caused by
the interaction of convective excited internal gravity waves with a mean flow (Baldwin et al. 2001).
However, I am not aware of any model demonstrating that a realistic wave spectrum can interact
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with a zonal wind to produce the amplitude and period of the QBO. In fact, simplified models find
the mean flow is not robust, and depends sensitively on the parameters describing wave excitation
and damping (e.g., Rogers et al. 2008).

Quataert & Shiode (2012) and Shiode & Quataert (2014) suggest internal waves generated by
convection may drive mass-loss in the last year of a star’s life. At the end of a star’s life, oxygen and
neon burning lead to extremely vigorous core convection. This convection excites internal waves,
which propagate outward, tunneling through a region of the star, and eventually becoming sound
waves near the surface. These waves damp in near the surface of the star, sometimes depositing
enough energy to launch a wind (Quataert et al. 2016). This could help explain observations of
some luminous supernovae (e.g., Smith & McCray 2007). However, the waves which could reach
high enough amplitudes to launch a wind are hypothesized to be excited by small-scale convective
eddies. The amplitudes of these waves are highly uncertain, and can only be predicted with sub-
grid scale models.

In addition to the lead author papers contained in this thesis and summarized in section 1.2, I
also collaborated with Jim Fuller on two papers studying the astrophysical implications of inter-
nal waves generated by convection. In Fuller et al. (2014), we calculate the angular momentum
transport by internal waves in red giant branch (RGB) stars. The Kepler and CoRoT telescopes
have identified rotational mode splitting in the global oscillation modes of RGB stars. These mea-
surements suggest the stably stratified core rotates more slowly than predicted by models which
assume no angular momentum transport between the core and convective envelope. Whether or
not internal waves can efficiently transport angular momentum depends on the assumed excitation
spectrum: the spectrum predicted by the analytic arguments in Chapter 2 does not contain enough
wave power to yield much angular momentum transport; however, other proposed spectra (e.g.,
Rogers et al. 2013) do contain enough wave power.

In Fuller et al. (2015), we calculate the angular momentum transport by internal waves in
evolved massive stars, similar to those studied in Quataert & Shiode (2012) and Shiode & Quataert
(2014). Instead of studying the outward propagating waves, we instead study the inward propaga-
tion of waves excited by convective shells. In contrast to Fuller et al. (2014), we found the wave
transport of angular momentum in late burning phases does not depend sensitively on the assumed
wave spectrum. In particular, we predict the waves may be able to spin up the core during oxygen
or silicon shell burning. The predicted rotation rates are consistent with the observed rotation rates
of young neutron stars, assuming negligible angular momentum transport out of the core during
the subsequent supernova.

The sensitivity of large-scale phenomena on the details of how small-scale convection excites
internal waves underscores the importance of developing and validating a sub-grid scale parame-
terization of these waves.

1.2 Outline
The remainder of this thesis is divided into five chapters, which represent the majority of my

first author papers as a graduate student (one additional first author paper is sufficiently unrelated
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that it is not included here; Lecoanet et al. 2012). In addition to these first author papers, I have
three second author papers and two third author paper that are described briefly in this introduction
but that are not included as part of the thesis. I also contributed to Marcus et al. (2015), which is
unrelated to the work presented in this thesis.

In Chapter 2, I propose a sub-grid scale model of internal gravity wave generation by con-
vection. This extends and clarifies a similar calculation in Goldreich & Kumar (1990). I use
the Lighthill theory of wave excitation by turbulence, in which I convolve a Green’s function as-
sociated with the internal gravity wave of interest with a source term related to the convective
turbulence. Goldreich & Kumar (1990) calculates the wave eigenfunctions and Green’s function
assuming a discontinuous boundary between the convective and stably stratified regions. In this
Chapter, I consider two parameterizations of a continuous boundary, assuming the Brunt–Väisälä
(buoyancy) frequency profile is either piece-wise linear, or is given by a tanh near the edge of the
convection zone. I find that the waves couple more efficiently to the convection for smooth tran-
sitions than for the discontinuous boundary studied in Goldreich & Kumar (1990). The work in
Chapter 2 has previously been published in Lecoanet & Quataert (2013).

The next four chapters build and test computational machinery necessary to verify the pre-
dictions of Chapter 2 via numerical simulation. I helped develop the pseudo-spectral simulation
framework, Dedalus (Burns et al. 2017), to study internal wave generation by convection. Dedalus
can solve nearly arbitrary partial differential equations, which are specified in plain text. I con-
tributed to the derivation of new numerical methods for implementation in pseudo-spectral codes
like Dedalus. Vasil et al. (2015) presents a new Jacobi polynomial basis that can represent arbitrary
tensors on a disk. Linear operators such as differentiation act sparsely on this basis. I am currently
working to derive a similar Jacobi polynomial basis to represent the radial direction in spherical
simulations which extend to r = 0 (Vasil et al. 2016). This uses the properties of spin-weighted
spherical harmonics to represent the angular dependence of arbitrary tensors.

Chapter 3 demonstrates Dedalus can solve many different sets of equations used to model astro-
physical and geophysical fluid dynamics. I solve three classes of equations: the fully-compressible
Navier–Stokes equations, the pseudo-incompressible equations, and the anelastic equations; each
using either a temperature diffusion or entropy diffusion model of thermal conduction. The pseudo-
incompressible simulations use the energy-conserving formulation that I helped develop in Vasil
et al. (2013). In each case, I calculate internal gravity wave eigenmodes and low Rayleigh num-
ber convective steady states. Although the equations are formulated in very different ways, they
should give similar solutions in the limit of a nearly adiabatic background (and low Mach number),
or for perturbations with wavelength λ much smaller than the local pressure scale height H. I find
excellent agreement between the different solutions when the corresponding equations should be
equivalent. However, the pseudo-incompressible equations with temperature diffusion give much
different solutions (especially convective steady states) than the other equations. This is because
the approximation to the equation of state employed by the pseudo-incompressible equations is
not valid for low Mach number flows. The work in Chapter 3 has previously been published in
Lecoanet et al. (2014).

In Chapter 4 I study the accuracy of Dedalus. I run a series of two dimensional Kelvin–
Helmholtz (KH) instability test problems in both Dedalus and Athena, a popular Godunov code
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used in the astrophysics community (Gardiner & Stone 2008; Stone et al. 2008). I use the same
fully-compressible Navier–Stokes equations in the two codes, using the formulation in Dedalus
developed in Chapter 3. Simulations which start with constant initial density are easy for both
codes to resolve. In all cases, both codes arrive at very similar solutions. Dedalus converges spa-
tially very rapidly, with errors dominated by temporal discretization at high resolutions. However,
Athena and Dedalus get different answers when the initial density changes by a factor of two. In
this case, Athena develops a secondary instability not present in the Dedalus simulations. This sec-
ondary instability diminishes in amplitude as the resolution of the Athena simulations increases.
At very high resolutions, the secondary instability disappears from Athena, and I find similar accu-
racy to Dedalus (although at eight times higher resolution). The secondary instability is a physical
instability which also occurs in Dedalus simulations reinitialized at intermediate times with data
from the Athena simulations. Most striking, however, are Athena simulations with no explicit
diffusion, which are characterized by excessive irreversible mixing. Increasing the resolution of
the simulation causes more irreversible mixing. This is counter to the expectation that one should
approach the ideal hydrodynamic result of no irreversible mixing as the resolution increases. The
work in Chapter 4 has previously been published in Lecoanet et al. (2016).

Next, in Chapter 5, I demonstrate that Dedalus can simulate a convective region adjacent to a
stably stratified region. I initialize a Boussinesq simulation with a buoyancy frequency profile in-
spired by a 1D MESA simulation (Paxton et al. 2015) of a carbon flame that develops in the course
of evolving a 9.5M� zero-age main sequence star. The heating from nuclear burning within the
flame (implemented with a constant-in-time volumetric heating term) drives convection above the
flame. The Chapter focuses on the mixing of the flame region via convective overshoot. I evolve
a passive tracer field which quickly approaches a self-similar solution. This self-similar solution
can be inverted to solve for an effective diffusion profile, which is the sum of the microphysical
diffusion we use for numerical stability, and an effective convective diffusion. Surprisingly, the
convective diffusion drops by orders of magnitude within the convection zone itself. This means
there is little diffusion due to convective mixing within the flame. Although the convection gen-
erates internal waves in the stable region, the steep rise of the buoyancy frequency into the stable
region causes the waves to damp very quickly, making it difficult to study the waves themselves
in these simulations. The work in Chapter 5 has been submitted for publication in Astrophysical
Journal Letters.

Finally, in Chapter 6 I simulate internal wave generation by convection in Dedalus. The sim-
ulations are inspired by a series of water experiments I helped analyze (Le Bars et al. 2015). The
experiments exploit water’s usual equation of state: Water’s density maximum is at 4◦C, rather
than 0◦C. In the experiment, a narrow tank is filled with water near 4◦C, then the bottom is cooled
to 0◦C and the top is heated to 25◦C. Between 0◦C and 4◦C the water is convective, and above 4◦C
the water is stably stratified. The system evolves into a self-consistent convective steady state, and
the convection excites internal gravity waves in stably stratified region. The convection and waves
are studied using particle imaging velocity and with sensitive thermistors. Chapter 6 describes
Dedalus simulations similar to these experiments. A major difference between the simulations and
experiments is the lack of heat losses on the side boundaries in the simulations. This causes the
large scale circulation in the convection zone of the simulation to be oriented differently than the
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large scale circulation in the experiments. However, the wave spectra are similar enough in the
simulations and experiment to believe the Dedalus results.

The main result of Chapter 6, and indeed of this thesis, is that the Lighthill theory of wave
excitation by turbulence (used in Chapter 2) is an effective description of internal wave generation
by convection. To demonstrate this, I run a model simulation of the simulation inspired by the
water experiment. The model simulation solves the linearized wave equation with a source term
related to Reynolds stresses in the convection zone. In Chapter 2, I guess the form of this source
term, but now I can use the actual value of the Reynolds stresses from the full simulation. At every
time step and position in the simulation, I calculate the Reynolds stresses in the full simulation,
and use them as a source term for the simplified simulation. This then makes a prediction of the
wave field in the stable region. The predicted wave field matches the true wave field in the full
simulation very closely. This validates the analytic approach developed in Chapter 2. The work in
Chapter 6 has previously been published in Lecoanet et al. (2015).

Ongoing work includes an effort to recover the wave excitation spectrum derived in Chapter 2
in numerical simulations. This is very difficult because the prediction is only valid for waves with
frequencies much lower than the buoyancy frequency, and on length scales much smaller than the
convective driving length scale. The former requires long integrations due to the disparate time
scales in the problem, while the latter requires low diffusivities and high resolutions to resolve
small scale convective turbulence. Our phenomenological turbulence model is only valid in 3D. I
have run a series of fully-compressible simulations (using the results of Chapter 3) with convection
zones comprising multiple density scale heights, and have generated preliminary wave excitation
spectra. However, it is difficult to compare these to the predictions in Chapter 2 because we can
only study frequencies close to the buoyancy frequency, and the convection has a limited “inertial
range.” Nevertheless, I find the sub-grid scale model of Chapter 2 promising given experimen-
tal work showing that our assumption of a Kolmogorov spectrum holds at small scales in high
Rayleigh number experiments (Niemela et al. 2000).
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Chapter 2

Internal Gravity Wave Excitation by
Turbulent Convection

2.1 Introduction
Internal gravity waves (hereafter, IGWs) are a class of waves in a stably stratified background

in which buoyancy serves as a restoring force. IGWs propagate in radiative zones in stars and
can influence composition, angular momentum, and energy transport within stars. IGWs could
also be important diagnostics of stellar structure—the detection of standing IGWs (g-modes) has
been a long-standing goal of helioseismology (Severnyi et al. 1976; Brookes et al. 1976), as g-
modes provide better information about the core of the Sun than the more easily observed global
sound waves (p-modes) (e.g., Turck-Chièze et al. 2001). However, IGWs are evanescent in the
convection zone, so their surface manifestation is expected to be small.

IGWs have been invoked to explain the observation that F-stars have a smaller than expected Li
abundance (e.g., Talon & Charbonnel 1998). Garcia Lopez & Spruit (1991), hereafter GLS91, first
suggested that mixing from IGWs could enhance diffusion of Li, leading to lower Li abundances.
Charbonnel & Talon (2005) invoke IGWs to explain both the Li abundances of solar-type stars and
the rotation of the solar interior. When propagating through a differentially rotating star, selec-
tive damping of modes can deposit the wave’s angular momentum and modify the star’s rotation
profile (e.g., Kumar & Quataert 1997; Zahn et al. 1997; Talon et al. 2002). Note, however, that
IGWs generally have an anti-diffusive effect, accentuating angular velocity gradients. This anti-
diffusive behavior leads to the quasi-biennial oscillation (QBO) in the Earth’s atmosphere, and has
been studied extensively by the atmospheric science community (Baldwin et al. 2001; Fritts &
Alexander 2003).

Massive stars have convective cores surrounded by a radiative envelope. Quataert & Shiode
(2012) suggested that extremely vigorous convection within the last ∼ year of a massive star’s life
could generate a super-Eddington IGW flux and drive significant mass loss. Earlier in a massive
star’s life, the angular momentum carried by IGWs may generate substantial differential rotation,
perhaps mirroring the QBO in the Earth’s atmosphere (Rogers et al. 2012).

In some stars, IGWs are linearly unstable, driven by, e.g., the ε or κ mechanisms (Unno 1979).
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Even absent such linear driving, however, IGWs are thought to be generated by turbulent con-
vection. Although IGWs are evanescent in a convective region, they can be excited by Reynolds
stresses or entropy fluctuations associated with the convection. A related excitation mechanism
is IGW generation by overshooting convective plumes which penetrate into the radiative region.
Numerical simulations of a radiative zone adjacent to a convection zone find efficient generation
of IGWs (e.g., Rogers & Glatzmaier 2005a; Meakin & Arnett 2007; Brun et al. 2011). Although
simulations reported in Rogers & Glatzmaier (2005a) & Meakin & Arnett (2007) show power dis-
tributed over a wide range of frequencies and wavelengths, the power spectra in Brun et al. (2011)
exhibit ridges corresponding to discrete g-modes.1 Simulations often require artificially high dif-
fusivities in the radiative zone to maintain a strong convective flux, and thus IGWs are artificially
strongly damped in the radiative zone. This complicates estimating IGW fluxes or quantitatively
studying the effects of IGWs on the stellar structure.

There have been several efforts to analytically estimate the flux of IGWs stochastically excited
by turbulent convection. These models are essential for determining the resulting efficiency of the
mixing, angular momentum transport, or mass-loss produced by IGWs. Press (1981, hereafter P81)
and GLS91 match pressure perturbations in the convective region to pressure perturbations in the
waves, whereas Goldreich & Kumar (1990, hereafter GK90) and Belkacem et al. (2009, hereafter
B09) calculate eigenmodes and derive how their amplitudes change using an inhomogeneous wave
equation. P81, GLS91, and GK90 all model the convective region using mixing length theory,
assuming a Kolmogorov turbulence spectrum. B09 uses an energy spectrum calculated from a
direct numerical simulation of the solar convection zone. Each of these papers predicts a different
IGW power spectrum.

In this chapter, we calculate the IGW flux generated by turbulent convection and clarify the
relationship between different predictions in the literature. In Section 2.2, we state our assumptions
regarding the background state, and describe some properties of IGWs. Our main calculation is in
Section 2.3, where we introduce our formalism for calculating the IGW flux. Our formalism relies
on calculating a Green’s function using the eigenmodes of the system (also discussed in P81). We
relate our method to GK90’s in Appendix 2.C. In Section 2.3.5 we calculate the IGW flux and
rms wave displacements for both smooth and discontinuous radiative-convective transitions. Next,
we show that our results for a discontinuous transition can be derived more heuristically using
pressure balance arguments (Section 2.4); we also make detailed comparisons to previous results
(Section 2.5). Finally, in Section 2.6 we show how our results increase the predicted IGW flux in
stars, and discuss some implications of this increased wave flux.

2.2 Background State and Perturbation Equations
In this chapter we consider a simple model of a radiative zone adjacent to a convection zone.

We assume that the length scales of interest are small in comparison to the stellar radius, i.e., we are

1The simulations of Rogers & Glatzmaier (2005a) and Brun et al. (2011) solve the anelastic equations, which do
not conserve energy (Brown et al. 2012). This could potentially produce errors in the IGW amplitudes and/or power
spectra.
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Convection Zone

Transition Region

Radiative Zone

g d

N 2 = N 2
0

N 2 = −ω2
c

z = zi

Figure 2.1: A schematic of our problem setup. The radiative-convective interface is at z = zi, where zi

is close to zero, and has width d. Gravity points downward in the z direction. The convection zone is the
region z > zi and the radiative zone is the region z < zi. We will use ξz,rad to denote the part of the vertical
displacement within the radiative zone. If d is small, the waves see the radiative-convective transition as
discontinuous; we will use superscript D to denote results for a discontinuous transition. If d is large, the
waves see the radiative-convective transition as smooth. In this case, the results depend on the N2 profile
very close to zi. We consider N2 parameterized by a tanh profile, which is a very smooth transition; we
will use superscript T to denote results for the tanh profile. We also consider a piecewise linear N2 profile,
which is the most abrupt possible continuous transition; we will use superscript L to denote results for the
piecewise linear profile. Eqns. 2.46, 2.58, & 2.59 give our IGW flux estimates for discontinuous, tanh, and
piecewise-linear N2, respectively.

in the local limit, so we use cartesian geometry, where ez is the direction of gravity. In our model,
the radiative zone is the region −L < z < zi, and the convection zone is the region zi < z < L,
where zi is the location of the radiative-convective interface, and both regions have a horizontal
areaA. We take L and

√
A to be much larger than any other length scale in the problem, and will

assume zi is close to zero. In Figure 4.10 we sketch a schematic of our model. Using a domain
with finite vertical extent provides simpler boundary conditions, but yields the same results as an
infinite domain.

Furthermore, we employ the Boussinesq approximation. This is appropriate if the wave gener-
ation occurs close to the radiative-convective boundary, and if we are only concerned with IGWs
near this boundary. We will see that the wave generation primarily occurs in a region with height
approximately equal to the size of the energy bearing convective motions, which we assume is
∼ H the pressure scale height. Although the Boussinesq approximation is only rigorously valid on
length scales smaller than H, we recover results similar to those presented in GK90 who used the
fully compressible equations. We thus believe that our results would not change significantly if we
used the fully compressible equations.

We model the radiative region as a stably stratified atmosphere with a squared buoyancy fre-
quency N2

0 . The convective region is much more complicated due to turbulent motions. We de-
compose the fluid properties in the convection zone into time averaged and fluctuating components.
We assume the time averaged velocity is zero, and there is a very small mean stratification with
squared buoyancy frequency −ω2

c . Because the convective region is nearly adiabatic, ωc � N0.
We treat the fluctuating components of the velocity and entropy in the convective region as source
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terms in the wave equation. In practice, we only include source terms due to the Reynolds stress
in our analysis; source terms due to entropy fluctuations are of the same size or smaller than the
Reynolds stress terms (P81, GK90).

With these assumptions, the equation for the evolution of the vertical displacement ξz is

∇
2 ∂

2

∂t2 ξz + N2
0∇

2
⊥ξz = 0, (2.1)

in the radiative region, and

∇
2 ∂

2

∂t2 ξz − ω
2
c∇

2
⊥ξz = S = −∇2Fz +

∂

∂z
∇ · F, (2.2)

in the convective region. We take ∇⊥ = ∂xex +∂yey to be the horizontal part of the gradient operator
(perpendicular to gravity), and S to be the source term due to the Reynolds stress F.

There are three parts of the Reynolds stress F on the RHS of eqn. 2.2: the convection-convection
term, ∇ · (ucuc); the wave-convection terms, uc · ∇∂tξ + (∂tξ) · ∇uc; and the wave-wave term,
(∂tξ) · ∇(∂tξ). In this chapter, we will only consider the convection-convection term, taking

F = ∇ · (ucuc). (2.3)

Nonlinearities from the wave-wave term are only important if kzξz & 1. We will find later that
this condition is not satisfied in the convection zone, although wave breaking does occur within
the radiative zone. The first wave-convection interaction term, uc · ∇∂tξ, is the advection of wave
energy by convection, and thus does not change the wave energy. The second part, (∂tξ) · ∇uc,
gives the effect of the strain associated with the convection on the wave, and can contribute to
wave generation. However, we find that the wave flux is smaller than the convective flux, so the
wave velocities are smaller than the convective velocities. Furthermore, one can check that the
(∂tξ) · ∇uc is also smaller than the other linear (in ξ) terms in our eigenvalue equation (e.g., using
eqn. 2.29 or eqn. 2.30). Thus, it is consistent to take F = ∇ · (ucuc).

We now discuss the wave solutions to the homogeneous equations, i.e., taking S = 0. Because
the equations are autonomous in x, y, t, we can Fourier transform in these directions. Thus, we can
take the solutions to be

ξz(x, y, z, t) = ξz(z) exp(ikxx + ikyy − iωt), (2.4)

and define the horizontal wavenumber k⊥ =
√

k2
x + k2

y , i.e., the wavenumber perpendicular to
gravity. Throughout this chapter we will assume N0 � ω. The solutions to eqns. 2.1,2.2 are

ξz = B1 cos(N0k⊥z/ω) + B2 sin(N0k⊥z/ω), (2.5)
ξz = C1 exp(−k⊥z) + C2 exp(k⊥z), (2.6)

respectively, where we have assumed
√
ω2 + ω2

c ∼ ω. The horizontal displacement ξ⊥ and pressure
perturbation δp are related to ξz by

ξ⊥ ∼ i(N0/ω)ξz, (2.7)
δp ∼ iρ0(N0ω/k⊥)ξz, (2.8)
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in the radiative region, and

ξ⊥ ∼ ξz, (2.9)
δp ∼ ρ0(ω2/k⊥)ξz, (2.10)

in the convective region. The background density is ρ0, which is constant to lowest order in the
Boussinesq approximation.

To solve for the coefficients in eqns. 2.5 & 2.6 and the eigenvalues ω, we must impose four
boundary conditions and a normalization condition (the latter is discussed in Section 2.3.3). Two
of the boundary conditions are on the behavior of ξz at z = ±L. The physical solution requires
that ξz = 0 at the top and bottom boundaries. The other two boundary conditions are set at the
radiative-convective interface, z = zi. These depend on the nature of the boundary between the
radiative and convective regions, and determine which ω satisfy the eigenvalue problem. Assume
that N2 varies from N2

0 to −ω2
c in a thin layer with height d, as illustrated in Figure 4.10. If there

is a sharp transition between the radiative and convective regions, i.e., (k⊥N0/ω)d � 1, we can
make the approximation that N2 is discontinuous at zi, which we take to be at z = 0. However, if
N2 varies slowly, i.e., (k⊥N0/ω)d � 1, then interesting behavior can take place in the transition
region. As we discuss in Section 2.6, we expect the most efficiently excited waves in the Sun to
fall under this latter regime. We will discuss both the discontinuous and smooth N2 limits below.

2.3 Wave Generation by Turbulent Convection
Because the wave generation and wave propagation regions are distinct, we use a Green’s

function (or equivalently, variation of parameters), as in P81. Once we have a Green’s function
G(z, t; ζ, τ), we can write the vertical displacement in the radiative region as

ξz,rad =

∫ t

−∞

dτ
∫ L

zi

dζ G(z, t; ζ, τ) S (x, y, ζ, τ), (2.11)

where we assume that ξz,rad is zero at t → −∞. The Green’s function depends on whether N2

can be modeled as discontinuous or smooth at the radiative-convective boundary. In Section 2.3.1
we calculate the Green’s function assuming N2 is discontinuous (as was assumed in GLS91 and
GK90) and then in Section 2.3.2 we treat the smooth N2 case. As we shall argue, the latter is more
appropriate for the low frequency waves which dominate the IGW flux. In Appendix 2.C we show
that the Green’s function method is formally equivalent to GK90’s method of expanding ξz into
normal modes to solve eqns. 2.1, 2.2.

2.3.1 Green’s Function for Discontinuous N2

To calculate the Green’s function, we need two linearly independent solutions, one which sat-
isfies ξz(−L) = 0, and one that satisfies ξz(+L) = 0. The boundary conditions at zi, which we take
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to be at z = 0, when N2 is discontinuous, are that ξz and δp are continuous at z = 0. The first
solution, which we call ηD

z , satisfies the boundary condition at z = +L:

ηD
z =

{
B1 cos(N0k⊥z/ω + ω/N0) z < 0,
B1 exp(−k⊥z) z > 0. (2.12)

Here we use superscript D to denote the eigenfunction when N2 is discontinuous at the interface.
Below, we will use superscript T to denote quantities for a smooth N2 parameterized by a tanh
profile, and superscript L to denote quantities for a smooth piecewise linear N2. The second
linearly independent solution, which we call ξD

z , satisfies the boundary condition at z = −L:

ξD
z =

{
B2 sin(N0k⊥z/ω) z < 0,
B2

N0
2ω

(
exp(k⊥z) − exp(−k⊥z)

)
z > 0.

(2.13)

The eigenvalues ω must satisfy sin(N0k⊥L/ω) = 0. Later we will project the total vertical displace-
ment in the radiative zone onto the basis {ξz}ω. The vertical displacement in the radiative zone is
approximately orthogonal to {ηz}ω in the radiative zone. Thus, it is important that our second lin-
early independent solution is also approximately orthogonal to {ηz}ω, as is the case for eqns. 2.12
& 2.13.

The general expression for the Green’s function, assuming z < ζ, is

G(z, t; ζ, τ) =

∫
dω′

δ( f (ω′))
ω′2

ξz(z;ω′)ηz(ζ;ω′)
W(ζ)

exp(−iω′(t − τ)), (2.14)

where we label the eigenfunctions with their frequency ω′, δ denotes the Dirac delta function, and
W(ζ) denotes the Wronskian of ξz and ηz. f (ω′) is a function which is zero if and only if ω′ is an
eigenvalue. For the discontinuous case, we have f (ω′) = sin(N0k⊥L/ω′). We thus can simplify
eqn. 2.14 to

G(z, t; ζ, τ) =
∑
ω′

1
N0k⊥L

ξz(z;ω′)ηz(ζ;ω′)
W(ζ)

exp(−iω′(t − τ)), (2.15)

where the sum is over the eigenvalues ω′. For the discontinuous N2 problem, assuming z < 0 and
ζ > 0, the Green’s function is

GD(z, t; ζ, τ) =
∑
ω′

ω′

N2
0k2
⊥L

1
B2
ξD

z (z;ω′) exp(−k⊥ζ − iω′(t − τ)). (2.16)

2.3.2 Green’s Function for Smooth N2

If N2 varies smoothly from N2
0 to −ω2

c , then a WKB type approximation can be used, provided
that N0k⊥d/ω � 1. Our motivation for studying this limit is that the largest scale waves in stars
satisfy N0k⊥d/ω � 1 (see Section 2.6). We would like to develop an approximate solution which
is valid within the transition region, allowing us to connect the solution in the radiative region
(eqn. 2.5) to the solution in the convective region (eqn. 2.6).
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The solution in the transition region depends on the form of N2(z) near the radiative-convective
interface. In this section, we will provide some details of the calculation for a tanh profile. An
eigenmode with frequency ω transitions from oscillatory behavior to exponential behavior at a
point zt (where N2 = ω2), which is lower than the the radiative-convective interface, zi (where
N2 = 0). For a tanh profile, zt does not change very much as ω changes; although it is smooth, it
is not too smooth. Thus, we believe that the tanh profile is the smoothest physically relevant N2

profile.
In Appendix 2.B, we also consider a piecewise linear N2 profile. In contrast to the smooth tanh

profile, this is the most abrupt continuous transition possible. Thus, we believe that any actual
stellar N2 profile should lie somewhere between these two limits. Although we focus on the tanh
profile in this section, we will also describe the IGW fluxes for the piecewise linear N2 profile in
Section 2.3.5.

One might be tempted to appeal to WKB analysis to solve for the eigenfunction on either side
of the interface, and then match across the interface by expanding N2 to linear order near the wave’s
turning point (as is standard in, e.g., quantum mechanics). Roughly, a WKB solution is valid if the
local wavelength of the eigenfunction is small compared to the scale on which the wavenumber of
the eigenfunction varies, which for us is d. For smooth N2 we have assumed N0k⊥d/ω � 1, so the
WKB solution in the radiative zone is valid. However, the WKB solution might break down near
the convection zone if k⊥d � 1. For the piecewise linear N2 profile, a version of WKB matching is
valid (see Appendix 2.B). For the tanh profile, however, the eigenfunction is poorly approximated
by the WKB solution when k⊥d � 1. Moreover, because d/H ≤ 1 and IGWs with k⊥H ∼ 1
dominate the wave flux (see Section 2.3.5; H here is the pressure scale height which we assume is
the largest scale of the turbulence), the WKB solution fails for the most efficiently excited IGWs.
Instead, we need to develop a different method to solve for the eigenfunctions. The details of this
calculation are given in Appendix 2.A.

We assume N2(z) is given by

N2(z) =
N2

0 + ω2
c

2

(
tanh

(
−

z
d

)
+ 1

)
− ω2

c . (2.17)

In Appendix 2.A, we derive approximate forms for two independent eigenfunctions, and show that
there is excellent agreement between the numerical solutions to the eigenvalue problem and our
asymptotic Bessel function solutions. We are interested in the behavior of the eigenfunctions near
the radiative-convective interface zi. The interface is at

exp
(
−2

zi

d

)
∼

ω2
c

N2
0 + ω2

c
. (2.18)

The two independent solutions are

ηT
z ∼

 B1 cos(N0k⊥z/ω + π/4) z & −d

B1

(
N0k⊥d
ω

)1/2 (
ω
ω̄

)k⊥d
Jd̄

[
ωck⊥d
ω

exp
(
−

z−zi
d

)]
z . d

(2.19)

ξT
z ∼

 B2 sin(N0k⊥z/ω + π/4) z & −d

B2

(
N0k⊥d
ω

)1/2 (
ω̄
ω

)k⊥d
Yd̄

[
ωck⊥d
ω

exp
(
−

z−zi
d

)]
z . d

(2.20)
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where ω̄2 = ω2
c +ω2 and ω̄/ω ranges between

√
2 and 1 for ω & ωc, and d̄ = ω̄k⊥d/ω. In eqns. 2.19

& 2.20 we have dropped several factors of order unity from the equations derived in Appendix 2.A.
The eigenvalues for this problem are the frequencies ω which satisfy sin(−N0k⊥L/ω + π/4) = 0.
In Figure 2.2 we plot ηT

z for parameters representative of the energy-bearing waves in the sun.
Given eqns. 2.19 & 2.20, the Green’s function, for z < 0 and ζ > 0 is

GT (z, t; ζ, τ) ∼
∑
ω′

(
ω′d
N0k⊥

)1/2 (
ω′

ω̄′

)k⊥d

(B2N0k⊥L)−1

× J ξT
z (z;ω′) exp(−k⊥ζ − iω′(t − τ)), (2.21)

where we introduce the shorthand

J ≡ Jω̄k⊥d/ω

(
ωck⊥d
ω

)
. (2.22)

Using series expansions from Abramowitz & Stegun (2012), we can approximate

J ∼
{

1 if k⊥d � 1,
(k⊥d)−1/2 exp(−k⊥d) if k⊥d � 1. (2.23)

Note that although the Green’s function for a tanh profile is equal to the discontinuous Green’s
function when N0k⊥d/ω ∼ 1, the Green’s function in eqn. 2.21 is no longer valid when N0k⊥d/ω �
1 (see Appendix 2.A.1). Instead, eqn. 2.16 must be used in this limit.

2.3.3 Amplitude Equation
Now that we have the Green’s function, we can calculate mode excitation. First, we will expand

ξz,rad (in eqn. 2.11) into eigenmodes ξz,rad(z;ω). We use the subscript rad to denote the z < zi part
of the eigenfunctions (eqns. 2.13, 2.20). We write

ξz,rad =
1
√
A

∑
ω′

A(t;ω′) ξz,rad(z;ω′) exp(ikxx + ikyy − iω′t), (2.24)

where the ξz,rad are the z < zi part of the eigenmodes. Using this representation in eqn. 2.11, we
take the inner product with ξz,rad(z;ω), multiply by exp(−ikxx− ikyy + iωt), and integrate over dxdy
to find

A(t;ω) =
1
√
A

∫ t

−∞

dτ
∫

dxdy
∫ L

zi

dζ
1

N0k⊥L
ηz(ζ;ω)

W(ζ)
× S (x, y, ζ, τ) exp(−ikxx − ikyy + iωτ). (2.25)

This procedure is discussed more thoroughly in Appendix 2.C.
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At this point we must pick a normalization condition for our eigenfunctions. The energy in the
perturbation is ∫

d3xρ0

∣∣∣∣∣ ∂∂t
ξrad(z)

∣∣∣∣∣2 =∑
ω

∑
ω′

A(ω) A∗(ω′)
(
ωω′

∫
dz ρ0ξrad(z, ω) · ξ∗rad(z, ω′)

)
. (2.26)

We want to identify
∑
ω |A(ω)|2 with the energy, so our normalization condition is

ωω′
∫

dz ρ0ξrad(z;ω) · ξ∗rad(z;ω′) = δωω′ , (2.27)

where δ is the Kronecker delta. Using the eigenfunctions (eqns. 2.12, 2.13, 2.19, 2.20) and the
polarization relation (eqn. 2.7), the normalization condition implies

B2 ∼ B2
1 ∼ B2

2 ∼
1

N2
0 Lρ0

, (2.28)

for all the N2 profiles considered in this chapter. Using this normalization in eqn. 2.25, the ampli-
tude equations are

AD(t;ω) =
1
√
A

∫ t

−∞

dτ
∫

dxdy exp(−ikxx − ikyy + iωτ)

×
ω

N0k2
⊥

√
ρ0

L

∫ L

zi

dζ exp(−k⊥ζ) S (x, y, ζ, τ), (2.29)

AT (t;ω) =
1
√
A

∫ t

−∞

dτ
∫

dxdy exp(−ikxx − ikyy + iωτ)

×

 J
√
ωρ0d√

N0Lk3
⊥

 (ωω̄
)k⊥d ∫ L

zi

dζ exp(−k⊥ζ)S (x, y, ζ, τ). (2.30)

It is straightforward to derive the analogous amplitude equation for the piecewise linear N2 profile
using the Green’s function given in eqn. 2.118.

2.3.4 Model of Turbulent Convection
To make further progress, we need to specify the source term S . We assume that the convective

turbulence is composed of a large number of incoherent eddies, estimate the wave generation due
to a single eddy in isolation, and then find the total wave generation by summing over all eddies.
We model the statistical properties of stellar convection using Kolmogorov turbulence (see, e.g.,
Goldreich & Keeley 1977): the convective velocity on the outer-scale H is uc and the associated
convective turnover frequency is ωc ∼ uc/H. The convective energy flux is Fconv ∼ ρ0u3

c . On scales
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h sufficiently small compared to H, the turbulent power-spectrum is given by the Kolmogorov
scaling:

uh ' uc (h/H)1/3 ' uc(ωe/ωc)−1/2 (2.31)

where we have used the fact that smaller eddies have higher frequencies, i.e., shorter turnover
times, with ωe ' uh/h ∝ h−2/3 and thus h ∝ ω−3/2

e . A given convective eddy characterized by its
frequency ωe can excite waves having frequencies ω and horizontal wavenumbers k⊥ that satisfy

ω . ωe and k⊥ . kmax
⊥ ' H−1(ωe/ωc)3/2. (2.32)

2.3.5 Energy Generation Rates and IGW Fluxes
In this section we calculate the IGW fluxes for discontinuous, tanh, and piecewise linear

convective-radiative transitions. We begin by estimating the energy generation due to a single
eddy with size h and turnover frequency ωe. The source term contains three spatial derivatives
which we can integrate by parts. The contribution due to the source term is

S ∼ k3
⊥u2

h. (2.33)

Assuming the eddy has volume h3 and lasts for a time ω−1
e , we can estimate the change in the

amplitude due to a single eddy

∆AD(ω) ∼
√

ρ0

AL
ω

N0
k⊥h4uh, (2.34)

∆AT (ω) ∼

√
N0

ω

(
J
√

k⊥d
) (ω
ω̄

)k⊥d
∆AD(ω), (2.35)

∆AL(ω) ∼
(

N0k⊥d
ω

)1/6

∆AD(ω). (2.36)

The total energy generation rate due to all eddies is then

·ED(ω) ∼

(
∆AD

)2

ω−1
e

(
Ak−1

⊥

h3

)
∼
ρ0

L

(
ω

N0

)2

u3
hh3 (k⊥h), (2.37)

·ET (ω) ∼
N0

ω

(
J2k⊥d

) (ω
ω̄

)2k⊥d
· ED(ω), (2.38)

·EL(ω) ∼
(

N0k⊥d
ω

)1/3

· ED(ω). (2.39)

The factor ofAk−1
⊥ /h

3 in eqn. 2.37 counts the number of eddies with size h which excite IGWs with
frequency ω. We have assumed excitation happens in a region with thickness dz ∼ k−1

⊥ (because
the IGW eigenfunction decreases in the convection zone over a characteristic lengthscale ∼ k−1

⊥ ).
Because of the random phases of the convective eddies, the excitations due to different eddies are
assumed to be uncorrelated, and the energy increases only linearly with the number of eddies.
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In the case of smooth N2, the flux decreases exponentially for k⊥d � 1. The dominant con-
tribution to the flux is from k⊥d . 1, so for the rest of this section, we will assume k⊥d . 1. The
IGW flux is then given by

dFD

d logω d log k⊥
∼
·ED(ω)
A

(
Ak2

⊥Lk⊥
N0

ω

)
∼ ρ0u3

h
ω

N0
(k⊥h)4 ∼ ρ0u3

cM(k⊥H)4
(
ω

ωc

)−13/2

, (2.40)

dFT

d logω d log k⊥
∼ ρ0u3

c(k⊥H)4
(
ω

ωc

)−15/2

(k⊥d) , (2.41)

dFL

d logω d log k⊥
∼ ρ0u3

cM
2/3(k⊥H)4

(
ω

ωc

)−41/6

(k⊥d)1/3. (2.42)

whereM = ωc/N0 is the convective Mach number. The term in parentheses in the first equality of
eqn. 2.40 is the density of states. There are Ak2

⊥ modes in the horizontal direction, and Lk⊥N0/ω
modes in the vertical direction, with wavenumber ∼ k⊥ and frequency ∼ ω, which each contribute a
flux ·E(ω)/A. Recall that eqns. 2.40-2.42 only apply forω & ωc and k⊥ . kmax

⊥ (ω) ∼ H−1(ω/ωc)3/2,
and eqns. 2.41 & 2.42 assume k⊥d . 1.

Integrating over k⊥, we find

dFD

d logω
∼ ρ0u3

cM

(
ω

ωc

)−1/2

, (2.43)

dFT

d logω
∼ ρ0u3

c

(
d
H

)
, (2.44)

dFL

d logω
∼ ρ0u3

cM
2/3

(
ω

ωc

)−1/3 (
d
H

)1/3

. (2.45)

Finally, we find that the total flux is

FD ∼ ρ0u3
cM ∼ FconvM, (2.46)

FT ∼ ρ0u3
c

(
d
H

)
∼ Fconv

(
d
H

)
, (2.47)

FL ∼ ρ0u3
cM

2/3
(

d
H

)1/3

∼ FconvM
2/3

(
d
H

)1/3

. (2.48)

This estimate predicts, for a tanh N2 profile, an IGW flux only slightly smaller than the con-
vective flux. However, as we now show, energy-bearing waves in the smooth N2 case (both tanh
and piecewise linear profiles) will undergo vigorous wave-breaking within the radiative zone (see
Figure 2.2). This process occurs concurrently with overshooting convective plumes, but is much
more spatially localized (in z) than overshooting convection.
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To quantify this argument, we calculate the typical size of the perturbations in the radiative
zone using

dF
d logω d log k⊥

∼ ρ0(ωξ⊥)2ug,z, (2.49)

where ug,z ∼ ω/kz ∼ ω2/(N0k⊥) is the vertical group velocity, and we have assumed ξ⊥ � ξz

(eqn. 2.7). From this, we find

ξD
z ∼ H

ω

N0
(k⊥H)5/2

(
ω

ωc

)−21/4

, (2.50)

ξT
z ∼ H

√
ω

N0
(k⊥H)3

(
ω

ωc

)−21/4 (
d
H

)1/2

, (2.51)

ξL
z ∼ H

(
ω

N0

)5/6

(k⊥H)8/3
(
ω

ωc

)−21/4 (
d
H

)1/6

, (2.52)

and

kzξ
D
z ∼ (k⊥H)7/2

(
ω

ωc

)−21/4

, (2.53)

kzξ
T
z ∼ M

−1/2(k⊥H)4
(
ω

ωc

)−23/4 (
d
H

)1/2

, (2.54)

kzξ
L
z ∼ M

−1/6(k⊥H)11/3
(
ω

ωc

)−65/12 (
d
H

)1/6

, (2.55)

where we have used kz = k⊥N0/ω which holds in the radiative zone for |z| � d. Recall that the
condition for wave breaking is kzξz ∼ 1. For the case of discontinuous N2, the most efficiently
excited waves are marginally susceptible to wave breaking. However, for both tanh and piecewise
linear N2, the most efficiently excited waves will break in the radiative zone.

The only waves that successfully propagate in the radiative zone have kzξz . 1. Thus, to find
the IGW flux for smooth N2, we must integrate the flux only over the regions of (k⊥, ω) space in
which kzξz . 1. This implies

(HM/d)1/2 . (k⊥H)4
(
ω

ωc

)−23/4

(tanh) (2.56)

(HM/d)1/6 . (k⊥H)11/3
(
ω

ωc

)−65/12

(piecewise linear) (2.57)

and, as before, ω & ωc, k⊥ . H−1(ω/ωc)3/2, and k⊥d . 1. We find that the waves that are
marginally susceptible to wave breaking, and which maximize the flux for the tanh profile are at
the convective turnover frequency, ω ∼ ωc, but have small wave numbers, k⊥H ∼ (MH/d)1/8. For
the piecewise linear profile, the spatial scale is k⊥H ∼ 1, but the waves have higher frequencies,
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ω ∼ ωc(MH/d)−2/65. The resulting IGW flux in waves that do not break is given by

FT ∼ FconvM
5/8

(
d
H

)3/8

, (2.58)

FL ∼ FconvM
57/65

(
d
H

)8/65

. (2.59)

These results are only valid if these waves see a smooth N2 profile, i.e.,

MH/d � 1. (2.60)

If this condition is satisfied, then the IGW flux is larger than that predicted by the discontinuous
result by (MH/d)−3/8 for the tanh profile and (MH/d)8/65 for the piecewise linear profile. Note
that if d/H ∼ M, then the discontinuous and smooth N2 limits give the same wave flux.

2.3.6 Wave Excitation Within the Overshoot Region
In the previous sections, we have considered the efficiency of IGW excitation by turbulent

motions in the convection zone. However, convective overshoot and wave breaking produce tur-
bulent motions within the radiative zone, near the radiative-convective interface. We can estimate
the wave excitation within the radiative zone by convolving the Reynolds stress associated with
turbulent motions due to convective overshoot with the appropriate Green’s functions (see, e.g.,
Section 2.3.2).

The principal difficulty in calculating the wave generation in the overshoot region is in ac-
curately describing the turbulent motions near the radiative-convective interface. Although con-
vective overshoot has been investigated via simulations (e.g., Rogers & Glatzmaier 2005b), it is
currently computationally infeasible to employ a realistic Mach number and interface stiffness. To
roughly estimate the IGW generation due to turbulent motions within the overshoot region, we will
assume that the motions can be decomposed into incoherent eddies with the statistical properties
of Kolmogorov turbulence, as above. However, instead of taking the outer-scale of the cascade to
be H, we will assume it is given by the size of the overshoot region ∼ d log(N0/ωc). We assume
the typical velocity on this outer-scale is still uc.

To predict where turbulent eddies can most effectively excite IGWs, it is helpful to consider the
structure of the Green’s function in the transition region. In Figure 2.2, we plot the eigenfunction
ηT

z (z) when N2 is given by a tanh profile, with ωc/N0 = 10−3 and d/H = 0.1, as we might expect
for the energy-bearing eddies in the Sun (see Section 2.6).

If an eddy is much larger than the local wavelength of the eigenfunction, then it will not be able
to efficiently couple to the mode, as its convolution with the Green’s function will to first order
average out to zero. The most efficient wave excitation in the overshoot region for the example
mode in Figure 2.2 will be for eddies filling the region between zi and the first zero of ηz; we define
this distance to be ∆zos. This eddy has size ∼ 0.3H, smaller than the energy-bearing eddies of size
H in the convection zone.
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Figure 2.2: Representative eigenfunction and buoyancy frequency squared near the radiative-convective
transition. See Appendix 2.A.1 for details on the calculation of the eigenfunction. The top panel shows the
numerically calculated vertical perturbation eigenfunction normalized to have amplitude one in the radiative
zone, for the parameters ωc/N0 = 10−3, d/H = 0.1, and k⊥H = 1. The bottom panel shows the buoyancy
frequency squared normalized to one in the radiative zone, which we have assumed follows a tanh profile.
The vertical dotted lines, from left to right, correspond to the point at which kzξz = 1 where we expect the
mode to break; the transition point zt (defined by N2 = ω2), where this mode transitions from exponential
to oscillatory behavior, and gives a typical amplitude of ηz within the overshoot region; and the radiative-
convective interface zi (defined by N2 = 0). We have also labelled the distance between the radiative-
convective interface and the first zero of the eigenfunction, ∆zos. Turbulent eddies associated with convective
overshoot cannot efficiently couple to this mode unless they have vertical size less or equal to ∆zos.
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Wave excitation in the overshoot region differs from wave excitation in the convection zone in
several ways. First, because we assume the outer-scale of the turbulence is d log(N0/ωc) instead of
H, the turbulent velocities on any length scale h < H are larger than the turbulent velocities on that
length scale in the convection zone (see Section 2.3.4). We will assume that the excitation within
the overshoot region is given by eddies with size at most ∆zos. Thus, there are A∆zos/h3 eddies
with size h which excite IGWs with frequency ω (see eqn. 2.37 and accompanying text). Because
the vertical length scale of ηz is ∆zos in the overshoot region, the typical size of the Reynolds stress
source term in eqn. 2.2 is

S ∼
kk⊥u2

h

∆zos
, (2.61)

where k is the total wavenumber defined by

k2 = k2
⊥ + ∆z−2

os . (2.62)

If k⊥ � ∆z−1
os , then k ≈ k⊥, and if ∆z−1

os � k⊥ then k ≈ ∆z−1
os . When we derived the Green’s functions

above (e.g., Section 2.3.2), we took ηz(zi) as a typical value of ηz in the convection zone. Here, we
will take ηz(zt) as a typical value of ηz in the overshoot region.

The exact form of the IGW wave flux depends on the background N2 profile. As an illustrative
example, we will sketch the results for the tanh profile. Broadly speaking, our estimates for wave
excitation in the overshoot region are comparable to, but mostly smaller than, the wave excitation
in the convection zone, except for high wavenumber waves with k⊥d � 1 which are strongly sup-
pressed in the convection zone. Note that these results are predicated on our assumptions regarding
the turbulence within the overshoot region, which are uncertain. More detailed calculations likely
require input from numerical simulations of plumes in the overshoot region.

For the tanh profile, the distance between the radiative-convective interface and the first zero
of the eigenfunction, ∆zos, is given by

∆zos ≈ d log
(

ω

ωck⊥d

(
3π
4

+
ω̄k⊥d
ω

π

2

))
. (2.63)

We also have

ηz(zt) ∼
(

N0k⊥d
ω

)1/2 (
ω

ω̄

)ω̄k⊥d/ω
J, (2.64)

where we use the shorthand

J = Jω̄k⊥d/ω

(
ω̄k⊥d
ω

)
∼

{
1 if k⊥d � 1,
0.45(k⊥d)−1/3 if k⊥d � 1. (2.65)

Note that J falls off much less steeply for k⊥d � 1 than the associated convection zone quantity, J
(eqn. 2.23).

Using these results, we can calculate the IGW power spectrum. Because the result depends
sensitively on our assumptions regarding the turbulence within the overshoot region, we will only
highlight the general properties of the excitation power spectrum. The IGW flux in the energy
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bearing mode, which has k⊥ ∼ H−1 and ω ∼ ωc, is smaller in the overshoot region by a factor
of (∆zos/H)2(H/(d log(N0/ωc)); if we take d/H ∼ 0.1 and ωc/N0 = 10−3 (see Section 2.6), this
factor is ∼ 0.2. For higher frequency waves with ω/ωc = (H/∆zos)3/2, the excitation is larger in the
overshoot region by a factor of (H/(d log(N0/ωc)), which is ∼ 1.5 for the parameters given above.
Excitation is significantly more efficient in the overshoot region for modes with k⊥d � 1.

As pointed out in Section 2.3.5, there is a significant flux of IGWs which break in the radiative
zone. The breaking occurs where the local kz becomes comparable to ξ−1

z . As can be seen in
Figure 2.2, this occurs when kz is large (for higher frequency waves, the breaking would occur for
even larger kz). If the turbulence associated with the wave breaking is isotropic, then only very
small eddies would efficiently couple to the eigenfunction, leading to negligible wave excitation.
However, the wave will be very anisotropic when it breaks, possibly leading to more efficient wave
excitation. The details of wave generation by wave breaking are beyond the scope of this chapter.

2.4 Pressure Perturbation Balance
A more heuristic way to derive the IGW flux is to compare the pressure perturbation on ei-

ther side of the radiative-convective boundary. This argument is not sufficiently precise to treat
the smooth N2 case—hence, we will assume N2 is discontinuous, and thus that the pressure per-
turbation is continuous at the radiative-convective interface at z = 0. The pressure perturbation
associated with a convective eddy with a turnover frequency ωe and size h is

δpconv ∼ ρ0v2
h ∼ ρ0u2

c(ωe/ωc)−1. (2.66)

The polarization condition (eqn. 2.8) relates the pressure perturbation in the radiative zone to the
vertical displacement,

δprad ∼ ρ0
N0ωξz

k⊥
. (2.67)

We assume the convective eddy can only effectively couple to an IGW if the frequencies and
horizontal wavelengths match, which requires ωe ∼ ω and k⊥ ∼ h−1.

A large number of convective eddies contribute to driving a given standing IGW. This is par-
ticularly true for k⊥H � 1 and/or ω � ωc because then small eddies with sizes h � H are
responsible for the driving. The number of eddies contributing to the excitation of a given standing
wave is

N ∼
Adz
h3 ∼ (AH−2) (k⊥H)−1

(
ω

ωc

)9/2

(2.68)

where we have assumed ω & ωc and that the excitation happens in a region with thickness dz ∼ k−1
⊥

(see also eqn. 2.37). Because an individual IGW is excited by many uncorrelated eddies, the
effective pressure fluctuation driving a wave is reduced by a factor of

√
N relative to that given in

eqn. 2.66.
When N2 is discontinuous at z = 0 one of the boundary conditions is that δp is continuous at

z = 0, so that δprad ∼ δpconv. Using eqns. 2.66-2.68, we find that the amplitude of a mode with
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frequency ∼ ω and wavenumber ∼ k⊥ is

ξD
z ∼

δpconvk⊥
ρ0N0ω

√
N
∼ H2k⊥

ω3
c

N0ω2 N
−1/2. (2.69)

However, there are Ak2
⊥ such modes in the domain (we have already implicitly summed over the

vertical modes in deriving eqns. 2.66, 2.67), so the typical rms vertical displacement is

ξD
z ∼ H2k⊥

ω3
c

N0ω2

√
Ak2

⊥

N
∼ H

ω

N0
(k⊥H)5/2

(
ω

ωc

)−21/4

, (2.70)

the same result as in the inhomogeneous wave equation calculation (eqn. 2.50).

2.5 Comparison with Previous Work
In this section, we discuss the relationship between our results and previous calculations in

the literature. We begin with GK90, who only consider the discontinuous N2 case. GK90 solved
the fully compressible inhomogeneous wave equation by expanding the perturbation in terms of
normal modes and then deriving an amplitude equation. This is equivalent to our Green’s function
method (see Appendix 2.C). Their end result is very similar to our own; for k⊥H � 1 they find

dF
d logω d log k⊥

∼ M ρ0u3
c(k⊥H)3

(
ω

ωc

)−13/2

(GK90; eq. 73) (2.71)

This differs from our result (eqn. 2.40) by a factor of k⊥H.2 We arrive at a different IGW flux
because in the Boussinesq approximation ∂zξz ∼ k⊥ξz, whereas for the fully compressible system,
∂zξz ∼ ξz/H when k⊥H � 1. Accounting for both k⊥H & 1 and k⊥H . 1, the correct scaling of the
IGW flux with k⊥H is F ∼ (k⊥H)3(1 + k⊥H). This does not influence the flux of IGWs which do
not break in our smooth N2 calculations.

Because GK90 solve the fully compressible equations, they include multiple scale heights in
their convection zone. They find that the most efficient excitation of waves with frequency ω is at
the height where the turnover frequency of the energy bearing eddies is about equal toω. This effect
would be straightforward to include in our model—one would need to derive a Green’s function
based on the fully compressible eigenfunctions, and then convolve with a vertically varying source
term.

GLS91 use a pressure balance argument to study the discontinuous N2 case. Their power
spectrum agrees with eqn. 2.40 when ω ∼ ωc and k⊥H ∼ 1, but not at higher frequencies or wave

2Although our final results are similar, there are some ambiguities in GK90’s derivation. In deriving their eqn. 48
from their eqn. 45, GK90 appear to assume that the δp are orthogonal under the weighting function c−2 and that∫

dzρ0c−2|δp|2 ∼ 1. Both of these are true for sound waves, the main focus of their paper. However, for IGWs,∫
dzρ0c−2|δp|2 ∼ M2, and the δp are only orthogonal under the weighting function 1 (see Appendix 2.C for further

discussion on orthogonality).
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numbers. They assume that the pressure perturbation in the convection zone equals the pressure
perturbation in the radiative zone. They take δpconv ∼ ρ0u2

h, and δprad ∼ ρ0 (ωξ⊥)2. This expression
for the pressure perturbation in the radiative zone does not satisfy the polarization condition δprad ∼

ρ0(N0ω/k⊥)ξz (eqn. 2.8), unless ξ⊥ ∼ k−1
⊥ . Because many eddies contribute to the excitation of a

single IGW mode, GLS91 also decrease their IGW amplitude by a factor of 1/
√
N . However,

they only account for the incoherent sum of small eddies at the interface producing perturbations
on large spatial scales. This gives NGLS91 ∼ (k⊥h)−2, where k⊥h � 1. In our analysis, we include
eddies which are a distance k−1

⊥ above the interface, and we take into account that IGWs excited
in different parts of the domain incoherently interfere with each other as they propagate in the
radiative zone. These additional effects yield N ∼ Ak−1

⊥ /h
3.

P81 uses two different techniques to calculate the IGW flux. The first uses a pressure balance
argument. Press uses that δpconv ∼ ρ0u2

h, and that δprad ∼ (ρ0N0ω/k⊥)ξz, and that these pressure
perturbations are about equal at the interface. Throughout his analysis, Press assumes k−1

⊥ ∼ h.
Thus, Press finds

ξz ∼
(k⊥h)2

kz
∼

1
kz
, (P81; eq. 75) (2.72)

This is the same result given by GLS91, and is consistent with our own assuming k⊥h ∼ 1. This is
becauseAk2

⊥/N ∼ 1 when k⊥h ∼ 1.
Press also derives this result more rigorously using the method of variation of parameters,

which is equivalent to using a Green’s function. In addition, Press considers the case in which N2

is continuous at the interface. He only treats this case in the limit in which ω ∼ N0, and finds

ξz ∼
1
k
, (P81; eq. 88) (2.73)

the same result as eqn. 2.72. However, note that if ω ∼ N0, then N0k⊥d/ω � 1, and the smooth
result cannot be used (these waves see the interface as discontinuous). In addition, Press’s use
of standard WKB matching to treat the smooth N2 profile is generally not applicable (see Ap-
pendix 2.A).

Finally, we consider the work of B09. In their paper, Belkacem et al. numerically calculate the
eigenfunctions for a solar structure model, use a convection simulation to specify the source term,
and solve an amplitude equation in the same way as GK90. It is unclear whether the N2 profile in
their solar structure model has a smooth transition between the radiative and convection zones—if
their N2 profile is discontinuous (Section 2.3.1) or has an abrupt transition (Appendix 2.B), they
will derive different eigenfunctions than for a tanh profile (Appendix 2.A). These eigenfunctions
will produce a smaller flux (eqns. 2.46, 2.59) than we predict for a very smooth radiative-convective
transition (eqn. 2.58).

Another key difference is that Belkacem et al. use an eddy-time correlation function χk(ω),
which in the notation of this chapter can be written as χ(ω;ωe). This function describes how ef-
ficiently an eddy with size 1/k and turn-over frequency ωe = ukk excites a wave with frequency
ω. Our analysis implicitly assumes χ(ω;ωe) ∼ exp(−ω2/ω2

e). This Gaussian eddy-time correla-
tion function implies that eddies with turn-over frequencies ωe only excite waves with frequencies
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ω. However, the turbulence in the convection simulation in B09 is not well described by a Gaus-
sian eddy-time correlation function. Instead, Belkacem et al. find that a Lorentzian distribution,
χ(ω;ωe) ∼ (1 + 2(ω/ωe)2)−1, is more accurate. This indicates that waves with frequency ω can be
excited by a broad range of eddies. In general, this makes wave excitation more efficient. It would
be straightforward to generalize our results to this Lorentzian expression for χ(ω;ωe).

2.6 Discussion & Conclusions
In this chapter we have calculated the excitation of internal gravity waves (IGW) by turbulent

convection, motivated by the application to stellar convection. We assume that the source term
exciting the IGWs can be modeled by Reynolds stresses associated with uncorrelated eddies in a
Kolmogorov turbulent cascade. Our main results are the IGW fluxes, eqns. 2.46, 2.58 & 2.59. In
particular, we predict a larger wave flux than previous calculations for low frequency waves which
satisfy N0k⊥d/ω � 1, where N0 is the buoyancy frequency in the radiative zone, k⊥ and ω are the
horizontal wavenumber and frequency of the IGW, respectively, and d is the thickness of the tran-
sition region between the radiative and convection zones. We also reconcile somewhat disparate
claims in the literature by showing that different methods, such as pressure balance arguments and
solving the inhomogeneous wave equation, predict the same IGW power spectrum when using the
same assumptions (Section 2.4).

An IGW with frequency ω sees the transition between the radiative and convection zones as
discontinuous if N0k⊥d/ω � 1. In this case, the total flux is FD ∼ Fconv M (eqn. 2.46), as derived
in past work, where Fconv is the convective flux andM is the convective Mach number. The most
efficiently excited waves have frequencies ω ∼ ωc, the eddy turn-over frequency of the largest
turbulent eddies, and k⊥ ∼ H−1, the inverse of the pressure scale height. These most efficiently
excited waves are marginally susceptible to wave breaking when they enter the radiative region.

If, however, the transition between radiative and convective regions is smooth (i.e., N0k⊥d/ω �
1), the problem becomes more complicated. The IGW flux depends on the structure of the buoy-
ancy frequency N2(z) near the transition between the radiative and convective regions. We pa-
rameterize the transition using both a tanh profile, which is we believe represents the smoothest
possible transition, and a piecewise linear profile, which is the most abrupt transition possible.
These two examples bound the physical possibilities, and we expect real N2 profiles in stars to be
somewhere in between. The wave excitation is more efficient when N2 is smooth because the IGW
eigenfunctions change amplitude rapidly near the interface (as originally discussed by P81).

The total IGW fluxes for the tanh and piecewise linear profiles are FT ∼ Fconv(d/H) � FD

(eqn. 2.47), and FL ∼ FconvM
2/3(d/H)1/3 � FD (eqn. 2.48), respectively. Again, the most ef-

ficiently excited waves have frequencies ω ∼ ωc and k⊥ ∼ H−1. However, these waves are ex-
tremely prone to wave breaking, as kzξz � 1 in the radiative region (e.g., P81). These waves
will break in the transition region between the radiative and convection zones. The flux of IGWs
that are marginally susceptible to wave breaking (i.e., have kzξz ∼ 1) is FT ∼ FconvM

5/8(d/H)3/8

(eqn. 2.58) and FL ∼ FconvM
57/65(d/H)8/65 (eqn. 2.59). This is larger than the discontinuous N2

flux by (MH/d)−3/8 for the tanh profile, and by (MH/d)−8/65 for the piecewise linear profile.



2.6. DISCUSSION & CONCLUSIONS 25

In the Sun, ωc ∼ 10−3N0, so M ∼ 10−3 (e.g., Brown et al. 2012), and d is estimated to be
∼ 0.1H (Christensen-Dalsgaard et al. 2011). IGWs produced by the energy bearing eddies have
N0k⊥d/ω ∼ 102, and thus the transition region must be treated as smooth. This suggests that the
IGW flux in the Sun is somewhere between

FT ∼ FconvM
5/8

(
d
H

)3/8

∼ 5 × 10−3 Fconv, (2.74)

FL ∼ FconvM
57/65

(
d
H

)8/65

∼ 2 × 10−3 Fconv, (2.75)

about two to five times larger than the flux in the discontinuous N2 case. In both cases, the flux is
dominated by waves with frequencies near ωc, and wave numbers near H−1.

We expect the N2 profile in stars to be somewhere between the tanh profile and the piecewise
linear profile. Real N2 profiles are likely to have continuous derivatives, which precludes the
piecewise linear profile. However, a piecewise linear function can be smoothed over an arbitrarily
small length scale to form an infinitely differentiable function. Indeed, in simulations of penetrative
convection, the time and spatially averaged N2 profile appears similar to a tanh profile (e.g., Fig. 3
in Rogers et al. 2006 and Fig. 7 in Rogers & Glatzmaier 2005b). Specifically, these simulations
find that dN2/dz|zi � N2

0/d, i.e., the slope of N2 near N2 = 0 is much less than in a simple
piecewise linear model. This suggests that even if real N2 profiles look closer to piecewise linear,
the appropriate value for d might be much larger than expected. For these reasons, we expect IGW
generation in stars to more closely follow the tanh profile results than the piecewise linear results.

In this chapter we have also briefly considered IGW excitation due to turbulence driven by
overshooting convective plumes (Section 2.3.6). These results depend sensitively on our assump-
tions regarding the turbulence within the overshoot region, which is poorly understood. However,
our calculations suggest that IGW excitation is about as efficient in the overshoot region as in
the convection zone. The flux in the energy-bearing mode, using solar parameters, is smaller
in the overshoot region by a factor of 0.2, but the flux in some higher frequency modes can be
slightly larger in the overshoot region. These higher frequency IGWs are the ones most likely to
be observed in main sequence stars (e.g. Shiode et al. 2013), making it important to understand
excitation in the overshoot region in more detail in future work. Modes which have k⊥d � 1 are
excited much more efficiently in the overshoot region than in the convection zone, where they are
exponentially suppressed. It is difficult to excite the large, energy-bearing modes in the overshoot
region, because kz is larger in the overshoot region than in the convection zone. Thus, only smaller
eddies can couple to the large modes, decreasing the IGW flux produced in the overshoot region.

The increase in wave flux due to a smooth radiative-convective interface is only for waves with
N0k⊥d/ω � 1, i.e., for low frequency waves. For certain applications (e.g., helioseismology), the
flux of low frequency waves is unimportant. In particular, low frequency g-modes in the Sun and
massive stars are strongly damped by radiative diffusion and are unlikely to be seen at the surface.
Thus, the increase in wave flux we predict for low frequency waves does not change the expected
amplitudes of potentially observable g-modes in main sequence stars.

However, low frequency waves are important for the angular momentum transport, mixing,
and/or mass loss due to IGWs excited by stellar convection. For example, a larger IGW flux may
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increase the predicted mass loss in the final stages of the life of a massive star (Quataert & Shiode
2012) and in Type Ia supernova progenitors (Piro 2011). This will be studied in detail in future
work.

We have shown that there is significant wave breaking near the radiative-convective interface
if N2 is smooth. Wave breaking produces turbulence and can lead to additional IGW generation
(Fritts et al. 2009). When N2 is smooth, the flux in modes which are unstable to breaking is a
significant fraction of Fconv; thus the breaking process has the potential to excite a non-negligible
flux of IGWs. In addition, wave breaking could redistribute energy in (k⊥, ω) space, thus potentially
modifying the IGW power spectrum from that calculated here.

In order to make a more accurate prediction of the wave flux and spectrum, one would need
to use a stellar structure model with a realistic radiative-convective interface and a better represen-
tation of the convective turbulence, as in B09. Our results highlight the importance of adequately
resolving the smooth transition between the radiative and convective regions in such calculations.
A discontinuous or abrupt transition will give a different IGW flux than a smooth transition. We
note that the radiative-convective transition seen in numerical simulations of penetrative convec-
tion is significantly smoother than the transition in typical 1D stellar models (e.g., Rogers et al.
2006).

Perhaps the most promising way to test the results of this chapter is through comparison with
direct numerical simulations of a radiative zone adjacent to a convection zone (e.g., Rogers &
Glatzmaier 2005a; Brun et al. 2011). Although such simulations typically require artificially high
conduction in the radiative zone, and it is unclear how to best identify IGWs (Dintrans et al.
2005), this is probably the simplest system in which one can quantify the IGW flux generated
by convection. We hope that analysis of such simulations can provide a quantitative test of the
theory derived in this chapter in the near future.

2.A tanh Profile Eigenfunctions
We will derive the eigenfunctions for the equation

∂2

∂z2 ξz +

(
N2(z)
ω2 − 1

)
k2
⊥ξz = 0, (2.76)

where

N2(z) =
N2

0 + ω2
c

2

(
tanh

(
−

z
d

)
+ 1

)
− ω2

c . (2.77)

The transition between oscillatory behavior and exponential behavior (where N2(z) = ω2) is at zt

given by
ω2 + ω2

c

N2
0 + ω2

c
∼ exp

(
−2

zt

d

)
. (2.78)
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The eigenfunction in the radiative zone is well approximated by the WKB solution,

ξz = B1 (N0k⊥/ω)1/2 kz(z)−1/2 cos
(∫

dzkz(z) + π/4
)

+B2 (N0k⊥/ω)1/2 kz(z)−1/2 sin
(∫

dzkz(z) + π/4
)
, (2.79)

where we define the vertical wavenumber to be

k2
z (z) = k2

⊥

(
N2(z)/ω2 − 1

)
. (2.80)

Near zt, the WKB solution in the radiative region diverges. We wish to derive a new set of functions
which closely approximate the eigenfunctions for z > zt.

In many problems, the WKB solutions near a turning point can be asymptotically matched
onto Airy functions, which provide a connection between exponentially decaying and oscillatory
WKB solutions. However, we cannot use this approach when k⊥d < 1; in this parameter regime
k2

z (z) cannot be well approximated as linear near zt. Instead, we will show that when k⊥d < 1 the
eigenfunctions can be well approximated in terms of Bessel functions. Furthermore, these Bessel
function solutions are also a good approximation when k⊥d ≥ 1.

To show this, first note that if exp(−2z/d) � 1, we can approximate

N2(z) ≈
(
N2

0 + ω2
c

)
exp

(
−

2z
d

)
− ω2

c . (2.81)

The solutions to the wave equation (eqn. 2.76) for this approximate N2(z) function are

ξz = C1Jω̄k⊥d/ω

k⊥d

√
N2

0 + ω2
c

ω
exp

(
−

z
d

)
+C2Yω̄k⊥d/ω

k⊥d

√
N2

0 + ω2
c

ω
exp

(
−

z
d

) , (2.82)

where J and Y are the Bessel functions of the first and second kind, respectively. We have also
defined ω̄2 = ω2 + ω2

c , where ω̄/ω ranges between
√

2 and 1. These approximate the solution for
large positive z. We can asymptotically match the Bessel functions onto the WKB solution in the
radiative zone (eqn. 2.79). We will make use of the following asymptotic forms for J and Y:

Jα(x) ∼
1

Γ(α + 1)

( x
2

)α
, (2.83)

Yα(x) ∼ −
Γ(α)
π

(
2
x

)α
, (2.84)
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provided that 0 < x �
√
α + 1, and

Jα(x) ∼

√
2
πx

cos
(
x −

απ

2
−
π

4

)
, (2.85)

Yα(x) ∼

√
2
πx

sin
(
x −

απ

2
−
π

4

)
, (2.86)

provided that x � |α2 + 1/4|.
We must consider two regimes, depending on the size of k⊥d. First consider k⊥d � 1. We can

use the asymptotic formula for large arguments provided that

k⊥d

√
N2

0 + ω2
c

ω
exp

(
−

z
d

)
�

1
4
. (2.87)

This constraint can be satisfied simultaneously with exp(−2z/d) � 1, implying that the asymptotic
form of the Bessel functions are good approximations to the eigenfunctions. If we approximate
k2

z (z) as

k2
z (z) ≈ k2

⊥

N2
0 + ω2

c

ω2 exp
(
−

2z
d

)
, (2.88)

we can approximate eqn. 2.82 by

ξz ≈ C1

√
2
πd

(
k2

z (z)
)−1/4

cos
(
−d

(
k2

z (z)
)1/2

+
πω̄k⊥d

2ω
+
π

4

)
−C2

√
2
πd

(
k2

z (z)
)−1/4

sin
(
−d

(
k2

z (z)
)1/2

+
πω̄k⊥d

2ω
+
π

4

)
. (2.89)

This matches onto the WKB solution in the radiative region since k⊥d is small. The amplitudes are

C1 = B1

(
πN0k⊥d

2ω

)1/2

, (2.90)

C2 = −B2

(
πN0k⊥d

2ω

)1/2

. (2.91)

Now assume k⊥d � 1. In this case, the asymptotic form of the Bessel functions for small argu-
ment is only valid when exp(−z/d) � 1, i.e., for positions where the Bessel functions themselves
are not a good approximation to the eigenfunctions (N2(z) cannot be simplified as in eqn. 2.81 if
exp(−z/d) � 1). However, in this limit we can use the WKB approximation in the convective
region, and connect the two WKB solutions with Airy functions. Thus, in the convective region,
we have

ξz ∼ (B1/2) (N0k⊥/ω)1/2kz(z)−1/2 exp
(
−

∫ z

zt

dz′|kz(z′)|
)

+B2(N0k⊥/ω)1/2kz(z)−1/2 exp
(
+

∫ z

zt

dz′|kz(z′)|
)
. (2.92)
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For z much larger than zt, this becomes

ξz ∼
B1

2

(N0

ω

)1/2 (e
2

)ω̄k⊥d/ω
exp(−(z − zt)k⊥ω̄/ω)

+B2

(N0

ω

)1/2 (
2
e

)ω̄k⊥d/ω

exp(+(z − zt)k⊥ω̄/ω), (2.93)

For z much larger than zt, the Bessel functions are a good approximation to the eigenfunction.
In the limit of large z, the Bessel functions become

ξz ∼ C1

(
1

eπk⊥d

)1/2 (eω̄
2ω

)ω̄k⊥d/ω+1/2

exp
(
−

(z − zt)k⊥ω̄
ω

)
−C2

(
4

eπk⊥d

)1/2 (
2ω
eω̄

)ω̄k⊥d/ω+1/2

exp
(
+

(z − zt)k⊥ω̄
ω

)
. (2.94)

Thus, the Bessel function solution matches onto the WKB solution in the convective region when

C1 = B1

(
πN0k⊥d

2ω

)1/2 (
ω

ω̄

)ω̄k⊥d/ω+1/2
, (2.95)

C2 = −B2

(
πN0k⊥d

2ω

)1/2 (
ω̄

ω

)ω̄k⊥d/ω+1/2

. (2.96)

Using eqns. 2.90, 2.91 & 2.95, 2.96, we can approximate ξz by

ξz ∼ B1

(
πN0k⊥d

2ω

)1/2 (
ω

ω̄

)d̄
Jd̄

k⊥d

√
N2

0 + ω2
c

ω
exp

(
−

z
d

)
+B2

(
πN0k⊥d

2ω

)1/2 (
ω̄

ω

)d̄

Yd̄

k⊥d

√
N2

0 + ω2
c

ω
exp

(
−

z
d

) , (2.97)

where we have defined d̄ = ω̄k⊥d/ω. This will be a good approximation for ξz(z) as long as
exp(−z/d) � 1.

For the purposes of determining the convective excitation of IGWs, we are interested in evalu-
ating ξz between zi and zi + 1/k⊥, where zi is the location of the interface between the radiative and
convective regions. Since

ω2
c

N2
0 + ω2

c
∼ exp

(
−2

zi

d

)
, (2.98)

the argument of the Bessel functions varies from ωck⊥d/ω to exp(−(k⊥d)−1)ωck⊥d/ω. Within this
range, the Bessel functions change by about a factor of e. It is thus within the accuracy of our
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calculation to take ξz to be about constant within this range: at z = zi, we have that

ξz ∼ B1

(
πN0k⊥d

2ω

)1/2 (
ω

ω̄

)ω̄k⊥d/ω
Jω̄k⊥d/ω (ωck⊥d/ω)

+B2

(
πN0k⊥d

2ω

)1/2 (
ω̄

ω

)ω̄k⊥d/ω

Yω̄k⊥d/ω (ωck⊥d/ω) . (2.99)

In evaluating eqn. 2.99, we need to calculate Jx(xa), where x = ω̄k⊥d/ω, and a = ωc/ω̄ < 1/
√

2.
A good set of approximations for the Bessel functions for x � 1 and x � 1 is given in eqn. 2.23
of the main text (based on expansions of Jx(xa) from Abramowitz & Stegun (2012)).

2.A.1 Numerical Verification
Here we will present numerical verification of our approximate solutions in the above subsec-

tion. We numerically integrated the homogeneous differential equation (eqn. 2.76) with N2 given
by eqn. 2.77 in Mathematica using the “ImplicitRungeKutta” method, and solved for a physical
solution, satisfying ξz → 0 as z → ∞ (see Fig. 2.2 in the main text for a representative eigen-
function). We pick the right boundary to be a point b deep within the convective region, where
k2

z (b) = −k2
⊥, specify ξz(b) = 1, ξ′z(b) = −k⊥, and integrate ξz leftwards into the radiative region.

This ensures that ξz satisfies the boundary condition z → +∞. We find that our calculations are
insensitive to the value of b, provided that it is sufficiently larger than zt.

To test the approximations described in the above subsection, we calculate the value of the
physical eigenfunction at the interface between the radiative and convective regions ξz(zi). Because
any multiple of the eigenfunction is also an eigenfunction, we normalize by B1 (see eqn. 2.79),
which is the amplitude of the oscillations deep in the radiative zone. Equation 2.99 predicts

ξz(zi)/B1 =

(
πN0k⊥d

2ω

)1/2 (
ω

ω̄

)ω̄k⊥d/ω
Jω̄k⊥d/ω

(
k⊥d

ωc

ω

)
. (2.100)

Our analysis is only valid if we are in the smooth N2 limit, i.e., if N0k⊥d/ω � 1.
In Figure 2.3 we compare our numerical results to the analytic predictions. In Figure 2.3

(top panel) we vary ω/N0 for two different values of k⊥d. The numerical solutions agree with
our prediction when N0k⊥d/ω � 1. In the opposite limit, when N0k⊥d/ω � 1, we can treat N2 as
discontinuous, so ξz is continuous across the interface, and ξz(zi)/B1 = 1, as is the case for the lower
curve in Figure 2.3 (top panel). In Figure 2.3 (bottom panel) we vary k⊥d, fixing ω/N0 = 0.01,
for two values of ωc/N0. In this case, we have N0k⊥d/ω = 1 when k⊥d = 0.01. The normalized
eigenfunctions approach one as k⊥d decreases, and the numerical solutions begin to deviate slightly
from the analytic prediction near k⊥d = 0.01. These results indicate that our analytic solution for
ξz near zi is accurate provided we are in the smooth N2 limit. The numerical solutions also show
how the eigenfunctions transition between the smooth and discontinuous N2 limits.
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Figure 2.3: The normalized eigenfunction at the radiative-convective interface zi. The symbols denote the
numerical solution, and the lines denote the analytic prediction, eqn. 2.99. In the top panel, we vary ω/N0,
fixing ωc = ω. The blue line and crosses have k⊥d = 0.1, and the red line and asterisks have k⊥d = 0.01. The
numerical solution matches the analytic prediction for smooth N2 when N0k⊥d/ω � 1, and approaches one
(the discontinuous N2 solution) when N0k⊥d/ω � 1. In the bottom panel, we vary k⊥d, fixing ω/N0 = 0.01
and setting ωc/N0 = 0.01 (blue curve, crosses) or ωc/N0 = 0.002 (red curve, asterisks). Again, there is good
agreement between the numerical solution and the analytic prediction.
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2.B Piecewise Linear N2

In the limit of smooth N2, the eigenfunctions, Green’s function, and IGW flux all depend on
the nature of the transition between radiative and convective regions. In this chapter, we focus on
the case of a tanh profile (Appendix 2.A), as we think it is the best simple model of this transition
region. However, in this appendix, we consider another analytically tractable transition—a piece-
wise linear N2 profile. This is the most abrupt transition possible, and thus provides a lower limit
to the efficiency of wave excitation for a “smooth” radiative-convective transition.

We assume N2 is given by

N2(z) =


N2

0 if z ≤ −d/2,
(N2

0 − ω
2
c)/2 − (N2

0 + ω2
c) (z/d) if − d/2 < z < d/2,

−ω2
c if z ≥ d/2.

(2.101)

We have that N2(z) = ω2 at the point

zt =
N2

0 − 2ω2 − ω2
c

N2
0 + ω2

c

(
d
2

)
, (2.102)

and that N2(z) = 0 at

zi =
N2

0 − ω
2
c

N2
0 + ω2

c

(
d
2

)
. (2.103)

The solutions in each region are

ξz = B1 cos(N0k⊥(z + d/2)/ω) + B2 sin(N0k⊥(z + d/2)/ω), (2.104)
for z < −d/2,

ξz = C1 exp(−k⊥(z − d/2)) + C2 exp(k⊥(z − d/2)), (2.105)
for z > d/2,

ξz = D1Ai
(
K1/3

1 (z − zt)
)

+ D2Bi
(
K1/3

1 (z − zt)
)
, (2.106)

for − d/2 < z < d/2,

where Ai, Bi are the Airy functions of the first and second kind, and

K1 =
dk2

z (z)
dz

∣∣∣∣∣∣
zt

=
k2
⊥

d
N2

0 + ω2
c

ω2 . (2.107)

We can relate the six coefficients in eqns. 2.104-2.106 to one another using four boundary condi-
tions: ξz and ξ′z must be continuous at z = ±d/2.

First consider the boundary at z = +d/2. The argument of the Airy functions at this boundary
is

(k⊥d)2/3

 ω2 + ω2
c(

N2
0 + ω2

c

)2/3 (
ω2)1/3

 ∼
(
ω2k⊥d

N2
0

)2/3

. (2.108)
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This is much smaller than one unless k⊥d is extremely large. One can check that IGW excitation
is exponentially suppressed when ω2k⊥d/N2

0 � 1. Thus, we will assume that ω2k⊥d/N2
0 � 1.

This implies that Ai|d/2,Bi|d/2,Ai′|d/2,Bi′|d/2 are all of order one, where we have introduced the
shorthand Ai|z = Ai(K1/3

1 (z − zt)), and similarly for the other functions. To order of magnitude, we
have that

C1 + C2 ∼ D1Ai|d/2 + D2Bi|d/2, (2.109)

and

C1 −C2 ∼
K1/3

1

k⊥

(
D1Ai′|d/2 + D2Bi′|d/2

)
. (2.110)

Notice that

K1/3
1 /k⊥ ∼

(
1

k⊥d
N2

0 + ω2
c

ω2

)1/3

� 1. (2.111)

Now consider the boundary at z = −d/2. The argument of the Airy functions at this boundary
is

(k⊥d)2/3
(

N2
0 + ω2

c

ω2

)1/3

∼

(
N0k⊥d
ω

)2/3

� 1, (2.112)

where the last inequality follows from assuming that we are in the smooth N2 limit. We thus have

ξz|−d/2 ∼

(
N0k⊥d
ω

)−1/6

×

[
D1 cos

(
2
3

N0k⊥d
ω

+
π

4

)
+ D2 sin

(
2
3

N0k⊥d
ω

+
π

4

)]
, (2.113)

implying

B1 ∼

(
N0k⊥d
ω

)−1/6

(D1 cos(φ) + D2 sin(φ)) , (2.114)

where φ = (2/3)(N0k⊥d/ω) + π/4. Similarly, by comparing ξ′z on either side of z = −d/2 we find

B2 ∼

(
N0k⊥d
ω

)−1/6

(−D1 sin(φ) + D2 cos(φ)) . (2.115)

Using these boundary conditions, we find that the physical eigenfunction is

ηL
z ∼

 B1 cos
(

N0k⊥(z+d/2)
ω

)
+ B2 sin

(
N0k⊥(z+d/2)

ω

)
z < −d/2,

B̃1

(
N0k⊥d
ω

)1/6
exp(−k⊥(z − d/2)) z > d/2,

(2.116)

where we use superscript L to denote the eigenfunction for the piecewise linear N2 profile, and
B̃1 ∼ B2 ∼ B1. An unphysical eigenfunction is

ξL
z ∼


B2 sin

(
N0k⊥(z+d/2)

ω

)
z < −d/2,(

N0k⊥d
ω

)−1/6 N0
ω
×(

B̃1 exp(−k⊥(z − d/2)) + B̃2 exp(k⊥(z − d/2))
)

z > d/2,

(2.117)
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where B̃2 ∼ B̃1 ∼ B2. Note that the constants B1, B2 in ηL
z and B̃1, B̃2 in ξL

z vary sinusoidally with d
(as well as the other parameters of the problem). Thus, although for most values of d they are the
same size, there are specific values of d for which one term is much larger than the other.

The Green’s function for z < 0 and ζ > 0 is then

GL(z, t, ζ, τ) ∼
∑
ω′

ω′
√
ρ0

N0k2
⊥

√
L

(
N0k⊥d
ω′

)1/6

× ξl
z(z;ω′) exp(−k⊥ζ − iω′(t − τ)). (2.118)

2.C Mode Projection Formalism (GK90)
In GK90, an amplitude equation is derived by projecting the inhomogeneous wave equation

onto specific modes. We will show that their approach gives the same result as our Green’s function
approach, provided that the correct inner product is used.

First start with the inhomogeneous equation for ξz in the Boussinesq approximation

∇
2 ∂

2

∂t2 ξz + N2
∇

2
⊥ξz = S . (2.119)

In the mode projection formalism, we decompose ξz as

ξz =
1
√
A

∑
ω′

A(t;ω′)ηz(z;ω′) exp(ikxx + ikyy − iω′t), (2.120)

where ηz(z;ω′) are the physical solutions satisfying the homogeneous wave equation. Substituting
this into the inhomogeneous wave equation, multiplying by ρ0η

∗
z(z;ω) exp(−ikxx − ikyy + iωt) and

integrating over d3xdt, we find

|A(t;ω)| =
ω

2k2
⊥

√
A

∫ t

−∞

dτ
∫

dxdy exp(−ikxx − ikyy + iωτ)

×

∫ L

zi

dζρ0S (x, y, ζ, τ)η∗z(ζ;ω). (2.121)

A crucial step in deriving this is using∫
dzρ0∂zηz(z;ω′)∂zη

∗
z(z;ω) = δωω′

k2
⊥

ωω′
. (2.122)

That is, the ηz(z;ω) are orthogonal with respect to the inner product 〈a, b〉 =
∫

dzρ0∂za∂zb∗. This
follows from our normalization equation (eqn. 2.27) and the polarization conditions (eqn. 2.7).

Although we use ξz as our perturbation variable in this chapter, GK90 uses δp. The inhomoge-
neous wave equation for δp in the Boussinesq approximation is

∇
2 ∂

2

∂t2 δp + N2
∇

2
⊥δp = S̄ , (2.123)
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where S̄ ∼ (ρ0ω
2/k⊥) S . As above, we can decompose δp into eigenmodes

δp =
1
√
A

∑
ω′

A(t;ω′)δp(z;ω′) exp(ikxx + ikyy − iω′t), (2.124)

where δp(z;ω′) are the physical solutions satisfying the homogeneous wave equation. When we
put this into the inhomogeneous wave equation, multiply by ρ0δp∗(z;ω) exp(−ikxx − ikyy + iωt),
and integrate over d3xdt, one might think that

|A(t;ω)| ?
=

∫ t

−∞

dτ
∫

dxdy exp(−ikxx − ikyy + iωt)

×
1

2ωN2
0ρ

2
0

√
A

∫ L

zi

dζρ0S̄ (x, y, ζ, τ)δp∗(ζ;ω). (2.125)

Using δp(ζ;ω) ∼ (ρ0ω
2/k⊥)ηz(ζ;ω) (eqn. 2.10), we see that this estimate of |A(t;ω)| differs from

our estimate using ξz (eqn. 2.121) by ω2/N2
0 . This leads to an underestimation of the flux in IGWs

by ∼ M4.
The discrepancy is due to using the incorrect inner product. Implicit in the derivation of

eqn. 2.125 is the assumption that the δp are orthogonal under the same inner product as the ξz,
i.e., ∫

dzρ0∂zδp(z;ω′)∂zδp∗(z;ω) ?
= δωω′ ρ

2
0N2

0 . (2.126)

However, one can check that the δp are not orthogonal with respect to this inner product.3 Rather,
they are orthogonal with respect to 〈a, b〉 =

∫
dzρ−1

0 ab∗, i.e.,∫
dzρ−1

0 δp(z;ω′)δp∗(z;ω) = δωω′
ω2

k2
⊥

. (2.127)

Thus, if we integrate the inhomogeneous wave equation twice with respect to z, multiply by
ρ−1

0 δp∗(z;ω) exp(−ikxx − ikyy + iωt), and integrate over d3xdt, we get

|A(t;ω)| =
1

2ω3
√
A

∫ t

−∞

dτ
∫

dxdy exp(−ikxx − ikyy + iωt)

×

∫ L

zi

dζρ−1
0 S̄ (x, y, ζ, τ)δp∗(ζ;ω). (2.128)

One can check that this is consistent with the calculation using ξz.

3Using the properties of Hermitian operators, one can show that the δp IGW eigenfunctions of eqn. 2.123 are
orthogonal under the inner product defined in eqn. 2.126. However, for the mode projection to be well defined, we
must work in a complete basis, and the IGWs alone do not form a complete basis (in the convection zone). Our
resolution of this apparent inconsistency is to note that the eigenfunctions of the full non-Boussinesq wave equation
do form a complete basis (this includes sound waves in addition to IGWs). Moreover, one can show that the δp
eigenfunctions for the non-Boussinesq equations are only orthogonal under the inner product defined in eqn. 2.127.
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If one uses a Green’s function this issue of orthogonality under different inner products be-
comes trivial. Using the expansions in Sec. 2.3.3, we have

1
√
A

∑
ω′

A(t;ω′)ξz,rad(z;ω′) exp(ikxx + ikyy − iω′t) =∫ t

−∞

dτ
∫ L

zi

dζ
∑
ω′

ξz,rad(z;ω′)ηz(ζ;ω′)
N0k⊥LW(ζ)

S exp(−iω′(t − τ)), (2.129)

where z < zi. Since both the left and right hand sides are in the span of {ξz,rad}ω, we can simply use
the inner product defined by

〈ξz,rad(z;ω), ξz,rad(z;ω′)〉 = δωω′ . (2.130)

Taking 〈ξz,rad(z;ω), ·〉 of eqn. 2.129, multiplying by exp(−ikxx − ikyy + iωt), and integrating in the
horizontal directions, we get

A(t;ω) =
1
√
A

∫ t

−∞

dτ
∫

dxdy
∫ L

zi

dζ
1

N0k⊥L
ηz(ζ;ω)

W(ζ)
× S (x, y, ζ, τ) exp(−ikxx − ikyy + iωτ). (2.131)

This is eqn. 2.25, which can easily be manipulated into eqns. 2.29, 2.30 using the eigenfunctions.
Note that we cannot use such an inner product in the mode decomposition formalism because we
need to calculate terms like 〈δp∗(ζ;ω), S (x, y, ζ, τ)〉, and thus need an explicit formula for the inner
product in terms of integrals over ζ.

Finally, we will demonstrate that the mode projection formalism—when done correctly—and
the Green’s function formalism give the same result. Specifically, we will show that eqns. 2.121
and 2.131 are equivalent. First note that W(ζ) is a constant for our wave equation. We want to
show that

1
N0k⊥LW

=
ρ0ω

2k2
⊥

. (2.132)

We can evaluate W in the radiative zone, and find

W =
2N0k⊥B1B2

ω
∼

2k⊥
N0ωLρ0

, (2.133)

where we have used eqn. 2.28. This proves that the two formulations are equivalent.
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Chapter 3

Conduction in Low Mach Number Flows:
Linear & Weakly Nonlinear Regimes

3.1 Introduction
In astrophysical fluid dynamics, important processes routinely occur on very disparate length

and time scales. Often, systems are driven on length scales orders of magnitude larger than the
dissipation length scale. Astrophysicists have turned to numerical simulations to attempt to gain
insight into these complicated, nonlinear systems. The inability to simulate the full range of spatial
and temporal scales of a system has led to an ever-growing set of approximations, each of which
has its own advantages and disadvantages.

For instance, the Navier–Stokes equations admit fast sound waves, which place strong restric-
tions on the time step of low Mach number flow when using an explicit time-integration scheme.
However, by removing the sound waves from the system of fluid equations, a “sound-proof” set of
equations need not resolve the fast sound time scale. These approximations range from the Boussi-
nesq approximation, which assumes a constant density fluid; to the anelastic equations (Batchelor
1953; Ogura & Phillips 1962), which assume small thermodynamic perturbations about a back-
ground state; to the pseudo-incompressible equations (Durran 1989; Almgren et al. 2006), which
allow for order unity thermodynamic perturbations in all quantities except the pressure. In Brown
et al. (2012, hereafter B12) & Vasil et al. (2013, hereafter V13), we show that certain ideal formu-
lations of the anelastic (e.g., Lantz 1992; Braginsky & Roberts 1995) and pseudo-incompressible
(e.g., Durran 1989) equations reproduce internal gravity wave eigenfunctions and frequencies bet-
ter than other formulations.

In this chapter, we turn to non-ideal behavior in these different equation sets, focusing on ther-
mal conduction. Thermal conduction plays a role in damping internal gravity waves in the radiative
zones of stars, and in setting the ferocity of convection (presumably related to the Rayleigh number,
the ratio of driving to damping on large scales) in the convection zone of stars. However, thermal
conduction in convection is most important on length scales much smaller than the driving scale.
Thus, simulations either replace thermal conduction by algorithmic numerical conduction (e.g.,
the Athena code, Gardiner & Stone 2008; Stone et al. 2008), or an explicit conduction term which
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acts on much larger length scales than in the physical system (e.g., Clune et al. 1999; Brun et al.
2004; Nonaka et al. 2010). Simulations with a reduced dynamic range are feasible with current
computational resources.

When increasing the strength of thermal conduction (and similarly viscosity) to remove small
scales from the system, one has to decide how to model the neglected small scales. One perspective
is to run a direct numerical simulation (DNS), in which one uses the real damping processes that
act on small scales. In this case, thermal conduction is modeled by Fourier’s law of conduction
(Fourier 1822),

QT = −κT∇T, (3.1)

where Q is the heat flux, κT is the conductivity, and T is the temperature. This leads to temperature
diffusion. However, it is computationally infeasible to use the microscopic diffusivities of many
physical systems, so the diffusivities must be artificially increased. Thus, even a DNS employs a
certain sub grid-scale (SGS) model of thermal conduction.

Another perspective is to use a SGS model to describe how the unresolved small scales influ-
ence thermal conduction. In this case, the unresolved convective heat flux can represented by a
conductive heat flux. Although there are many SGS models (e.g., Lesieur 1990), one particularly
popular model is the entropy diffusion model (used extensively in anelastic simulations, e.g., Clune
et al. 1999, and also occasionally in fully compressible simulations, Chan & Sofia 1986, 1989),

QS = −κS∇S , (3.2)

where S is the entropy. In this chapter we compare the temperature diffusion and entropy diffusion
models. Glatzmaier (1984) argues that the heat liberated by an eddy is given by the local entropy
gradient. Braginsky & Roberts (1995) argue for the “engineering approach” that the flux of entropy
should be linear in the entropy gradient (though not necessarily parallel to it). Practically speaking,
perhaps the most important feature of entropy diffusion is that it does not require the calculation of
the pressure perturbation, which can be advantageous for the anelastic equations.

Calkins et al. (2015) has recently calculated the onset of convection in anelastic simulations
with either temperature diffusion or entropy diffusion, as well as in fully compressible Navier–
Stokes simulations with temperature diffusion. They find that the anelastic and Navier–Stokes
equations with temperature diffusion have almost identical behavior, provided the background en-
tropy gradient is close to adiabatic. However, they only find “qualitative” rather than “quantitative”
agreement between the temperature diffusion and entropy diffusion models.

The remainder of the chapter is structured as follows. First, in section 3.2.1, we show that
entropy diffusion can lead to non-monotonicity of entropy. We state the various equations we use
in section 3.2.2 (and describe their numerical implementation in appendix 3.D). Next we study
thermal damping of internal gravity waves, both numerically (section 3.3) and analytically (sec-
tion 3.4). In section 3.5 we describe convective steady states for each of our equation sets with
either temperature or entropy diffusion. Finally, section 3.6 summarizes our results, discusses its
connection with other work, and suggests future paths of inquiry.
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3.2 Preliminaries

3.2.1 Motivation
A fundamental law of equilibrium statistical mechanics is that the total entropy of a closed

system increases monotonically with time. This is encapsulated in the entropy equation for a fully
compressible fluid,

ρT
dS
dt

= ∇ · κT∇T, (3.3)

where ρ,T, S are the density, temperature, and specific entropy of the fluid, and d/dt = ∂t + u · ∇
denotes the material derivative where u is the fluid velocity. We will assume that the heat flux is
proportional to ∇X, for X = S ,T , and take κX to be the constant of proportionality: Q = −κX∇X.
For temperature diffusion (X = T ), κT is the conductivity. Using the continuity equation, this can
be rewritten as

∂ρS
∂t

= −∇ ·

[
ρS u −

κT

T
∇T

]
+ κT
|∇T |2

T 2 . (3.4)

Assuming boundary conditions that ensure that the term in the total divergence on the RHS of
equation 3.4 is zero on the boundaries (e.g., no penetration and no heat flux), the volume integral
of equation 3.4 shows entropy increases monotonically with time,

∂

∂t

∫
V
ρS dV =

∫
V
κT
|∇T |2

T 2 dV ≥ 0. (3.5)

However, if we instead use entropy diffusion in equation 3.3,

ρT
dS
dt

= ∇ · κS∇S , (3.6)

the entropy per volume instead evolves according to

∂ρS
∂t

= −∇ ·

[
ρS u −

κS

T
∇S

]
+ κS
∇S · ∇T

T 2 . (3.7)

Again assuming boundary conditions such that the term in the total divergence is zero on the
boundaries, the volume integral of equation 3.7 is

∂

∂t

∫
V
ρS dV =

∫
V
κS
∇S · ∇T

T 2 dV. (3.8)

The ∇S · ∇T term is not positive definite, so there is no guarantee that entropy increases monoton-
ically with time. Although we focus only on thermal diffusion and entropy diffusion, the only heat
flux which will monotonically increase entropy is proportional to ∇T (Landau & Lifshitz 2013)1.

1The most general heat flux which monotonically increases entropy is Qi ∼ −Mi j∂T/∂x j, where Mi j is a symmetric
rank-2 tensor. For instance, in relatively collisionless plasmas, the heat flux is carried by electrons which follow
magnetic field lines. Thus, the heat flux is in the direction of the local magnetic field, Q ∼ −bb · ∇T , where b is
the unit vector in the direction of the magnetic field (e.g., Spitzer 2013; Balbus 2000). In this case, Mi j = bib j is
symmetric, so entropy will increase monotonically.
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This chapter investigates the effects of this modification of the second law of thermodynamics
for linear waves and weakly nonlinear convective equilibria.

3.2.2 Model Equations
We break the thermodynamic variables into background and fluctuating parts, e.g., S = S + S ′.

The background fields are time independent and satisfy hydrostatic and thermal equilibrium,

∇P = gρ, (3.9)
∇ · Q = 0, (3.10)

where P is the pressure, g is the gravitational acceleration, and Q is the heat flux. This chapter
studies the effects of varying the form of Q. To simplify the problem, we assume the fluid to
be an ideal gas with constant ratio of specific heats γ. We make extensive use of the linearized
thermodynamic relations,

P′

P
=

ρ′

ρ
+

T ′

T
, (3.11)

S ′

CP
=

P′

γP
−
ρ′

ρ
. (3.12)

Full Compressible Equations

The fully compressible (FC) equations are

ρ (∂tu + u · ∇u) + ∇P = gρ − ∇ · Π, (3.13)
∂tρ + u · ∇ρ + ρ∇ · u = 0, (3.14)

∂tS + u · ∇S = −
1
ρT
∇ · Q −

1
ρT

Πi j∂xiu j, (3.15)

where repeated indices are summed over, Πi j is the viscous stress tensor,

Πi j = −µ

(
∂xiu j + ∂x jui −

2
3
δi j∇ · u

)
, (3.16)

and δi j is the Kronecker delta.
To study waves, we solve the linearized, inviscid, FC equations. We subtract off hydrostatic

equilibrium and thermal equilibrium (equations 3.9 & 3.10), and linearize the thermodynamic
variables (equations 3.11 & 3.12). To use notation consistent with B12, we pick S ′ and $′ = P′/ρ
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as our thermodynamic variables. Then the FC equations take the form

∂tu + ∇$′ −$′∇

 S
CP

 = −g
S ′

CP
, (3.17)

∂tS ′ + u · ∇S = −
1

ρT
∇ · Q′, (3.18)

u · ∇
 S
CP

 + u · ∇ log ρ + ∇ · u =

−
1

cs
2∂t$

′ −
1

ρTCP

∇ · Q′, (3.19)

where cs
2

= γP/ρ is the adiabatic sound speed. These equations support sound waves because
they include the ∂t$

′/cs
2 term in equation 3.19. Also note that thermal conduction appears in both

thermodynamic equations.

Pseudo-Incompressible Equations

The pseudo-incompressible (PI) equations (see V13) assume that sound waves rapidly equili-
brate pressure fluctuations, so that pressure fluctuations are small (O(PMa2), where Ma is the Mach
number) when averaged over a sound crossing time. The pressure fluctuations must be retained in
the pressure gradient term in the momentum equation to keep the flow from building large pressure
fluctuations, but must be dropped everywhere else. The PI equations are

ρ (∂tu + u · ∇u) + β∇

(
π′

β

)
= gρ′ − ∇ · Π, (3.20)

∂tρ + u · ∇ρ + ρ∇ · u = 0, (3.21)
u · ∇P + γP∇ · u =

−
1

CV
∇ · Q −

1
CV

Πi j∂xiu j, (3.22)

where β = P
1/γ

and CV is the specific heat at constant volume. In the equation of state, P is
replaced by P, i.e., T = T (ρ, P) and s = s(ρ, P). The variable π′ is the O(PMa2) correction to the
background pressure.

The linearized, inviscid PI equations are very closely related to the linearized, inviscid FC
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equations: the $′ term in equation 3.19 is dropped,

∂tu + ∇$′ −$′∇

 S
CP

 = −g
S ′

CP
, (3.23)

∂tS ′ + u · ∇S = −
1

ρT
∇ · Q′, (3.24)

u · ∇
 S
CP

 + u · ∇ log ρ + ∇ · u =

−
1

ρTCP

∇ · Q′, (3.25)

and the PI equations use the modified equation of state (compare to equation 3.12),

S ′

CP
= −

ρ′

ρ
. (3.26)

Anelastic Equations

The anelastic (AN) equations (see B12) were first used in astrophysics to remove sound waves
from convection simulations. Efficient convection almost entirely erases an unstable entropy gradi-
ent. Thus, the anelastic equations are derived in the limit that ∇(S /CP) ∼ O(Ma2/Lz) � 1, where
Lz is the vertical (or radial) length of the convection zone. Furthermore, the AN equations assume
that all thermodynamic fluctuations are O(Ma2), and thus the linearized thermodynamic relations
(equations 3.11 & 3.12) can be used. The AN equations can be written

∂tu + u · ∇u + ∇$′ = −g
S ′

CP
− ∇ · Π, (3.27)

∂tS ′ + u · ∇S ′ + u · ∇S =

−
1

ρT
∇ · Q′ −

1

ρT
Πi j∂xiu j, (3.28)

u · ∇ log ρ + ∇ · u = 0. (3.29)

Having already linearized the thermodynamics, these equations bear striking similarity to the lin-
earized FC & PI equations, although they include the nonlinear u · ∇u and u · ∇S ′ terms. The
∇S /CP terms in the momentum equation and constraint equation have been dropped, as well as
the heating terms on the RHS of the constraint equation (which can be justified by dimensional
analysis).

The linearized, inviscid AN equations are

∂tu + ∇$′ = −g
S ′

CP
, (3.30)

∂tS ′ + u · ∇S = −
1

ρT
∇ · Q′ (3.31)

u · ∇ log ρ + ∇ · u = 0. (3.32)
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3.3 Linear Wave Modes: Numerics
We solve for internal gravity wave (IGW) eigenmodes with different thermal conduction mod-

els using Dedalus2 (Burns et al. 2014). Dedalus is a general framework for studying partial dif-
ferential equations, including eigenvalue problems, boundary value problems, and initial value
problems (i.e., simulations). It uses the τ spectral method to solve nearly arbitrary equation sets
including algebraic constraints and complex boundary conditions. This flexibility allows us to
specify the linear eigenvalue problem for IGWs in all three equation sets discussed above, with
different thermal conduction models, all within the same code. In all cases, we use a 2D Cartesian
domain with a Fourier grid in the horizontal (x) and a Chebyshev grid in the vertical (z) directions.
In section 3.5, we use Dedalus to evolve the nonlinear versions of these equation sets in time, and
in appendix 3.D we specify the exact equations as entered into the code.

We use a polytrope background field:

T = T0
Lz + H − z

H
, (3.33)

ρ = ρ0

(Lz + H − z
H

)n

, (3.34)

P = P0

(Lz + H − z
H

)n+1

, (3.35)

where ρ0,T0, P0 are constants satisfying ρ0T0 = P0, Lz is the box height, and H is the local scale
height at the top of the box. n is the polytropic index, and satisfies g = −T0(n + 1)/Hez. We non-
dimensionalize the system by setting ρ0 = T0 = P0 = H = 1. We take γ = 5/3, so any n > 1.5 cor-
responds to stable stratification—we pick n = 2. We take the box size to be (Lx, Lz) = (78.3, 26.1),
which corresponds to ≈ 6.6 density scale heights, the number of density scale heights in the so-
lar radiative zone. The vertical resolution is typically 128 grid points & modes (no dealiasing is
needed for linear calculations).

This background satisfies thermal equilibrium only when using temperature diffusion with a
constant κT . We assume that the background fields and the perturbation fields conduct heat dif-
ferently. Various authors (e.g., Braginsky & Roberts 1995; Clune et al. 1999; Jones et al. 2009)
have argued that the heat conduction acting on the perturbation fields is actually a SGS effect from
unresolved turbulent motions, and thus different from the microphysical heat conduction acting on
the background fields. In our calculations, the background fields conduct heat using temperature
diffusion with a constant κT ; we use different choices for the conduction model for the perturbation
fields. The equations remain consistent as the perturbations never feed back onto the background
fields.

The wave perturbations evolve according to the equations described in sections 3.2.2–3.2.2.
We use two forms for Q′,

Q′T = −χTρ∇T ′, (3.36)

Q′S = −χSρT∇
S ′

CP
, (3.37)

2For more information and links to the source code, see dedalus-project.org.

dedalus-project.org
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Figure 3.1: Damping rates and oscillation frequencies of gravity wave modes of the FC, PI, and AN equa-
tions, using either T - or S - diffusion. The first thirty radial and horizontal modes are shown for each equation
set. The modes with lowest mode number are at the bottom of the plot. Moving up and to the left corre-
sponds to increasing the vertical mode number (m), and moving up and to the right corresponds to increasing
the horizontal mode number (n).

where χT = χS = 10−5 are taken to be constant, which implies a constant diffusivity throughout the
domain. Such a small diffusivity ensures all modes are weakly damped. We will refer to these two
thermal conduction models as T -diffusion and S -diffusion. Our boundary conditions are w = 0
(the vertical velocity) and Qz = 0 at z = 0 and z = Lz, and periodic in the horizontal direction.
The eigenmodes depend on horizontal and vertical wave numbers. We define the (n,m) mode to be
the mode with horizontal wavenumber kx = 2πn/Lx, and m extrema in the vertical direction (with
vertical wavenumber defined as kz = 2πm/Lz). n and m are the mode’s horizontal and vertical
mode number respectively. The total wavenumber of a mode is k =

√
k2

x + k2
z .

The linear modes vary in time as exp(−iωt − Γt), where ω is the oscillation frequency and Γ

is the damping rate. Figure 3.1 shows eigenvalues of the different equation sets with either T -
or S - diffusion. To ensure the accuracy of the eigenvalues, we compare the damping rate, Γ, to
the analytic expression of the damping rate given in equations 3.47 & 3.48 and the analogous
expressions in appendices 3.A & 3.B. In all cases, the discrepancy is less than 1%, and typically is
less than 0.01%.

The damping rates and oscillation frequencies match very well for the different equation sets
and conduction models, particularly for large kH. For small kH, there are some discrepancies in
both damping rates and oscillation frequencies. Figure 3.2 shows the percent error in the oscillation
frequency and damping rate with respect to the eigenvalues of the FC equations with T -diffusion.
The relative errors are plotted for the modes (1,m), with m ranging from one to thirty.

The largest errors in damping rate occur for the PI equations with T -diffusion, where the damp-
ing rate is underestimated by half for the (1, 1) mode—interestingly, the PI equations with S -
diffusion seem to agree more closely with the true damping rate. This may be because the PI
equations do not use the full linearized equation of state to calculate the temperature (compare
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Figure 3.2: Percent error in oscillation frequencies and damping rates between different equations and ther-
mal conduction models and the FC equations with T -diffusion, e.g., (ωAN;T − ωFC;T )/ωFC;T . The modes
have n = 1, but with varying vertical mode number m—these are the modes with the largest errors. The per-
cent error in oscillation frequency depends only on the equation set, not on the model of thermal conduction.

equations 3.11 & 3.12 to equation 3.26).
For the AN equations, the error in damping rate is always less than twenty percent. For all

the models described here, the relative errors are less than 10% for mode numbers greater than ten
(or four if we neglect the PI equations with T -diffusion). The FC equations with S -diffusion have
relative errors of less than 1% for mode numbers greater than eleven, whereas the AN equations
with S -diffusion have relative errors of less than 1% for mode numbers greater than nine (which is
much better than the AN equations with T -diffusion).

Overall, there is little difference in the damping rates between T -diffusion and S -diffusion. We
will explain this by studying the linear problem analytically in section 3.4.

In addition to errors in damping rates, there are also small (several percent) errors in oscillation
frequency associated with using different equation sets. Although the PI equations have the largest
relative error (almost seven percent) for the (1, 1) mode, the AN equations have more persistent
errors as the vertical mode number increases.

As shown in B12 & V13, the ideal linear eigenvalues differ more among the different equation
sets in spherical geometry than in plane parallel geometry. Furthermore, in spherical geometry, the
eigenfunctions also differ between equation sets. These suggest that differences between damping
rates (which depend on the eigenfunctions, as shown in section 3.4) and oscillation frequencies
will be larger in spherical geometry than in plane parallel geometry. However, the differences in
spherical geometry will also become small for kH � 1.

Nonlinear damping can also be an important damping mechanism, especially for modes with
low linear damping rates. Via nonlinear interactions, low wavenumber gravity waves can couple
and transfer energy to higher wavenumber gravity waves (e.g., Weinberg et al. 2012). The energy
in high wavenumber modes can then be damped via dissipative effects, e.g., thermal conduction.
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Thus, it is possible that the low wavenumber modes which have the largest discrepancies in lin-
ear damping rates could still be damped at the correct rate in fully nonlinear simulations—if the
damping is dominated by nonlinearities.

3.4 Linear Wave Modes: Analytics
In the previous section, we demonstrated that IGWs have very similar damping rates with either

T - or S - diffusion. To better understand why this is the case, we study the linear IGW problem
analytically. We use different approximations to render the problem tractable. First, we derive the
eigenvalue equation in the large wavenumber limit. Second, we assume dissipation is weak, and
derive an expression for the damping rate. The numerical results presented above in section 3.3
satisfy this weak dissipation assumption. We only include the details of the calculations for the
AN equations; the (similar) main results for the FC & PI equations can be found in appendices 3.A
& 3.B, respectively. We find that T - and S - diffusion give the same damping rate because T and S
are approximately proportional to one another in the large wavenumber limit.

3.4.1 Large Wavenumber Limit
We derive the eigenvalue equation for the AN equation (see appendices 3.A & 3.B for the

eigenvalue equations for the FC and PI equations, respectively), for both T - and S - diffusion. In
the limit of kH � 1, these eigenvalue equations are equivalent, which implies that T - and S -
diffusion will give the same eigenfunctions and eigenvalues.

To simplify the expressions, we will drop all terms with derivatives on background quantities,
which are order (kH)−1 � 1. In this limit, the eigenvalue equation for the AN equations using
T -diffusion is [

1 +
iκT

ρCPω
∇2 +

iκT

ρCPω

γ − 1
γ

g

T
∂z

]
∇2w

= −
k2
⊥N

2

ω2 w, (3.38)

where N
2

= g∂zS /CP is the squared buoyancy (Brunt–Väisälä) frequency. The eigenvalue equation
using S - diffusion is [

1 +
iκS

ρTω
∇2

]
∇2w = −

k2
⊥N

2

ω2 w. (3.39)

Note that ∇2 � (g/T )∂z, because g/T ∼ H−1. Thus, the two eigenvalue equations are equivalent
under the identification κS = κT T/CP. This shows that T - and S - diffusion will have the same
eigenfunctions and eigenvalues in the limit of large kH, as can be seen in figure 3.1.
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3.4.2 Damping Rates & the Weak Dissipation Limit
By manipulating the equations of motion, the damping rate can be expressed as a ratio of vol-

ume averages of the eigenfunctions. In this section, we focus on the AN equations; the analogous
results for FC & PI equations are in appendices 3.A & 3.B, respectively. Dotting the momentum
equation (3.30) with ρu gives an energy equation,

∂t

(
1
2
ρ|u|2

)
= ∇ ·

(
ρu$′

)
+

gρ
CP

S ′w. (3.40)

The vertical velocity is given by the entropy equation (3.31),

w = −
∂tS ′

∂zS
−

1

ρT∂zS
∇ · Q′. (3.41)

Using this relation, we can rewrite the energy equation in the form

∂tE + ∇ · F = −θ, (3.42)

where

E =
1
2
ρ|u|2 +

1
2

gρ
CP

(
∂zS

)−1
S ′2, (3.43)

F = ρu$′ +
g

T∂zS

S ′

CP
Q, (3.44)

θ = −Q · ∇
(

g

T∂zS

S ′

CP

)
, (3.45)

are the wave energy, the energy flux, and the change of wave energy due to thermal conduction,
respectively.

The damping rate (of the perturbations) Γ is

Γ =
〈θ〉

2 〈E〉
, (3.46)

where 〈·〉 denotes a volume average. For T - and S - diffusion, the expressions for θ are

θT = κT∇

(
gS ′

CPT∂zS

)
· ∇

(
T

S ′

CP
+
γ − 1
γ

$′
)
, (3.47)

θS = κS∇

(
gS ′

CPT∂zS

)
· ∇S ′. (3.48)

These expressions follow directly from the equations of motion and contain no approximations.
They are used to check the numeric damping rates calculated in figure 3.1.

In equation 3.47, we have rewritten T ′ as a function of S ′ and $′ using the linearized equation
of state (equations 3.11 & 3.12). T ′ is comprised of a part that is proportional to S ′ and a part that
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is proportional to $′. We will show below that if kH � 1, the $′ term is much smaller than the S ′

term. Thus, T ′ and S ′ are well aligned, and give the same damping rate.
If we assume g/(T∂zS ) is constant (as is the case for a plane-parallel polytrope atmosphere),

then θS is positive definite, proving there are no overstable modes with S -diffusion. By contrast, θT

cannot be shown to be positive definite, leaving open the possibility of overstable IGWs. For the FC
& PI equations, neither θS nor θT can be shown to be positive definite (see appendices 3.A & 3.B).
Lou (1990) searched extensively for overstable IGWs using the FC equations with temperature
diffusion in a polytrope atmosphere, but found none. We also have not found any overstable IGWs.

Next we calculate the relative sizes of the different terms in equations 3.47 & 3.48 by solving
for the eigenfunctions. To simplify the calculation, we will use the weak dissipation limit. For suf-
ficiently small dissipation, the eigenfunctions are very well approximated by the ideal eigenfunc-
tions, which can be solved for analytically if we use the WKB approximation (assuming kH � 1).

The ideal eigenvalue equation (see, e.g., B12) is

ω2
(
k2
⊥ − ∂

2
z

)
w − ω2∂z

(
(∂z log ρ)w

)
= N

2
k2
⊥w, (3.49)

The lowest order WKB approximation to the solution is

w ≈
A√
ρkz

exp
(
−

∫ z

z0

kz(z′) dz′
)
, (3.50)

where A = w(z0)
√
ρkz is the amplitude and kz(z) satisfies

k2
z = k2

⊥

N
2

ω2 − 1

 . (3.51)

The entropy and pressure perturbations are related to one another via

S ′ = −i
w∂zS
ω

, (3.52)

$′ =
iω
k2
⊥

(
∂zw + w∂z log ρ

)
≈
ω2 − N

2

ωkz
w, (3.53)

where the approximation is dropping terms of order (kzH)−1 and smaller.
The ratio of the S ′ contribution to θT to the $′ contribution to θT is∣∣∣∣∣∣TS ′

CP

∣∣∣∣∣∣
∣∣∣∣∣$′γ

∣∣∣∣∣−1

=

cs
2k2
⊥

ω2


∂z

(
S

CP

)
kz

 . (3.54)

Using that cs
2
∼ N

2
H2 and that ω ≤ N for gravity waves, one can show that this ratio is of order

kH, which is assumed to be much larger than one3. Thus, θT is dominated by entropy diffusion.

3Near the cores of stars we instead have cs
2
∼ N

2
r2. In this case, the ratio is of order kzr � 1.
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Furthermore, the leading order (in kzH) expressions for$′ and S ′ are out of phase, so upon volume
integration, cross terms such as∇$′ ·∇S ′ are smaller than the leading order term |∇S ′|2 by (kzH)−2.
Similarly, the volume average of terms like S ′∇T · ∇S ′ are also of order (kzH)−2 because S ′ and
∂zS ′ are out of phase to leading order.

The leading order contributions to θT and θS are

θT ≈
gκT

C2
P∂zS

|∇S ′|2 , (3.55)

θS ≈
gκS

CPT∂zS
|∇S ′|2 . (3.56)

For perturbations with kzH � 1, we have that thermal diffusion and entropy diffusion are equiva-
lent under the identification κS = κT T/CP.

A key assumption in the above argument is that ω ≤ N, which was used to show that the ratio
of the S ′ contribution to θT to the $′ contribution to θT (equation 3.54) is order kH � 1. This is
satisfied for gravity waves, but not for sound waves. For sound waves, the first term on the RHS of
equation 3.54 is order one, so the $′ contribution to θT is larger than the S ′ contribution to θT by
order kH. This suggests that T - and S - diffusion give very different results for sound waves (see
appendix 3.C).

3.4.3 FC & PI equations
Although we have only shown the results for the AN equations, similar results hold for the

FC & PI equations. In appendix 3.A, we show that for the FC equations the T - and S - diffusion
eigenvalue equations reduce to one another if we assume kH � 1 and that damping is weak.
Unlike the AN equations, there are differences between T - and S - diffusion for strongly damped
modes (which are no longer waves). We also derive analytic expressions for the damping rates.

In appendix 3.B, we carry out the same analysis as above for the PI equations. It is straightfor-
ward to show that the PI equations will give the same damping rates using either T - or S - diffusion,
assuming kH � 1. This is because T - and S - diffusion in the PI equations only differ by a factor
of T , which can be absorbed into κ in the limit kH � 1.

3.5 Steady Nonlinear Convective Solutions
We present nonlinear simulations of convection using the FC, PI, & AN equations with both

T - and S - diffusion models. Near the onset of convection, unstable modes saturate as steady
convective rolls. For sufficiently small driving (Ra), these are stable. However, as the driving of
the system (Ra) increases, the rolls become unstable to oscillatory motions. The accuracy of the
stable convection states is an important nonlinear test of the different equation sets and thermal
conduction models. We restrict our investigation to 2D because the convection solutions are more
susceptible to oscillatory motions in 3D.
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We solve for convective steady states using Dedalus by integrating the equations of motion
forward in time. The background state is a polytrope (equations 3.33-3.35) with polytropic index

n = 1.5 − ε. (3.57)

Recall that an adiabatic background has n = 1.5; by setting n slightly smaller than 1.5, we are
imposing a slightly superadiabatic stratification. We set ε = 10−5. This implies the background
entropy gradient is

∂z

 S
CP

 = −
ε

Lz + 1 − z
. (3.58)

Mixing length theory suggests that the Mach number squared is proportional to the entropy gra-
dient, so we choose to fix the entropy gradient in order to fix the Mach number. The convective
steady states described in this chapter have Mach numbers of about 10−3.

As above, we assume that the perturbation fields conduct heat differently from the background
fields. To satisfy thermal equilibrium, we assume that the background fields are acted upon by
temperature diffusion with a constant κT . Again, it is consistent to use a different conduction model
for the perturbations, provided that the perturbation fields never feed back onto the background
fields.

For the perturbation fields, we use a constant diffusivity χ,

Q′T = −χTρ∇T ′, (3.59)

Q′S = −χSρT∇
S ′

CP
. (3.60)

Similarly, for viscosity, we use a constant diffusivity ν,

µ = ρν. (3.61)

In both cases, ρ is replaced by ρ for the AN equations.
We can now define the Rayleigh number: the ratio of driving to dissipation in the system,

Ra =
∆S gL3

z

CPνχ
, (3.62)

where ∆S /CP = ε log(Lz + 1) is the entropy jump across the domain (recall that in our non-
dimensionalization g = n + 1). Below, we study how convective steady states vary as a function of
Ra. All simulations have Pr = ν/χ = 1. We find that when Pr < 1, there are very few convective
steady states, as the convection is strongly susceptible to oscillatory instabilities. Thus, to compare
the convection for Pr < 1 in different models would require a study of the (temporal) statistical
properties of the flow, which is beyond the scope of this chapter. However, we do not expect our
results to change qualitatively for low Pr convection (note that our linear wave results are at a
Pr = 0). Recent work by Calkins et al. (2014) shows substantial differences between the onset
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of rapidly-rotating convection in the FC and AN equations with Pr < 1. However, there is no
indication that such differences persist in the non-rotating limit.

For simulations at fixed Ra with Pr > 1, we do find some convective steady states. In this case
viscosity is a more dominant damping mechanism than thermal conduction, so we expect smaller
differences between the conduction models. For sufficiently high Pr, the thermal boundary layers
become unstable and there are no longer steady convective states.

To maintain the background entropy gradient, we use the boundary conditions S ′ = 0 on
the top and bottom. Our other boundary conditions are u = 0 on the top and bottom, and all
variables are periodic in the horizontal direction. Our vertical boundary conditions are artificial—
a more physical boundary condition would be to add stably stratified layers on either side of the
convection zone. We do not implement this type of background state because it greatly complicates
the problem. In real systems, convective plumes penetrate into the stably stratified regions, which
in turn affects the whole convective state. However, for stiff interfaces, the penetration is small
(Rogers & Glatzmaier 2005a; Brummell et al. 2002), suggesting that there might not be significant
differences between a convective–radiative boundary and a solid wall.

Note that w = 0 on the top and bottom are redundant equations for the horizontally averaged
(n = 0) mode when using the AN equations. Furthermore, there is a gauge freedom in the definition
of π′ for the PI equations and $′ for the AN equations. Thus, when using the PI or AN equations,
for the horizontally averaged mode (n = 0), we use the boundary conditions w = 0 on the bottom
boundary, and π′ or $′ = 0 on the top boundary. In fact, the PI equations are inconsistent for u = 0
on the top and bottom, and periodic in the horizontal directions. This can be verified by integrating
the constraint equation—the LHS is zero for these boundary conditions, but the RHS is generally
non-zero. Physically, this is because heating causes the fluid to expand, so there must be a way for
the fluid to leave the box.

The simulations are run in a box with aspect ratio three, i.e., Lx = 3Lz, with three different
heights: Lz = 10, 30, 100. This corresponds to about 3, 5, 7 density scale heights, respectively.
We use a resolution of 96 grid points in each direction, with 2/3 dealiasing (i.e., 64 modes). We
represent the solution as a Fourier series in the x direction and a Chebyshev series in the z direction.
For several cases, we ran with a resolution of 192 grid points (128 modes) in each direction, and
found that the results were virtually identical. To timestep the equations, we use an implicit–
explicit, SBDF2 method (Ascher et al. 1995; Wang & Ruuth 2008). The time step is given by the
smaller of the 0.3u · ∆x−1, where ∆x−1 is the inverse local grid spacing, and 5 × 10−5 χ/L2

z . The
latter time scale almost always sets the time step, and was chosen to ensure the simulations are
extremely well resolved temporally.

We do not base our CFL on the sound speed for the simulations of the FC equations (all equa-
tion sets are solved with the same time step size). This is because we are able to implicitly timestep
the sound waves, and are thus not limited by the sound speed CFL. A similar approach was used
by Viallet et al. (2011, 2013), although they use an iterative, nonlinear implicit solve, whereas we
only treat linear terms implicitly. This is significant as the typical rms Mach number of our nonlin-
ear strongly stratified convection is 10−3, and explicitly following the sound waves would increase
the computation cost by approximately 103, which would make low-Mach number convection pro-
hibitively expensive to simulate. The greater complexity of the FC equations (see appendix 3.D)
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makes them a factor of two slower than the AN simulations (the PI equations run at about the same
speed as the FC equations).

The simulations are initialized by random, low amplitude density perturbations (FC & PI equa-
tions) or entropy perturbations (AN equations). The system is evolved forward in time until a
convective steady state is found. We assume we are in a steady state if the volume-averaged ki-
netic energy changes by less than a factor of 10−4 over one thousand iterations. For higher Ra,
we sometimes did not find a steady state solution—instead, the system evolves into a periodically
varying state. In this case, we restart the simulation with different random initial conditions. If
several different random initial conditions lead to periodically varying states, we stop the search.
Of course, our limited search of initial conditions does not prove that there is no steady state for
certain parameters, but it does suggest that the basin of attraction of a hypothetical steady state
solution is likely limited.

Sometimes we found multiple convective steady states. The most common state consists of
two pairs of convective rolls. To facilitate comparison between different states, we only consider
steady states consisting of two pairs of convective rolls (see figures 3.3 & 3.4). If we changed the
horizontal periodicity of the domain, the aspect ratio of the convective cells would likely stay close
to the aspect ratio described here, as this is the preferred aspect ratio of the system.

Figure 3.3 plots several convective steady states using the FC equations. We do not calculate
the critical Rayleigh number for the onset of instability, but expect similar values for all equation
sets. We vary Ra in panels (a)–(c), fixing Lz = 100 and using T -diffusion. As Ra increases, the
boundary layer at the top of the domain decreases in size, and the flow and entropy become more
asymmetric. The down flows between convective rolls become sharper as Ra increases. At Ra
somewhat higher than 4 × 105, the down flows become so sharp that they become unstable to an
oscillatory instability.

In the bulk of the fluid, up flows carry high entropy fluid, and down flows carry low entropy
fluid. However, things become more complicated in the upper boundary layer for highly stratified
convection, where sometimes high entropy fluid rests above down flows, and low entropy fluid
rests above up flows (see panel (a)). This could be due to two effects. First, viscous heating
increases the entropy near the down flows where there are sharp velocity gradients. Second, due to
large stratification near the top of the box, up flows produce diverging flows which dilute entropy,
whereas down flows produce converging flows which concentrate entropy.

Panels (d)–( f ) show convective steady states with S -diffusion for fixed Ra = 4 × 104, but with
increasing Lz. Increasing Lz also decreases the thickness of the boundary layer (relative to the
box size) at the top of the domain. Note that as Lz increases, the critical Ra (at which convection
begins) also increases. Thus, Ra/Rac is decreasing with increasing Lz, which might naively lead
one to believe that the boundary layer thickness should increase with increasing Lz, the opposite
of what we find.

However, these convective steady states are in some ways consistent with the idea that con-
vection only occurs on the local scale height. In all cases, the local scale height is ≈ 1 near the
top of the box. This corresponds to 1/10 of the domain when Lz = 10, but 1/100 of the domain
when Lz = 100. Thus, the upper boundary layer might be influenced by the local scale height near
the top of the box. The convective rolls also seem to have size ∼ Lz, which is similar to the scale
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Figure 3.3: Steady convective states for the FC equations, varying the thermal conduction model, Ra, and
Lz. The color depicts the total entropy (background plus perturbations)—the convective layers are fairly
adiabatic, with a sharp boundary layer at the top of the domain. The color scale is chosen such that white
corresponds to the entropy at the bottom of the domain, and red (blue) is thirty percent greater (less) than
this value. The arrows show the flow field. Each steady state is labelled with the equation set, the thermal
conduction model (T - or S - diffusion), the Rayleigh number, and the vertical length of the domain. In all
cases, Lx = 3Lz. Panels (a)–(c) use the FC equations with T -diffusion and Lz = 100, but vary Ra from
4× 103 to 4× 105. Panels (d)–( f ) use the FC equations with S -diffusion and Ra = 4× 104, but vary Lz from
10 to 100.
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Figure 3.4: Steady convective states for different equations and thermal conduction models, with Ra =

4 × 104 and Lz = 100. The quantities plotted and labeling are the same as for figure 3.3, except that the red
(blue) colors correspond to fifty percent greater (less) than the entropy value at z = 0. In all cases, Lx = 3Lz.
Panels (a) & (b) use the T -diffusion with the FC & AN equations, respectively. These plots are virtually
identical. Panel (c) shows the convective steady state for the FC equations with S -diffusion; the results for
the AN & PI equation equations with S -diffusion are virtually identical and not shown. Panel (d) shows the
convective steady state for the PI equations with T -diffusion.

height at the bottom of the domain. However, there are no features on intermediate scales, even for
Lz = 100 which contains seven density scale heights.

In figure 3.4, we vary the equations and thermal conduction model, fixing Ra = 4 × 104 and
Lz = 100. Panels (a) & (c) correspond to panels (b) & ( f ) in figure 3.3. The FC & AN equations
with T -diffusion (panels (a) & (b)) look virtually identical. There are slight differences between
the FC equations with T - and S - diffusion (panels (a) & (c))—the upper boundary layer is slightly
thinner for S -diffusion.

However, there are substantial differences between the steady state for the PI equations with
T -diffusion (panel (d)) and the other three steady states. The entropy variation with height is
very different for the PI steady state—the entropy is much larger at the top of the box than the
rest of the domain. It might appear that the convective steady state does not satisfy the S ′ = 0
boundary condition at the top of the domain. However, this is only because there is an extremely
thin boundary layer at the top of the domain which is well resolved in the simulation, but is smaller
than the resolution of the image. Also, the flow pattern looks very different, with less asymmetry
between the up flows and down flows than in the FC & AN simulations. The convective steady
states were virtually identical for the FC & AN equations using T -diffusion, and all three equation
sets with S -diffusion. The only equations which show strong differences from the others are the PI



3.5. STEADY NONLINEAR CONVECTIVE SOLUTIONS 55

104 105

Ra

0

5

10

15

20

25

30

35

40

45

R
e r
m
s

FC/ AN, T

FC/ PI/ AN, S

PI, T

Lz =10

Lz =30

Lz =100

Figure 3.5: Rerms (equation 3.63) of convective steady states as a function of Ra (equation 3.62) for different
equation sets, thermal conduction models, and box sizes Lz. Solid lines show results for the FC & AN
equations with T -diffusion, dotted lines show results for the FC, PI, & AN equations with S -diffusion, and
dot-dashed lines show results for the PI equations with T -diffusion. Blue, yellow, and red lines show results
for Lz = 10, 30, and 100 respectively (recall that Lx = 3Lz). The different equation sets which have been
grouped together have differences in Rerms of less than 1% (and typically less than 0.01%) for each Ra and Lz

shown. Although the T - and S - diffusion models track each other fairly well for the FC & AN equations, the
PI equations with T -diffusion have convective steady states with low Rerms, especially for highly stratified
domains.

equations with T -diffusion.
To more quantitatively compare the different convective steady states, we plot the rms Re in

figure 3.5. We define the rms Re to be

Rerms =

√
〈|u|2〉Lz

ν
. (3.63)

Note that we were not able to find convective steady states for high Ra for some of the low Lz

boxes, and with the PI equations with T -diffusion.
The T - and S - diffusion models produced very similar results for the FC & AN equations. For

all three Lz, the difference in Rerms at the lowest Ra was less than 1%, and at the highest Ra was
≈ 4%. In contrast, the PI equations with T -diffusion has convective steady states which are rather
different (note that the PI equations with S -diffusion give results practically indistinguishable from
the FC or AN equations with S -diffusion). Although the differences in Rerms between the FC and
PI equations with T -diffusion are < 5% for all Ra for Lz = 10, at high Ra, the differences grow
to 15% for Lz = 30 and 35% for Lz = 100. These results are consistent with the similarity and
differences between the convective steady states shown in figure 3.4.

It might seem odd that the PI equations seem to be substantially different from the FC & AN
equations with T -diffusion, but virtually identical to the FC & AN equations with S -diffusion. The
difference lies in the PI equation of state (equation 3.26), in which P is replaced by P. For low



3.6. CONCLUSION 56

Mach number convection, ρ′/ρ, P′/P, and S ′/CP are all O(Ma2). However, the PI equation of state
assumes that ρ′/ρ and S ′/CP are O(1), but that P′/P ∼ O(Ma2). Thus, the PI equation of state
introduces inaccuracies in thermodynamic variables.

When using S -diffusion, the equation of state is in some sense “not used.” Summing the PI
continuity equation (3.21) and the PI constraint equation (3.22), and using the PI equation of state
(3.26), one can show that S ′PI and S ′AN satisfy the same equation. However, when using T -diffusion,
the equation of state must be used to relate T ′PI to other thermodynamic quantities. In this case,
there are differences in T ′PI and T ′AN because the latter depends on the pressure perturbation.

3.6 Conclusion
This chapter examines the differences between the temperature diffusion and entropy diffusion

models of thermal conduction, for three different equations sets: the fully compressible equations,
the pseudo-incompressible equations, and the anelastic equations. We study both damping rates of
linear internal gravity wave modes, and the properties of low Rayleigh number convective steady
states.

Overall, we find little difference between temperature diffusion and entropy diffusion, provided
that the conductivities are related by

κT = TκS /CP. (3.64)

Using a different relation between κT and κS will cause differences between the temperature and
entropy diffusion models, just as there are differences between temperature diffusion using two
different conductivities. Although entropy diffusion could lead to non-monotonicity of the total
entropy, in practice, it generally does not, as the ∇S field is often aligned with the ∇T field (sec-
tion 3.4.2). The only way to ensure that entropy will increase monotonically is to use temperature
diffusion (Landau & Lifshitz 2013).

Temperature and entropy diffusion give the same linear internal gravity wave damping rates for
all three equation sets, provided that kH � 1, i.e., that the wavelength is shorter than the density
scale height. For kH . 1, we find modest differences between damping rates for different equation
sets and thermal conduction models (see figure 3.1). The longest wavelength modes we studied
(≈ 6.6 density scale heights) have damping rate errors of ∼ 20% for the anelastic equations (with
either thermal conduction model) and pseudo-incompressible equations with entropy diffusion,
but errors of ∼ 50% for the pseudo-incompressible equations with temperature diffusion. We
believe the large errors in the pseudo-incompressible equations with temperature diffusion are due
to inaccuracies in the pseudo-incompressible equation of state (which assumes that the pressure
perturbations are much smaller than the density and entropy perturbations, and can be dropped).

We also calculate convective steady states using Dedalus (section 3.5). The flexibility of
Dedalus allows us to study the fully compressible, anelastic, and pseudo-incompressible equa-
tions all within the same framework. Furthermore, by implicitly timestepping sound waves, we
are able to take the same time step in fully compressible calculations as the anelastic and pseudo-
incompressible calculations (despite having Mach numbers of 10−3). Because the implementation
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of the fully compressible equations is more complicated than the implementation of the anelastic
equations, we find that the fully compressible simulations run about half as fast as the anelas-
tic simulations. The pseudo-incompressible simulations run at about the same speed as the fully
compressible simulations.

For Rayleigh numbers above the instability threshold of convection, but below the onset of
oscillatory instabilities, we find many convective steady states for box sizes ranging from three
density scale heights to seven density scale heights. The convective steady states are essentially
identical for the fully compressible equations and anelastic equations with temperature diffusion;
similarly, the convective steady states are essentially identical for the all three equation sets using
entropy diffusion. Furthermore, these two classes of steady states are very similar (figure 3.5).
However, the pseudo-incompressible equations with temperature diffusion find convective steady
states with much lower rms Reynolds number than the other equations, and with very different
convection patterns (figure 3.4). We again attribute the difference to the incorrect equation of state,
which does not correctly calculate the temperature perturbation for low Mach number convection.
The differences are largest for the most strongly stratified domains, as the convective rolls have
longest wavelengths (kH . 1).

In a similar analysis, Calkins et al. (2015) calculate the critical Rayleigh number for the onset
of convection for the fully compressible equations (with temperature diffusion) and the anelastic
equations with both temperature and entropy diffusion, also including the effects of rotation. They
also find that the anelastic and fully compressible equations with temperature diffusion give nearly
identical results in the low Mach number limit (when the background is very close to adiabatic).
They find much larger differences between entropy and temperature diffusion than we do. This
is likely because their entropy diffusion model diffuses TS ′, unlike our own which diffuses S ′.
Diffusing TS ′ is equivalent to using temperature diffusion in the pseudo-incompressible equations,
which we have shown can produce substantial errors for highly stratified domains.

Although we find only minor differences between temperature and entropy diffusion for linear
internal waves and low Rayleigh number convective steady states, there is no guarantee that these
different thermal conduction models will continue to give similar results in the strongly nonlinear
regime. In the future, we plan to investigate the effects of different thermal conduction models
on strongly nonlinear wave breaking and high Rayleigh number convection. Our present results
show that the differences between temperature and entropy diffusion in convective steady states
grows as the Rayleigh number increases, with entropy diffusion overestimating the velocities in
the convective steady states. Perhaps this indicates that at the very high Rayleigh numbers of
stellar convection, there are substantial and important differences between temperature and entropy
diffusion.

3.A Eigenvalue Equations and Damping Rates for Fully Com-
pressible Equations

The eigenvalue equations for the FC equations are somewhat more complicated than for the AN
equations. We again drop all terms of order (kH)−1 � 1. The eigenvalue equation for T -diffusion



3.A. EIGENVALUE EQUATIONS AND DAMPING RATES FOR FULLY COMPRESSIBLE
EQUATIONS 58
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The eigenvalue equation for S -diffusion isω2
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Unlike the eigenvalue equations for the AN equations, these are not equivalent. This is partially
because sound waves are affected differently by temperature and entropy diffusion. IGWs with
kH � 1 have the property

k2 �
ω2

cs
2 . (3.67)

If we use this relation, the eigenvalue equation with T -diffusion is[
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while the eigenvalue equation with S -diffusion isω2
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These equations are still not equivalent, due to the last term in equation 3.68. It cannot be shown to
be small in comparison to ∂zS∇2

⊥ unless κT is assumed to be small. For weakly damped waves, the
eigenvalue equations are equivalent under the identification κS = TκT/CP. However, for strongly
damped modes (which are no longer wave-like), we expect larger differences.

One can show that the perturbation energy for the FC equations is

E =
1
2
ρ|u|2 +

1
2

gρ
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2
ρ
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2$

′2, (3.70)

and the T - and S - diffusion damping terms are
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(
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$′
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)
· ∇S ′. (3.72)
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For weak dissipation, both S ′ and $′ can be related to w by
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, (3.73)
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where the approximation is dropping terms of order (kzH)−1 and smaller. This implies the S ′

contribution is much larger than the $′ contribution to θT and θS ,∣∣∣∣∣∣TS ′
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Using the IGW eigenvalue equation, and that cs
2
∼ N

2
H2, one can show that both these terms are

order (kH)−1.
The leading order contributions to θT and θS are

θT ≈
gκT

C2
P∂zS

|∇S ′|2 , (3.77)

θS ≈
gκS

CPT∂zS
|∇S ′|2 . (3.78)

Thus, for perturbations with kzH � 1 and weak dissipation, we have that thermal diffusion and
entropy diffusion are equivalent under the identification κS = κT T/CP.

3.B Eigenvalue Equations and Damping Rates for PI Equa-
tions

Recall that for the linearized PI equations T ′ = TS ′/CP. This makes temperature and entropy
conduction extremely similar. In the limit kH � 1, the eigenvalue equation for T -diffusion isω2
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The eigenvalue equation for S -diffusion isω2
(
1 − i

κS

ρTω
∇2

)
∇2 − g∂z

S
CP
∇2
⊥

 w = 0. (3.80)
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These are equal to each other when κS = κT T/CP. This shows that T - and S - diffusion are equiva-
lent for the PI equations as long as kH � 1, irrespective of the strength of thermal conduction.

The expression for the perturbation energy is

E =
1
2
ρ |u|2 +

1
2

gρ

CP∂zS
S ′2, (3.81)

and the thermal and entropy damping terms are

θT = κT∇

(
gS ′

CPT∂zS
+

$′

TCP

)
· ∇

(
T

S ′

CP

)
, (3.82)

θS = κS∇

(
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)
· ∇S ′. (3.83)

This is very similar to the FC expressions, except that T ′ = TS ′/CP, since there is no $′ term in
the equation of state. In the limit of kH � 1, these two expressions are equivalent, since

∇

(
T

S ′

CP

)
≈

T
CP
∇

(
S ′

)
. (3.84)

3.C Thermal Conduction and Sound Waves
In this chapter, we focus on the differences in IGW damping rates between equation sets and

thermal conduction models. However, the FC equations also admit sound waves. Here we demon-
strate, using Dedalus, the substantial differences in sound wave damping when using either T - or
S - diffusion.

We solve the linear FC equations for the same background and parameters as in section 3.3.
We check the damping rate of each mode against the analytic result given in appendix 3.A. The
sound waves are much harder to resolve than IGWs—thus, some of our sound wave damping rates
disagree with the analytic damping rates by as much as 20% (with a vertical resolution of 256
modes). However, the differences between T - and S - diffusion are much larger than this, so we
have not repeated the calculation at higher resolution to reduce the errors.

In figure 3.6, we plot the damping rates and oscillation frequencies for sound wave modes, us-
ing either T - or S - diffusion. Although the damping rate increases with increasing k (and increasing
oscillation frequency) for T -diffusion, the damping rate stays about constant for S -diffusion. The
oscillation frequencies between the modes agree well because they are only weakly damped.

For sound waves, the damping rate using S -diffusion becomes increasing inaccurate as k in-
creases. This is the opposite result as for IGWs. Although the dominant contribution to T ′ is S ′

for IGWs, the dominant contribution to T ′ is the pressure perturbation $′ for sound waves. In sec-
tion 3.4, we show that the ratio of the $′ contribution to T ′, to the S ′ contribution to T ′, decreases
with increasing k if the modes follow the IGW dispersion relation, but increases with increasing k
if the modes follow the sound wave dispersion relation.
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Figure 3.6: Damping rates and oscillation frequencies of sound wave modes of the FC equations, using
either T - or S - diffusion. The first ten radial and horizontal modes are shown. Each cluster of modes
(most visible at high oscillation frequency) corresponds to a single horizontal mode number. The oscillation
frequency increases with increasing wavenumber.
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Physically, this is because sound waves are almost adiabatic waves. In the absence of gravity,
they are completely adiabatic. On the other hand, as they are pressure-driven waves, they have
large pressure perturbations, which correspond to large temperature perturbations. Thus, sound
waves are much more efficiently damped with T -diffusion than S -diffusion.

3.D Equation Implementation in Dedalus
Dedalus solves systems of equations which are first order in z. Time derivatives are here dis-

cretized using an implicit–explicit scheme; equations are written such that terms on the LHS of
the equals sign are temporally discretized implicitly (i.e., the term is evaluated in the future), and
terms on the RHS of the equals sign are temporally discretized explicitly (i.e., the term is only
evaluated in the present and/or past). Only linear terms can be treated implicitly, although they are
not required to be.
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3.D.1 Fully Compressible Equations
We implement the fully compressible equations with temperature diffusion as
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wz − ∂zw = 0, (3.91)
uz − ∂zu = 0. (3.92)

In these equations, u and w are the horizontal and vertical velocity, respectively. The temperature
field is decomposed as T = T + T ′, the density field is decomposed as log ρ = log ρ + Υ′, and the
entropy field is decomposed as S = S + S ′. The normalized vertical heat flux Q̃′z is the vertical
component of the heat flux divided by χρ. Equations 3.85 & 3.86 are the vertical and horizontal
momentum equation respectively, equation 3.87 is the continuity equation, while equation 3.88 is
the equation for temperature. Equation 3.89 defines the heat flux, equation 3.90 is the fully non-
linear equation of state, while equations 3.91 & 3.92 define quantities which have second vertical
derivatives within our first order system. These are equivalent to equations 3.13–3.15. Note that
the entropy perturbation solved for in the equation of state (3.90) is only used to enforce the S ′ = 0
boundary condition. The momentum equations and the temperature equation have nonlinear diffu-
sion terms which are treated explicitly.
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For the FC equations with entropy diffusion, equations 3.88 & 3.89 are replaced by
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Note that χ, ν, and γ are assumed to be constant. In both conduction models, we solve for the
variables u, uz,w,wz,Υ

′,T ′, S ′, Q̃′z.

3.D.2 Pseudo-Incompressible Equations
Our implementation of the PI equations with temperature diffusion is
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Equations 3.95 & 3.96 are the vertical and horizontal momentum equation respectively, equa-
tion 3.97 is the continuity equation, while equation 3.98 is the constraint equation. Equation 3.99
is the fully nonlinear equation of state, while equations 3.100–3.102 define quantities which have
second vertical derivatives within our first order system. These are equivalent to equations 3.20–
3.22. Note that the momentum equations and the constraint equation have nonlinear diffusion
terms which are treated explicitly.

For the PI equations with entropy diffusion, equations 3.98–3.100 are replaced by
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Q̃′z + T∂zΥ
′ = 0. (3.104)

The variables here have the same meaning as for the fully compressible equations. The only
additional variables are $ and $′. These are defined as follows. Call the PI pressure perturbation
π′, and recall that β = P

1/γ
. Define π by

β∇

(
π

β

)
= gρ, (3.105)

and define π = π + π′. Then $ is defined as $ = π/ρ, and we can split it up as $ = $ + $′. We
have that $ satisfies the equation

β∇

(
$

β

)
+$∇ log ρ = g. (3.106)

In the PI equations, entropy is proportional to Υ′, so the entropy boundary condition becomes
Υ′ = 0 on the top and bottom of the domain. For the PI equations with temperature diffusion, we
solve for the variables u, uz,w,wz, $

′,Υ′,T ′,T ′z , and for the PI equations with entropy diffusion,
we solve for the variables u, uz,w,wz, $

′,Υ′, Q̃′z.
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3.D.3 Anelastic Equations
Our implementation of the AN equations with temperature diffusion is

∂tw + ∂z$
′ − g

S ′

CP
− ν

[
∂2

xw + ∂zwz + 2∂z log ρwz +
1
3

(∂xuz + ∂zwz) −
2
3
∂z log ρ (∂xu + wz)

]
= −u∂xw − wwz, (3.107)

∂tu + ∂x$
′ − ν

[
∂2

xu + ∂zuz + ∂z log ρ (uz + ∂xw) +
1
3

(
∂2

xu + ∂xwz

)]
= −u∂xu − wuz, (3.108)

∂tS ′ + w∂zS − χ
[
∂2

x
S ′

CP
+

1

CPT
∂2

x$
′ −

1

T
∂zQ̃′z −

1

T
Q̃′z∂z log ρ

]
= −u∂xS ′ − w∂zS ′

+
ν

T

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw −

2
3

(∂xu + wz)2
]
, (3.109)

Q̃′z + T∂z
S ′

CP
+

S ′

CP
∂zT +

1
CP

∂z$
′ = 0, (3.110)

∂xu + wz + w∂z log ρ = 0, (3.111)
wz − ∂zw = 0, (3.112)
uz − ∂zu = 0. (3.113)

Equations 3.108 & 3.107 are the vertical and horizontal momentum equation respectively, equa-
tion 3.109 is the entropy equation. Equation 3.110 defines the heat flux, while equation 3.111 is
the constraint equation. Equations 3.112 & 3.113 define quantities which have second vertical
derivatives within our first order system.

For the AN equations with entropy diffusion, equations 3.109 & 3.110 are replaced by

∂tS ′ + w∂zS − χ
[
∂2

x
S ′

CP
−

1

T
∂zQ̃′z −

1

T
Q̃′z∂z log ρ

]
= −u∂xS ′ − w∂zS ′

+
ν

T

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw −

2
3

(∂xu + wz)2
]
, (3.114)

Q̃′z + T∂z
S ′

CP
= 0. (3.115)

The variables used here have all been defined for the FC & PI equations. One difference,
however, is that $′ is now a different pressure-type variable. Calling the AN pressure perturbation
P′, $′ = P′/ρ. This is different from the definition of $′ used in the PI equations. In both
conduction models, we solve for the variables u, uz,w,wz, $

′, S ′, Q̃′z.
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Chapter 4

A Validated Nonlinear Kelvin-Helmholtz
Benchmark for Numerical Hydrodynamics

4.1 Introduction
The Kelvin-Helmholtz (KH) instability results from a wide array of velocity-shear profiles in a

continuous fluid, or across the interface between two distinct fluids. The instability is ubiquitous in
nature, playing important roles in meteorology, oceanography, and engineering. The KH instability
plays a particularly prominent role in astrophysical systems ranging in scale from stellar interiors
(e. g. Brüggen & Hillebrandt 2001) and protoplanetary disks (e. g. Johansen et al. 2006) to the
evolution of the intergalactic medium (e. g. Nulsen 1982, 1986). Physically, the KH instability
wraps up coherent sheets of vorticity into smaller, less organized structures. The small scale motion
then stretches and cascades to yet smaller scales. The instability therefore plays fundamental roles
in fluid mixing and in the transition to turbulence.

Because of its prevalence in nature and its physical significance, KH test problems are com-
monly used to evaluate the accuracy of different astrophysical hydrodynamics codes (e. g. Springel
2010; Hopkins 2015; Schaal et al. 2015): if a code can properly simulate the KH instability, it is
presumed to capture mixing and turbulence in astrophysical simulations. Ideally, such an important
test problem should stand against an analytic solution to ensure the veracity (not just reproducibil-
ity) of simulation results. Some analytic work addresses the KH instability with a sheet vortex
model (Moore 1979), but only for incompressible fluid equations. In the incompressible limit, one
can study this problem numerically by approximating the vortex sheet as a finite number of vor-
tices, and then solving for the vortex dynamics (Krasny 1986). However, as we will show below,
density variations change the problem substantially. For the compressible Navier-Stokes equations
relevant to astrophysics, no analytic description of the nonlinear KH instability currently exists.

Absent a nonlinear analytic prediction, a resolved reference simulation provides the only rea-
sonable approximation of the true solution. Comparing to a well-controlled and high-resolution
benchmark gives a proxy for the true error of a given test. Robertson et al. (2010) and McNally
et al. (2012) present careful studies of the early evolution of the KH instability. These authors
also point out the numeric ill-posededness of contact-discontinuity simulations, in spite of exist-
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ing analytical solutions in the linear and/or incompressible regimes. These works emphasize that
converged nonlinear simulations require well-resolved initial conditions. One limitation of these
studies, however, is that Robertson et al. (2010) and McNally et al. (2012) only provide con-
verged reference simulations for the linear (and possibly weakly nonlinear) phase. In addition,
converged nonlinear solutions require solving dissipative equations. Many available astrophysical
codes do not implement this essential feature. As a result, these works could only follow the insta-
bility for a few e-folding timescales. Furthermore, although almost all astrophysical systems are
three-dimensional, test problems are typical run in only two dimensions. Salvesen et al. (2014)
performed KH convergence tests in both two and three dimensions. They found that simulations
differed dramatically between resolutions in two dimensions, but found little resolution dependence
in three-dimensional simulations. Porter et al. (1994) found similar results in three-dimensional
turbulence simulations.

Not all works take the benchmark approach, however. In place of a nonlinear reference solu-
tion, some authors use apparent small-scale structure as a proxy for the accuracy of their simu-
lations (e.g., Springel 2010; Hopkins 2015). Presumedly, more small-scale structure implies less
numerical dissipation, and therefore greater accuracy. We find in the current chapter that this in-
tuition can, in some cases, lead to false conclusions. Mocz et al. (2015) shows that small-scale
structure is moving-mesh codes can be due to grid-noise rather than physical effects, and describes
methods to mitigate these errors. Some tests also abandon the smooth initial conditions of Robert-
son et al. (2010) and McNally et al. (2012), even though this choice precludes convergence of even
the linear phase of the instability because the linear growth rates increase with wavenumber for an
initially discontinuous velocity profile.

In this chapter, we extend the work of McNally et al. (2012) by providing reference solutions
for the strongly nonlinear evolution of the KH instability. We use a smooth initial condition and
explicit diffusion. We conduct simulations using both Athena (a Godunov code), and Dedalus
(a pseudo-spectral code that can solve the Navier-Stokes equations of compressible hydrodynam-
ics) and find that both converge to the same reference solutions. We see agreement among different
codes and different resolutions, with the validity of the reference solution limited only by (unavoid-
able) chaotic evolution at late times. We propose that future code tests include this KH instability
problem and compare to our validated, converged, reference solutions.

We organize the remainder of the chapter as follows. Section 4.2 describes the equations, initial
conditions, and codes used for our simulations. The results comprise two sections. In section 4.3.1
we discuss the simpler simulations with constant initial density. Section 4.3.2 discusses the more
complicated simulations with an initial density jump. Section 4.4, summarizes our results.
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4.2 Methods

4.2.1 Equations and Initial Conditions
We solve the hydrodynamic equations, including explicit terms for the diffusion of momentum

and temperature:

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.1a)

∂

∂t
(ρu) + ∇ · (P I + ρu ⊗ u) = −∇ · Π, (4.1b)

∂E
∂t

+ ∇ · [(E + P) u] = ∇ · (χρ∇T ) − ∇ · (u · Π), (4.1c)

along with the nondimensionalized ideal gas equation of state, P = ρT , with constant ratio of
specific heats γ = 5/3. I is the identity tensor, χ is the thermal diffusivity (with units cm2/s;
K = nkbχ is the thermal conductivity), and

Π = −νρ

(
∇u + (∇u)T −

2
3

I∇ · u
)

(4.2)

is the viscous stress tensor with viscosity ν (with units cm2/s). We assume both ν and χ are
constant.

We add a passive scalar to our simulations which we refer to as “dye.” The local fraction of dye
particles c expresses dye concentration, and initially ranges from 0 to 1. The local conservation of
dye is then

∂

∂t
(ρc) + ∇ · (ρc u) = ρ

dc
dt

= −∇ · Qdye, (4.3)

Qdye = −ρνdye∇c, (4.4)

where d/dt represents the Lagrangian derivative, and νdye represents a diffusion coefficient for dye
molecules (with units cm2/s). These equations conserve the total dye mass

∫
ρ c dV .

We define a dye entropy per unit mass s ≡ − c ln c, along with its volume integral

S ≡
∫

ρ s dV. (4.5)

These evolve such that:

ρ
ds
dt
− ∇ ·

[
(1 + ln c) Qdye

]
= ρνdye

|∇c|2

c
, (4.6)

dS
dt

=

∫
ρνdye

|∇c|2

c
dV ≥ 0. (4.7)
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The second term on the left-hand side of equation 4.6 represents the entropy flux due to reversible
diffusion of the dye. The right-hand side represents entropy generation due to non-reversible dis-
sipation.1 The volume-integrated entropy S satisfies the following important properties:

1. A fully unmixed fluid with c = 0 or c = 1 everywhere has zero entropy (S = 0).

2. A fully mixed fluid with c∗ =
∫
ρ c dV/

∫
ρ dV maximizes the entropy.

3. S increases monotonically with time if νdye > 0, and stays constant otherwise.

We restrict our attention to periodic simulations. This avoids potential difficulties with impos-
ing Dirichlet and/or Neumann boundary conditions. Our initial conditions are:

ρ = 1 +
∆ρ

ρ0
×

1
2

[
tanh

(z − z1

a

)
− tanh

(z − z2

a

)]
(4.8a)

ux = uflow ×

[
tanh

(z − z1

a

)
− tanh

(z − z2

a

)
− 1

]
(4.8b)

uz = A sin(2πx) ×
[
exp

(
−

(z − z1)2

σ2

)
+ exp

(
−

(z − z2)2

σ2

)]
(4.8c)

P = P0 (4.8d)

c =
1
2

[
tanh

(z − z2

a

)
− tanh

(z − z1

a

)
+ 2

]
, (4.8e)

where a = 0.05 and σ = 0.2 are chosen so that the initial condition is resolved in all of our simu-
lations. We take uflow = 1 and P0 = 10 so that the flow is subsonic with a Mach number M ∼ 0.25
in regions with ρ = 1 and M ∼ 0.35 in regions with ρ = 2. The size of the initial vertical velocity
perturbation is A = 0.01. The Athena simulations are initialized with these functions evaluated
at cell-centers even though Athena data represents cell-averaged quantities (see Appendix 4.A for
more discussion of this effect).

We adopt a rectangular domain with x in [0, L), and z in [0, 2L), with L = 1, and z1 = 0.5,
z2 = 1.5, with periodic boundary conditions in both directions. The simulations have a horizontal
resolution of N grid points (in Athena) or modes (in Dedalus) in the x direction, and 2N grid
points/modes in the z direction. Our initial condition has a reflect-and-shift symmetry: taking
z → 2 − z and x → x + 1/2 changes the sign of uz but leaves the other quantities invariant. Thus,
the simulations solve for the same flow twice. This is a requirement when using periodic boundary
conditions, but also provides a test of whether or not the numerical simulations can preserve the
symmetry. Almost all simulations presented here maintain the symmetry. We therefore only show
the lower half of the domain. We calculate volume-averaged quantities like the dye entropy or the
L2 norm with respect to the entire domain.

In equation 4.8a, the free parameter ∆ρ/ρ0 represents the density jump across the interface. We
study simulations with ∆ρ/ρ0 = 0 in section 4.3.1 and with ∆ρ/ρ0 = 1 in section 4.3.2. We refer

1Equation 4.6 can be made to look like the analogous equation for heat conduction with the definition of a new
“temperature” Tdye ≡ −

1
1+ln c
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to this change in density as a “jump” throughout, although the transition is smooth, set by the tanh
in equation 4.8a. The Reynolds number Re quantifies diffusion,

ν = χ = νdye =
L∆u
Re

, (4.9)

where ∆u = 2uflow is the change in velocity. Note that we set the thermal diffusivity χ constant;
consequently, the thermal conductivity K ∝ ρ. Throughout the chapter we measure time in units of
L/uflow, so t = 1 corresponds to approximately one turnover time. Equations 4.1–4.9 specify our
system, with the free parameters ∆ρ/ρ0 and Re. In the following section we detail our methods for
solving this system of equations.

4.2.2 Numerical Methods
We study the KH instability using two open-source codes employing very different numerical

methods: Athena & Dedalus.
Athena2 is a finite-volume Godunov code (Gardiner & Stone 2008; Stone et al. 2008). The

scheme represents all field quantities with volume averaged values in each grid element. A Rie-
mann problem solves for fluxes between elements. We use third-order reconstruction with limiting
in the characteristic variables to approximate field values at the element walls (Colella & Wood-
ward 1984), the HLLC Riemann solver (Toro 2013), and the CTU integrator (Colella 1990), and
super-timestepping for the diffusive terms (Choi et al. 2009; Alexiades et al. 1996). We used the
“-O3” compiler flag using Intel 14.0.1.106 and Mvapich2 2.0b on the Stampede supercomputer.
We repeated some runs using second-order reconstruction and/or the Roe Riemann solver and/or
stricter compiler flags (e.g., “-O2 -fp-model strict”) — these choices did not qualitatively affect the
solutions. We use a static, uniform mesh, and a CFL safety factor of 0.8.

Athena is second-order accurate in both space and time. The leading-order grid-scale errors are
diffusive. For most simulations reported here, we include explicit diffusion. A sufficiently large
explicit diffusion can dominate grid-scale errors and allow the simulation to remain close to the
true solution. However, higher-order grid-scale errors can introduce non-diffusive effects, such as
dispersion. If higher-order errors project onto unstable modes, they can cause large differences in
the solution, despite being higher order. The grid-scale errors in Athena respect the reflect-and-
shift symmetry of our problem up to floating point accuracy, so even non-converged simulations
can maintain the initial symmetry of the flow. In practice, we find all simulations maintain the
initial symmetry, except simulations with ∆ρ/ρ0 = 1 without explicit diffusion. Since Athena’s al-
gorithm manifestly preserves this symmetry, we expect the error results from chaotic amplification
of floating-point errors.

Dedalus3 is a pseudo-spectral code (Burns et al. 2016). All field variables are represented as
Fourier series, and the simulation solves for the evolution of the spectral-expansion coefficients
in time. The code evaluates nonlinear terms on a grid with a factor 3/2 more points than Fourier
coefficients; i.e., the 2/3 de-aliasing rule. Lecoanet et al. (2014) (appendix D.1) describes our

2Athena is available at https://trac.princeton.edu/Athena/.
3Dedalus is available at http://dedalus-project.org.

https://trac.princeton.edu/Athena/
http://dedalus-project.org
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implementation of the Navier-Stokes equations. Our implementation of the dye evolution equation
is

∂tc−νdye

(
∂2

xc + ∂zcz

)
=

− u∂xc − wcz + νdye
(
∂xΥ

′∂xc + ∂zΥ
′cz

)
, (4.10a)

cz − ∂zc = 0, (4.10b)

where we use the same notation as Lecoanet et al. (2014). For timestepping, we use a third-order,
four-stage DIRK/ERK method (RK443 of Ascher et al. 1997) with a total CFL safety factor of 0.6
(i.e., 0.15 per stage). This formulation allows implicit timestepping of sound waves. Thus, our
timestep size only adjusts with the flow velocity, not the sound speed. The excellent agreement be-
tween the highest resolution Dedalus and Athena simulations shows that high-wavenumber sound
waves have negligible influence on the solution.

The pseudo-spectral method produces almost no numerical diffusion. Stability concerns re-
quire explicit diffusion in nonlinear calculations. In marginally resolved simulations, discretiza-
tion errors manifest as Gibbs’ ringing, which is prominently visible in snapshots. The numeri-
cal method does not explicitly preserve the reflect-and-shift symmetry—numerical errors can put
power into the asymmetric modes. However, we find that in resolved simulations these asym-
metric modes never grow to large amplitudes. Thus, maintaining this symmetry gives a test for a
simulation’s fidelity.

4.3 Results
This section describes the nonlinear evolution of the KH instability, provides reference solu-

tions, and compares the performance of Dedalus and Athena. Section 4.3.1 considers unstratified
simulations with constant initial density; both codes handle this problem easily. Section 4.3.2 con-
cerns simulations with a density jump across the shear interface. This problem shows rich behavior
and poses significant numerical challenges. In both cases, a central vortex forms which wraps up
material from above and below the initial interface into thin filaments.

4.3.1 Unstratified simulations (∆ρ/ρ0 = 0)
In this section, we discuss simulations with constant initial density (∆ρ/ρ0 = 0). Figure 4.1

visualizes the flow with the dye concentration field of the lower half of the domain for simulations
with explicit diffusion at different resolutions and Reynolds number, Re. The flow consists of
coherent filaments of unmixed fluid with dye concentration close to zero or one. The filaments
twist around the central vortex until they become thin enough to diffuse away. The central vortex
stays coherent in all simulations, and exhibits a more gradual dye-concentration gradient than in
the filaments. This reflects the smooth velocity and dye initial condition.

The snapshots show the state at t = 6. Strong nonlinearity begins at t ∼ 2, so this corresponds to
at least four turnover times after the initial saturation of the instability. The simulations are labeled
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Table 4.1: List of simulations with ∆ρ/ρ0 = 0. The character refers to the code used (D for Dedalus, A for
Athena, and N for Athena with no explicit diffusion), and the number is the horizontal resolution.

Re = 104 Re = 105 Re = 106 No explicit diffusiona

D512 D512 D512 N1024
A512 D512dtb D1024 N2048

A1024 D1024 D2048 N4096
D2048 A1024
A1024 A2048
A2048 A4096

aRun in Athena.
bRun with half the CFL safety factor.

by the code used (A for Athena; D for Dedalus), and their horizontal resolution (see Table 4.1 for
a list of simulations with ∆ρ/ρ0 = 0).

Re = 105

Many of the simulations with the same Re but different resolution look similar by eye. To
more quantitatively assess convergence, we calculate the L2 norm of the differences between dye
concentration fields in different simulations:

L2(cX − cY) =

[∫
dV (cX − cY)2

]1/2

, (4.11)

where cX and cY represent the dye concentration fields in two simulations, X and Y. The Athena
and Dedalus grids are different, so we use spectrally accurate techniques to interpolate Dedalus
solutions to the Athena grid for direct comparison (Appendix 4.A). We argue in Appendix 4.B
that all simulations converge to our highest-resolution Dedalus simulations; thus, we assume these
simulations are a good approximation to the “true” solution.

Figure 4.2 shows the L2 norm of the difference between dye concentration fields of D2048 and
other simulations with Re = 105. Because we believe D2048 closely represents the true solution
(Appendix 4.B), we call this the L2 norm of the error. Solutions from both codes approach D2048
as resolution increases. At late times, A2048 and D1024 have roughly eight-times smaller errors
than A1024 and D512, respectively. That is, both codes exhibit third-order convergence. This
indicates that interpolation produces the dominant error in Athena, which is the only third-order
part of the algorithm. The Dedalus simulations are spatially resolved, so timestepping produces
the dominant error source in the Dedalus simulations, which is also third order. We also plot errors
from D512dt, which is run with a horizontal resolution of 512, but with half the CFL safety factor.
D512dt is almost as accurate as D1024, showing that the higher accuracy of D1024 is mostly due
to taking smaller timesteps. There are certain times (most notably near t = 3.5) where the flow
develops smaller structures, and extra spatial resolution is required. The errors in quantities other
than dye concentration (e.g., density) follow similar behavior to that shown in Figure 4.2.
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Figure 4.1: Snapshots of the dye concentration field in several simulations with ∆ρ/ρ0 = 0 at t = 6. The
upper (lower) row shows simulations with Re = 105 (106). All the simulations with Re = 105 are well
resolved. Small differences exist between the lower-resolution Athena simulations at Re = 106 and the
highest-resolution Athena simulation & Dedalus simulations (e.g., near (x, z) = (0.9, 0.6), see Figure 4.7).

Figure 4.2: L2 norm of dye-concentration errors for ∆ρ/ρ0 = 0 and Re = 105. We take D2048 as the “true”
solution (see Appendix 4.B). Both Dedalus and Athena exhibit third-order convergence. D512dt is run with
half the timestep size as D512. Its error is similar to D1024, showing that the higher accuracy of D1024 is
mostly due to a smaller timestep size rather than higher spatial resolution.



4.3. RESULTS 75

Figure 4.3: Volume-integrated dye entropy (equation 4.5) as a function of time for the four simulations with
Re = 105 shown in Figure 4.1. All simulations are well resolved, so the dye entropies are almost equal.

We calculate the volume-integrated dye entropy for each simulation (equation 4.5). Figure 4.3
plots the entropy as a function of time. Because all simulations are well resolved, there are no
visible differences in the entropy between the different simulations.

Re = 106

The unmixed filaments are much thinner for Re = 106 than for Re = 105, challenging the
codes. Unlike the Re = 105 case, some minor visible differences appear between the solutions
for Re = 106. The lower-resolution simulations do not fully resolve the flow (one such feature is
highlighted in Figure 4.7).

To assess convergence, we again plot the L2 norm of the error in dye concentration with respect
to D2048 (Figure 4.4). A1024 has the largest errors of any simulation. At late times, the errors
interact nonlinearly, whereas the errors in the higher-resolution Athena simulations stay linear and
the temporal variation of the error is the same independent of the magnitude of the error. The
ratio of errors of the two higher-resolution Athena simulations is about 6—in between second- and
third-order convergence. This suggests that the size of interpolation errors roughly match the size
of other errors in the code (e.g., from the Riemann problem or timestepping).

The difference in errors between D512 and D1024 is about 100—much larger than the dif-
ference in errors between the Athena simulations. D512 (not shown in Figure 4.1) underresolves
the flow and includes some low-amplitude Gibbs’ ringing. Increasing the resolution from 512 to
1024 eliminates spatial errors because of the exponential convergence of spectral methods. This
allows for very large error reduction with only modest resolution changes. The exponential nature
of spectral methods makes convergence practically binary: simulations with Gibbs’ ringing are not
converged; simulations without Gibbs’ ringing very likely are converged.

We plot volume-integrated dye entropy for Re = 106 in Figure 4.5. Like for Re = 105, all
well-resolved simulations produce similar entropy. However, the under-resolved A1024 produces
slightly more entropy. This agrees with the heuristic that extra numerical diffusion leads to excess
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Figure 4.4: L2 norm of dye-concentration errors for ∆ρ/ρ0 = 0 and Re = 106. A1024 is not well resolved so
its errors follow a different pattern than the other Athena simulations. The errors in A4096 are smaller than
the errors in A2048 by ≈ 6. The errors in D1024 are smaller than the errors in D512 by about 100. This
demonstrates the fast (exponential) convergence of spectral methods.

Figure 4.5: Volume-integrated dye entropy (equation 4.5) as a function of time for the five simulations with
Re = 106 shown in Figure 4.1. The entropy of all simulations are very similar except for A1024; this is
another indication that A1024 is not well resolved.
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Figure 4.6: Volume-integrated dye entropy (see section 4.2.2) as a function of time with ∆ρ/ρ0 = 0, for
three resolved simulations with different Re, as well as three Athena simulations with no explicit diffusion
(dashed lines; labeled with N, for no explicit diffusion, and their horizontal resolution). The entropy of
N1024 and the simulation with Re = 106 are very similar. Their flow fields show minor differences (see
Figure 4.7). Note that the entropy decreases with increasing resolution in the simulations without explicit
diffusion. This is not the case in simulations with an initial density jump (see Figure 4.16).

entropy generation.

An effective Reynolds number?

We now describe Athena simulations without any explicit diffusion. These simulations have
all three diffusivities equal to zero, i.e., ν = κ = νdye = 0. An important question is, does the
numerical diffusion in Athena act like an explicit diffusion? Put another way, does Athena have
an effective Reynolds number at a given resolution for this problem? As we describe below and in
section 4.3.2, the answer to this question is very problem dependent.

To test this, we plot the converged volume-integrated dye entropy for several Reynolds num-
bers, along with the volume-integrated dye entropy for Athena simulations without explicit dif-
fusion (Figure 4.6); simulations run without explicit diffusion are labelled with N. The entropy
evolution of N1024 is similar to the entropy evolution for Re = 106. This might lead one to think
that the effective Reynolds number of this Athena simulation is about 106.

However, a closer investigation shows that N1024 and the Re = 106 simulation have differ-
ent dye concentration fields which, by chance, result in similar volume-integrated entropies (Fig-
ure 4.7). Instead, the dye concentration field of N1024 looks like the dye concentration field of the
(under resolved) A1024 simulation with Re = 106. Figure 4.5 shows A1024 has a higher entropy
than the true Re = 106 solution. By removing the explicit diffusion, the flow evolution remains
similar to A1024 (and different from the resolved Re = 106 solution), but the interfaces between
filaments are sharper, which decreases the entropy. The effects of having the incorrect flow field
(increasing entropy), but sharper interfaces between filaments (decreasing entropy) happen to can-
cel out, so the entropy of N1024 is similar to that of Re = 106.
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Figure 4.7: Snapshots of the dye concentration field between 0.89 < x < 0.95 and 0.55 < z < 0.61, at t = 6
for ∆ρ/ρ0 = 0. All simulations use Athena, either with Re = 106 (left column) or no explicit diffusion (right
column). The three rows have different resolutions. This zoom-in of Figure 4.1 highlights the differences
between simulations at different resolutions—however, for the most part, the simulations look very similar.
A2048 & A4096 represent resolved simulations with Re = 106. Although the entropies for N1024 (upper
right plot) & A4096 (lower left plot) track each other (Figure 4.6), the dye concentration fields exhibit minor
differences.
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Table 4.2: List of simulations with ∆ρ/ρ0 = 1. The character refers to the code used (D for Dedalus, A for
Athena, and N for Athena with no explicit diffusion), and the number is the horizontal resolution.

Re = 105 No explicit diffusion
Dedalus Athena Athena
D2048 A1024 N512

D2048ra A2048 N1024
D2048pb A4096 N2048
D3072 A8192 N4096
D4096 A16384

aRestarted from A2048 at t = 3.2.
bDifferent initial perturbation.

Although we have highlighted the differences between N1024 and the converged solutions with
Re = 106, it is worth reiterating that the two solutions are in fact remarkably similar. This shows
that N1024 roughly has an effective Reynolds number of 106. In detail, however, the remaining
modest differences between N1024 and the Re = 106 solution demonstrate that the numerical
dissipation in Athena is not exactly equivalent to physical dissipation via viscosity and thermal
conduction.

One difficulty with the notion of an effective Reynolds number is that it is extremely problem
dependent, even at fixed resolution. In the next section, we introduce a small (by astrophysi-
cal standards) density jump into the initial condition. This completely changes the problem by
introducing secondary instabilities which enhance mixing, producing very clear differences be-
tween resolved simulations and Athena simulations without explicit diffusion (Figure 4.15). For
the constant-density problem described here, omitting diffusion produces less entropy. Including
a density jump reverses this trend: simulations with only numerical diffusion undergo more mix-
ing than simulations with explicit diffusion. Although assigning an effective Reynolds number to
Athena simulations without explicit diffusion may be reasonably accurate for the constant-initial-
density problem, this does not carry over to the problem with an initial density jump.

4.3.2 Simulations with a density jump (∆ρ/ρ0 = 1)
Both the qualitative features of the flow and the convergence properties of the simulations

change dramatically once we introduce an initial density jump (∆ρ/ρ0 , 0). Unlike the unstrati-
fied case, secondary instabilities of the filaments produce small-scale structures in the flow. These
secondary instabilities, and the resulting small-scale features, depend on the resolution and the
code used. As a result, simulations with a nonzero density jump require far more computational
resources than the unstratified simulations presented in the previous section. We limit the simu-
lations with explicit diffusion to Re = 105—our finite computing budget precludes solutions for
Re = 106. The largest simulations required roughly 106 core-hours.

Figure 4.8 shows the dye concentration for different simulations at different times. In both
Dedalus simulations, and the highest-resolution Athena simulation, the outer filaments (i.e., those
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Figure 4.8: Snapshots of the dye concentration field in several simulations with ∆ρ/ρ0 = 1 and Re = 105.
Each row corresponds to a different time. The low-resolution Athena simulations suffer from a secondary
instability (seen at t = 4) in the middle of the vortex, which is not present in the Dedalus simulations nor
A16384. This causes substantial differences at later times. A16384 and both Dedalus simulations stay very
similar at late times, although small differences develop from chaos (see section 4.3.2).
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Figure 4.9: L2 norm of dye-concentration errors for ∆ρ/ρ0 = 1 and Re = 105. D3072 and D4096 are
the closest pair of simulations, suggesting that D4096 is a good approximation to the true solution. All
Athena simulations except A16384 diverge away from D4096 exponentially with a rate of 8, suggesting
the growth rate of the inner vortex instability (see Figure 4.10) is also 8. The errors in the lower-resolution
Dedalus simulation and A16384 grow exponentially with a rate of about 2-3. We interpret this divergence
as due to chaos (see section 4.3.2). D3072 has errors smaller than D2048 by ≈ 4, consistent with third-order
convergence set by our choice of timestepping algorithm.

outside the central vortex) become unstable to a sausage-like mode (see the panel in Figure 4.10
for an example). Lower-resolution Athena simulations also undergo a separate instability of the
inner filaments of the vortex. We refer to these two instabilities at the outer-filament instability
(OFI) and the inner-vortex instability (IVI) (see Figure 4.10 for examples). These instabilities are
similar to the baroclinic secondary instabilities discussed in Reinaud et al. (2000); Fontane & Joly
(2008). The competition between these two instabilities plays a crucial role in the evolution of the
system.

We plot the L2 norm of the error in dye concentration with respect to D4096 in Figure 4.9.
As described in Appendix 4.B, we believe D4096 approximates the true solution. The difference
between D3072 and D4096 are smaller than the differences between any other pair of simulations.
At later times, even the errors between D3072 and D4096 become large. In section 4.3.2 we
attribute this late-time behavior to chaos.

Figure 4.9 shows that at early times, the low-resolution Athena simulations diverge exponen-
tially from D4096 with an inferred growth rate of about 8. The IVI produces this divergence.
Furthermore, the four Athena simulations with resolutions between 1024 and 8192 are all equally
spaced horizontally in Figure 4.9. The horizontal-axis spacing is log 2/2 time units. This suggests
that the same instability exists independent of resolution, but the amplitude of the perturbation that
seeds the instability drops by 16 when the resolution doubles. Though numerical errors seed the
growth, the constant growth rate of the IVI suggests it is a physical instability).

The IVI is a robust feature of low-resolution Athena simulations. Using the Roe integrator,
second-order reconstruction, or shifting the initial condition by half a grid point does not affect the
development of this instability (as confirmed using the L2 error), but can cause visible differences
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Figure 4.10: Schematic phase-space diagram for ∆ρ/ρ0 = 0 (left) and ∆ρ/ρ0 = 1 (right). For constant
initial density, the system has a stable state with ever-narrowing spiral filaments. We hypothesize that there
is an initial condition IC’ (right panel) leading to a similar spiral state for ∆ρ/ρ0 = 1. But this state is
now unstable to the outer filament instability (OFI) and the inner vortex instability (IVI). Our chosen initial
condition’s (IC) trajectory (solid black line) approaches the spiral state, but becomes unstable to the OFI.
Errors introduced by the numerical hydrodynamics may cause deviations in the trajectory leading to the IVI
(dashed grey lines).

in the flow evolution. This demonstrates that grid-scale errors drive the IVI. Using first-order re-
construction suppresses the IVI, but the enhanced numerical diffusion causes large errors. We have
also tried adding low-amplitude (up to 10−4) white noise to the initial density or pressure. These
do not cause any visible changes to the IVI. The flow forgets some of the detailed information of
its initial condition (see section 4.3.2).

The highest-resolution Athena simulation (A16384) does not develop the IVI. This demon-
strates that the initial condition is in fact stable to the IVI; the problem is well-posed. Rather,
numerical errors seed the IVI at some later time, during the evolution of the flow. Although some
numerical errors are still inevitably present, A16384 does not develop the IVI because the “base
state” of spiralling filaments of unmixed fluid also succumbs to the OFI. In this case, the OFI
disrupts the inner vortex before the IVI grows to large amplitudes (see Figure 4.10).

The absence of the IVI is a robust feature of our Dedalus simulations. We confirmed the
stability of the base state by re-running D2048 with low-amplitude white noise added to the initial
condition; we also re-initialized D2048 from the Athena initial condition. This introduces small
but non-random grid-representation differences (section 4.3.2). In both cases, we recover the same
evolution. However, we can trigger the IVI in Dedalus with a large (∼ 10% by energy) perturbation
to the initial condition (section 4.3.2).
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Figure 4.11: Volume-integrated dye entropy (equation 4.5) as a function of time for simulations with
∆ρ/ρ0 = 1 and Re = 105. The top panel plots the entropy, and the bottom panel plots the entropy deviation
from D4096. The entropy of all the simulations diverge from D4096, but the less-accurate simulations di-
verge faster. For each Athena simulation, the entropy initially increases faster than D4096 when it starts to
diverge. At later times, the entropy sometimes drops below the entropy of D4096.

Figure 4.10 summarizes the relation between the two secondary instabilities in this problem.
For a constant initial density (left panel), the system evolves toward a stable state characterized
by spiraling filaments. Small differences in initial conditions, integration algorithms, presence of
dissipation, etc., cause only minor changes in the evolution. We hypothesize that a similar spiral
state also exists for ∆ρ/ρ0 = 1, and that it could be reached from some initial condition IC’.
However, our simulations demonstrate that the spiral state is now unstable. Thus, small errors lead
to the large differences in evolution.

Small perturbations to the hypothetical IC’ of Figure 4.10 would lead to trajectories that either
develop the OFI or the IVI. However, our chosen initial condition, IC, is squarely in the attracting
basin of the OFI. Thus, infinitesimal perturbations to IC will still lead to the OFI. Errors introduced
by numerical hydrodynamics cause the codes to not follow the correct trajectory (solid black line).
Certain types of errors can cause trajectories to diverge from the correct solution, sometimes toward
the IVI (dashed grey lines). Alternatively, sufficiently large initial perturbations can also knock the
system into the attracting basin of the IVI (section 4.3.2).

We note that the phase space for this problem is very high dimension, and that the outer filament
instability and inner vortex instability represent two (likely non-parallel) unstable directions of the
spiral state’s stable manifold. Thus, both instabilities can act simultaneously, which sometimes
occurs in simulations.

Figure 4.11 shows the volume-integrated dye entropy of the simulations shown in Figure 4.8.
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The entropy follows a similar evolution in every simulation. To visualize the small deviations, the
bottom panel shows the entropy with reference solution D4096 subtracted off. All the simulations
diverge from D4096, but more accurate simulation diverge later, with D2048 and A16384 develop-
ing small differences later than any other simulations. The relation between entropy and resolution
is more complicated for ∆ρ/ρ0 = 1 than for ∆ρ/ρ0 = 0 (Figures 4.3 & 4.5).

Apart from the dye concentration field, many of the other flow quantities follow similar pat-
terns. Figure 4.12 shows several quantities from D4096 at t = 6. The mass density is almost
the inverse of the dye concentration. This indicates that compression is not an important part of
the large-scale dynamics. Lacking mass diffusion, the density shows sharper gradients than the
concentration field. Temperature diffusion and rapid sound waves regularize the density evolution.
These effects limit large temperature gradients, and keep the flow in local pressure equilibrium.

The velocity divergence field is characterized by a large scale quadrupole centered at the vortex,
and large amplitude, small scale features near the boundaries of filaments. The most prominent
feature of the vorticity field is the central vortex, which is a remnant of the initial shear. Small-scale
vortex sheets and filaments perhaps result from the incomplete roll-up of the initial condition due
to secondary instabilities.

Throughout this chapter, we compare different solutions by calculating the L2 norm of the dif-
ference between dye concentration fields. We have made similar comparisons between simulations
with Re = 105 and ∆ρ/ρ0 = 1 using the L1 norm of the difference between dye concentration fields,
and using the L2 norm of the difference between the three other fields shown in Figure 4.12. We
find the results to be qualitatively similar in all cases. This is expected given the similarity between
the fields.

Inner-vortex instability

To determine the origin (physical vs numerical) of IVI, we initialize a Dedalus simulation with
horizontal resolution 2048 with the output from A2048 at t = 3.2. We call this simulation D2048r.
Figure 4.9 shows that A2048 is still in the linear phase of the IVI at this time. In Figure 4.13, we
plot the dye concentration field at t = 3.2 and t = 4 for D2048, A2048, and D2048r. At t = 3.2,
the simulations all look the same. However, the instability becomes nonlinear by t = 4, producing
large changes in the dye concentration field. D2048 shows no signs of the IVI. However, D2048r
looks almost identical to A2048. The L2 norm of the difference of dye concentration fields between
D2048r and D4096 almost exactly follows the norm of the difference between A2048 and D4096.

This shows that the IVI is a physical instability of this system. It is not seen in the Dedalus sim-
ulations or the highest-resolution Athena simulation because the initial condition does not project
sufficiently onto its unstable modes. Errors in low resolution Athena simulations incorrectly excite
perturbations unstable to the IVI. Dedalus simulations, and the highest-resolution Athena simu-
lation, suppress noise well enough the instability never becomes nonlinear. In our phase-space
diagram (Figure 4.10), the lower-resolution Athena simulations do not properly follow the black
line, and instead meander to the right, becoming unstable to the IVI. D2048r is initialized to the
right of IC’, so it develops the IVI just like A2048.

As a final test, we started a Dedalus simulation from the output of an Athena simulation at t = 0.
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Figure 4.12: Plots of dye concentration (c), mass density (ρ), the divergence of the velocity (∇ · u), and the
vorticity (ω = ez · ∇ × u) in D4096 with ∆ρ/ρ0 = 1, Re = 105 at t = 6. The divergence of the velocity and
the vorticity are measured in units of uflow/Lx. The dye concentration and mass density fields are almost
inverses of each other. The divergence of the velocity is largest at the interfaces between filaments, whereas
the vorticity shows the location of vortices.
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Figure 4.13: Snapshots of dye concentration field for Re = 105 and ∆ρ/ρ0 = 1. D2048r is a Dedalus
simulation restarted with the A2048 output at t = 3.2. At this time, the inner vortex instability is still in
the linear phase, so there are no visible differences between the three simulations. At t = 4, the IVI is
very nonlinear, producing large differences between D2048 and A2048. This instability also takes place in
D2048r, and the dye concentration fields of A2048 and D2048r are nearly identical. This demonstrates that
the IVI is physical, but is seeded by errors in the lower-resolution Athena simulations that are not present in
the Dedalus simulations or the highest-resolution Athena simulations.
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This tests whether dynamical evolution causes the IVI, rather than small differences between the
implementation of the initial conditions. Although this introduced root mean squared differences
in the horizontal velocity of ≈ 4 × 10−4 at t = 0, the Dedalus simulation did not develop the IVI.

Chaos

At around t ≈ 4, D2048, D3072, and A16384 start to diverge exponentially from D4096 (Fig-
ure 4.9). The differences increase with a growth rate of about 2-3, much lower than the growth
rate of 8 of the IVI found in the lower-resolution Athena simulations. We interpret the differ-
ences between the simulations as due to chaos. The faster divergence discussed in section 4.3.2
is inconsistent with chaos since it is resolution dependent and only seen in low-resolution Athena
simulations.

A system is chaotic if small differences between initial conditions grow exponentially in time.
To confirm the system is chaotic, we calculate a “local-in-time” Lyapunov exponent (i.e., growth
rate). We pick a time and simulation, and look for linearly unstable perturbations. This requires
solving an eigenvalue problem. The largest unstable eigenvalue is the Lyapunov exponent. Ap-
pendix 4.C details this procedure.

This calculation does not include base-state time evolution (i.e. we consider a “local-in-time”
calculation). The most unstable eigenvector at a time t0 might differ significantly from the most
unstable eigenvector at a nearby time t0 +∆t. Then it would be impossible for perturbations to grow
at the Lyapunov exponent over times ∼ ∆t. We interpret our “local-in-time” Lyapunov exponents
as an upper bound on the growth rate of perturbations due to chaos (up to logarithmic corrections),
and as a heuristic measure of the strength of chaos in this problem.

We calculated the Lyapunov exponent for D2048 with Re = 105 and ∆ρ/ρ0 = 1 at two times,
t = 2.5 and t = 4.5. We find Lyapunov exponents of λt=2.5 ≈ 2.1, and λt=4.5 ≈ 3.7. Thus,
the exponential growth of differences between either D2048, D3072, or A16384 and D4096 is
consistent with chaos. However, the growth rate of the differences between the lower-resolution
Athena simulations and D4096 is much larger than the Lyapunov exponent. These differences are
inconsistent with chaos, instead being due to the IVI.

The simulations with ∆ρ/ρ0 = 0 do not appear to diverge from one another in the same way.
The highest-resolution Dedalus simulations converge at late times. We also calculate the Lyapunov
exponent for D1024 with Re = 106 and ∆ρ/ρ0 = 0 at t = 6. We find λt=6 ≈ 0.4. Although this
seems inconsistent with our finding that the Dedalus simulations approach each other with time,
recall that this “local-in-time” calculation gives an upper bound on the growth rate due to chaos
(up to logarithmic corrections). Because the turnover time is 1, a Lyapunov exponent less than 1
suggests that small perturbations cannot grow before the background state changes substantially.
To show definitively that the ∆ρ/ρ0 = 0 solution is not chaotic, one should maximize the ampli-
fication of an initial perturbation over several turnover times, e.g., between t = 6 and t = 9 (for
instance, using the adjoint method, e.g., Kerswell et al. 2014).
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Figure 4.14: Snapshots of dye concentration field for Re = 105 and ∆ρ/ρ0 = 1. D2048p is a Dedalus
simulation with an initial vertical velocity that includes power over a range of Fourier modes (equation 4.12),
in contrast to the single mode initial conditions focused on throughout the rest of this chapter. At t = 2 all
solutions look the same, indicating that longest wavelength mode has the largest growth rate. At t = 4,
D2048p has developed the IVI, as well as other deviations from the Dedalus & Athena simulations away
from the vortex.

Initial condition

Although our chosen initial condition does not lead to the IVI for converged simulations, one
might wonder if other initial conditions do lead to this instability. We performed several Dedalus
simulations that add low-amplitude white noise to the initial condition (e.g., see section 4.3.2).
None of these simulations develop the IVI.

We now consider a simulation in which we include perturbations to the initial condition with
order unity amplitude and large wavelengths. Equations 4.8 still hold for all quantities except the
vertical velocity, which we now take to be

uz = A (sin(2πx) + f (x)) ×
[
exp

(
−

(z − z1)2

σ2

)
+ exp

(
−

(z − z2)2

σ2

)]
, (4.12)

where f (x) includes Fourier modes two–ten. Each mode receives a random phase and random
amplitude uniformly distributed between -0.05 and 0.05. Thus, f (x) represents about a 10% per-
turbation to the single sine mode initial condition.

Figure 4.14 shows snapshots of the dye concentration field for this simulation, denoted D2048p,
along with D2048 and A2048 for comparison. At t = 2, all three simulations look identical. This
indicates that the lowest wavenumber Fourier mode grows faster than the other modes included in
our initial condition.
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By t = 4 the perturbations from the other Fourier modes produce significant changes to the
dye concentration field. D2048p now displays the IVI. In addition, large differences appear away
from the vortex, where the Dedalus and Athena simulations look almost identical. Because the
new initial condition does not respect the shift-and-reflect symmetry of the problem, the two half
domains have different features (we only show the bottom half).

Simulations without explicit diffusion

Lastly, Figure 4.15 compares the resolved simulations at Re = 105 with an Athena simulation
with horizontal resolution 4096 without explicit diffusion (N4096). The simulation without explicit
diffusion exhibits many secondary instabilities early in the evolution (between t = 2 and t = 4).
Unlike the lower-resolution simulations at Re = 105, the secondary instability is not limited to the
IVI. Instead, instabilities grow throughout the domain at locations of strong shear.

These instabilities shred apart the vortex, leading to vigorous mixing. Figure 4.16 compares
the volume-integrated dye entropy of Athena simulations with no explicit diffusion at different
resolutions with D4096. Simulations without explicit diffusion produce almost no entropy until
t ≈ 3.5. At this time, the secondary instabilities start to cause diffusion at the grid-scale. This
generates entropy more rapidly than the explicit diffusion of D4096 (or any of the other simulations
with explicit diffusion). For t > 5, the entropy of the simulations without explicit diffusion is larger
than the entropy of D4096. Paradoxically, the entropy increases as the resolution increases. Our
expectation is that the entropy generation should decrease as Re increases. However, we do not
have any resolved simulations with higher Re for comparison, so we cannot present evidence that
this additional mixing is spurious. But this problem shows that introducing an explicit diffusion in
Athena can decrease the diffusion in the simulation.

4.4 Conclusion
This chapter describes several converged, nonlinear solutions to the Kelvin-Helmholtz (KH)

problem. By using a smooth initial condition and explicit diffusion, we demonstrate that solutions
remain virtually identical (for constant initial density) or very similar (for an initial density jump
of one) with resolution above a certain threshold. This permits a well-defined reference solution
for this problem, against which errors can be accurately estimated. We verify this using two codes,
Dedalus and Athena, with very different numerical methods (pseudo-spectral and Godunov, re-
spectively). Previous KH test problems either did not use smooth initial conditions, or did not
include explicit diffusion. Absent these two choices, the KH problem cannot be quantitatively
compared between codes because the solutions depend sensitively on grid-scale errors and do not
converge with increasing resolution.

We first study simulations with a constant initial density (section 4.3.1). We find converged
solutions to this relatively easy problem with Reynolds numbers (Re) as high as 106. The solution
is characterized by the continual roll-up of the initial vortex sheet, producing alternating filaments
of unmixed material (Figure 4.1). We find third-order convergence in both Dedalus & Athena for
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Figure 4.15: Snapshots of dye concentration field for ∆ρ/ρ0 = 1. N4096 is an Athena simulation with no
explicit diffusion. For comparison, we also plot D4096 (Re = 105). Secondary instabilities occur very early
at many locations in N4096. By t = 6, the simulation has broken its initial symmetry (we only plot the
bottom half). The secondary instabilities produce significant mixing, leading to greater entropy generation
than in simulations with explicit diffusion (Figure 4.16).
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Figure 4.16: Volume-integrated dye entropy (equation 4.5) as a function of time for simulations with
∆ρ/ρ0 = 1. D4096 is run at Re = 105, and all simulations labeled with N are run with Athena with no
explicit diffusion. At early times, the highest-resolution runs without explicit diffusion have the lowest en-
tropy. However, at around t = 5, the lower-resolution runs without explicit diffusion have lower entropy.
D4096 has the lowest entropy at late times. This indicates that simulations without explicit diffusion have
greater numerical mixing compared to simulations with explicit diffusion. This becomes more prominent
as the resolution increases. By contrast, in the simulations without an initial density jump, explicit diffusion
leads to more mixing, and for simulations without explicit diffusion, increasing resolution decreases mixing
(Figure 4.6).

simulations with Re = 105 (Figure 4.2), and better than second-order convergence in both codes
for simulations with Re = 106 (Figure 4.4).

To quantify mixing in the simulations, we calculate the volume-integrated dye entropy as a
function of time for several Reynolds numbers, as well as for Athena simulations without explicit
diffusion (Figure 4.6). As the Reynolds number increases, the entropy generation decreases mono-
tonically. Similarly, as the resolution of Athena simulations without explicit diffusion increases,
the entropy generation also decreases monotonically. The entropy of one Athena simulation with-
out explicit diffusion is very close to the entropy of the Re = 106 simulation, although the solutions
show minor differences (Figure 4.7). These small differences indicate that the numerical diffusion
in Athena does not act precisely as a physical diffusion from viscosity and/or thermal conductivity.
For certain applications however, assigning an effective Reynolds number to ideal fluid simulations
may suffice. This does not appear to be the case for KH simulations with density jumps, as we now
discuss.

Including an initial density gradient aligned with the velocity gradient makes the problem
much richer (section 4.3.2). The rolled-up vortex-sheet filaments becomes unstable in at least
two ways: the inner vortex instability, and/or the outer filament instability (Figures 4.8 & 4.10).
The Dedalus simulations and highest-resolution Athena simulation only exhibit the outer filament
instability, whereas the lower-resolution Athena simulations also exhibit the inner vortex insta-
bility. Adding small amplitude noise to the initial condition does not produce the inner vortex
instability in Dedalus, demonstrating that our chosen initial condition is not susceptible to this in-



4.4. CONCLUSION 92

stability; instead, numerical errors seed the inner vortex instability throughout the evolution of the
Athena simulations. It is not surprising that Dedalus is more accurate than Athena for this smooth
flow—the Godunov method is designed for simulating flows with shocks. However, it is not well
appreciated that the pseudo-spectral method is able to solve the full Navier-Stokes equations with
Mach number order unity.

The inner vortex instability was also found in similar ideal simulations of Reinaud et al. (2000).
They solved the incompressible, variable density equations. The instability seems to be triggered
by the intensification of vorticity by the baroclinic torque. The instability was studied further by
Fontane & Joly (2008), who solved for the linear instability modes of a 2D flow snapshot before any
secondary instabilities develop (also using the incompressible, variable density equations). They
find two types of modes: elliptic modes (which we call the inner vortex instability), and hyperbolic
modes (which we call the outer vortex instability). They found no 2D instability for constant initial
density. However, if there is an initial density gradient, they find the fastest growing mode is the
inner vortex instability. The growth rate increases as the initial density contrast increases. This
suggests the instability is enhanced by baroclinicity. However, it is unclear if solving for modes of
a snapshot from a simulation is appropriate given the time variability of the background state.

Allowing for 3D perturbations, Fontane & Joly (2008) finds the outer vortex instability is the
fastest growing mode in all cases, including in the constant density case. This suggests the 3D
dynamics will be completely different. In particular, the constant density case will no longer evolve
toward the previously attracting spiral state. Their analysis also suggests the inner vortex instability
may be less prominent in the cases with an initial density jump. We thus expect closer agreement
between Dedalus and Athena in 3D, and less qualitative differences between simulations with and
without initial density jumps.

We use the L2 norm to quantify the difference between dye concentration fields of different
simulations, and find the inner vortex instability grows at a rate of ≈ 8, independent of resolution
(Figure 4.9). Furthermore, a Dedalus simulation initialized with an Athena state in the linear phase
of the inner vortex instability develops the instability in the same way as Athena (Figure 4.13),
demonstrating the physical, rather than numerical, nature of the instability.

Adding a large (∼ 10% by energy) perturbation with multiple Fourier modes to the initial veloc-
ity in Dedalus can seed the inner vortex instability (section 4.3.2). Although this suggests that the
inner vortex instability is possibly generic for KH instabilities in astrophysical systems, we believe
the single-mode initial condition discussed throughout the rest of this chapter is still particularly
valuable for a test problem. Because small numerical errors can produce large differences in the
solution, one can assess by eye the fidelity with which a code is solving the fluid equations. This
KH test problem is difficult, which we believe makes it interesting. In contrast, an unresolved KH
problem is not a good test of fluid codes, because noise due to numerical errors can masquerade as
higher-fidelity solutions.

The Dedalus simulations and highest-resolution Athena simulation also diverge from each
other exponentially at late times, but with a much smaller growth rate ≈ 2 − 3. In section 4.3.2 we
calculate the maximum Lyapunov exponent of the flow, and argue that chaos drives the divergence.
The Lyapunov exponent represents the maximum possible rate of divergence of solutions due to
chaos (up to logarithmic corrections). At late times when the Dedalus simulations and highest-
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resolution Athena simulation begin to diverge, the Lyapunov exponent is ≈ 3.7, so the divergence
we see is consistent with chaos. Because the system is chaotic, our solutions are not as accurate
as the solutions with constant initial density. We still find power-law convergence in the Dedalus
simulations at fixed time (Figure 4.9). However, the amount of time that a solution maintains a
fixed level of accuracy increases only logarithmically with resolution.

For the initial condition with a density jump, we also compare a high-resolution Athena sim-
ulation without explicit diffusion to our converged (within the limits of chaos) simulations with
Re = 105. Secondary instabilities pervade the simulation without explicit diffusion (Figure 4.15).
The secondary instabilities cause enhanced mixing, and at late times, the simulations without ex-
plicit diffusion have higher entropy than the Re = 105 simulation (Figure 4.11). Introducing
explicit diffusion into Athena can reduce the diffusion in the simulation. For this reason, we hy-
pothesize (but cannot prove) that this small-scale structure is likely unphysical, and would not
develop for any reasonable initial condition or Reynolds number. This highlights that a solution
with more small-scale structure is not necessarily better.

Another possible comparison is to experiments. Unfortunately, the problems described here
cannot be studied experimentally because they are two-dimensional, periodic and do not include
gravity. Furthermore, the flow is close to sonic and at high Reynolds number. Experimentally, it is
far easier to study the incompressible KH instability (Worster 2009). Even with this simplification,
results depend sensitively on initial conditions (Slessor et al. 1998). This is reminiscent of diffi-
culties when comparing simulations and experiments of the Rayleigh-Taylor instability (Dimonte
et al. 2004), which have only recently been resolved by carefully controlling the initial condition
in experiments (Wilkinson & Jacobs 2007; Hutchinson & Rosner 2015).

There has also been substantial efforts to study the KH instability in the atmospheric science
community (e.g., Fritts et al. 2009, 2014). They typically study 3D dynamics, and include sta-
ble stratification, which can be parameterized by the Richardson number Ri. Fritts et al. (2014)
finds the outer vortex instability is the dominant secondary instability in simulations with weak
stratification (low Ri), whereas the inner vortex instability is the dominant secondary instability in
simulations with strong stratification (high Ri). This is consistent with the calculation of Fontane
& Joly (2008) showing the outer vortex instability has a higher growth rate than the inner vortex
instability in unstratified flow.

Although we only describe simulations with an initial density ratio of one, we have experi-
mented with larger initial density ratios (e.g., 4). Preliminary investigation suggests that vigorous
secondary instabilities become increasingly prominent as the density ratio increases, greatly en-
hancing mixing. Though it’s a common practice to leave out explicit dissipation to model the high
Reynolds numbers relevant in astrophysics, our results suggest that including explicit diffusion
may provide a very effective way to reduce diffusion in astrophysical simulations with very large
density ratios. We stress that these large density ratios are common in astrophysical problems such
as star formation or galaxy formation. Our results demonstrate just how subtle and computation-
ally challenging it is to correctly capture mixing in these environments (even restricting ourselves
to hydrodynamics, which is likely a poor approximation).

There are many remaining questions left unanswered in this chapter. It is unclear how the
Athena algorithm seeds the inner vortex instability. We did not search for the critical perturbation
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amplitude that will cause a Dedalus simulation to exhibit the inner vortex instability. Because of
limited computer time, we did not find converged Dedalus or Athena simulations with ∆ρ/ρ0 = 1
and Re = 106. Perhaps, contrary to expectation, increasing the Reynolds number of the system
does increase the entropy production, as found in the Athena simulations without explicit diffusion.
Future work should also test the Galilean invariance of these simulations, test initial conditions with
an interface at an angle to the grid, and extend this analysis to larger density ratios.

We hope this study provides a well-posed test problem for future codes used in astrophysics. It
would be valuable to carry out this test problem with unstructured/meshless methods (e.g., Springel
2010; Duffell & MacFadyen 2011; Hopkins 2015) to understand their convergence properties on
this challenging problem. Introducing smooth initial conditions and explicit diffusion allows us to
calculate a converged reference solution and compare between codes. The competing secondary
instabilities for initial conditions with a density jump of one provides a stringent test of the fidelity
with which a code solves the Navier-Stokes equations, making it a great test problem.

4.A Interpolation to a Common Grid
The grid points used in Dedalus and Athena differ slightly. For a periodic simulation between

0 and L with spacing ∆x, the Dedalus grid points are {0,∆x, 2∆x, . . . , L −∆x}, whereas the Athena
grid points are {∆x/2, 3∆x/s, . . . , L − ∆x/2}. We use two spectrally accurate methods for interpo-
lating Dedalus and Athena data to a common grid. In several cases we test both methods and find
excellent agreement.

Our first method is spectral interpolation. The Dedalus data can be viewed as either N = L/∆x
values on grid points or N Fourier coefficients. We can pad the Fourier coefficients with zeros
and transform to a grid of any uniform spacing. Going from N to 2N points, we can compare
every other entry to the Athena data. In a second method, we multiply the Fourier coefficients by
exp(ikx∆x/2). A Fourier transform then shifts the grid points by ∆x/2, to align the Dedalus grid
with the Athena grid. We follow the same procedure in the z direction.

Throughout this chapter, we treat the Athena data (including initial conditions) as cell-centered
data. However, the data are actually volume-averaged. The lowest-order differences between cell-
centered and volume-averaged quantities scales as ∼ ∆x2. Thus, any errors associated with these
differences should decrease with order 2. In all cases studied here (i.e., Figures 4.2, 4.4, & 4.9), we
find better-than second-order convergence. This suggests that differences due to interpreting data
as cell-centered rather than volume-averaged is not the dominant source of error.

4.B Convergence to a “True” Solution
This chapter describes a series of calculations of the nonlinear evolution of the KH instability,

as a function of resolution and Re. Without an analytic solution, we must assess the quality of the
solutions carefully. We make two assumptions to help interpret our results.
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1. Dedalus and Athena converge to the same solution at fixed Re as the resolution increases.
We refer to this unattainable “Platonic ideal” solution as the true solution.

2. The distance (given a choice of norm) between two solutions at different resolutions (for
the same code), is larger than the distance between the higher-resolution simulation and true
solution.

Our simulations support these assumptions, but it is very difficult, if not impossible, to prove
these statements. The existence and uniqueness of solutions to the Navier-Stokes equations re-
mains an active field of research (Fefferman 2000).

To support these assumptions, Figure 4.17 plots the relative differences between simulations
with Re = 106 and ∆ρ/ρ0 = 0 at t = 6 (described further in section 4.3.1). The top panel assumes
our highest-resolution Dedalus solution is the true solution. The bottom panel assumes our highest-
resolution Athena solution is the true solution. To assess the deviations, we plot the L2 norm of the
difference of dye concentration fields. This allows us to define an error (alternatively a distance)
between two solutions X and Y as

e(X,Y) = L2(cX − cY), (4.13)

where cX and cY are the dye concentration fields of solutions X and Y, respectively. Figure 4.17
remains mostly unchanged if we compare lower Reynolds number simulations with Re = 105 and
∆ρ/ρ0 = 0, although the picture is more complicated for ∆ρ/ρ0 = 1 due to chaos (see section 4.3.2).

Both the Athena simulations and the lower-resolution Dedalus simulations are converging to
D2048. The top panel of Figure 4.17 therefore suggests a true solution lives very close to D2048
(assumption (i)). The Athena simulations converge slower than the Dedalus simulations because
in Dedalus spatial errors decrease exponentially.

The bottom panel of Figure 4.17 shows that A4096 is a worse approximation to the true solu-
tion. This is because the Dedalus simulations are not converging to A4096.

One could argue that perhaps the Athena simulations are converging to a solution near A4096
and the Dedalus simulations are converging to a different solution near D2048. However, this
would require the error of the Athena simulations with respect to D2048 to stay constant as the
resolution increases, contrary to the top panel. Thus, we believe that both codes are converging to
a true solution close to D2048 (assumption (i)).

Presumably if Athena were run at very high resolutions, it would become closer to the true
solution than D2048. In this case, we hypothesize that both Dedalus and Athena simulations would
converge to this very high-resolution Athena simulation. For the range of resolutions examined in
this chapter, our highest-resolution Dedalus simulation is always closest to the true solution.

The main idea behind assumption (ii) is the convergence properties of the algorithms used in
Athena and Dedalus. Specifically, both codes are better than first-order accurate. Imagine we
somehow know the true solution to our problem, T. If we run a high-resolution simulation, S1, we
calculate the error,

e(S1,T) ≡ E1. (4.14)
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Figure 4.17: Differences between different solutions for Re = 106 and ∆ρ/ρ0 = 0 at t = 6. In the top panel,
the Dedalus simulation with horizontal resolution 2048 (D2048) is assumed to be the true solution, and in
the bottom panel the Athena simulation with horizontal resolution 4096 (A4096) is assumed to be the true
solution. The error with respect to the assumed true solution is the L2 norm of the difference of the dye
concentration fields (equation 4.13). The top panel shows that both Athena and Dedalus are converging to
the high-resolution Dedalus solution, supporting the assumption that it is close to the true solution. In the
bottom panel, the Athena solutions are converging to the high-resolution Athena simulation, but the Dedalus
solutions are not. This suggests that the Athena solution is further from the true solution than the Dedalus
solutions.
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Now suppose we run another simulation S2 at double resolution. If S1 and S2 are converging to T,
then

e(S2,T) ≡ E2 <
E1

2
, (4.15)

where better-than first-order accuracy implies the inequality. Athena is between second- and third-
order accurate, so we expect E1/4 ≤ E2 ≤ E1/8 for Athena. Dedalus is exponentially accurate
in space, and third-order accurate in time. Thus, for Dedalus, we should expect E2 ≤ E1/8.
Nevertheless, equation 4.15 implies, via the triangle inequality,

e(S1,S2) >
E1

2
> e(S2,T), (4.16)

which shows that assumption (ii) holds. One can check visually that equations 4.15 & 4.16 hold
for the simulations described in Figure 4.17, assuming that T is very close to D2048.

4.C Lyapunov exponent calculation
One can write the equations of motion (equations 4.1) as

∂tU = F(U), (4.17)

where U = (ρ,u, E) is the state vector. Then infinitesimal perturbations to U evolve according to
the equation

∂tδU =
δF
δU

∣∣∣∣∣
U
δU, (4.18)

where δF/δU is the Fréchet derivative, evaluated at U(t).
To calculate the “local-in-time” Lyapunov exponent, we fix the state vector to its value at a

specific time t = t0. The maximum Lyapunov exponent is the greatest eigenvalue of (δF/δU)U(t0). It
is impractical to solve this eigenvalue problem directly—a 2D problem with resolution greater than
1000 in each direction generates very large matrices. Instead, we solve an initial value problem by
picking δU(τ = 0), and evolving

∂τδU =
δF
δU

∣∣∣∣∣
U(t0)

δU, (4.19)

where τ should not be thought of as time, as we have fixed the background state U to t = t0. The
maximal Lyapunov exponent is

λ = lim
τ→∞

log
(
||δU(τ)||
||δU(0)||

)
, (4.20)

for some norm || · ||. We choose
√
||u||2. This is equivalent to the power method.
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We solve equation 4.19 in Dedalus using two methods. Both methods give very similar Lya-
punov exponents. In the first, we directly evolve the linearized equations 4.19. We treat terms
independent of U0 implicitly, and treat all other terms explicitly. The second method uses an it-
eration. On each iteration, we evolve the full equations of motion (equation 4.17) for U0 + δUi

for a time ∆t � t0 to get a state we call Ũi(t0 + ∆t). The initial perturbation for the next iteration
becomes δUi+1 ∝ Ũi(t0 + ∆t) − ∆U0, but with norm 10−8. ∆U0 = U(t0 + ∆t) − U(t0) is the change
in the unperturbed solution U0 over the time ∆t. We normalize after each iteration to ensure the
perturbations stay linear.

In both cases, we initialize the calculation with random noise. After substantial evolution, δU
undergoes periodic (in τ) variations, on top of exponential growth. In this case, λ is the growth
averaged over one period.
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Chapter 5

Turbulent Chemical Diffusion in
Convectively Bounded Carbon Flames

5.1 Introduction
Super-asymptotic giant branch (SAGB) stars are characterized by the development of a de-

generate carbon-oxygen (CO) core and the subsequent ignition of off-center carbon fusion within
it. Stellar evolution calculations show that this occurs in stars that have zero-age main sequence
masses ≈ 7 − 11 M�, with this mass range depending on the metallicity and on modeling assump-
tions such as the mass loss rate and the efficiency of mixing at convective boundaries.

Carbon ignition initially occurs as a flash, but after one or more of these flashes, a self-
sustaining carbon-burning front can develop (see e.g., Siess 2006; Farmer et al. 2015). This “flame”
propagates towards the center of the star extremely sub-sonically, as heat from the burning front is
conducted inward. The heat from the burning also drives a convective zone above the burning front,
and in the quasi-steady-state, the energy released by carbon fusion is balanced by energy losses
via neutrino cooling in this convective zone (Timmes et al. 1994). As the carbon-burning flame
propagates to the center, it leaves behind oxygen-neon (ONe) ashes. This process creates the core
that will become a massive ONe WD or collapse to a neutron star, powering an electron-capture
supernova (Miyaji et al. 1980).

However, the presence of additional mixing near the flame can lead to its disruption, prevent-
ing carbon burning from reaching the center. There are at least two physical processes that may
play a role in this region: (1) mixing driven by the thermohaline-unstable configuration of the hot
ONe ash on top of the cooler CO fuel and (2) mixing driven by the presence of a convective zone
above the flame via convective overshoot. These processes were investigated by Denissenkov et al.
(2013) using 1D stellar evolution models. With a thermohaline diffusion coefficient informed by
multi-dimensional hydrodynamics simulations, they concluded that thermohaline mixing was not
sufficient to disrupt the flame. However, they did find that the introduction of sufficient convec-
tive boundary mixing—using a model of exponential overshooting (Freytag et al. 1996; Herwig
2000)—robustly disrupted the flame, preventing carbon burning from reaching the center. This
led to the production of “hybrid C/O/Ne” WDs, in which a CO core is overlaid by an ONe man-
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tle. Several groups have begun to model the explosions that would originate from objects with this
configuration (Denissenkov et al. 2015; Kromer et al. 2015; Bravo et al. 2016; Willcox et al. 2016).

Is mixing sufficiently vigorous to disrupt the carbon flame? This is a key question for under-
standing the final outcomes of SAGB stars and the WDs they produce. If the thermal diffusivity
κ is much larger than the chemical diffusivity D, the flame propagates into fresh fuel much more
quickly than the fuel and ash can mix, allowing the flame to successfully propagate to the center
of the star. We estimate κ/D ∼ 106 using the thermal conductivity in MESA (which is drawn
from Cassisi et al. 2007) and a chemical diffusivity from Beznogov & Yakovlev (2014). However,
convective mixing could produce a turbulent diffusivity Dt, which is similar to κ. If this occurs,
ash could mix into the fuel, stalling the flame, as was found in Denissenkov et al. (2013).

5.2 Carbon Flame Properties
To obtain an example of the structure of a carbon flame, we evolve a star with zero-age main

sequence mass of 9.5 M� using revision 6794 of the MESA stellar evolution code1 (Paxton et al.
2011, 2013, 2015). We used the publicly available inlists of Farmer et al. (2015), who undertook
a systematic study of carbon flames in SAGB stars. We did not include the effects of overshoot at
the convective boundaries, but did include the effects of thermohaline mixing. The Brunt-Väisälä
(buoyancy) frequency profile of the carbon flame is shown in Fig. 5.1. The thermal component
dominates the buoyancy frequency. The much smaller compositional component is destabilizing,
but Denissenkov et al. (2013) found thermohaline mixing to not affect flame propagation. The
flame structure in Fig. 5.1 is similar to that shown in Figure 3 of Denissenkov et al. (2013).

The peak of the buoyancy frequency profile shown in Fig. 5.1 is at a Lagrangian mass coor-
dinate of Mr = 0.13 M�. The properties of the flame change as it propagates, but the following
numbers are representative throughout the evolution. The flame velocity is u = 9 × 10−4 cm s−1;
it will take ∼ 104 yr to propagate to the center. The flame width, δ, measured in terms of pres-
sure scale height, H = 2 × 108 cm, is δ/H ≈ 0.03. The timescale for the flame to cross itself,
tcross = δ/u ≈ 7 × 109 s, which is also the timescale for the nuclear burning to occur. The con-
vection zone above the flame has a radial extent of about one pressure scale height H, and a
convective turnover frequency ωconv ≈ 3 × 10−4 s−1. This implies that there are ∼ 105 convective
turnover times in the time it takes flame to cross itself. Thus, over the relatively smaller number of
convective turnover times covered by our simulations, ∼ 102, we can treat the flame as effectively
stationary. This makes it unnecessary to explicitly include nuclear reactions in our model.

We note that our stationarity assumption is not universally applicable. Convectively bounded
oxygen-neon-burning flames, which can also occur in the late evolution of stars in this mass range
are thinner, δ ∼ 103 cm, and have higher velocities, u ∼ 1 cm s−1, as a result of the higher energy
generation rate (Timmes et al. 1994; Woosley & Heger 2015). Consequently, the time for the flame
to traverse its width may be . 10 convective turnover times. Thus it is difficult to anticipate how
our simulations carry over to the case of oxygen-neon flames.

1MESA is available at http://mesa.sourceforge.net/.

http://mesa.sourceforge.net/
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Figure 5.1: The blue line shows the buoyancy frequency squared near a carbon flame from a 9.5 M� star
evolved in MESA. The red line is the buoyancy frequency squared from the Dedalus simulation R8 (very
close to its initial profile, see equation 5.6). Due to computational limitations, the buoyancy frequency in the
carbon flame is much lower and the transition between the carbon flame and the convective region is much
more gradual, in Dedalus than in the MESA model. These differences both act to enhance the convective
mixing via overshoot in Dedalus. The inset shows the neutral buoyancy height znb and the bottom of the
convection zone z0 in the Dedalus simulation. In the MESA model, this region is not resolved, with a width
z0 − znb < 3 × 10−3H.

The Mach number of the convection is ≈ 4 × 10−5, suggesting that compressibility does not
play an important role in the convection. To measure the degree of turbulence of the convection,
we calculate the Rayleigh number

Ra =
ω2

0H4

νκ
, (5.1)

which is the ratio of convective driving to diffusive damping. The variables ω0 and H represent
typical convective frequencies and lengths, and ν and κ are the kinematic viscosity and thermal
diffusivity. We estimate the convection driven by a carbon flame to have Ra ∼ 1024, using ν ∼
5 × 10−2 cm2 s−1 (Itoh et al. 1983) and κ ∼ 3 × 103 cm2 s−1 (Itoh et al. 1987).

Flames maintain coherence because their thermal diffusivity is much larger than their chemical
diffusivity. The ratio of these diffusivities is the Lewis number

Le =
κ

D
. (5.2)

For carbon flames, we estimate Le = 106 (Beznogov & Yakovlev 2014).
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5.3 Problem Setup

5.3.1 Equations & Numerics
We solve the 3D Boussinesq equations (Spiegel & Veronis 1960) using the Dedalus2 pseudo-

spectral code (Burns et al. 2017).

∂tu + ∇p − ν∇2u + gTez = −u · ∇u, (5.3)

∂tT − κ∇2T = −u · ∇T + H̄, (5.4)
∇ · u = 0, (5.5)

where u, p, and T are the fluid velocity, pressure, and temperature, respectively. g is the gravita-
tional acceleration. We neglecting the compositional effects on buoyancy (and thus thermohaline
mixing), and always use ν = κ. This is very different from the Prandtl number of stars ∼ 10−5.
However, a Prandtl number of order unity makes the simulations less computationally demanding.
The Boussinesq equations are an appropriate model because the convection is low Mach number,
and the height of the convection zone is about a scale height.

The simulations are initialized with a temperature profile T0(z) satisfying N2
0 (z) = gdT0/dz,

where

N2
0 = −ω2

0+N2
tail

1
2

[
1 − tanh

(
z − zfl

∆zfl

)]
+N2

fl cosh
(
z − zfl

∆zfl

)−2

, (5.6)

where ω2
0 is a characteristic convective frequency, and we take N2

tail = 100ω2
0, N2

fl = 104ω2
0 as ap-

proximations to the MESA model. The position of the flame is zfl = 0.9H and its half-width is
∆zfl = 0.05H, where H represents a pressure scale height. We plot the time-averaged buoyancy
frequency profile of simulation R8 in Fig. 5.1. All simulations have very similar buoyancy fre-
quency profiles, which differ from N2

0 only very close to z0 (defined below). We also include a
heating term H̄ = −κ∂2

z T0 which exactly balances the diffusion of T0. This maintains the flame and
convection over the course of our simulations, enforcing the stationary assumption.

Our chosen buoyancy profile differs from the MESA model in two important ways: (1) the
peak is at much lower frequencies; and (2) the buoyancy frequency approaches zero much more
gradually. This is because it is difficult to resolve the fast buoyancy timescale, and sharp buoyancy
gradients numerically. Both these differences should cause more mixing in the model than is
realistic (Brummell et al. 2002).

In this chapter, we refer to two important points in the buoyancy profile (see inset in Fig. 5.1).
The bottom of the convection zone, where N2 = 0, is denoted z0. We also define the height of
neutral buoyancy znb, the point at which 〈T (znb)〉x,y,t = 〈T (ztop)〉x,y,t, where 〈·〉x denotes an average
over x, and ztop is the top of the domain. Plumes emitted at the top of the convection zone become

2Dedalus is available at http://dedalus-project.org.

http://dedalus-project.org
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Table 5.1: List of simulations discussed in this chapter. The Rayleigh and Lewis number characterize the
diffusion is the simulations (see eqns. 5.1 & 5.2). The resolution is the number of Fourier or Chebyshev
modes used in each direction. The CFL safety factor is listed along with our choice of timestepper. The last
column is the height at which κ = Dt, the lowest point at which convective mixing could disrupt a flame.
The bottom of the convection zone is z0 = 1.180 and the height of neutral buoyancy is znb = 1.116.

Name Ra Le Resolution Timestepper/CFL κ = Dt

R7 107 1 2563 RK222a/1.0 1.066
R8 108 1 2563 RK222/1.0 1.080
R9 109 1 5123 SBDF2b/0.4 1.091

R7L3 107 101/2 2563 RK222/1.0 1.122
R7L10 107 10 2563c RK222/1.0 1.143
aSecond order, two-stage Runge-Kutta method (Ascher et al. 1997)
bSecond order semi-backward differencing (Wang & Ruuth 2008).
cThe passive scalar field is evolved at 5123.

neutrally buoyant at znb. Convective plumes cross z0, but rarely pass below znb. The region between
z0 and znb is the overshoot region.

The simulations are non-dimensionalized using the pressure scale height H, and the initial
buoyancy frequency in the convection zone |N0(z = 2H)| = ω0. These are used to define a Rayleigh
number (Eqn. 5.1). Our limited resolution requires diffusivities much larger than in stars, so we can
only reach Ra = 109 � 1024. The simulation self-consistently calculates the convection frequency
ωconv and the height of the convection zone Hconv. We define Hconv using z0 and

ωconv = 2π
wrms

Hconv
, (5.7)

where wrms is the root-mean-square vertical velocity in the convection zone. We find Hconv ≈ 0.83H
and ωconv ∼ 0.3ω0.

We solve the equations in cartesian geometry (x, y, z), in the domain [0, 4H]2 × [0, 2H]. The
simulations are periodic in the horizontal directions, and no-slip with zero temperature perturbation
at the top and bottom boundaries. All quantities are expanded in a Fourier series in the two hor-
izontal directions. In the vertical direction, quantities are independently expanded in Chebyshev
polynomials over the domain [0, 1.05H], and over the domain [1.05H, 2H], with boundary condi-
tions imposed at z = 1.05H to maintain continuity of each quantity and its first vertical derivative.
An equal number of Chebyshev modes are used in each vertical sub-domain. 3/2 dealiasing is
used in each direction. We use mixed implicit-explicit timestepping, where all the linear terms are
treated implicitly, and the remaining terms treated explicitly. The timestep size is determined using
the Courant–Friedrichs–Lewy (CFL) condition. Table 5.1 describes the simulations presented in
this chapter.
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5.3.2 Passive Tracer Field
The goal of this work is to estimate turbulent diffusivities associated with convective overshoot.

To do this, we solve for the evolution of a passive tracer field c

∂tc − D∇2c = −u · ∇c, (5.8)

where D is a proxy for chemical diffusivity (and is required for numerical stability). Because c
is passive, we can allow c to evolve without including a source term to maintain the flame from
diffusing away. This freedom is used to calculate the turbulent diffusivity (similar to Brandenburg
et al. 2009). c satisfies zero flux boundary conditions on the top and bottom of the domain, so its
volume integral is conserved. It is initialized with

c =
1
2

[
1 − tanh

(
z − 0.8H

∆zfl

)]
. (5.9)

5.4 Results
After several convective turnover times, the system reaches a statistically steady state. We

visualize the convection in Fig. 5.2, plotting 2D vertical slices of the temperature perturbation field
and the normalized passive scalar field. The temperature perturbation is T ′ = T − 〈T 〉x,y,t. We
normalize the passive scalar field by subtracting off the volume-average, and setting its value to 1
at the bottom boundary:

c̃ =
(
c − 〈c〉x,y,z

)
/
(
〈c(z = 0)〉x,y − 〈c〉x,y,z

)
. (5.10)

Fig. 5.2 includes dashed lines at the bottom of the convection zone, z0, and solid lines at the
height of neutral buoyancy znb. There is substantial convective overshoot between z0 and znb.
However, below znb, the buoyancy perturbations show the long, coherent structures of internal
gravity waves. These waves yield negligible mixing. We note the waves are damped more strongly
in our simulations than is expected in carbon flames because we use an artificially high thermal
diffusivity (see section 5.5).

5.4.1 Self-Similar Solution
We now study the evolution of the horizontal average of the passive scalar field, c̄ ≡ 〈c〉x,y.

We find that after several convective turnover times, c̄ approaches a self-similar solution. Fig. 5.3
shows the evolution of c̄ in simulation R8. The profiles collapse to a single curve after subtract-
ing off the volume-average and normalizing the bottom value to unity (i.e., taking the horizontal
average of c̃ shown in Fig. 5.2). This indicates that

c̄(z, t) − 〈c̄〉z → A(t)C(z), (5.11)

where A(t) is an amplitude, and C(z) the vertical profile in Fig. 5.3. Furthermore, we find that
A(t) = A0 exp(−λt) for a constant λ that depends on the value of the diffusivities.
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Figure 5.2: Two dimensional vertical slices of the temperature perturbation field (top) and the normalized
passive scalar field (bottom) in simulation R9. The dashed line shows the bottom of the convection zone,
z0, and the solid line shows znb the neutral buoyancy height. The waves are below znb and yield negligible
mixing.
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Figure 5.3: Horizontal average of the passive scalar field at four times in simulation R8. c̄ is also time-
averaged around each time for 30ω−1

conv. The passive scalar field is attracted to the self-similar solution,
C (right panel and equation 5.11). The left panel also shows the solution of the effective diffusion model
(equation 5.14). The 1D effective diffusion model matches the 3D simulation.
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Figure 5.4: Horizontal average of the passive scalar field using the convection in simulation R8. c is ini-
tialized at t0 to be horizontally uniform, with the vertical profile shown here. The diffusion model equa-
tion (5.14) was initialized with the same profile. The 1D effective diffusion model matches the 3D simulation
over the entire simulation.

C satisfies the equation

−λC − D∂2
zC = −

〈
u · ∇

c
A

〉
x,y,t

(5.12)

We now assume that the term on the right hand side can be written as an effective diffusion term.
This is the Fickian diffusion ansatz (e.g., Brandenburg et al. 2009). Combining with the physical
diffusion term on the left

−λC = ∂z(Dt∂zC), (5.13)

where Dt(z) is a new effective diffusivity profile. We can invert equation (5.13) to solve for Dt

in terms of λ and C. In each simulation, we find that Dt = D in the stable region, and is large
∼ wrmsHconv in the convection zone; as expected, the value of Dt is not well-constrained in the
convection zone, as ∂zC is very close to zero. In the rest of this chapter, we will replace Dt with a
least-squares fit composed of two error functions, one which approaches D in the flame, and one
which approaches wrmsHconv in the convection zone.

5.4.2 Effective Diffusivity Model
To show that the convection acts like an effective diffusivity, we solve the model equation

∂tS (z, t) = ∂z(Dt∂zS (z, t)). (5.14)
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Figure 5.5: Effective diffusivity (equation 5.13) as a function of height in each of our simulations. The
effective diffusivity is equal to the microscopic diffusivity D below z = 0.8. The dashed line shows the
bottom of the convection zone, z0, and the solid line shows znb, the neutral buoyancy height. The height at
which κ = Dt is marked by an asterisk—mixing can only affect flame propagation above this point. The
hatched region shows the region that must be mixed in order to disrupt the flame (section 5.4.4). Since
κ > Dt in the hatched region, convection will have little effect on flame propagation.

If we initialize S (z, t) with 〈c(t = t0)〉x,y and use our fit for Dt(z), we find that S ≈ A(t)C(z), as
shown in Fig. 5.3, for every simulation.

As a further test of the diffusion model, we re-initialized simulation R8 with a new passive
concentration field profile halfway through the simulation, after the convection is already in a
statistically steady state. We also solved equation (5.14) with S (z, 0) = c̄(t = 0). Fig. 5.4 shows
that S ≈ c̄ throughout the simulation.

5.4.3 Diffusion Profiles
We now describe the effective diffusion profiles Dt(z) in each of our simulations (Fig. 5.5). The

effective diffusivity drops from its convective value wrmsHconv within the convection zone. This
cannot be attributed to the change in the horizontal average of w2 near z0. In simulation R9, it has
dropped two orders of magnitude before reaching the bottom of the convection zone (dashed line).

We are unable to reach the extremely low diffusivities of carbon flames, but we observe trends
in the effective diffusivity Dt as Ra and Le increase to more physical values. If Dt > κ, mixing by
overshoot could disrupt the flame. We mark the point where Dt = κ in each of the simulations with
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an asterisk. As both Ra increases (left panel), and Le increases (right panel), the point at which
Dt = κ approaches the convection zone. Negligible mixing occurs beyond znb, suggesting that the
plumes are not dense enough to penetrate substantially into the flame.

5.4.4 Flame Disruption in MESA
We explore the secular effects of mixing on flame propagation in the MESA model via two

sets of numerical experiments. First, we set the chemical diffusivity to a constant over the entire
flame to determine the ratio κ/Dt needed to disrupt a flame. We find the flame is only disrupted if
κ/Dt . 5 in the flame. This is consistent with our heuristic expectation that Dt ∼ κ is necessary for
flame disruption.

Second, we set the chemical diffusivity to the convective diffusivity ∼ H2ω in the region of
the flame with N < Ncrit. Increasing Ncrit increases the amount of material in which additional
mixing occurs, similar to increasing the overshoot length scale. We find the flame is only disrupted
if Ncrit & 0.1Nfl, where Nfl is the peak of the buoyancy frequency. The region below this point is
hatched in Fig. 5.5. In all our simulations, Dt = D in this region, indicating no convective mixing.
Although convection may mix a small overshoot region, it does not penetrate deep enough into the
flame to affect flame propagation.

5.5 Conclusions
This chapter describes simulations of an idealized model of convectively bounded carbon

flames. The simulations are in the Boussinesq approximation, and assume a Brunt-Väisälä fre-
quency profile motivated by MESA simulations of carbon flames (Fig. 5.1). On the convective
timescale, carbon flames are almost stationary, so we do not explicitly include any nuclear burning
in our model.

The simulations evolve a passive scalar field which heuristically represents the carbon species
fraction. Overshooting plumes mix the passive scalar into the convection zone. The passive scalar
field quickly approaches a self-similar solution (equation 5.11; see Fig. 5.3), allowing us to calcu-
late an effective diffusivity profile Dt(z), which captures the extra mixing due to convection. The
horizontally averaged 3D evolution of the passive scalar field is very well approximated by the
solution of a 1D diffusion equation (equation 5.14; see Fig. 5.4).

We calculate the effective diffusivity profile Dt(z) for each of our simulations (Fig. 5.5). Sur-
prisingly, the diffusivity begins to drop within the convection zone (i.e., where N2 < 0). This is
very different from the exponential overshoot parameterization derived in the lower Rayleigh num-
ber simulations of Freytag et al. (1996), in which the diffusivity starts to decrease at the bottom of
the convection zone.

Carbon flames have κ/D ∼ 106, but convective mixing can stall a flame if κ ∼ Dt within the
flame. We ran two simulations with κ/D > 1. We find that as κ/D increases (to our maximum
value of 10 � 106), the height at which κ = Dt shifts closer and closer to the convection zone.
MESA simulations suggest that a region near the peak of the buoyancy frequency (N & 0.1Nfl)
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must be mixed in order to disrupt the flame. None of our simulations show convective mixing
in this region. This implies that convective mixing cannot stall a carbon flame and that “hybrid
C/O/Ne” WDs are unlikely to be a typical product of stellar evolution.

Convection cannot mix carbon flames because convective plumes must overcome a huge buoy-
ancy barrier to reach the flame. We have neglected important physics in this work, including
rotation, magnetism, density stratification, and nuclear burning. However, it seems difficult for
these effects to overcome the potential energy barrier, so we do not believe they will change our
conclusion.

Internal gravity waves generated by the convection could mix the fluid via breaking. The wave
amplitude increases as

√
N as the waves leave the convection zone and approach the flame. Waves

can break if krξr ∼ 1, where ξr is the vertical displacement and kr is the vertical wavenumber.
Neglecting damping, theoretical models of internal wave generation by convection (e.g., Lecoanet
& Quataert 2013) claim krξr ∼ 1 at the peak of the buoyancy frequency, Nfl. However, the waves
linearly damp due to thermal diffusion (which does not lead to chemical mixing). For carbon
flames, we estimate the linear damping to become important near Nfl, so it is unclear if the waves
would break. Furthermore, breaking waves may only mix the unburnt fuel near Nfl, having little
effect on flame propagation.

Given the strong intermittency of convective turbulence, it is also possible that the majority of
overshoot mixing may be caused by a few rare but powerful plumes. Although our study cannot
rule out this possibility, we note that there are about ∼ 106 convective turnover times in the lifetime
of a carbon flame. This is many fewer turnover times than in other astrophysical contexts (e.g., the
solar convection zone), so rare events may be less important.

Future work should also study mixing via overshoot in oxygen-neon flames, which is important
for understanding whether stars at the top of the SAGB mass range undergo Fe core collapse or
electron-capture-induced ONe core collapse (Jones et al. 2014).
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Chapter 6

Numerical Simulations of Internal Wave
Generation by Convection in Water

6.1 Introduction
Internal waves are an important non-local transport mechanism in the Earth’s atmosphere and

in astrophysical fluids. They transport quantities like energy, momentum, and angular momentum
from where they are excited to where they damp. Internal wave transport has been invoked to ex-
plain such disparate phenomena as the quasi-biennial oscillation (QBO) in the Earth’s atmosphere
(Baldwin et al. 2001); shear-layer oscillations at the solar tachocline (Talon et al. 2002) and in other
stars (Talon & Charbonnel 2005); mass loss during the last year of a massive star’s life (Quataert
& Shiode 2012; Shiode & Quataert 2014); and synchronization of the rotation of the cores of red
giant branch stars (Fuller et al. 2014).

There are many sources of internal waves, including tidal interactions (e.g., Goodman & Lack-
ner 2009), flow over topography, loss of balance (geostrophic adjustment), and convection (Fritts
& Alexander 2003). Here we focus on excitation via convection, which is an important source of
wave excitation in stars and in the Earth’s tropics. Several heuristics are used to explain how in-
ternal waves are excited by convection; these include the obstacle effect, the mechanical oscillator
effect, and bulk forcing (e.g., Ansong & Sutherland 2010).

The obstacle effect describes the interaction of a horizontal flow over up-flowing plumes. On
time scales short in comparison to the plume time scale, the horizontal flow can generate internal
waves in the same way that wind generates internal waves over topography (Clark et al. 1986). We
restrict ourselves to geometries where there are no mean horizontal flows in the stably stratified
region, so the obstacle effect is not important in our simulations. The mechanical oscillator effect
refers to excitation by oscillations of the interface between the convective and stably stratified
regions (Fovell et al. 1992; Ansong & Sutherland 2010). This is similar to the excitation of sound
waves via oscillations in the surface of a drum. In the bulk excitation picture, Reynolds stresses
and thermal stresses within the convective region excite internal waves (Goldreich & Kumar 1990;
Clark et al. 1986). This is equivalent to the Lighthill (2001) wave excitation theory, and has been
applied extensively in the study of sound generation by turbulence (e.g., Lesshafft et al. 2010, and
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references within). The main purpose of this chapter is to evaluate the strengths and deficiencies
of the interface forcing and bulk excitation mechanisms.

A convenient system for studying convective excitation of internal waves is water near 4◦C.
Since water has a density maximum at 4◦C, a tank cooled to 0◦C at the bottom and kept near room
temperature at the top is convectively unstable between 0◦C and 4◦C and stably stratified above
4◦C. This experiment was realized by Townsend (1964, 1966), following a suggestion by Malkus.
The properties of the penetrative convection have been studied by various authors (e.g., Veronis
1963; Brummell 1993), but not as much attention has been paid to the wave excitation.

There are many numerical simulations of internal wave generation by convection. Moore &
Weiss (1973) simulate the water-ice system, and find evidence of internal gravity waves (IGWs).
More recently, several authors have studied wave generation in a stable layer adjoining a stratified
convective region using the anelastic approximation (e.g., Rogers et al. 2013; Alvan et al. 2014).
Rather than simulate both stably stratified and convective regions, Belkacem et al. (2009) and
Showman & Kaspi (2013) have coupled simulations of convection (alone) to a theoretical model
to estimate wave properties.

The rest of the chapter is organized as follows. In section 6.2.1 we describe the numerical
details of the main simulation. Section 6.2.2 presents the broad characteristics of the convectively
generated waves. In section 6.3 we discuss the linear damping rates due to diffusion. Sections 6.4
& 6.5 describe simulations of the simulation. We use data from the full simulation to test models of
the bulk excitation and interface forcing heuristics. We summarize the main results and conclude
in section 6.6.

6.2 Full simulation

6.2.1 Numerical implementation
We perform simulations of a fluid with a quadratic equation of state using the simple model

of fresh water near 4◦C of Veronis (1963). The simulations are run using Dedalus (Burns et al.
2015, see dedalus-project.org for more information), a general framework for studying par-
tial differential equations, including eigenvalue problems, boundary value problems, and initial
value problems (i.e., simulations). It uses a sparse Chebyshev spectral method to solve nearly
arbitrary equation sets including algebraic constraints and complex boundary conditions. This
flexibility allows us to simulate the water convection problem, as well as simplified linear models
representing bulk excitation (section 6.4) and interface forcing (section 6.5). In all cases, we use a
two dimensional Cartesian domain with a Fourier grid in the horizontal (x) and a Chebyshev grid
in the vertical (z) directions. Many aspects of the simulation set-up are inspired by the quasi-two
dimensional experimental investigation of Le Bars et al. (2015).

dedalus-project.org
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We solve the equations

∇ · u = 0, (6.1)

∂tu + ∇p − ν∇2u = −u · ∇u + g
δρ

ρ0
, (6.2)

∂tT − κ∇2T = −u · ∇T − k (T − Tair) , (6.3)
δρ

ρ0
=
δρ(T )
ρ0

= −α (T − T0)2 , (6.4)

where u, p,T are the velocity, pressure, and temperature, respectively. δρ = ρ − ρ0 is the (small)
density variation about a typical density of water, ρ0. ν, κ are the viscosity and thermal diffusiv-
ity, and g = −gez is the gravitational acceleration. Equation 6.1 is the continuity equation and
equation 6.2 is the momentum equation. Equation 6.3 is the temperature equation, and includes a
Newtonian cooling term k(T − Tair), which represents heat transfer to the ambient air in the third
dimension (the y direction in an x–y–z coordinate system). The choice of k sets the thermal equi-
librium of the system: a small value of k results in a large convective region with only a small
stably stratified region, while a large value of k results in a small convective region, with a very
large stably stratified region. Our choice of k results in an equilibrium configuration with convec-
tive and stably stratified regions of approximately equal size, and corresponds to a heat transfer
coefficient of 3.3 W/(m2K). The final equation 6.4 is the equation of state, which is approximated
to be quadratic around the density maximum at T0 = 4◦C. The diffusivities used in these studies
are constant throughout the domain, and correspond to their values for water at T = 4◦C; here
Pr = ν/κ = 13.8. In contrast, the viscosity of water decreases by about a factor of two between
T = 0 and 25◦C, while the thermal diffusivity stays about constant.

The vertical extent of the domain is 0.35 m, and our vertical boundary conditions are no slip,
and T = Tbot, T = Ttop on the bottom and top, respectively. For the horizontally averaged mode,
∂zw = 0, where w is the vertical velocity. Thus, the conditions w = 0 at the top and w = 0 at the
bottom are redundant. We replace the latter boundary condition with the gauge choice p = 0 at the
bottom of the domain. We use a resolution of 256 modes and grid points (with no dealiasing) in
the vertical direction. Dealiasing is not necessary because the solution is so well resolved that the
explicit diffusivities are sufficient for reducing mode amplitudes at high wavenumber to very close
to zero. We have repeated portions of the calculation at double resolution, and found negligible
differences in the statistics of the flow.

Table 6.1: Parameter values used in the simulations.

parameter value parameter value
ν 1.8 × 10−6 m2/s κ 1.3 × 10−7 m2/s
k 2 × 10−5 s−1 α 8.1 × 10−6 (◦C)−2

T0 4◦C Tair 21◦C
Tbot 0◦C Ttop 25◦C
g 9.8 m/s2 zint 0.18 m
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Our horizontal boundary conditions are u = 0 and ∂xT = ∂xw = ∂x p = 0 on x = 0 and
x = 0.2 m. This allows us to represent u as a sine series in x, and T , w, and p as cosine series in
x. Plumes rising on the sides of the domain do not exchange heat with the wall, so they lose their
buoyancy more slowly than plumes in the center of the domain. Thus, the most stable convective
state has plumes rising on the sides of the domain. We use a resolution of 512 sine/cosine modes
and grid points (with no dealiasing) in the horizontal direction. We do not dealias in the horizontal
direction for the same reason that we do not dealias in the vertical direction.

The time integration uses a split implicit/explicit first-order scheme where certain terms are
treated implicitly using forward Euler, and the remaining terms are treated explicitly using back-
ward Euler. We have repeated portions of the calculation with a third order, four-stage DIRK/ERK
scheme (Ascher et al. 1997), and found negligible differences in the statistics of the flow. The non-
linear terms, the buoyancy term, and the constant kTair term in the temperature equation are treated
explicitly, and all the other terms are evolved implicitly. The time step is taken to be the lesser of ei-
ther 0.1 s or the advective Courant–Friedrichs–Lewy (CFL) time given by 0.08×min (∆x/u,∆z/w),
where the minimum is taken over every grid point in the domain and ∆x, ∆z are the grid spacing in
the x and z directions, respectively. Typical time steps are ≈ 0.02 s.

The initial temperature profile is piecewise linear, varying between Tbot at z = 0 to T0 at
z = zint = 0.18 m, and then to Ttop at z = 0.35 m at the top of the domain. We also add low amplitude
random noise to the temperature field to initiate convection. In this chapter, we analyze the times
between 35287 s and 39122 s. This corresponds to a period of about ten convective turnover times,
starting about seventy convective turnover times after the beginning of the simulation. We found
that ten convective turnover times is long enough to build sufficient statistics to describe both the
convection and waves. Although we simulate many convective turnover times, the simulation up
to 40000 s corresponds to only 4% of a thermal time, so the thermal structure continues to evolve
on long time scales throughout the simulation. Several dimensionless numbers describing the
convection in this simulation are given in table 6.2. Because our equations include a Newtonian
cooling term, we do not have a constant heat flux through the convection zone. Thus, we calculate
the Nusselt number using the average value of wT in the convection zone.

6.2.2 Characteristics of convectively generated waves
The convective excitation of waves is depicted in figure 6.1. Panel (a) shows the typical state

before a major excitation event. The convective region contains two counter-rotating convective
cells, with up flows (represented by red cold, buoyant fluid) along the sides of the domain, and a

Table 6.2: Dimensionless numbers characterizing the convection in the lower part of the domain. Lconv is
taken to be 0.22 m. We use 〈·〉x,... to denote an average with respect to the variables listed in the subscript.
The z average in the calculation of Nu is only within the convection zone.

Ra =
gαT 2

0 L3
conv

νκ
Re =

urmsLconv

ν
Nu =

−〈wT 〉x,z,t
κT0/Lconv

5.8 × 107 100 6
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Figure 6.1: Four simulation snapshots near t = 37400 s. The bottom part of the domain (below the thick
black line) shows the temperature field. Recall that below 4◦C, cold water (red) is less dense than hot water
(blue). The thick black line is the 5◦C isotherm and shows the boundary between the convective region
(below) and the stably stratified region (above). The top part of the domain (above the thick black line)
shows the vorticity field associated with IGWs.

down flow (represented by blue hot, dense fluid) in the center. Because water has a Pr sufficiently
higher than one, the thermal boundary layer at the bottom of the domain is unstable to the formation
of buoyant plumes. The turnover frequency of the convective cells (∼ 2 × 10−3 Hz) and the plume
ejection frequency (∼ 10−2 Hz) are the important time scales in the convection zone. The yellow
curve in figure 6.2, panel (c), shows the kinetic energy spectrum at the top of the convection
zone (z ≈ 0.19 m). Although there is a peak at the turnover frequency, the spectrum is fairly flat
between the turnover frequency and the plume ejection frequency. At frequencies higher than the
plume ejection frequency, the spectrum falls off rapidly.

Panel (a) of figure 6.1 shows a particularly vigorous plume on the right side of the domain at
about z = 0.16 m. This plume rises into the stably stratified region (water above 4◦C) in panel
(b), moving the interface between the convective and stably stratified regions upwards and gener-
ating strong, localized IGWs. The plume is deflected by the stratified fluid above it, and deflects
leftwards. This allows the interface to lower (panels c & d).

Figure 6.1 shows the IGWs generated by the plume in the lower right corner of the stably
stratified region propagate toward the upper-left. However, the phase velocity is toward the lower-
left—the upper part of the wave packet starts with positive vorticity (panel b), but shifts to having
negative vorticity (panel c), and then positive vorticity again (panel d). This is consistent with
the IGW dispersion relation, which implies that the group velocity is perpendicular to the phase
velocity.

IGWs are continually excited as the plumes detaching from the bottom boundary layer ap-
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proach the interface. Viscosity typically damps the waves before they can propagate to the top of
the domain. This is depicted in figure 6.2(a), a spectrogram of the kinetic energy density, i.e., a plot
of ω〈K〉x ≡ 0.5 ω〈|u(ω, x, z)|2〉x as a function of ω and z, where 〈·〉x denotes a horizontal average.
All logarithms in this chapter are base e. The frequency spacing of our data is uniform, so at high
frequencies, the frequency density becomes large. To improve the statistical power, we smooth
the data by convolving with a gaussian with σz = 2.5 × 10−3 m and σlogω = 0.05. Figure 6.2 (a)
also shows the real (black line) and imaginary (white line) parts of the buoyancy (Brunt-Väisälä)
frequency, defined by

N2 = αg
d
(
〈T 〉x,t − T0

)2

dz
. (6.5)

The real part of the buoyancy frequency is the maximum frequency of IGWs, and the imaginary
part gives the convection frequency within the convective region.

In the convective region (below z ≈ 0.22 m), the energy is peaked near the convection fre-
quency at f ≈ 2 × 10−3 Hz (figure 6.2 (c), yellow line). The convection has power at a broad
range of frequencies extending to high frequencies (> 10−1 Hz). By contrast, the power in the
stably stratified region is localized below the buoyancy frequency (figure 6.2 (c), red & blue lines).
Although the excitation of internal waves is strongest near the convection frequency, these waves
quickly viscously damp. However, higher frequency waves with f between 1–2 × 10−2 Hz have
longer damping lengths, and can propagate much further into the stably stratified region.

In a statistically steady state, the viscous damping of waves matches the convective excitation.
We use this to estimate the wave flux generated by convection and compare to theoretical predic-
tions. Equating the wave flux to the viscous damping, we find that the flux at a height z in a mode
with horizontal wavenumber kx and frequency ω is

Fwave(z, kx, ω) ∼ ν`d(kx, ω)|k|2|u(z, kx, ω)|2, (6.6)

where `d is the linear viscous damping length. We discuss the calculation of `d in section 6.3.
To calculate the wave flux, we first calculate the kinetic energy of all modes with frequency ω

as a function of height,
〈
|u(z, ω)|2

〉
x
. Figure 6.2 (b) plots this for three different values of ω. Near

the interface at z = 0.22 m, the kinetic energy is decreasing exponentially with height. We find that
this exponential decay is well fit by `d for a single kx typically corresponding to a large wavelength
mode. In calculating `d, we assume that N is constant and equal to 0.08 Hz, a typical value within
the stably stratified region. This suggests that most of the energy in waves with frequency ω is
concentrated into a mode with a specific kx at z = 0.22 m. In figure 6.2 (b), thin solid lines show
the predicted damping for waves with ω = 2 × 10−3 Hz and wavelength λx = 0.4 m (green);
ω = 9 × 10−3 Hz and λx = 0.2 m (purple); and, ω = 2 × 10−2 Hz and λx = 0.1 m (orange). These
all give good local fits, although the damping rate decreases with height for the two larger values
of ω. This is because the waves with λx = 0.1 m or 0.2 m damp more quickly than waves with
λx = 0.4 m, so although these lower wavelength waves are dominant at z = 0.22 m, they become
subdominant higher in the domain.

This shows that the wave flux at z = 0.22 m (the position of the convective–stably stratified
interface) for a given ω is dominated by a single kx. In figure 6.3, we plot the flux as a function of
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Figure 6.2: (a): spectrogram of the kinetic energy density. The white curve is the imaginary part of the
buoyancy frequency corresponding to the convection frequency. The black curve is the real part of the
buoyancy frequency in the stably stratified region. The data has been smoothed to improve statistics (see
text for more details). Panels (b) & (c) plot the kinetic energy density as a function of z (dashed lines) &
ω (dot–dashed) respectively; the vertical and horizontal lines in panel (a) are color–coded to correspond to
these slices. The thin solid lines in panel (b) show the predicted linear damping rates near the convective–
stably stratified boundary at z = 0.22 m. Within the convection region (panel (c), yellow curve), the energy
is peaked near the convection frequency. However, these low frequency waves are quickly attenuated, and
the stably stratified region is dominated with waves with frequencies 1–2 × 10−2 Hz (panel (c), blue curve).
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Figure 6.3: Wave flux spectrum at z = 0.22 m calculated using equation 6.6. We assume that the flux at
each ω is dominated by a single kx, which we determine by comparing the energy decay rate at z = 0.22 m
to `d(ω, kx).

ω, where we assume all the energy is at this special value of kx. Although there is a peak in the
wave flux spectrum at the turnover frequency (2 × 10−3 Hz), the spectrum is fairly flat out to the
plume ejection frequency (10−2 Hz). At higher frequencies, the wave flux decreases as ω−3. The
total flux is

Fwave,sim ∼ 5 × 10−12 (m/s)3. (6.7)

The theoretical prediction for the wave flux isMu3
c (e.g., Goldreich & Kumar 1990; Lecoanet &

Quataert 2013), where uc is a typical convection velocity andM, the “convective Mach number,”
is an efficiency factor equal to the ratio of a typical convection frequency to a typical buoyancy
frequency. From figure 6.2 (a), we estimate M ∼ 0.03. If we estimate uc ∼ ωc`c, where ωc =

2 × 10−3 Hz is the turnover frequency and `c = 0.22 m is the depth of the convective region, then
uc = 0.4 × 10−3 m/s and

Fwave,theory,1 ∼ 2.5 × 10−12 (m/s)3. (6.8)

However, if we assume that uc is the rms velocity in the convection zone, this gives uc = 0.9 ×
10−3 m/s and

Fwave,theory,2 ∼ 2.5 × 10−11 (m/s)3. (6.9)

Thus, the wave flux calculated in the simulations is in the range expected theoretically. This
calculation shows that the predicted flux depends sensitively on the assumptions made for various
parameters, so we cannot expect more than rough agreement.

6.3 Linear damping rates
Wave damping is an important process in the simulation. Rogers & MacGregor (2011); Rogers

et al. (2013), and & Alvan et al. (2014) argued that the linear damping rate overestimates the damp-
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ing in simulations of convectively excited waves. They attribute the lack of damping to nonlinear
interactions. In contrast, we find that linear theory accurately describes the wave damping in our
simulation, but only when the full damping rate is used.

The linear damping rate can be derived from the linearized equations of motion in the Wentzel–
Kramers–Brillouin (WKB) limit. Zahn et al. (1997) and Press (1981) calculate the damping rate,
but only in the quasi-adiabatic or weak dissipation limit, which is not always applicable.

We will describe the damping using an inverse damping length,

E(z) = E(z0) exp
(
−2

∫ z

z0

`−1
d dz

)
, (6.10)

where we assume z > z0. In the weak dissipation limit, the inverse damping length due to viscosity
is

`−1
d = ν

N3k3
x

ω4 . (6.11)

For water, viscous damping dominates, while in astrophysical systems, Pr is typically much less
than unity, so viscosity is typically less important than thermal diffusivity. Equation 6.11 shows
that as ω goes to zero, the inverse damping length increases as ω−4. This expression for the inverse
damping length is valid only in the weak dissipation limit, i.e., when ω � νk2. Geophysical
and astrophysical systems have very small diffusivities, so this condition is satisfied. However,
laboratory experiments and numerical simulations have much larger diffusivities. We find that most
modes in our simulation are not in the weak dissipation limit, so we would not expect equation 6.11
to represent the dynamics in the simulation.

The calculation of the linear damping rate in the WKB limit without assuming weak dissipation
is more involved, but straightforward. The inverse damping length is

`−1
d =

Im

 (−1)3/4

√
2

√
−2ik2

x −
ω

ν
+

√
ω3 + 4ik2

xνN2

ν
√
ω

 . (6.12)

This reduces to equation 6.11 in the weak damping limit, ω � k2ν. Furthermore, the vertical
wavenumber also changes from the standard adiabatic result (kz = kxN/ω),

kz =

Re

 (−1)3/4

√
2

√
−2ik2

x −
ω

ν
+

√
ω3 + 4ik2

xνN2

ν
√
ω

 . (6.13)

In the limit of small ω, the inverse damping length in equation 6.12 approaches

`−1
d = sin (7π/8)

(
k2

xN2

νω

)1/4

. (6.14)
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Figure 6.4: Spectrograms of kinetic energy in modes with kx = 2π/0.1 m−1 testing different linear damping
formulas. The black line shows the horizontally and temporally averaged buoyancy frequency profile. Panel
(a): the spectrogram for the simulation result. Panel (b): the spectrum from the simulation evaluated at
z = 0.22 m multiplied by the damping factor (equation 6.10), using the weak dissipation limit expression
for `−1

d (equation 6.11). Panel (c): the spectrum from the simulation evaluated at z = 0.22 m multiplied
by the damping factor, using the full expression for `−1

d (equation 6.12). While the weak damping formula
significantly overestimates the damping, the full damping formula accurately describes the damping in the
simulation.

In this limit, the inverse damping length increases only as ω−1/4 as ω goes to zero, much more
slowly than in the weak damping limit where `−1

d ∼ ω
−4. For small ω, the weak damping limit pre-

dicts the waves are strongly damped. This indicates that the weak damping limit is not appropriate.
We find that, although the actual wave damping is less severe than predicted by the weak damping
limit, the waves are still strongly damped.

In figure 6.4, we compare these two damping rate calculations with the simulation. Because
the inverse damping length depends on the wavenumber, we first filter the simulation data to only
include modes with kx = 2π/0.1 m−1. Panel (a) shows the spectrogram of the kinetic energy
in these modes in the simulation. Note that there is a factor of ∼ 10 less energy in this set of
modes than in the full simulation (figure 6.2 (a)). To simplify the calculation of the damping factor
(equation 6.10), we approximate N to be uniform and equal to 0.08 Hz. In panel (b), we plot
the energy as a function of height using equation 6.10, using the weak dissipation limit for `−1

d
(equation 6.11), normalizing the wave energy at z = 0.22 m using the simulation results (as done
in, e.g., Taylor & Sarkar 2007). This greatly overestimates the damping for short wavelength waves
(ω < 2 × 10−2 Hz) because these waves are not in the weak damping limit. This is similar to the
results of Rogers & MacGregor (2011); Rogers et al. (2013), and Alvan et al. (2014). We repeat
the calculation in panel (c), but now use the full expression for `−1

d (equation 6.12). When using
the full expression without taking the weak dissipation limit, we find that linear theory correctly
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describes the damping in the stably stratified region.

6.4 Bulk excitation: Reynolds stress forcing
We now test two proposed models of internal wave excitation, first bulk excitation, then in-

terface forcing (section 6.5). We use linear wave models and data from the full simulation to
calculate the vertical velocity associated with the wave field. We then compare the wave field in
these simplified models with the wave field in the full simulation.

The bulk excitation mechanism is an application of the Lighthill (2001) approach to calculating
wave excitation. We decompose the vertical displacement ξz into a wave-like component and a
convection-like component using the linear eigenfunctions. The wave excitation is given by the
projection of the Reynolds stress associated with convection onto the wave-like component by a
source term S (Lecoanet & Quataert 2013). This can be written as

∇2
(
∂t − ν∇

2
)
∂tξz + N2∂2

xξz = S ≡ −∇2 (u · ∇uz) + ∂z

[(
∂xiu j

) (
∂x jui

)]
, (6.15)

where repeated indices are summed over. We have assumed here that the only important nonlinear-
ity is the Reynolds stress and have neglected the u ·∇T nonlinearity. Mixing length theory suggests
the Reynolds stress term is the most important source term (e.g., Goldreich & Kumar 1990). We
also neglect thermal diffusivity because it has a smaller effect than viscosity.

To test the bulk excitation mechanism, we solve equation 6.15, where the source term is calcu-
lated directly from the velocities in the full simulation. This is possible by exploiting the flexibility
of Dedalus. We solve two problems simultaneously; the full problem described in section 6.2.1,
as well as the linear forced problem described here. At every time step, we first evolve the full
problem forward. Then we calculate the source term using the velocities in the full problem. With
the new source term, we take time step in the linear forced problem, and repeat.

Freund (2001) and Boersma (2005) used a similar approach to study the generation of sound
waves by a turbulent jet. In Freund (2001), the linear model is used to study sound waves in the far
field, which is too large to be resolved by the jet simulation. In contrast, Boersma (2005) solves
the incompressible equations, and uses a linear wave equation to estimate wave generation due to
a source term. Neither study is able to compare the predictions of the bulk excitation model with
self-consistently generated waves within their simulations, and both limit their analysis to the far
field.

We solve the linear problem on the same domain as the full problem, and use the same timestep-
ping scheme. We start the calculation at t = 34878 s. The N2 profile we use is a horizontally and
time averaged profile, as in figure 6.2(a), where all negative values of N2 are set to zero so that
we can neglect exponentially growing convective modes. The boundary conditions are ξz = 0 on
top and bottom, ∂t∂zξz = ∂xu = 0 on the top, and ∂t∂

2
zξz = ∂x∂zu = 0 on the bottom, where u is

the horizontal velocity. To make sure the source term arises only from the convection and not the
existing waves in the simulation, we mask S to include only the convection zone by multiplying it
by 0.5 [1 − tanh((z − 0.23)/0.01)].
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Figure 6.5: Snapshots of vertical velocity in the stably stratified region at three different times for the full
simulation (first column), bulk excitation simulation (second column), and interface forcing simulations
with a 5◦C interface (third column) and an 8◦C interface (fourth column). The vertical velocities are nor-
malized by the rms vertical velocity at each height. Although there is quite good agreement between the full
simulation and the bulk excitation simulation, the interface forcing simulations are not as accurate.

In figure 6.5, we compare the flow pattern between the full simulation and the bulk excitation
simulation, as well as two interface forcing simulations described in section 6.5. Because the
velocities decrease rapidly with height (see figure 6.1), we normalize the vertical velocity to its rms
at each height. At each of the three chosen times, there is very good agreement between the full
simulation and the bulk excitation simulation. Note that the second row corresponds to the same
time as figure 6.1(d). The average amplitude for the bulk excitation simulation is smaller than the
average amplitude of the full simulation by a factor of about 0.7. The agreement is quite impressive
given the simplified physics in the bulk excitation simulation. The remaining differences might be
because we only included the Reynolds stress source term, and not a source term proportional to
the u · ∇T nonlinearity.

To compare quantitatively the two wave fields throughout the simulation, we plot the spectro-
gram for each simulation in figure 6.6. Again, there is striking agreement between the full sim-
ulation and the bulk excitation simulation. We also calculated the correlation of w/wrms between
the two simulations, from 35287 s to 39121 s and from z = 0.235 m to 0.349 m. The correlation
between the full simulation and the bulk excitation simulation is 96%.

6.5 Interface forcing: Mechanical oscillator effect
In this section we present simulations which test interface forcing. We again solve the linear

IGW equation, but now force the system with a boundary condition instead of a source term. The
moving bottom boundary represents the movement of the interface between the convective and
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Figure 6.6: Spectrogram of vertical velocity squared in four different simulations. The black line shows the
horizontally and temporally averaged buoyancy frequency profile. Panel (a), full simulation; panel (b), bulk
excitation simulation; interface forcing simulations with 5◦C interface (panel c) and 8◦C interface (panel d).
The bulk excitation simulation agrees very well with the full simulation. The interface forcing simulations
overestimate the excitation of high frequency waves. This is because the interface forcing cannot detect
sweeping motions along the interface, and thus treats the wave excitation as impulsive events which produce
high frequency waves.
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stably stratified regions in the full simulation. This generates IGWs just as moving the surface of
a drum generates sound waves.

First we calculate the interface position as a function of time using data from the full simula-
tion. We calculate two interfaces: a 5◦C interface and an 8◦C interface. We use 5◦C to get very
close to the density maximum (4◦C), without having to worry about large temperature fluctuations
producing unphysical fluctuations in the interface position. The 8◦C interface is used because a
rising fluid element at 0◦C becomes neutrally buoyant when it reaches 8◦C, assuming no conduc-
tive losses. We calculate the interface position every two hundred time steps (i.e., one fifteenth of a
buoyancy period) in the full simulation, calculating the z position at which T = 5◦C or 8◦C at each
x position. The interface position at intermediate times is reconstructed via linear interpolation.
Calculating the interface position every one hundred time steps (and using linear interpolation for
intermediate times) produced no visible changes in the simulation results.

The interface forcing simulations are run on a reduced domain, with x varying from 0 to 0.2 m,
but z varying from the mean interface position to 0.35 m. The mean interface position is 0.2096 m
for the 5◦C interface and is 0.225 m for the 8◦C interface. The horizontal resolution in both cases
is 512 Fourier modes and grid points (with no dealiasing), and the vertical resolution in both cases
is 128 Chebyshev modes and grid points (with no dealiasing). Doubling the vertical resolution of
the simulation had no noticeable effect on the wave field.

More specifically, we solve the linear, homogeneous wave equation,

∇2
(
∂t − ν∇

2
)
∂tξz + N2∂2

xξz = 0, (6.16)

where N2 is the temporally and horizontally averaged buoyancy frequency, as in section 6.4. Our
boundary conditions are as follows. On the bottom, we set ξz = δzint(x, t), where δzint(x, t) in the
deviation of the interface position from its mean position at that time (i.e., 〈δzint(x, t)〉x = 0). This
ensures there is zero mass flux into the domain. The second bottom boundary condition is ∂t∂

2
zξz =

∂x∂zu = 0. We also tried imposing pressure continuity at the interface as a second boundary
condition—this gives qualitatively similar results. The top boundary conditions are ξz = 0 and
∂t∂zξz = ∂xu = 0.

For timestepping, we use a first order forward Euler/backward Euler scheme. Although the
entire equation is linear, we treat the buoyancy term N2∂2

xξz explicitly. As mentioned above, the
interface position is calculated every two hundred time steps in the full calculation—call this time
difference ∆ti (which varies, as the time step is set by the CFL condition). The time step for these
interface forcing calculations is ∆ti/40. Thus, the average time step is five times larger than the
average time step in the full simulation. Using a smaller timestep of ∆ti/80 had no noticeable effect
on the wave field. The calculation starts at t = 34878 s.

Figure 6.5 shows three snapshots of the wave field for the interface forcing simulations using
the 5◦C interface and the 8◦C interface. Although the broad features of the wave field are present,
the 5◦C interface simulation does not reproduce all the features of the full simulation (the difference
is especially striking in the third snapshot at t = 38327 s). However, the 8◦C interface simulation
matches the full simulation fairly well.

As for the bulk excitation simulation, we calculated the correlation of w/wrms between the full
simulation and each of the interface forcing simulations. While the 8◦C interface simulation has a
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correlation of 81%, the 5◦C interface simulation only has a correlation of 31%. Neither come close
to matching the 96% correlation of the bulk excitation simulation with the full simulation.

The interface forcing simulations over-excite high frequency waves because they treat the wave
excitation as an impulsive process. Large plumes can significantly deflect the interface on short
timescales, which excites high frequency waves. In the laboratory experiments of Ansong &
Sutherland (2010), dense plumes produce these sorts of large deflections, generating high fre-
quency waves. Michaelian (2002) and Le Bars et al. (2015) also find that high frequency waves are
generated when the changing thermal states early in their experiments produce vigorous plumes.
In the terminology of astrophysical penetrative convection, these would be termed “penetrating”
plumes, rather than typical “overshooting” plumes (e.g., Brummell et al. 2002).

However, most waves are not being generated by these particularly strong, “penetrating” plumes.
Instead, they are being generated by the sweeping motion of plumes below the interface, which
preferentially generates waves at low frequencies and large horizontal wavelengths. This is ac-
curately captured by the bulk excitation calculation, but not in the interface forcing calculations.
If something prevented motions in the convection zone near the interface, there could be waves
generated by stresses within the convection zone, even if there are no accompanying interface mo-
tions. Because the interface forcing calculations do not know about these sweeping motions, they
treat the plumes as an impulsive forcing, generating too many high frequency waves.

Using a higher interface (the 8◦C interface) improves the results as the dynamics are better
modeled as linear. This is an important check on our numerical implementation of the interface
forcing simulations. An interface which is far away from the convection should faithfully re-
produce the wave field, but this does not give insight into the wave excitation process since the
“interface” motions are dominated by the waves themselves rather than the convection. Instead,
this exposes a conceptual problem with the interface forcing picture of wave excitation.

6.6 Conclusions
In this chapter we present simulations of convective excitation of internal gravity waves in a

fluid with a water-like equation of state. Cold, buoyant plumes near 0◦C detach from an unstable
boundary layer at the bottom of the domain and are advected by two convective cells to the top
of the convective region. As the plumes approach the interface between the convective and stably
stratified regions, they generate internal gravity waves (figure 6.1). Although the wave excitation
is dominated by low frequency waves matching the convective turnover frequency, these waves
are quickly damped as they propagate upwards. Only high frequency waves reach the top of the
domain (figure 6.2). Estimates of the wave flux are reasonably consistent with the theoretical
estimate ofMu3

c , whereM is the ratio of convection frequency to buoyancy frequency, and uc is a
characteristic convection velocity.

We find that the wave damping with height is in agreement with analytic theory, provided
one uses the full expression for the damping length (equation 6.12). Because geophysical and
astrophysical waves excited by convection are typically weakly damped by diffusive processes,
previous analyses of simulations (e.g., Rogers & MacGregor 2011; Rogers et al. 2013; Alvan
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et al. 2014) have used the quasi-adiabatic, or weak dissipation limit (equation 6.11). However,
simulations and laboratory experiments have much larger diffusivities than natural systems, and
we find that the waves generated in our simulation are mostly not in the weak dissipation limit.
Using the full damping expression, we find that low frequency waves have inverse damping lengths
proportional to ω−1/4, rather than ω−4 in the weak dissipation limit. This implies that the weak
dissipation expression overestimates the wave damping, consistent with previous claims about
the failure of linear damping to explain the damping in simulations of convective excited waves.
However, we find that the full linear damping rate is able to correctly reproduce the damping in the
simulation (figure 6.4).

In addition to this full simulation, we also present three simulations of the simulation. The first
tests bulk excitation, where waves are excited by Reynolds stresses within the convective region
(section 6.4). We solve the linear wave equation forced by a Reynolds stress source term calcu-
lated at each position and time from the convection zone of the full simulation. This accurately
reproduces the wave field and spectrum (figures 6.5 & 6.6); the wave field correlation between the
bulk excitation and full simulations is 96%. The wave amplitude is underestimated by a factor of
0.7—this may be because we neglect other nonlinear source terms like u · ∇T in our calculation.

We also run two simulations testing interface forcing (section 6.5). In these simulations, we
solve the homogeneous linear wave equation, but force the system with the motions of either the
5◦C isotherm or the 8◦C isotherm at the bottom of the stably stratified region. The movement
of these isotherms is analogous to the oscillations of the surface of a drum pummeled by the
mallets of convection. However, this neglects the sweeping motion of plumes below the interface.
These simulations thus misinterpret the convective excitation as being due to impulsive, penetrating
plumes, which over-excite high frequency waves (figure 6.6). The inability to detect the horizontal
motion of sweeping plumes is a fundamental problem of the interface forcing heuristic. In contrast
to the 96% correlation between the wave fields in the bulk excitation and full simulations, the
5◦C interface forcing and the 8◦C interface forcing simulations have a correlation with the full
simulation of only 31% and 81%, respectively.

All four simulations presented in this chapter exploit the flexibility of Dedalus. Modifying the
classic Boussinesq system to accommodate the nonlinear equation of state of water amounts to
changing one line of the simulation script. Furthermore, being able to solve different equations
easily makes it practical to test different heuristics by solving model equations using simulation
data as input. This represents a novel and fruitful analysis technique.

Although the results presented here are for two dimensional simulations using the unique equa-
tion of state of water near 4◦C, we expect similar conclusions to hold in 3D, and for fluids with less
exotic thermodynamic properties. In future work, we will run similar calculations in 3D at high
Rayleigh number, including more physics, such as density stratification and rotation.
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