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In bird flight, the majority of the wing surface consists of highly refined and 

hierarchically organized β-keratinous feathers.  Thus, flight feathers contain ingenious 

combinations of components that optimize lift, stiffness, aerodynamics, and damage 

resistance.  Their design involves two main parts: a central shaft which prescribes stiffness 

and lateral vanes that allow for the capture of air.  Within the feather vane, barbs branch 

from the shaft and barbules branch from barbs, forming a flat surface and ensuring lift.  

Microhooks at the end of barbules hold barbs tightly together, providing a close-knit, 

unified structure and enabling repair of the vane through the reattachment of un-hooked 

junctions.   

In this dissertation, unique aspects of feather architecture are explored to uncover 

principles translatable to the design of modern aerospace materials and structures.  
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Specifically, understudied aspects of the feather’s lightweight yet resilient properties are 

investigated. This research has revealed several novel characteristics of the feather.  

Allometric scaling relationships are developed linking the geometry of a bird’s wing 

components to its flight characteristics and total mass.  Barbule spacing within the feather 

vane is found to be 8-16 µm for birds ranging from 0.02-11 kg. Additionally, it is 

discovered that strength is recovered with the shape recovery property of feathers, and a 

mechanism for this phenomenon is proposed.  Barbule adhesion within the vane is found 

to prevent barbs from twisting in flexure, maintaining the vane’s stiffness, and the extent 

to which unzipping these connections affects the feather’s ability to capture air is related 

to barb shape.  Directional permeability of the feather vane is experimentally confirmed 

and related to the intricate microstructure of barbules.  Lastly, the exceptional architecture 

of the feather motivated the design of novel bioinspired structures with tailored and unique 

properties.  The avian feather serves as an excellent springboard for designs that can be 

adapted to enhance synthetic materials and structures. 
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1. Introduction and Objectives 

 

1.1. Bioinspiration and Materials Science 

Through the process of Darwinian evolution, natural materials and structures have 

advanced over billions of years of adaptation to ensure survival.  These biological materials and 

organisms self-assemble under mild conditions, are often multifunctional and composed of 

relatively weak constituents, yet have exceptional mechanical properties[1].  Due to these and 

many other remarkable features, materials scientists and engineers have much to learn and adapt 

from nature, and find this space in the field of bioinspired materials.  At the intersection of Biology, 

Engineering and Design, this field provides fertile ground for the creative development of 

solutions.  Recently, the field of bioinspired materials has undergone pronounced growth, possibly 

due to new experimental techniques that allow for the detailed characterization of natural materials 

and novel manufacturing methods. 

 

Figure 1.1 A famous example of bioinspiration: (a.) Scanning electron micrograph of the 

mechanical hook-and-loop adhesive Velcro [2], and (b.) the burdock plant burr, from which Velcro 

was inspired [3]. 
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One of the most famous bioinspired materials is the hook-and-loop fastener Velcro® 

(Figure 1.1), which was invented by George de Mestral in 1941 after noticing how hooked 

burdock burrs stuck to his dog’s fur [4].  Other examples of bioinspired materials include structural 

composites that mimic the design of abalone nacre, light-harvesting photonic materials that imitate 

photosynthesis, and self-cleaning surfaces inspired by the lotus leaf [5].  In this dissertation, avian 

feathers are explored as a source of bioinspiration for lightweight, resilient materials.  

1.2. Research Focus and Motivation 

Since the ancient times mankind has been inspired by birds.  Cave paintings in Baja 

California, Mexico estimated at 11,000 years old depict a bird landing with remarkable accuracy 

(Figure 1.2); Ornithologist J. Videler notes the alula and spread feet observed and copied by the 

artist [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Ancient cave painting of a bird landing from “Cueva de la Soledad”.  Red arrows point 

to the alula. Image modified from [6]. 

 

Leonardo da Vinci attempted to take on the goal of human flight, as documented in his 

“Sul volo delgi Uccelli” which is translated as “Codex on the Flight of Birds”, where he analyzed 

birds and proposed ideas on flight.  A page from this text is shown in Figure 1.3 with sketches of 

birds in flight. 
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Figure 1.3 A page from Leonardo da Vinci’s “Codex on the Flight of Birds” [7]. 

 

More recently, the Shinkansen (Japanese bullet train) nose cone design was inspired by the 

kingfisher bird’s beak shape.  The kingfisher beak has evolved to be so streamlined that it allows 

for the bird to dive into water without creating a splash. The inspired nose cone allows the train to 

travel more quietly and efficiently[8].  Figure 1.4 demonstrates the kingfisher diving into the water 

and the bioinspired train nose cone. 
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Figure 1.4  (a) The kingfisher bird dives into water without creating a splash due to its beak 

shape[9].  (b) The Shinkansen nose cone design was inspired by the kingfisher beak [10]. 

Despite the long history of human interest in bird flight, current aircraft wings differ largely 

from bird wings in structure and function.  First, the bird wing can be extended outward and folded 

to the body of the animal while airplane wings cannot.  Second, the bird wing flaps as well as 

glides, providing both lift and thrust forces[6], where airplanes require separate systems for these 

functions.  Lastly, most birds are able to land in an extremely small area, such as a tree branch 

where nearly all airplanes require a large runway to land.   These differences demonstrate that 

there is still much to learn from the flight of birds. 

There are numerous evolutionary adaptations that allow the bird to be especially fit for 

flight.  These include a lightweight skeleton, toothless beak, “bastard wing” (or alula) and efficient 

wing stroke.  While these features are important to a bird’s ability to fly, the bird feather has been 

overlooked and its complex structure oversimplified--until recently.  Feathers have many nano- 

and micro- structured components that are central to a bird’s ability to fly, and allow them to be 

lightweight, flexible, strong, and exhibit a spring-like behavior[11].  In birds capable of flight, 

contour feathers contribute 40 to 51% of the bird’s total wingspan [12] and must sustain lift forces 

without breaking.  Since all feathers are composed of β-keratin, the difference in their function 
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(ranging from insulation to sustaining lift) is not correlated to their composition, but to their 

morphology and structure.  Thus, their design contains ingenious combinations of components that 

optimize lift, stiffness, aerodynamics, and resilience.  

1.3.  Research Objectives 

 

The objective of this dissertation is to reveal the mechanisms behind the lightweight and 

resilient characteristics of the flight feather and create bioinspired designs based on discoveries. 

We hypothesize that feather resilience is due to the feather’s unique hierarchical structure and 

material properties that arose as a result of many iterations of design optimization through 

evolution.  To investigate our hypothesis, hierarchical components of the flight feather are 

thoroughly characterized, resulting in simplified bioinspired designs based on findings.   
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2.  Background 

2.1.  Evolution of Birds and Feathers  

 

Through tens of millions of years of evolution [13] birds have developed to contend with 

the challenges of flight, a highly complex mode of locomotion that man only came to grasp about 

one hundred years ago.  The bird’s designs includes a toothless keratinous beak [14] filled with 

cancellous bone [15], wing stroke efficiency [16], fusion of parts of the skeleton [17], and strong 

yet lightweight feathers and bones.   

The complex design of the modern feather evolved during the Late Jurassic period along 

with the advancement of aerial locomotion (Figure 2.1) [13].  This unusual integument derived 

from less sophisticated filaments used for sexual selection and (or) thermoregulation in dinosaurs 

[18,19] (Figure 2.2).  The stages of feather evolution have been identified through the amber 

fossilization of feathers: single hair-like filaments developed gradually into the highly 

sophisticated structures we see today (Figure 2.3)[20]. 

 

Figure 2.1: The evolution of flight is strongly correlated to the development of the modern feather, 

as highlighted by the red circles and boxes.  Image taken from [13]. 
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Figure 2.2 The predecessor to the modern feather in dinosaurs was thought to be used in 

thermoregulation or sexual selection.  Reconstructions of the dinosaur Epidexipteryx hui (a) and 

Gigantoraptor erlianensis (b) demonstrate what these structures may have looked like.   Images are 

taken [21], [22] respectively. 

 

Figure 2.3 The evolution of feathers from single filaments to highly hierarchical structures.  Most 

modern birds have stage four or five feathers [20]. 

 

Bird flight is believed to have evolved by dinosaurs jumping to catch their prey, providing 

an evolutionary advantage with wings that captured air [23].  This jumping led to gliding, and 

eventually flapping flight.  Figure 2.4 shows the proposed stages of wing development from 

bipedal dinosaur to flying bird.   
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Figure 2.4 The proposed evolution of the bird wing and flight in birds.  (i) bipedal and terrestrial 

dinosaur, (ii) development of anisodactyl foot structure, (iii) dinosaur leaps on lower branches, 

(iv) tail reduction, (v, vi) development of feathers, (vii, viii) formation of fully developed feathers 

(Figure from [23], drawn by O. Orekhova-Sokolova). 

 

2.2.  Bird Wing Background 

 

Arguably the most crucial evolutionary feat to allow for bird flight, the wing is a system in 

which the skeleton and feathers act together to allow for a high lift-to-weight ratio.  The wing 

skeleton is particularly lightweight; unlike terrestrial vertebrates’ marrow-filled bones, most bird 

wings are composed of hollow bones, similar to the bones of bats and pterosaurs[24].  These 

hollow (pneumatic) bones connect to the pulmonary system and allow air circulation which 
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increases skeletal buoyancy [25–27]. The remiges, or flight feathers on the wings of birds, consist 

of a main shaft (rachis and calamus) and an interlocking feather vane composed of barbs that 

branch from the rachis and barbules that branch from barbs (Figure 2.18).  Neighboring barbules 

adhere to one another via hook-and-groove structures to form a cohesive feather vane.  This 

complex design of the modern feather evolved in the Late Jurassic period with the advancement 

of flight [13].  An example of a precursor to the modern feather, thought to have belonged to a 

non-avian dinosaur ~99 million years ago, was recently discovered preserved in Burmese amber 

(Figure 2.5) [28].  It lacks several features of the modern feather including the interlocking barbule 

connections and a fully developed rachis.  The modern vane is an ingenious structure that is not 

sealed, but contains channels between barbules through which air can flow [29,30]. 

Birds have been very successful in populating Earth, with nearly 10,000 recognized species 

constituting an extremely diverse class of animals [6].  While all birds have certain coinciding 

bone and feather features, to better understand their efficiency it is critical to note the aspects that 

differ between them due to distinct environmental constraints.  First, birds range enormously in 

size from hummingbirds that are about 2 g with a wingspan of 8 cm, to the 11 kg Andean condor 

with wingspan greater than 3 m [6,31].  Besides sheer differences in size, birds differ in flight 

style.  Some birds achieve flight through flapping their wings and soaring (i.e. vultures, eagles); 

others through flapping and gliding (i.e. seagulls, pelicans) [32,33].  Additionally, certain birds 

mainly flap their wings (i.e. ravens, ducks, pigeons, crows), a few birds hover (i.e. hummingbirds), 

and lastly some are flightless (i.e. ostriches, peacocks) [34].  Moreover, some birds dive and swim 

(i.e. ducks, auks), while others do not.  Each of these types of birds have slightly different 

environmental constraints on their physiology, which result in specific variations to their bone and 

feather structure. 
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Figure 2.5:  Precursors to modern feathers were much less developed as shown in (c) by the 

plumage of a non-avian dinosaur from ~99 million years ago preserved in Burmese amber (image 

from L. Xing et al. (2016) [28]). 

 

In most birds the skeleton extends only half-way from the shoulder to the wing tip and 

therefore the majority of the area of the wing is supported by flight feathers [35].  Wing flight 

feathers include primaries that branch from the hand skeleton and secondaries that attach to the 

edge of the ulna.  Flight feathers are anchored by a reinforced follicle which transfers the bending 

and torsional moments from the base of the feather to the skeleton [24].  Primaries do not have any 

freedom of movement relative to the bones to which they are rigidly attached.  Secondaries, on the 

other hand, are able to hinge up and down relative to the ulna through flexible attachment.  When 

the elbow and wrist joints are fully extended, primaries spread out and secondaries are pulled 

downward by the tightening of the postpatagial tendon, which results in an increase in camber of 

the wing [24].  In flapping flight, the elbow and wrist joints are flexed, resulting in a reduced 

wingspan and loosening of the tendon, providing a less cambered wing shape.  Through this 

system, individual feathers allow for wing adaptability, while transferring the bulk of loading to 

the more robust skeleton of the bird.  Together, the wing skeleton and feathers form an organic 

airfoil capable of handling the intense loads of flight.  Here we review the structure, mechanics, 

and composition of the avian feather and bone to understand how they maintain integrity with a 
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minimum weight penalty.  While the material composition of the feather and avian bone is the 

same across species, they have different design adaptations for specific environments.  The 

commonalities in the design principles of the avian bone and feather are discussed to gain insight 

into the application of these concepts to engineered structures and materials.   

2.3.   Wing Loading in Flight 

 

Since the main focus of this dissertation is to investigate the extreme lightweight structures 

of bird wings, and not the aerodynamics of flight, loading is simplified to static forces.  In flight a 

lift force acts upwards, resulting in a bending moment about the wing’s connection to the body 

(Figure 2.6).  Each wing is loaded with a force=kmg/2, where mg is the weight of the bird, and k 

is a parameter that represents the load multiplication factor.  For steady loading and for gliding, 

k=1; for flapping, landing and take off, k>1.  

The wing can be considered as a series of thin airfoils for which the aerodynamic center of 

lift occurs at 25% of the chord length from the leading edge of the airfoil [36].  These points of lift 

are represented by the solid dots in Figure 2.6b.  If the force of each point of lift is represented as 

Fi, these can be related to the force on the entire wing by: 

     ∑ Fi =
kmg

2

n
i=1       (2.1). 

While the entire wing skeletal systems of pterosaurs and bats are modified to form 

structures that resist bending and torsion, only the inner wing skeleton of the bird has this function 

as flight feathers maintain this distally [24,37].   Because the ulna is roughly perpendicular to the 

humerus in flight and cannot rotate up and down relative to it, bending moments applied to the 

outer wing become torsional moments when loads are transferred to humerus [24] (Figure 2.6b).  

Additionally, since most of the area of the wing is behind the radius and ulna, there is a torsional 

moment applied to the humerus from the secondary flight feathers.  In Figure 2.6b the bending 
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and torsion axes are drawn for the humerus.  The location of the points of lift are each represented 

as Oi, where the torsion moment arm is AOi̇
̅̅ ̅̅ ̅ and the bending moment arm is BOi̇

̅̅ ̅̅ ̅.  Torsional (T) 

and bending (B) loads on the humerus for the entire wing can therefore be represented as: 

   T = ∑ FiAOi̇
̅̅ ̅̅ ̅n

i=1    ;    B = ∑ FiBOi̇
̅̅ ̅̅ ̅n

i=1              (2.2; 2.3). 

For the ulna, the same procedure can be repeated. 

2.3.1. Bending and Torsion 

 

Basic Mechanics equations connect the applied forces to internal stresses in bones and 

feathers, and those in turn dictate the architecture and design of the structure.  Bones and feathers 

are subjected to maximum bending stresses that are defined by [38]: 

     σ =
Mc

I
        (2.4). 

Where M=Fd, in which F is the magnitude of the applied force and d is the moment arm; c is the 

distance from the neutral axis to the object’s surface, and I is the area moment of inertia. 

Likewise in torsion, the maximum shear stress is expressed as [38]: 

     τ =
Tc

J
         (2.5). 

Where T is torque, c is the radius of the section, and J is the polar moment of inertia. 

The maximum values of I and J, for a specific weight per unit length, minimize the normal and 

shear stresses of bones and feathers.  The feather and bone can be modeled as a hollow cylinder, a 

section that provides a balance between bending and torsion resistance.  For a hollow cylinder 

[39]:  

    I =  
π(Ro

4−Ri
4)

4
       (2.6); 

    J =  
π(Ro

4−Ri
4)

2
                     (2.7). 
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Where Ro  denotes the outer radius, and Ri is the inner radius.  While thick walls allow for a higher 

value of both I and J they result in a heavy structure.  Thin walls, however, eventually lead to 

buckling, an undesirable result.  To overcome this nature provides two ingenious solutions: internal 

struts that oppose ovalization and retard buckling in bending; and internal foam resulting in the 

strengthening of the walls.  The former occurs in avian bone, and the latter in the feather.  These 

are shown in Figure 2.6c. 
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Figure 2.6  Wing Loading in Flight. (a) The upward in-flight lift forces result in a bending moment 

about the wings connection to the body.  When the bird is gliding k=1, however in take off, landing 

or flapping, k >1.  (b) The skeletal system and flight feathers of the bird wing.  The wing skeleton 

is a modified quadruped arm skeleton with a humerus (attached to the main flight muscles), ulna, 

radius and carpometacarpus (a fusion of the wrist and knuckles).  The solid dots mark the centers 

of lift for each feather.  The force of each of these points is represented as Fi and the location as 

Oi.  Bending moments occur in the radio-ulna and are transmitted through the elbow joint as a 

torsional moment.  The torsion and bending axes are drawn for the humerus, where B represents 

the bending axis and A the torsional axis.  Adapted from C. Pennycuick (1967) [35]).  (c, i) 

Schematic diagram of how the ridges in avian bone may form as a result of torsional forces (T).  

These ridges are aligned with the direction of maximum tensile force indicating that ridges increase 

resistance to tensile failure (taken from E. Novitskaya et al. (2016) [40]).  (c, ii) Simplified diagram 

of internal struts strengthening the bending stiffness of avian bone. 

2.4. Wing Design Concepts: Wing Bones and Feathers 

Flight is not the exclusive domain of birds; mammals (bats), insects, and some fish have 

independently developed this ability by the process of convergent evolution.  Birds, however, 
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greatly outperform other flying animals in efficiency and duration; for example the common swift 

(Apus apus) has recently been reported to regularly fly for periods of 10 months during migration.  

Birds owe this extraordinary capability to their wings, which are composed of extreme lightweight 

biological materials.  They achieve this crucial function through their efficient design spanning 

multiple length scales.  Both feathers and bones have unusual combinations of structural features 

organized hierarchically from nano- to macroscale and enable a balance between lightweight and 

bending/torsional stiffness and strength.   

2.4.1.  Thin, Dense Exterior 

Since both the wing bones and feathers of birds are subject to bending and torsion, it is 

expected that they have several overlapping structural features.  One of these characteristics is a 

thin, dense exterior with a hollow or less compact interior.  This design allows for lightweight 

resistance to these external loadings. In bending, the stiffness is given by the product of the area 

moment of inertia and the material’s Young’s modulus.  Therefore material positioned further from 

the neutral axis is more effective in resisting bending because it undergoes more extension and 

compression than material close to the neutral axis [41].  In torsion, thin-walled closed cross-

sections offer a high torsional stiffness, which is given by the product of the area enclosed by the 

thin wall and the material’s shear modulus. Hence for combined loading, a thin-walled closed 

cross-section offers optimal performance in both bending and torsion. The other variable 

contributing to structural stiffness is the material modulus, which increases with density [42,43].  

Therefore, structures with a dense exterior wall are expected in both avian bones and feathers. 

Moreover, modulation of density and wall thickness are expected to depend on wing location 

because of spatial variations in bending and torsional moments. 

As previously stated, many birds have some hollow (pneumatic) bones; across 24 species 

70% of bird humeri and 30% of femori were found to be pneumatic [44].  Figure 2.7 shows micro 
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computerized-tomography cross sections of the wing bones of the (a) Wandering Albatross 

(Diomedea exulans), (b) Turkey Vulture (Cathartes aura), and (c) California Condor (Gymnogyps 

californianus).  These wing bones exhibit similar features between the three species: a hollow, 

circular mid-cross section with struts, ridges and webbing occurring toward the ends of each bone.  

Pneumatic bones are thinner walled [45] and more dense [42] than marrow-filled bones and have 

a flexural modulus of 6.9-7.7 GPa [44].  In comparison with various animals, birds have the most 

dense bone (~2.15 g/cm3), which increase their stiffness and strength, followed closely by the bat 

(~2.0 g/cm3), another flying vertebrate, with rodents trailing behind (~1.85 g/cm3) [42].  This is 

the density of the solid bone, which is composed of hydroxyapatite (ρ =3.14 g/cm3), collagen (ρ = 

1.35 g/cm3), and water (ρ = 1 g/cm3) [46].   
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Figure 2.7 Micro computerized tomography scans of the wing bones of the: (a) Wandering 

albatross (Diomedea exulans), which has the largest wingspan of any living bird[47], (b) Turkey 

Vulture (Cathartes aura)[47], and (c) California Condor (Gymnogyps californianus).  The bones 

of all three species have hollow, circular mid-cross sections and reinforcing structures toward the 

ends of each bone.  Figure 2.7c from E. Novitskaya et al. (2017) [40]. 
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Bone is composed of several levels of hierarchical organization (Figure 2.8): (1) the sub-

nanostructure (below a few hundred nanometers):  tropocollagen molecules, mineral crystals, non-

collagenous proteins; (2) the nanostructure (hundreds of nanometers-1μm): collagen fiber bundles, 

collagen fibrils; (3) the sub-microstructure (1-10 μm): lamellae of cortical bone that surround 

osteon; (4) the microstructure (10-500 μm): Haversian systems, osteons;  (5) the macrostructure: 

cancellous (spongy interior) and cortical bone (dense “outer shell” of bone) [48–54].  This level of 

organization allows for the material properties of bone to vary throughout the structure.  In the 

avian humerus, for example, hardness was found to vary along the length, being the greatest in the 

center of the bone [55].  This may be due to adaptive remodeling of bone in response to the stresses 

of flight, or because the bone’s mid-shaft is older and more mineralized than its ends [55].  

Another instance of an advantage of bone’s composite microstructure is in the orientation 

of lamellae within it.  Laminar tissue, where layers form with different angles to the longitudinal 

axis, aids when tensile stresses deviate from the long bone axis.   Oblique fibers provide more 

resistance to torsional loads than longitudinal or transversely oriented fibers [56].  Therefore, to 

maximize torsion resistance, the humerus and ulna have a higher degree of laminarity and higher 

incidences of oblique collagen fibers than the radius and carpometacarpus [56].   

 

Figure 2.8 The hierarchical structure of bone (a): Tropocollagen molecules and mineral crystals 

organize to form fiber bundles.  These form lamellae that surround an osteon, which form 

cancellous and cortical bone.  [47] 
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The feather shaft has a thin, compact exterior (cortex) with a hollow, circular base 

(calamus), which anchors the feather under the skin, and a foam-filled rectangular rachis (Figure 

2.9a,b).  Although both components consist entirely of β-keratin (which is covered in detail in 

section 2.7.3), the rachis’ medullary foam density ranges from 0.037-0.08 g/cm3, while the cortex 

density ranges from 0.66-0.81 g/cm3 [57,58].  The cortex material is over 100 times stiffer than the 

medullary foam, which has an elastic modulus of 2.5-6.5 GPa [57–61], whereas the foam’s 

modulus is 0.01-0.03 GPa [57,58].  Due to this large difference, the geometry of the cortex 

dominates the flexural stiffness of the shaft [57,59,62].  To prevent local buckling and enhance 

overall strength, bones and feathers have internal reinforcing structures.  Adding complexity to the 

hierarchy, both bones and feathers are comprised of fibers which are directionally aligned in such 

a manner to maximize resistance to bending and torsion.  In the bone, the collagen fibers form 

lamellae which are interspersed with hydroxyapatite crystals that are structured at the nanoscale. 

In feathers, the β-keratin fibers are aligned in different orientations to enhance the stability. These 

topics will be discussed later in this overview.   
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Figure 2.9 Micro computerized tomography (μ-CT) generated images of an Andean Condor 

(Vultur gryphys) primary feather: (a) shows the feather vane and details of the ridges in the 

rachis[47] while (b) demonstrates the shape change along the length of the feather shaft from 

circular to rectangular (part of image is from B. Wang et al. (2016) [63]).   

 

2.4.2. Reinforcing Internal Structures 

 Both the avian bone and feather have internal reinforcing structures that strengthen their 

design.  Due to the high metabolic cost and increased weight of creating more bone or cortex 

material, it is speculated that these reinforcing structures develop within the wing bone and feather 

in response to specific stresses of flight.   
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Ridges are protrusions of bone or cortex that lie flat against the interior walls of the bone 

or feather (Figure 2.10a,c).  In avian bone they generally develop at -45° to the horizontal axis of 

the bone, to increase the resistance of the structure to the large tensile stresses that develop in these 

directions in torsion [38].   Ridges along this angle are most effective because in torsion axial 

stresses occur at -45° to the longitudinal axis [40] (Figure 2.6c).   

In many flight feathers multiple cortex ridges run internally along the length of the rachis’ 

dorsal surface, slowly becoming fewer and less sharply defined distally [59,62].  These small 

ridges stiffen feathers in dorso-ventral flexure, but do not strongly influence lateral movements 

[59].  Cortex ridges occur on the dorsal surface because the feather experiences the largest stress 

in compression during the bird’s down stroke, occurring on the dorsal side of the feather shaft 

[64,65]. 

Struts are isolated rods that stretch across the interior of pneumatic bone (Figure 2.10b).  

They are mainly found on the ventral side of wing bones of flying birds, appearing to be at 

locations that have a higher risk of local buckling due to combined bending and torsion loading 

[24,25,33,40](Figure 2.6c).   

Taking a different approach to resist local buckling, the feather does not have struts, but 

the majority of it (the rachis) is foam-filled (Figure 2.10d).  This fibrous internal medullary foam 

is considered closed-celled and provides 96% of the transverse compressive rigidity [58].  

However, closer examination reveals that the cell walls are indeed porous and consist of fibers.  

The foam also absorbs the bulk of energy, providing a rachis with a strength higher than the sum 

of each of its components [58].  Similar to how the bird has evolved to have these unique internal 

reinforcement features, types of birds have adapted to their specific environment with more 

specialized structures. 
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Figure 2.10  Internal reinforcements in the avian bone and feather: (a) ridges in the ulna of the 

Turkey Vulture (Cathartes aura), (b) struts toward the distal end of a Cape Vulture (Gyps 

coprotheres) humerus bone, (c) ridges in the American White Pelican (Pelecanus 

erythrorhynchos) feather, (d) medullary foam of the feather; (e) foam wall exhibiting porosity, 

thus forming a “foam-in-a-foam”. Image taken from [47]. 

 

2.5.  Efficiently Tailored Designs Based on Specific Conditions 

 

The wings of birds have a wide variety of shapes that have been adapted for their flight 

style and lifestyle[66].  In terms of the ratio between length and width, defined as aspect ratio, 

specialized types of flight styles include [34]:  
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1) Marine soarers: Birds that fly for long periods of time over the ocean and have 

extremely high aspect-ratio wings and average to low wing loading (ex. albatross, 

Procellariiformes) 

2) Divers and swimmers:  Medium to high aspect-ratio wings and high wing loading 

(ex. ducks and swans) 

3) Aerial hunters: High aspect-ratio wings and low wing loading, allowing for 

maneuverability and rapid flight (ex. swallows and martins, Passeriformes) 

4) Soarers/coursers:  Low aspect-ratio and low wing loading (ex. hawks and eagles, 

Falconiformes) 

5) Short-burst fliers:  Low aspect ratio and high wing loading, fly infrequently and only 

for short distances (ex. turkeys, pheasants, Galliformes) 

6) Hoverers: Able to fly in one position without wind, high aspect-ratio and high wing 

loading allowing for fast agile flight (hummingbirds, Apodiformes). 

 

These differences in flight styles are reflected in the shape of the wing.  Figure 2.11 shows some 

of the variations of wing styles [34]. 

 

 

 

 

 

 

 

Figure 2.11 Variation of wing types: (a) High-aspect ratio, (b) High-speed, (c) Elliptical, (d) High-

lift.  Images taken from [34]. 
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2.5.1.  The Effect of Flight Style and Diving on Wing Bones 

 

As stated previously most birds have some pneumatic bones, the exceptions generally 

being birds that share the characteristic of diving [44,56].  It is thought that to maintain strength in 

impact and prevent excess buoyancy their bones are marrow-filled.  Besides a lack of 

pneumatization, some diving birds dispossess certain macro- and microstructural torsional-

resistant characteristics [56].  Torsion-resistant features found in the humerus of most birds include 

thin bone walls, a circular cross section, oblique collagen fibers, and laminar tissue arrangement 

[56]. The humeri of the aforementioned diving birds are oval-shaped and thick-walled; examples 

of variation in bone cross section are shown in Figure 2.12 a,b.  Furthermore, these birds have 

little lamellar tissue and mostly longitudinal collagen fibers, indicating that axial compression and 

tension are significant elements of bone loading for these cases [56].   As witnessed with diving 

birds, the optimum value of internal to external diameter varies based on the main function of the 

bone [45]. 

Since bones are in a constant state of growing and re-growing (remodeling) the reinforcing 

structures of struts and ridges form in an as-needed basis [67].  Struts and ridges, for example, 

were found in soaring and gliding birds, but not in flightless birds [24].  Additionally, the humerus 

of soaring and gliding birds is slightly more dense than the ulna to provide better support for the 

bird body and redistribute stresses [33].   

The wing curvature, or distance between the center of the bone to the axis passing through 

the midpoints of the ends of the bone, determines the flight style of the bird [68]. Figure 2.12c-f 

shows the wing skeletons of several birds.  With increased curvature between the radius and ulna, 

there is larger space for musculature in the forewing.  Birds with a larger curvature between the 

radius and ulna are therefore more coordinated in unsteady flight [69].  As shown in Figure 2.12e, 
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the Laysan albatross is an example of a bird with minimal musculature within the forelimb.  

Because of this, it has uncoordinated takeoffs and landings; however it can dynamically soar for 

long periods of time due to its large wingspan.  

 

 

 

 

 

 

 

 

 

 

Figure 2.12 The mid-humerus of the Cape Vulture (Gyps coprotheres) (a) has high torsion 

resistance, while the mid-humerus of the California Gull (Larus Californicus) (b) has low torsional 

resistance.  Wing bones of the (c) California gull (Larus Californicus), (d) Turkey Vulture 

(Cathartes aura), (e) Laysan albatross (Phoebastria immutabilis), (f) Wandering albatross 

(Diomedea exulans) have differing degrees of curvature between the radius and ulna. Figure from 

[47]. 
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2.5.2. The Effect of Flight Style and Diving on Flight Feathers 

The general shape of the flight feather shaft transitions from round to rectangular at about 

20% along the cross-sectional length of the feather shaft.  The transition enables the tailoring of 

flexural and torsional stiffness subject to the constraint in wing thickness variations from the 

proximal to distal ends. Interestingly, this is strikingly different from the feathers of flightless birds 

(i.e. ostrich and peacock) which do not develop a strong rectangular shape throughout their entire 

length (Figure 2.13 a,b) [58,63,70].  The square shape of the flight feathers of flying birds is 

particularly efficient, since square tubes possess, for the same cross-sectional area and thickness, 

a higher stiffness per unit area than circular ones, and additionally resist ovalization during flexure 

[63].  This absence of ovalization enhances the flexural stiffness of the rectangular tube because 

the area moment of inertia does not decrease in flexure (as it does in ovalization). However, the 

rectangular shape makes the compressed dorsal region susceptible to local buckling, explaining 

the presence of internal ridges and the foam filling to compensate for this effect.  These are shown 

in Figure 2.10c and are also present in Figure 2.13. 

The rachises of birds exhibit various structural differences between species.  In a 

comprehensive study comparing aspects of the barn owl and pigeon rachis it was found that the 

barn owl rachis has a higher area moment of inertia, yet fewer structurally rich features (such as 

dorsal ridges) when compared with the pigeon [71].  These two birds are of comparable body mass, 

though they differ in wing size and flight style.  Figure 2.13c further demonstrates that structural 

ridges are present in the feathers of certain birds, and absent from others.  While structural features 

of the avian bone and feather are tailored to the flight or lifestyle of the bird, their material 

composition is the same across all species. 
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Figure 2.13  Cross sections of the wing feathers of the: (a) Ostrich (Struthio camelus), a flightless 

bird and (b) the American White Pelican (Pelecanus erythrorhynchos) a flying bird, where scale 

bars are 1mm.  Primary feather cross sections at the mid point of the feather shaft for the (c): (top 

row, left to right) American White Pelican (Pelecanus erythrorhynchos), Andean Condor (Vultur 

gryphus), Razor-Billed Curassow (Mitu tuberosum); (bottom row, left to right) Malayan Long-

Tailed Parakeet (Psittacula longicauda), Marbled Teal (Marmatonetta angustirostris), Bartlett’s 

Bleeding Heart Dove (Gallicolumba crinigera), Spectacled Eider (Somateria fischeri), Crested 

Guineafowl (Guttera pucherani). Figure 9a adapted from B. Wang et al. (2016) [63].  Figure taken 

from [47]. 

 

2.6.  Differences Between Wings of Birds and Pterosaurs and Bats 

 

The independent evolution of flight in birds and bats has resulted in two significantly 

different wing designs.  Bats, as well as the extinct pterosaurs, evolved to have a wing surface area 

composed of patagium or a double layer of skin with no bending stiffness that is stretched out by 

a skeletal frame [24].  The only type of stress the membrane can resist is tension.   
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In addition, the skeletal system of birds and bats differs greatly.  Using information from 

the wake of the animals flying in a wind tunnel Muijres et al. found that during the upstroke, the 

bird wing is made inactive while the bat wing generates significant flight forces [16].  Similarly, 

Pennycuick found that when wind velocity was increased in a wind tunnel, a pigeon could reduce 

its wing span by a factor of 0.38, while a bat could only reduce its wings by a factor of 0.82 [72] 

(Figure 2.14).  If a pterosaurs’ wings worked as Pennycuick postulates they would be able to 

reduce their wing span by a factor of 0.64 in flight [24].  Both of these studies point to the 

retractable bird wing and therefore better aerodynamic efficiency in flight as the reason for superior 

flight performance in birds over bats. 

 

Figure 2.14 Wing retraction in the (a.) bird, (b.) bat, and (c.) pterosaur [24,72]. 
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2.7. Feather Background 

 

In bird flight, the majority of the wing surface consists of highly refined and hierarchically 

organized feathers. They are composed of barbs that stem from the feather shaft and barbules that 

branch from barbs, forming a rigid feather vane.  

2.7.1. The Importance of Feathers for Flight 

 

To understand the importance of the flight feathers to a bird’s ability to fly, several 

experiments were undertaken to determine the degree of feather necessity for flight.  In 1889 

Lilienthal tied feathers in live pigeons together to determine how their flight performance would 

change with alterations [73].  The most extreme experiment in which the pigeon was still able to 

fly high and fast is shown in Figure 2.15. 

 

 

 

 

 

 

 Figure 2.15 Lilenthal conducted experiments to determine what effects the feathers had on 

flight.  In this example, the bird was still able to fly high and fast [73]. 

 

In experiments on house sparrows, Brown and Cogley removed all flight feathers except 

for the outermost six primaries and found that this did not have an effect on the bird’s flight in a 

windless corridor (Figure 2.16).  An additional 8 and 16 mm were cut from the tip of the remaining 

primaries without a significant decrease in flight ability.  However, when 24 mm were cut of from 

the tips of the remaining primaries, birds could only fly 10% of the original distance [74].  These 
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experiments reveal that the outermost primaries are an extremely important part of generating lift 

and thrust in flapping flight. 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 The mutilated wings of the house sparrow from Brown and Cogley’s experiments: 

(a.) With only the outermost six primaries remaining, (b.) With 8 mm cut off of the ends of the 

primaries, (c.) With 16 mm cut off, (d.) With 24 mm cut off [74]. 

 

2.7.2. Feather Types and Structure 

Contemporary bird feathers are extremely specialized and diverse, ranging from bristles 

(analogous to whiskers in mammals) to downy feathers [75] (Figure 2.17).  While filoplumes and 

bristles are used for sensing, downy feathers are used for insulation, semiplumes for warmth and 

floating (in water birds), while retrices (tail feathers) and contour feathers are used in flight [25].  

The focus of this research is on the flight feathers since these are the feathers subjected to 

aerodynamic loading. 
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Figure 2.17 Birds have a variety of feathers for different functions.  Image taken from [76]. 

 

The flight feather consists of a main shaft and a feather vane composed sequentially of 

barbs that branch from the rachis with barbules that branch from barbs (Figure 2.18).  Barbules 

branching from the distal side of each barb are hooked, while on the distal side they branch as 

grooved structures.  This allows neighboring barbules to interlock with one another, forming a 

cohesive feather vane.  
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Figure 2.18 The flight feather is composed of the feather shaft (rachis and calamus) and the feather 

vane (barbs and barbules).  Barbs are foam-filled asymmetrical beams that branch from the rachis 

and barbules are minute hooked beams and grooves that branch from barbs to interlock with each 

other.  Figure from [47].  The two bottom SEM images are taken from T.N. Sullivan et al. (2016) 

[77]. 

 

The feathers shaft resists deformation due to forces acting on the feather vane and transmits 

this to the skeleton.  The wings of flying birds are a tight fan-like structure, where each flight 

feather slides over its neighbor on the distal side and under its neighbor on the proximal side[24].  

As shown in Figure 2.9, the feather shaft is tapered, being smaller in cross section at the tip 
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because: 1) there is a smaller amount of feather vane at the tip of the feather so there is a smaller 

amount of force to transfer, 2) there is a shorter bending moment arm at the tip [35].   

2.7.3. Feather Composition 

 

Although the feather is composed solely of β-keratin, it can be considered a composite at 

the micro- and nano- scales. This allows for material properties to vary throughout their respective 

lengths to conform to necessary loading requirements. β-keratin is considered a “dead tissue” and 

is formed by keratinous cells [78].  The cortex material of the feather can be considered a fiber-

reinforced composite with many layers of organization:  (1) the sub-nanostructure (~3 nm in 

diameter): crystalline β-keratin filaments embedded in amorphous matrix proteins; (2) the 

nanostructure (~200 nm in diameter): filaments bundle to form macrofibrils which are 

encompassed by amorphous inter-macrofibrillar material; (3) the sub-microstructure (3-5 μm in 

diameter): macrofibrils organize into fibers; (4) the microstructure (hundreds of microns): fibers 

form ordered lamellae within the feather shaft cortex (Figure 2.19a) [63,78–84].  Discovery of the 

shaft’s ordered fibers and macrofibrils by Lingham-Soliar et al. [79] sparked a renewed interest in 

the feather shaft cortex.  It has since been shown that the arrangement of the fibrous keratin 

composite differs between species, possibly based on the flight style of the bird [85–87]. 
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Figure 2.19 The hierarchical structure of the feather shaft cortex (a): β-keratin filaments form 

macrofibrils and these bundle to form fibers.  The orientation of the fibers varies throughout the 

feather shaft: fibers in the calamus (c) run longitudinally (purple) and circumferentially (grey), 

within middle and distal rachis (d, e) fibers alternate at angles ± 45° (green) in the lateral walls.  

Images (b-d) from B. Wang et al. (2016) [63]. 

 

Laminate structures such as those found in the feather are common in nature; they are 

usually found in structures that necessitate strength and toughness such as the dactyl club of the 

stomatopod (Malacostraca) or the scales of the arapaima fish (Actinopterygii) [88].  Busson et al. 

found that there were three lamina layers in the peacock feather using x-ray microdiffraction [86].  

Later, Lingham-Soliar et al. reported two lamina layers in the chicken [11].  Following this it was 

found by Laurent et al. that laminar properties vary between birds with different flight styles [87].  

Wang et al. and Laurent et al. used nanoindentation to determine the Elastic modulus of different 

layers of each laminae and confirmed distinct differences in modui as laminae transitioned.  While 
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Laurent et al. used ultra high resolution CT-scanning to determine the direction of the fibers, Wang 

et al. used a freeze-fracturing method to determine the fiber direction within the feather shaft 

[87][89].  Because Wang et al.’s findings are most comprehensive, we use these as a basis. 

Wang et al. [63] found the California Gull (Larus californicus) feather to have a thin outer 

layer composed of circumferentially wrapped fibers and a thick inner layer of longitudinal fibers 

within the calamus and the dorsal side of the proximal rachis (Figure 2.19b) [63].  This fiber 

arrangement is commonly used in the design of synthetic composites, and restrains the axial fibers 

from separating by preventing axial splitting in flexure.  Further along the feather, on the dorsal 

and ventral sides of the distal rachis, there is an increase in longitudinal fibers and decrease of 

outer circumferential fibers (Figure 2.19c) [63].  Since the elastic modulus is determined by the 

local fibrous structure, the higher proportion of longitudinally aligned fibers can be correlated to 

the increase in axial modulus along the length of the feather [63,90].  This increase in elastic 

modulus along the length of the feather shaft (proximal to distal) has been credited as 

compensating for the decrease in area moment of inertia along the shaft [57,71,91,92]. 

Another notable feature of the composite design of the feather shaft is the crossed-fiber 

structure of the lateral walls of the rachis [63,93].  These fibers are oriented at ±45° in this region 

where bending and torsion result in primarily shear stresses (Figure 2.19c,d). Hence, the fibers 

align along the axial stresses, occurring at ±45° to the shaft axis to improve torsional stiffness with 

minimum impact on bending stiffness [93].  At the same time, lateral deflection can occur without 

buckling and this stiffness is considerably decreased.  Thus, the microstructural composite design 

of the feather is used to create an efficient material that allows the feather to be strong yet 

lightweight. 

2.7.4. Mechanical Properties of the Flight Feather 
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 Using nanoindentation, Bachmann et al. found that there was no significant variation in 

Elastic modulus between the primary feathers of barn owls (Tyto alba pratincola) and pigeons 

(Columba liva) [71].  From two point bending tests, Bachmann et al. found that barn owl had a 

higher bending stiffness as well as a higher area moment of inertia, thereby attributing the flexural 

stiffness to be predominantly influenced by the geometry of the feather rather than by its material 

properties.  This is similar to the result found by other researchers [57,62,92].  Although the Elastic 

modulus was not found to vary significantly between species, it was found to vary along the feather 

shaft [71,92] as well as on each side of the feather shaft, as measured by tension tests [94]. 

 Corning and Biewener conducted in-vivo strain measurements on pigeons in flight to 

determine the safety factor for feathers.  They compared this to four point bending tests done on 

sections of the rachis and predicted that failure due to flexure was most likely to occur by the 

wrinkling of the cortex [64].  

2.8.  Natural Adhesives 

Since the feather vane relies on a unique type of natural adhesive system to maintain its 

cohesiveness, other types of adhesive mechanisms in nature will be briefly reviewed.  In plants 

and animals there is a large diversity of attachment types that have evolved to fit the specific 

functions of the species.  These biological attachment systems have been classified by Gorb [95] 

based three types of principles: 1) the physical mechanism that allows the system to operate, 2) 

the biological function of attachment, 3) duration of contact.  Gorb states that there are eight 

recognized fundamental attachment mechanisms: (i) hooks, (ii) lock or snap, (iii) clamp, (iv) 

spacer or expansion anchor, (v) suction, (vi) dry adhesion, (vii) wet adhesion (glue, capillary) and 

(viii) friction (Figure 2.20). 
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Figure 2.20 Types of adhesive mechanisms found in nature along with the physical effects 

involved in achieving adhesion [95]. 

 

According to Gorb, functions of attachment range from: (i) maintenance of position (such 

as on a substrate), (ii) locomotion requiring a large number of attachment-detachment cycles, (iii) 

attachment to a host for feeding or phoresy, (iv) prey capture, (v) temporary attachment of two 

body parts, (vi) maintenance of contact during mating, (vii) manipulation of particles during 

grooming [95].  As you notice, the feather vane’s attachment does not fit any of these categories, 

so we add an eighth function: (viii) to allow for localized failure and prevent the catastrophic 

failure of the entire system.  Figure 2.21 shows examples of these types of adhesive functions in 

nature. 
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Figure 2.21 Functions of attachment [95]: Attachment to substrate (ex. eggs of butterfly, spider 

silk, ivy root, mussel thread; Locomotion (ex. fly leg hairs to adhere to glass, spider claws, 

grasshopper adhesive pad); Parasitism (ex. lice leg clamp, mouthpart of mite, aquatic mite); 

Temporary interlocking of body parts (ex. temporary locking between wings of sawfly, head 

arresting mechanism in damselfly, double tounge and groove between beetle wings); Copulation 

(ex. beetles, abdominal male fly appendage, setae of male beetle); Grooming, sampling, filtering 

(ex. foreleg of ant, labellum of the fly, filter system in spiracle of beetle). 

 Since the feather vane consists of hooks and grooves, we elaborate on the mechanical 

interlocking of hooks found in nature.  The hook is mainly reported for long-term attachment; for 

example, hook-like structures are found in parasitic animals such as mites [96].  Additionaly, the 

fore- and hind- wings of bees, wasps, butterflies, aphids and other insects can be interlocked with 

hooks to improve aerodynamic efficiency [11][12].  Hooks for short term attachment are found in 
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in the tarsal claw of arthropods as well as surrounding the proleg of the butterfly caterpillar[95].  

The various attachment mechanisms found in nature provide inspiration for new types of 

bioinspired adhesives (Figure 2.22).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 Existing and potential bioinspired biological attachment devices.  A, wet adhesion; B, 

hooks; C, lock; D, suction cup; E, friction; F, spacer; G, clamp; H, dry adhesion [95]. 

2.9.  Shape Memory Polymers 

Since we will investigate the shape memory recovery of the feather shaft, which is 

composed of a biopolymer (β-keratin), we include a brief background section on shape memory 

polymers.  Shape memory polymers (SMPs) are polymeric materials that are able to return from a 

deformed state to their original shape induced by a controllable stimulus (Figure 2.23).  They have 

advantages over shape memory alloys by being light weight, low cost, and easily processable with 

high shape deformability and recoverability [99].  In addition, many shape memory polymers are 

used in various medical devices such as vascular stents [100].  
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Figure 2.23 Shape memory polyamide returns to its original state after thermal annealing [101]. 

For the shape memory effect to occur, a stable polymer network and a reversible switching 

transition of the polymer are necessary [102].  The stable SMP network, which dictates the original 

shape, can be formed by molecule entanglement, crystalline phase, chemical cross-linking or an 

interpenetrated network [103–108] (Figure 2.24).  Switching transitions in SMPs include: the 

crystallization/melting transition [109–111], vitrification/glass transition [112], liquid crystal 

anisotripic/isotropic transition [113–115], reversible molecule cross-linking, and supramolecular 

association/disassociation (Figure 2.24).   

While the earliest shape memory polymers responded to thermo-sensitive stimuli, it was 

found that water could also serve as an actuator for recovery [116]. Water-driven shape recovery 

effects were found to have the glass transition as the reversible switch [102].  Below the glass 

transition temperature (Tg) the polymer is in the glassy state and is rigid, stiff and difficult to 

deform.  Above Tg , the polymer is in the rubber state and is easy to deform [117].  Hydration can 

decrease the Tg to room temperature or below by weakening hydrogen bonding [117].  However, 

compared with thermal-induced recovery, the recovery stress in moisture recovery is lower due to 

a high sample-size dependency [117].  Water absorbs easily at the sample surface, but is difficult 

to penetrate inside of the material. 
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Figure 2.24  The various types of stable polymer networks and reversible switching transitions in 

shape memory polymers [102].  

 

Shape memory polymers are often used in conjunction with other materials to alter material 

properties, yielding shape memory polymer composites (SMPCs).  These composites can 

mechanically reinforce, enable or enhance stimuli effects, and allow for new functions of materials 

[102]. They have greatly expanded the possibilities for applications of shape memory polymers. 

2.10.  Conclusions 

The features of avian wing and feather discussed in this chapter highlight characteristics 

that enable the bird wing’s efficiency.  The wing skeleton and flight feathers work together to form 

an airfoil that supports the bird’s mass in flight and undergoes torsional and bending forces while 

maintaining a minimum weight.  Both wing bones and feathers have a thin, dense exterior with 

reinforcing internal structures, efficiently tailored for the specific bird, and a composite 

microstructure.  The coinciding design principles between these features reveal an apparent 

evolutionary trend toward structures that efficiently resist bending and torsion.    
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By examining structure-property relationships we reviewed the background of prominent 

features, from the nano- to the macroscale, which enable birds to fly.  At the nanoscale fibrils β-

keratin (in feathers) arrange to provide fiber bundles that exhibit a high degree of organization 

leading to superior unidirectional mechanical properties.  At the mesoscale these fibrils organize 

themselves into fibers aligned to resist the specific loading requirements.  At the macroscale 

emergent structural features have evolved to provide an exquisite selection of shape and form 

which, when combined synergistically with local mesoscale material arrangements, endow birds 

with ultra-lightweight structures possessing superior resistance to combined bending and torsional 

loading.   
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3. Scaling Relationships of Bird Wings and Feathers for Efficient Flight 

 

Flight is not the exclusive domain of birds; mammals (bats), insects, and some fish have 

independently developed this ability by the process of convergent evolution.  Birds, however, 

greatly outperform other flying animals in efficiency and duration.  Aves are an incredibly diverse 

class of animal, ranging greatly in size and thriving in a wide variety of environments.  As the 

most efficient natural fliers, they have evolved certain traits that scale across species despite their 

diversity.  Here we explore the scaling trends of bird wings in connection with their flight 

performance.  The tensile strength of avian bone is hypothesized to be a limiting factor in scaling 

the humerus with mass, which is corroborated by its experimentally found allometric scaling 

relations.  Birds with high wing loading are found to have a greater percent of their wings 

composed of the humerus bone to compensate for smaller, narrower wings.  Lastly, wing feather 

dimensions are found to generally scale isometrically with bird mass, with the exception of the 

spacing between barbules, which falls within the same range for birds of all masses.  This is likely 

due to the transmissive properties of the barbule flaps that cover this space allowing for an 

optimized opening to let air through the vane while maintaining interlocking barbule connections.  

Our findings provide insight into the “design” of birds and may be translatable to more efficient 

designs of bird-inspired aircraft. 

3.1. Introduction 

 Galileo Galilei was one of the first scientists to discuss scaling trends in nature, observing 

that a scaled-up “giant ten times taller than ordinary man” could not exist in the natural world 

unless his limbs were greatly altered to bear the extra mass[118]. Although he was unaware of it, 

Galileo was describing the concept of what is now called allometry.  Allometry was originally 

coined in 1936 as a term to describe the discrepancy between the rate of growth of a part of the 
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body and the body as a whole, i.e. the deviation from self-similar scaling [119].  Researchers had 

discovered the greater relative growth rate of the male fiddler crab’s large claw in relation to its 

body size and described this allometric trend as [119]: 

      𝑦 = 𝑏𝑥𝛼        (3.1) 

where y is the part (in this case the fiddler crab’s large claw), x is the whole body dimension, and 

b and α are constants.  When α >1 allometry is positive, α <1 allometry is negative, and when α=1 

the trend scales isometrically.  Numerous allotropic relations have been discovered in nature since 

then, e.g. the adhesion pads of animals[120,121], metabolic rates of organisms[122–124], and limb 

bones of mammals[125–127]. 

 Unlike allometry, isometry is the direct, self-similar scaling of body size with other 

features.  A perfectly isometric organism would have a volume proportional to body mass, length 

proportional to mass to the power 1/3, and surface area proportional to mass to the power 2/3.  

Figure 3.1 graphically shows the difference between the allometric and isometric growth rates of 

the human brain and heart [128–130]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The human brain scales with positive allometry while the human heart scales 

isometrically [128–130]. 
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 Birds are a fascinating subject to study the effects of scaling due to their large variability 

in size and unparalleled natural flying ability.  Because of the significance of the bird wing in 

flight, scaling trends of wing bones and feathers are of great interest to researchers.  Previous work 

on the topic includes findings that the length of wing bones scale more steeply with mass than the 

length of hind limb bones[131].  This reflects the significance of creating longer airfoils (by 

increasing the length of wing bones) to support a heavier load.  Pennycuick found that larger birds 

have higher aspect ratio wings despite wing area varying isometrically[24].  Additionally, the 

bending strength and flexural modulus of pneumatic bird bones (mostly wing bones) were found 

to negatively correlate with body mass, perhaps indicating a materials limit of bone. Lastly, 

primary feathers were determined to have relatively greater flexibility in more massive 

birds[132,133], one of the benefits of this being the potential for higher lift generation; more 

flexible wings have demonstrated greater lift production in flapping flight [134] as well as in the 

flight of insects [135]. 

 To investigate wing scaling relationships relating to flight, H. Tennekes [136] simplified 

aerodynamic forces using Newton’s laws of motion.  A wing produces an amount of lift equal to 

the downward impulse of the surrounding air where the wing carrying capacity is dependent on 

wing size, airspeed, air density and the angle of attack [136]. To remain airborne in cruising flight, 

lift (L) must equal weight (W), and has the relation[136]: 

     𝐿 = 𝑊 ∝ 𝑐𝜌𝑣2𝐴      (3.2) 

where c is related to the angle of attack and is set to 0.3 (following Tennekes[136] work),  ρ is air 

density, v is cruising air speed, and A is the projected area of the wing. The quantity W/A is 

generally referred to as wing loading. According to this equation, an increase in weight must be 

compensated by an increase in velocity and/or area of the wing.  This is demonstrated in Tennekes’ 
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“Great Flight Diagram” [136] shown in Figure 3.2, which describes scaling trends of weight, wing 

loading and flight speed from flying insects to airplanes.  Note that the range in weight, from the 

lightest insect to the heaviest aircraft, is 12 orders of magnitude; cruising speed varies only by two 

orders of magnitude. Isometric scaling can now be applied to Equation 3.2. As a result, a bird’s 

cruising flight speed is predicted to be proportional to body mass to the power 1/6 and wing loading 

to the power 1/3. The solid diagonal line represents predicted values based on isometric scaling. 

Alerstam et al., however, experimentally determined that scaling relationships between these 

factors were weaker than predicted, meaning that birds which fly slower than predicted have low 

wing loading and birds that fly faster than predicted have high wing loading [137].  Here, we seek 

to further advance the understanding of scaling trends among birds by including their bone 

anatomy in order to better grasp the efficiency of bird wings and feathers.  Through investigating 

these trends we can possibly create more efficient aircraft structures inspired by the bird.  
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Figure 3.2  A replot of Tennekes’ “Great Flight Diagram” including the weight (W), cruising 

speed (v) and wing loading  (S) of various flying insects, birds, and aircraft[136].  Here, the solid 

line describes predicted values based on isometric scaling of the wing span and weight. 
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3.2. Materials and Methods 

3.2.1.  Avian Bone Specimens 

 The San Diego Natural History museum’s extensive collection of avian wing bones was 

utilized in this study.  Access to this collection enabled the accumulation of data on a wide range 

of bird sizes.  An example of some of the bones measured is shown in Figure 3.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Examples of humerus bones measured (top to bottom):  Turkey vulture (cathartes 

aura), red-tailed hawk (buteo jamaicensis), Barn owl (tyto alba), American coot (fulica 

americana).  The respective weights of these birds are 15.5 N, 10.9 N, 2.8 N and 4.35 N.  

3.2.2. Avian Bone Characterization 

 For each humerus bone the length and diameter was measured using calipers, except for 

occasional instances where calipers did not have large enough resolution, in which case rulers were 

used.  Length was taken as the maximum length of the humerus, or the distance between the most 
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proximal point of the head of the humerus to the most distal point of the trochlea of the humerus. 

Diameter was measured at the center of this length.  The mass and wing span of many of the birds 

in the collection had been recorded by the museum, and these values were used in plots. 

3.2.3. Feather Specimens 

All feather samples were wing flight feathers (remiges) obtained postmortem and stored in 

ambient conditions. The San Diego Natural History Museum provided American White Pelican 

(Pelecanus erythrorhynchos) feathers, the Los Angeles Zoo provided Cape Vulture (Gyps 

coprotheres) feathers, and the San Diego Zoo provided all other feathers.  Feathers were obtained 

under our research group’s Federal Fish and Wildlife permit. 

3.2.4.  Feather Characterization 

Larger feather features such as feather shaft length, rachis width and barb length were 

measured with calipers, optical micrographs, or rulers.  For measuring the barbule spacing, which 

is at the micrometer scale, scanning electron microscopy was utilized.  Both the Zeiss Sigma 500 

scanning electron microscope (SEM) and the FEI SFEG UHR SEM from the Nano3 laboratory in 

Calit2 at UCSD were used.  Samples placed in the FEI SEM were coated with a thin Iridium layer 

using an Emitech K575X Sputter Coater.  Accelerating voltages of 3-5kV were used to image 

feather samples, which were secured to SEM stubs with conductive carbon tape.  Dimensions of 

samples in SEM images were measured using the software ImageJ (National Institutes of Health, 

Bethesda, MD).  

3.2.5.  Data from Literature 

Various data from literature were used to complete plots.  Additional data on bone 

dimensions were obtained from Gilbert et al. [138].  Data on velocity, weight, wing area and wing 

span (except for cases in which data was provided by the San Diego Natural History museum) are 

from Pennycuick [139][140] and Greenewalt [141].  
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3.3. Results and Discussion 

3.3.1. Allometric Scaling of Avian Wing Bone Due to Materials Limit 

The humerus is arguably the most important wing bone as it connects the rest of the wing 

to the bird’s body.  It has to resist lift forces imposed on the wing against the weight of the bird.  

A simple isometric relationship would dictate that the length, LH, of the humerus is proportional 

to mass1/3, because mass is proportional to volume.  However, the loading constraints, coupled 

with a constant strength of the bone, leads to a different result.  The analysis below assumes 

isometric changes (length/diameter and diameter/thickness ratios are constant).  For simplicity, the 

humerus is considered a hollow structure with diameter 2c and thickness t, as shown in Figure 

3.4.  The lift force on one wing is equal to half the weight of the bird. It is assumed to be evenly 

distributed along the humerus as well as point loaded at the distal end of the humerus, to represent 

loads transferred from the feathers and distal bones of the wing.  The portion of the wing 

corresponding to the humerus exerts a force per unit length w on the humerus, while the remainder 

of the wing exerts a force F2 at the distal end of the humerus.  We assume the distributed force w 

is simplified to a point load at the center of the humerus so that w(LH)=F1.  The moment (M) then 

corresponds to the sum of these two moments: 

   𝑀 = 𝐹1
𝐿𝐻

2
+ 𝐹2𝐿𝐻        (3.3) 

The maximum tensile stress in the top fibers is: 

𝜎𝑇 =
𝑀𝑐

𝐼
          (3.4) 

and the moment of inertia, I, for a hollow cylinder (thickness<<diameter) is[142]: 

𝐼 = 𝜋𝑐3𝑡          (3.5) 

substituting Equations 3.3 and 3.5 into 3.4, and rearranging, we obtain the following failure 

criterion: 
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𝐹1

2
+ 𝐹2 =

𝜎𝑇(𝜋𝑐2𝑡)

𝐿𝐻
       (3.6) 

The maximum tensile stress, σT, must lie below the strength and is assumed constant (for avian 

bone) and independent of mass. Both c and t scale with LH (c ∝ LH, t ∝ LH) therefore we can 

substitute LH into the equation: 

 

𝐹1

2
+ 𝐹2  ∝  𝜋𝜎𝑇𝐿𝐻

2         (3.7) 

or  

 𝐿𝐻  ∝  (
𝐹1
2

+𝐹2

𝜋𝜎𝑇
)

0.5

       (3.8). 

Based on this analysis, humerus length is not expected to scale isometrically with mass as 

the mechanical strength of bone σT acts as a limiting factor.  Here is it important to note that density 

of bone, ρ, is estimated as a constant for avian humerus bone.  Figure 3.5 shows experimental data 

demonstrating a dependency of 𝐿𝐻  ∝  𝐹0.45 which is close, but not equal, to the predicted value.   

 

 

Figure 3.4 The humerus is considered to be a hollow cylinder with length LH, diameter 2c and 

thickness t.  The sum of the distributed force, w(LH), and the point load (F2), which represents 

loading on the distal part of the wing, is equal to the weight of the bird (W) divided by 2. 
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Figure 3.5 Experimental data demonstrates that the humerus length LH scales allometrically with 

the weight W of the bird.  The upper curve designates allometry from Equation 3.8.  Isometric 

scaling would require LH ∝W0.33 (lower curve). 

 

3.3.2. Allometric Scaling of Wing Bone to Accommodate Flight Style 

 When bird mass increases, the greater lift required can be generated by an increase in 

cruising speed or in wing area or both (see Equation 2). To closely examine scaling effects related 

to bird flight, various dimensions of bird wings, bone, weight and velocity are next investigated.  

In Figure 3.6 the cruising speed is plotted against wing area of flying birds, with the color map 

reflecting the weight of the bird.  Diagonal lines with slope –(1/2), drawn in grey, show the 

predicted lift force F, calculated based on Equation 3.2.  Note the good agreement between 
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predicted lift and bird weight, supporting Tennekes’ assumption to set lift and weight equal to one 

another at cruising speed. 

 From Equation 3.2 we obtain the following: 

      𝑣 ∝ (
𝑊

𝐴
)

1/2

       (3.9) 

 With isometric scaling, where W α l3 and A α l2, the equation becomes: 

      𝑣 ∝ (
𝑙3

𝑙2)
1/2

       (3.10) 

 It is further simplified so that the cruising speed (v) can be related to the projected area (A): 

       𝑣 ∝  𝐴1/4     (3.11) 

While most values in Figure 3.6 do not fall on the predicted trend line, data fall within the range 

of 𝑣 ∝ 𝐴1/2 (“upper bound”) and 𝑣 ∝ 𝐴1/8 (“lower bound”).  Values above the isometric line 

correspond to a stronger contribution from cruising speed, and values below signify a predominant 

contribution from wing area in raising lift force.  

 Figure 3.6 shows clearly that the increasing lift requirement in larger birds is generally 

met by a combination of higher cruising speed and larger wing area. Only increasing the cruising 

speed (which corresponds to a vertical line pointing upward on the plot) would be an unsuitable 

strategy: heavy birds with insufficient wing area would have difficulty landing and taking off. It 

is not unreasonable that the upper bound corresponds to a cruising velocity that is proportional to 

linear size; it might be hypothesized that animals with longer legs can reach higher take-off 

velocities or tolerate higher landing speed. The lower bound is very likely related to a mechanical 

limit on wing area. 
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Figure 3.6 The cruising speed is plotted against wing area on a log - log scale for a variety of 

birds.  The weight of the bird is indicated by the color coding.  Diagonal grey lines represent 

calculated values of lift, which are nearly equal to the weight of the bird. Data plotted are from 

[139–141]. 

 

 As a comparison, the same graph is plotted in Figure 3.7, with the color coding 

representing the percent of the wingspan composed of the humerus.  This relative humerus length 

is generally greater above the isometric line, especially when comparing samples of similar weight.  

We argue that this is due to the relatively high wing loading of these birds because of their 

comparatively high cruising speed and low wing area.  To compensate for high loading a greater 

percentage of the wing span must be composed of the humerus.  A schematic describing this 

hypothesis is shown in Figure 3.8 where both birds have the same total weight and humerus length, 

yet one has a smaller wing area.  
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Figure 3.7 The cruising speed and wing area are plotted against one another.  The percent 

wingspan composed of humerus (humerus length/half of wingspan) is plotted with color.  Data 

plotted are from [139–141]. 
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Figure 3.8 Birds (1) and (2) have the same mass and humerus length.  Bird 1 however, has a much 

smaller wing area and therefore has higher wing loading.  To compensate for this, a larger percent 

of bird 1’s wingspan is composed of humerus bone. 

 To more closely examine the relationship between percent of the wing composed of the 

humerus and wing loading, these values are plotted in Figure 3.9 with the velocity color mapped. 

This chart shows the trend of increased relative humerus length with increased wing loading, 

generally following the trend of 𝐿𝐻/𝐿 = 5.39(
𝑊

𝐴
)0.3, with a coefficient of determination of 0.46.  

This trend demonstrates that the humerus length serves as a variable that allows birds to posses a 

wide variety of wing shapes. While high-aspect ratio wings, such as those of bird 1 in Figure 3.8, 

allow for reduced aerodynamic drag and are ideal for gliding, broader, low aspect ratio wings 

permit maneuverability in flight.  By adjusting the percent humerus length within the wing, nature 

has provided a means for the bird wing to be optimized for many different conditions.  The outlier 

of the trend is the Chimney swift (chaetura pelagica).  Swifts have exceptionally long wing 

feathers and hand bones (carpometacarpus) and small arm bones (humerus, ulna, radius)[143].  
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This allows their wings to morph to a greater extent in flight than other birds and provides them 

with greater maneuverability. 

Figure 3.9 The percent of the wingspan LH/L composed of the humerus plotted against wing 

loading W/A on a log-log scale.  The cruising velocity is color mapped. 

 Plotting the humerus length and diameter against cruising speed (Figure 3.10) 

demonstrates that these humerus dimensions do not scale with speed.  However the humerus length 

is shown to scale closely with the humerus diameter at a rate of 𝑦 = 0.32𝑥0.8 (R2=0.87).  Perhaps 

birds have great variability, in their evolution, in cruising speed and wing area (as shown in Figure 

3.6) while still maintaining the ability to fly due to the evolutionary capability of the humerus bone 

to scale based on the needs of the specific wing.  In the next section we investigate scaling trends 

in the feather, an essential component of the bird wing for flight.  
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Figure 3.10 The humerus diameter and length are plotted as in Figure 4.6, with the cruising 

speed color-mapped.  The cruising speed does not appear to correlate with the humerus 

dimensions. 

 

3.3.3. Scaling Trends Observed in the Avian Feather 

A large portion of the wing is composed of flight feathers, which are highly hierarchical β-

keratinous integument structures .  Due to their significance to bird flight[74], scaling relations 

between mass and feather dimension have been investigated.  Within the flight feather, barbs 

branch from the main shaft and barbules branch from barbs.  The increase in the size of feathers, 

LF, with mass, m, can be expressed as a first approximation, assuming isometrical scaling 𝐿𝐹 ∝

𝑚
1

3⁄ .  Figures 3.11-3.13 compare the experimental slope for feather length (0.30-0.34) [47,133] 

mid-shaft width (0.32-0.37) [47,132,133], and barb length on the trailing (0.27) and leading (0.25) 

[47] edge of the vane with the ideal 1/3 mass dependence.  This trend demonstrates a quantifiable 

scaling relationship between the mass of birds and feather size. Interestingly, we found that the 
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spacing between hooked, trailing barbules remains within a range of 8-16 micrometers, with no 

apparent dependence on the mass of bird (Figure 3.14).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 The total feather shaft length scales with bird mass following the trend y=2.3x0.34 with 

an R2 value of 0.95 (where measurement uncertainty is ±0.05cm).  This trend is very close to the 

trend expected through isometric scaling with bird mass.  Images taken from [47]. 

 

 

 

   

 

 

 
 

 

 

 

 

 

 

 



61 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 The width of the feather shaft at its midpoint scales with bird mass exponentially 

following the trend y=0.19x0.35 with an R2 value of 0.95 (measurement uncertainty is ±0.02 

mm)[47]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 The barb length of the trailing and leading feather vane follow y=4.29x0.27 (R2=0.91), 

and y=2.58x0.25 (R2=0.83) respectively (standard deviations range from 0.02-0.2mm)[47].   
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Figure 3.13 Surprisingly, the spacing between trailing hooked barbules does not follow this trend 

and ranges between 8-16 micrometers across all bird masses[47].   

 

The gap between barbules (Figure 3.15) includes a thin membranous flap extending from 

each barbule to cover the space in between barbules so that the vane is able to capture more air.  

This is thought to allow the vane to act as an assembly of one-way valves [29].  During the upstroke 

(recovery stroke) the bird’s primary feathers separate to allow air-flow through and prevent 

excessive downward forces on the wing [144].  We propose that these barbule flaps assist in 

preventing unwanted forces in the upstroke by allowing air to flow through the feather dorsally.  

In the downstroke (power stroke), however, the flaps do not allow air through and therefore 

maximize the capture of air by the feather.  The simplified additively manufactured model of the 

flap structure within the feather vane is shown in Figure 3.15 b-d to demonstrate this.  Thin, 

flexible flaps branch from hooked and grooved barbules to cover spaces between them.  When air 

is blown at the bioinspired vane from the dorsal direction the flaps open (Figure 3.15) (where 
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circles denote the location of airflow); however, when air is blown ventrally the flaps remain closed 

(Figure 3.15d).  Figure 3.15e,f shows the similarity of barbule spacing, yet remarkable difference 

in feather size between the Anna’s Hummingbird (Calypte anna) and the Andean Condor (Vultur 

gryphus).  The reason for the constancy in barbule spacing (8-16 μm) is proposed to be to retain 

low permeability of air through the feather independent of bird size.  The feather must balance air 

flow with maintenance of its interlocking structure.   
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Figure 3.14 An example of the barbule spacing dimension is shown in (a).  A bioinspired model 

created by additive manufacturing (b) was used to show the behavior of the barbule membrane 

flaps.  This model is shown with air blown dorsally (c) and ventrally (d) at the vane, where 

circles represent the location of airflow.  The similarities between the micro-scale barbules of the 

Anna’s Hummingbird (Calypte anna) (left) and the Andean Condor (Vultur gryphus) (right) are 

demonstrated in (e), while the macro-scale differences are shown in (f).  Image taken from [47]. 

3.4. Conclusions 

The complementary features between the avian bone and feather discussed here provide 

insight into nature’s approach at creating structures optimized for flight.  The strength of avian 

bone is found to be a limiting factor in scaling the humerus for flexural loading, and is hypothesized 

to relate to the allometric scaling of the humerus with bird mass.  We find that increased relative 

humerus length relates to increased wing loading, and hypothesize that this is an evolutionary 
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method utilized by nature to allow for greater variability in bird wings.  This perhaps allows wings 

to be optimized for specific applications and flight styles. 

Dimensions of the feather are found to scale isometrically with bird mass at nearly all 

hierarchical levels.  An exception to this is the barbule spacing within the feather vane, which is 

revealed to consistently remain within the range 8-16 micrometers for birds of hugely different 

masses such as Anna’s Hummingbird (Calypte anna) (4 g) and the Andean Condor (Vultur 

gryphus) (11,000 g).  Constancy in barbule spacing is proposed to reflect the necessity to retain 

low permeability of air through the feather, independent of bird size.  The feather must balance 

air-flow with maintenance of its interlocking structure. 

Trends demonstrated in this chapter show that through the process of evolution, nature has 

optimized designs for flight. An understanding of how feathers and bird wings scale with mass can 

enable synthetic structures with maximized performance/weight for potential use in future 

transportation systems.   
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4. Resilience of Feather Barbs 

 The flying feathers of birds are keratinous appendages designed for maximum performance 

with a minimum weight penalty.  Thus, their design contains ingenious combinations of 

components that optimize lift, stiffness, aerodynamics, and damage resistance.  This design 

involves two main parts: a central shaft that prescribes stiffness and lateral vanes which allows for 

the capture of air.  Within the feather vane, barbs branch from the shaft and barbules branch from 

barbs, forming a flat surface which ensures lift.  Microhooks at the end of barbules hold barbs 

tightly together, providing the close-knit, unified structure of the feather vane and enabling a repair 

of the structure through the reattachment of un-hooked junctions.  Both the shaft and barbs are 

lightweight biological structures constructed of keratin using the common motif of a solid shell 

and cellular interior.  The cellular core increases the resistance to buckling with little added weight.  

Here we analyze the detailed structure of the feather barb and, for the first time, explain its flexural 

stiffness in terms of the mechanics of asymmetric foam-filled beams subjected to bending.  The 

results are correlated and validated with finite element modeling.  We compare the flexure of single 

barbs as well as arrays of barbs and find that the interlocking adherence of barbs to one another 

enables a more robust structure due to minimized barb rotation during deflection. Thus, the flexure 

behavior of the feather vane can be tailored by the adhesive hooking between barbs, creating a 

system that mitigates damage. The exceptional architecture of the feather vane will motivate the 

design of bioinspired structures with tailored and unique properties ranging from adhesives to 

aerospace materials. 

4.1. Introduction 

As described in section 2.7.2, the flight feather consists of a main shaft, and a feather vane 

composed, sequentially, of barbs that branch from the rachis and barbules that branch from barbs. 

Flight feathers must be lightweight and able to sustain aerodynamic loads without excessive 
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flexure or torsional damage.  One of the ways feather components conform to these constraints is 

by having a sandwich structure, consisting of a solid shell and cellular core.  Their dense exterior 

is composed of layers of ordered fibers in a matrix material which form a biological composite 

laminate.  According to a study by Lingham-Soliar et al. [79], both the barb and rachis have fibers 

oriented in the axial direction along dorsal and ventral sides with thin crossed-fibers in the lateral 

walls. 

Within the feather vane, barbs form a highly ordered lattice where they interlock with 

adjacent barbs via barbules to produce a tightly woven structure.  On a given barb, proximal 

barbules have a grooved structure while distal barbules have four to five tiny microhooks 

(hooklets) along their length (Figure 4.1) [25,145].  Hooked barbules interlock with the 

neighboring barb’s grooved barbules to form a “Velcro-like” connection that can be separated and 

re-zipped [146].  This enables repair of the damaged areas by re-hooking the hooks to grooves. 

 

Figure 4.1 Barb and barbule structure: barbs are asymmetrically shaped and foam filled.  On the 

distal side of the barb barbules have hooklets and on the proximal side barbules are grooved.  

Barbules from neighboring barbs interlock with each other.  Redrawn[77] after Lucas and 

Stettenheim (1972) [145]. 

 

The evolutionary innovation of the interlocking feather vane is credited as the essential 

element which makes flight possible in birds [147,148] as it allows for a compact and cohesive 

0.1 mm

Proximal BarbuleDistal Barbule

Hooklet

Barb
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structure for aerodynamic efficiency [149].  The air transmissivity of the feather is a function of 

how tightly connected barbs are, and birds preen themselves daily to re-zip their feather vanes[6].  

Similarities in the barb structure and interlocking mechanism across bird species are demonstrated 

in Figure 4.2, where feathers of the razor-billed curassow (Mitu tuberosum), house sparrow 

(Passer domesticus), and California seagull (Larus californicus) are shown.  Since these structures 

are similar in nearly all flying birds [25], structural deformation concepts can be generalized to 

apply to most feathers.   
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Figure 4.2 Barbs and barbules from various bird species: in nearly all flying birds, barbs and 

barbules have a similar shape, as demonstrated in this comparison between the razor-billed 

curassow (Mitu tuberosum), house sparrow (Passer domesticus), and California seagull (Larus 

californicus)[77]. Razor-billed curassow photograph acknowledgement: 

https://commons.wikipedia.org/wiki.File:MitutuberosaWhaldenerEndo.jpg, Whaldener Endo 

(cropped image). 

While barbules are an essential part of the feather vane, barbs make the greatest 

contribution to its stiffness as they are its most rigid component.  For this reason we chose to study 

the flexural behavior of the barb.  Qualitative observations have been made regarding this behavior, 

but there is a surprising lack of quantitative data and detailed analysis of their flexure behavior, 

https://commons.wikipedia.org/wiki.File:MitutuberosaWhaldenerEndo.jpg
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the mechanisms used by barbs to avoid being permanently deformed, and the reason for their 

evolution to an unusual asymmetrical shape.   

4.2. Materials and Methods 

4.2.1. Test Specimens 

Feathers of an adult razor-billed curassow (Mitu tuberosum) were obtained postmortem 

and stored at ambient conditions.  Feathers from the left wing within a total length range of 31-34 

cm were used in experiments.  To prepare the specimens for mechanical testing, barbs were cut 

from the trailing side of each feather, within the middle section of the rachis (between 45-80% of 

the total feather length).  The ends of the barbs (on average approximately 25% of total barb length) 

were attached to a puck in groups of four.  This number was chosen to provide a minimum amount 

of barbs that would allow for sufficient barbule interlocking. For the single barb tests, surrounding 

barbs were removed using a scalpel.  Initial mounting of the barbs ensured that all had similar 

orientation, since barbules hold the barbs in place.   

4.2.2. Mechanical Tests 

A Bose Electroforce 3200 testing machine with a 50 gram Honeywell load cell (S/N: 

1475925, Model: 31) was used for mechanical testing.  A manufacturer-machined wedge was 

attached to the load cell screw and the scale was zeroed before measurements.  Pucks were 

mounted onto a piece of aluminum that was clamped in suspension at the top of the machine. A 

schematic of the experimental setup is shown in Figure 4.3. 

The samples were loaded and unloaded at a rate of 0.1 mm/sec and displaced ± 4 mm.   The 

barb was loaded on its ventral side to simulate the direction of applied force on a barb as a bird is 

landing.  Each sample completed four loading and unloading cycles and was stopped at a 

displacement of -4 mm in the fifth cycle. From these tests, force displacement curves were 

obtained.  
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A high-resolution digital camera was secured on a fixed tripod facing the set up. Images 

were taken prior to loading and used to determine the distance from the barb secured in the puck 

to the point of contact between the wedge and barb.  This distance is called the effective barb 

length.  

 
 

Figure 4.3 Experimental configuration: cantilever flexure tests on single barbs and four zipped 

barbs [77]. 

 

4.2.3. Scanning Electron Microscopy 

 

After the tests, each barb was cut at the effective length as well as at its point of connection 

to the puck. The barbs were then mounted on a vertical Scanning Electron Microscope (SEM) stub, 

coated in iridium and imaged using a SEM.  Some of the puck images were not used in analysis 

due to difficulty in obtaining clear images of cross sections after the experiment because of 
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remnants of the adhesive on samples.  We followed a similar procedure to image cross sections of 

three untested barbs at 10% increments along their length. 

4.2.4. Computer Aided-Design Measurements 

 

Since barbs have an asymmetric and tapered structure, to accurately understand our data 

we characterized the shape change of barbs by measuring their respective area moments of inertia.  

We found these values for SEM images of barb cross-sections by tracing the barb’s foam and 

cortex using SolidWorks (SolidWorks Corp., Waltham, MA, USA).  Since the values given by 

SolidWorks were for the principal axes of the shape, they were transformed by applying a rotation 

so that the axes of all measurements were aligned with each other.  The angle was calculated with 

the assumption that the hooked barbules remain horizontal along the length of the barb. While the 

area moments of inertia found using SolidWorks are with respect to the centroid of the foam or 

cortex, and not with respect to the total structure’s neutral axis (which could not be found using 

SolidWorks), they are an accurate estimation.   

4.2.5. Finite Element Modeling 

 

The geometry of a sample’s cross-section at its connection to the puck and at the end of its 

effective length was replicated from SEM images.  In order to take into account the angular 

twisting of the barb, we assumed that the hooked barbules remain horizontal throughout the barb.  

We then executed a sweep between the two cross sections along the effective length to replicate 

the tapered structure of our experimental sample. Constituents of the cross section were considered 

isotropic and homogeneous, and included the cellular core Efoam = 0.36 GPa, υfoam =0.33 and the 

cortex Ecortex = 5.50 GPa, υcortex =0.40, as explained in section 4.3.1.   
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4.2.6. Statistical Analysis 

In order to minimize any localized noise spikes, raw data sets were smoothed with a median 

filter incorporating five surrounding points using the software Origin 9.0 (OriginLab Corp, 

Northampton, USA). This software was also used to find the standard error of the linear fit to the 

data’s slope, which is included as error bars in Figures 4.8 and 4.9.  This error was translated into 

a percent and used to obtain a displacement error, which is accounted for as error bars in Figure 

4.12.  

4.3. Theory and Calculations 

4.3.1. Elastic Modulus of the Barb’s Foam-filled Center 

To create a theoretical model of the deflection behavior of a barb, one first has to determine 

the elastic modulus of its foam-filled core.  This was calculated using the Gibson and Ashby [43] 

equations.  The foam cells inside the barb were modeled as close-celled hexagonal prisms.  From 

geometrical measurements of SEM images, the relative core/shell density ratio was found to be 

0.152.  This value, along with other geometrical parameters, was used to find the foam’s relative 

elastic modulus:     

    
𝐸∗

𝐸𝑠
≈ 𝜙2 (

𝜌∗

𝜌𝑠
)

2

+ (1 − 𝜙)
𝜌∗

𝜌𝑠
     (4.1) 

  The gas pressure component of the equation was omitted because of the porous cell wall 

structure observed in SEM images.  The variables are defined such that E* is the elastic modulus 

of the foam, Es is the elastic modulus of the solid cortex, ϕ is the volume fraction of the solid 

contained in the foam’s cell edges, ρ* is the density of the foam, and ρs is the density of the solid 

cortex [43].  The full calculations can be found in Appendix A.1. 

By assuming that the elastic modulus of the barb cortex is equal to that of the rachis cortex, 

and using the accepted value of 5.50 GPa from literature for two-point bending [59], the elastic 
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modulus of the foam core was calculated to be 0.36 GPa.  The Poisson’s ratio υcortex =0.40 matched 

the value used by Bachmann et al. [59] for the rachis, where the value for a similar keratinous 

material is used because it has not been determined for feather keratin.  Similarly, the Poisson’s 

ratio of barb foam is unknown and therefore it was taken to be 0.33, which is the average value for 

closed cell foam according to Gibson and Ashby [43]. 

4.3.2.  Simplified Block Model of Single Barb Deflection 

 A simplified model of the barb’s complex geometry was created using rectangular blocks 

to form an asymmetrical cortex with a constant cross section and a foam-filled interior.  The 

dimensions of the model were iterated until the x- and xy- area moments of inertia of the cortex 

and the x- area moment of inertia of the foam matched their respective counterparts found for the 

equivalent experimental barb (as discussed in section 4.4.4).  These were deemed to be the most 

significant area moments of inertia to match our model due to their contributions in the cantilever 

flexure equation given in section 4.3.2.2.  The length of the barb was set to equal 7.8 mm to match 

the length of the experimental barb. 

4.3.2.1. Finding the Stress and Strain Expressions  

 

Due to significant contributions in bending from the sidewalls, the barb structure could not 

be simplified using the volume fraction composite method.  Additionally, because the barb is an 

asymmetric structure, the neutral axis does not pass through the centroid. The barb’s neutral axis 

was calculated first. 

The derivation begins with the assumption that plane cross-sections remain plane, so that 

strain is a linear function of x and y (Equation 4.2), and therefore by Hooke’s law stress is as well 

(Equation 4.3) [150]. Definitions of variables are presented in Table 4.1. 

  𝜀𝑧
(𝑖)

= 𝑎𝑥 + 𝑏𝑦 ;       𝜎𝑧
(𝑖)

= 𝐸𝑖(𝑎𝑥 + 𝑏𝑦)       (4.2; 4.3) 
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Figure 4.4 Simplified barb used in theoretical calculations: (a) the definitions of dimensions used, 

where h2=h4=h5 (b) sketch of the orientation of the applied force. 
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Table 4.1 Definitions of variables used in Equations 4.2-4.18. 

Symbol Definition 

       a Curvature of barb in the x-direction 

       b Curvature of barb in the y-direction 

𝜺𝒛
(𝒊)

 Strain (z-axis) of each component i 

𝝈𝒛
(𝒊)

 Stress (z-axis) of each component i 

𝑬𝒊 Elastic modulus of each component i 

𝒙𝒄𝒊 Location of centroid of each component (along x) 

𝒚𝒄𝒊 Location of centroid of each component (along y) 

𝑨𝒊 Area of each component 

𝑴𝒙 Moment in the x-direction 

𝑴𝒚 Moment in the y-direction 

𝑰𝒙𝒚
𝒊  The product of inertia of component i with respect to the x and y axes 

𝑰𝒙
𝒊  The x-moment of inertia of component i 

𝑰𝒚
𝒊  The y-moment of inertia of component i 

θ The angle between the location of the applied load and the y-axis 

 

 After these assumptions are made, the sum of the integrated stress of each component is 

set to equal zero to because the longitudinal force is equal to zero:  

 ∑ ∫ 𝜎𝑧
(𝑖)

𝑑𝐴 = 0
 

𝐴𝑖

𝑛
𝑖=1 .            (4.4) 

By substituting (4.3) into (4.4):   

 ∑ 𝐸𝑖 ∫ (𝑎𝑥 + 𝑏𝑦)𝑑𝐴 = 0
 

𝐴𝑖

𝑛
𝑖=1 .                           (4.5) 

The elastic modulus of each component is taken into account in contributing to the location of the 

neutral axis: 

∫ 𝑥𝑑𝐴 = 𝑥𝑐𝑖𝐴𝑖
 

𝐴𝑖
  ,  ∫ 𝑦𝑑𝐴 = 𝑦𝑐𝑖𝐴𝑖

 

𝐴𝑖
        (4.6) 

∑ 𝐸𝑖
𝑛
𝑖=1  [𝑎𝑥𝑐𝑖𝐴𝑖 + 𝑏𝑦𝑐𝑖𝐴𝑖] = 0,        (4.7) 

𝑎 ∑ 𝐸𝑖𝐴𝑖𝑥𝑐𝑖 +𝑛
𝑖=1 𝑏 ∑ 𝐸𝑖𝐴𝑖𝑦𝑐𝑖 = 0𝑛

𝑖=1   .       (4.8) 

The location of the coordinate origin for which (x0, y0) is solved using:   

∑ 𝐸𝑖𝐴𝑖𝑥𝑐𝑖 = 0𝑛
𝑖=1   ,  ∑ 𝐸𝑖𝐴𝑖𝑦𝑐𝑖 = 0𝑛

𝑖=1                (4.9, 4.10) 
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Equations (4.9), (4.10) will be satisfied provided that the coordinate origin is at the point: 

𝑥0 =
∑ 𝐸𝑖𝐴𝑖𝑥𝑐𝑖

∑ 𝐸𝑖𝐴𝑖
 ,  𝑦0 =

∑ 𝐸𝑖𝐴𝑖𝑦𝑐𝑖

∑ 𝐸𝑖𝐴𝑖
                (4.11, 4.12) 

Therefore,  

∑ 𝐸𝑖𝐴𝑖(𝑥𝑐𝑖 − 𝑥0) = 0𝑛
𝑖=1 ,  ∑ 𝐸𝑖𝐴𝑖(𝑦𝑐𝑖 − 𝑦0) = 0𝑛

𝑖=1 .           (4.13, 4.14) 

The solutions for the specific case of the barb are found in Appendix A.2.   

4.3.2.2. Deriving the Inverse Curvature and Deflection of the Barb in Flexure 

 

The curvature is derived in order to solve for the barb’s deflection.  The relationship 

between the moment 𝑀𝑥 and the stress in each component (Equation 4.15) was used to find the 

relationship between the curvatures a and b: 

 𝑀𝑥 = ∑ ∫ 𝑦𝜎𝑧
(𝑖)

𝑑𝐴
 

𝐴𝑖

𝑛
𝑖=1 .                 (4.15) 

Since the moments are known, the equations can be solved for numerical values.  A similar 

process for 𝑀𝑦 is applied and shown in Appendix A.3.  The linear stress condition was applied to 

yield (Equation 4.16), and then these values were integrated (Equation 4.17).  

𝑀𝑥 = ∑ ∫ 𝑦𝐸𝑖(𝑎𝑥 + 𝑏𝑦)𝑑𝐴
 

𝐴𝑖

𝑛
𝑖=1                        (4.16) 

𝑀𝑥 = ∑ 𝐸𝑖
𝑛
𝑖=1 [𝑎 ∫ 𝑥𝑦𝑑𝐴 + 𝑏 ∫ 𝑦2𝑑𝐴]

 

𝐴𝑖

 

𝐴𝑖
]                 (4.17) 

These equations are further simplified to include area moments of inertia: 

The following variables were then introduced to simplify the calculations of solving for a and b: 

𝐸 =
∑ 𝐸𝑖𝐴𝑖

 
𝑖

𝐴
 , 𝐼𝑥 =

∑ 𝐸𝑖𝑖 𝐼𝑥
𝑖

𝐸 
 , 𝐼𝑦 =

∑ 𝐸𝑖𝑖 𝐼𝑦
𝑖

𝐸 
 , 𝐼𝑥𝑦 =

∑ 𝐸𝑖𝑖 𝐼𝑥𝑦
𝑖

𝐸 
. 

Using these variables, the moment equations are rewritten as: 

𝑀𝑥 = 𝑎 𝐸𝐼𝑥𝑦 + 𝑏 𝐸𝐼𝑥 ;              (4.18) 
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−𝑀𝑦 = 𝑎 𝐸𝐼𝑦 + 𝑏 𝐸𝐼𝑥𝑦.              (4.19) 

Upon solving Equations (4.18) and (4.19) for a and b, we obtain Equations (4.20) and (4.21), 

which also specify the relationship between the curvatures a and b and deflections u and v [39].  

𝑎 =
𝐼𝑥𝑦𝑀𝑥+𝐼𝑥𝑀𝑦

𝐸(𝐼𝑥𝑦
 2−𝐼𝑥𝐼𝑦)

= −
𝜕2𝑢

𝜕𝑧2                 (4.20) 

𝑏 = −
𝐼𝑦𝑀𝑥+𝐼𝑥𝑦𝑀𝑦

𝐸(𝐼𝑥𝑦
 2−𝐼𝑥𝐼𝑦)

= −
𝜕2𝑣

𝜕𝑧2
         (4.21) 

The differential Equations (4.20) and (4.21) are solved to produce Equations (4.22) and 

(4.23) which describe deflections in the x (u) and y (v) directions.  

𝑢 = 
𝐼𝑥𝑦𝐹𝑦𝑧3

3𝐸(𝐼𝑥𝑦
 2−𝐼𝑥𝐼𝑦)

          (4.22) 

𝑣 =  −
𝐼𝑦𝐹𝑦𝑧3

3𝐸(𝐼𝑥𝑦
 2−𝐼𝑥𝐼𝑦)

          (4.23) 

A sketch of the simplified barb used in calculations is shown in Figure A.1 of the Appendix along 

with the definitions of variables used for length are given.  Dimensions used are listed in Table 

A.2 of the Appendix A.2.   

4.3.3. Analytical Model of Single Barb Deflection 

 

To more accurately represent the cross sectional changes that occur throughout the barb’s 

effective length, we created a more complex analytical model.  We begin with an equation similar 

to the one described in the previous section: 

𝑏 = −
𝜕2𝑣

𝜕𝑧2 = −
𝑀𝑥𝐼𝑦(𝑧)

𝐸𝑠
 (𝐼𝑥(𝑧)𝐼𝑦(𝑧)−𝐼𝑥𝑦(𝑧))

=
𝐹(𝐿−𝑧)𝐼𝑦(𝑧)

𝐸𝑠
 (𝐼𝑥(𝑧)𝐼𝑦(𝑧)−𝐼𝑥𝑦(𝑧))

     (4.24) 

Note that the expression of b differs from Equation (4.21): Es is the cortex’s elastic 

modulus, the load is only considered in the y-direction, L refers to the effective length, and Ix(z), 

Iy(z) and Ixy(z) are equivalent inertias of the geometry.   These inertias follow a z-dependent trend 

that takes into account the cross-sectional changes.  As stated in sections 4.2.3 and 4.2.4, we 
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characterized this trend by measuring the Ix, Iy , and Ixy of three different barbs at every 10% along 

their length.  Moreover, we defined Ix, Iy, Ixy such that: Ix = Ixcortex+α Ixfoam, Iy = Iycortex+α Iyfoam, Ixy 

= Ixycortex+α Ixyfoam where α is a weighing factor that takes into account the fact that the foam has 

differing elastic properties (α = 
𝐸∗

𝐸𝑠
, see Equation (4.1) and Appendix A.1 for details).   

From Equation (4.24) we integrate twice to find the deflection v at the end of the cantilever, with 

the imposed boundary conditions v =0 and dv/dz = 0 at z = 0: 

𝜕𝑣

𝜕𝑧
=  

𝐹

𝐸𝑠
∫

𝐼𝑦(𝑧)(𝐿−𝑧)

𝐼𝑥(𝑧) 𝐼𝑦(𝑧)−𝐼𝑥𝑦
 2(𝑧)

𝑧

0
𝑑𝑧  ,        (4.25) 

𝑣(𝐿) =  
𝐹

𝐸𝑠
∫ 𝑑𝑧

𝐿

0
∫

𝐼𝑦(𝜁)(𝐿−𝜁)

𝐼𝑥(𝜁) 𝐼𝑦(𝜁)−𝐼𝑥𝑦
 2(𝜁)

𝑧

0
𝑑𝜁 .       (4.26) 

4.3.4. Finite Element Model of a Single Barb in Flexure 

 

The finite element model (FEM) was created in Abaqus and mimicked the conditions of 

the aforementioned experiment.  A barb was clamped on one end and lowered a prescribed 

displacement of 0.45mm in the y-direction (see Figure 4.11).  The other end of the barb remained 

free, contacting an analytically rigid cylindrical wedge.  A hard contact interaction was defined 

between the two solids, and the reaction force was measured at the wedge.  The barb was drawn 

as a 7.8mm long, tapered structure with an asymmetrical cross section to closely match the 

dimensions of one of the experimental barbs and foam was embedded in the cortex.  At the barb’s 

fixed end its height was 635µm, while at the end contacting the wedge its height was 464µm.  The 

finite element mesh was created out of 54,787 tetrahedral quadratic elements (105,583 nodes).  

More details on the FEM are discussed in section 4.2.5 

4.4. Results and Discussion 

4.4.1. Materials Characterization 
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The cross sections of untested feather barbs show that closer to the rachis the barb is highly 

asymmetric; it becomes smaller and more symmetrical towards the tip (Figure 4.4 a), as 

previously observed by Proctor et al. [25]. Foam core cells were found to be most homogeneous 

in size at the tip and most diverse in size between the rachis and the center of the barb (Figure 4.4 

b-d).  Perhaps a larger total area of foam allows nature to create cells of varying size, with larger 

cells at the interior of the barb to reduce the amount of material and decrease density while 

maintaining bending resistance.  Indeed, this has been observed in the porcupine quills, which 

consist of a keratinous foam-filled shell [151,152].   

 
Figure 4.5 (a) Barb cross sectional shape and size: the barb becomes smaller and more symmetrical 

towards the tip. Characterizing the foam of the barb: The cell size distribution of the foam shows 

that at (b) 5% and especially (c) 30% from the rachis the cell size is more diverse than at (d) 90% 

of the barb length from the rachis. 

a

c

b

c

d



82 

 

 

Along the barb the cortex area to foam core area ratio ranges from 0.7 to 2.3.  The ratio 

slightly decreases from 10 to 20 percent of the barb’s length, and then increases from 40 to 70 

percent.  Towards the end of the tip the relative amount of cortex increases to compensate for the 

smaller cross sectional area.  It is plausible that this range of ratios is optimized for the stiffness, 

weight and type of loading the barb experiences in flight.  

Throughout its length, the barb’s dorsal-ventral stiffness is reinforced by dorsal-ventral 

cortex walls which are thicker than the lateral cortex walls.  This is for two reasons: (1) higher 

loading in flight is applied to the barb in the dorsal-ventral direction, and (2) the barb is able to 

twist along its lateral walls when loading becomes critically large.  The x-, y- and xy- area moments 

of inertia of the barb’s cortex and foam were found to follow an exponential decay trend, as shown 

in Figure 4.5.   
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Figure 4.6 The (a) x-, (b) y- and (c) xy- area moments of inertia of the barb’s cortex and foam 

were found to follow an exponential decay trend. The foam and cortex were combined as explained 

in section 4.3.3. 

4.4.2. Cyclic Testing of Single Barbs 

A representative experimental plot of displacement and force versus time displayed in 

Figure 4.6 shows that the resistance force initially rises linearly with an increase in displacement, 

and then slightly decreases as the barb twists.  Twisting along the z-axis causes the stiffness to 

decrease with respect to the y-axis because its height is now its width.  Since this twisting occurs 

before the maximum displacement, the maximum resistive force appears just before the barb 

twists, not at the point of maximum displacement.  The insets (a) and (b) of Figure 4.6 explain 

this process of barb flexure.  When the barb is unloaded, the resistive force sharply drops and then 

a b

c

a b

c
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rises as a reaction to the untwisting of the barb.  This trend is apparent for each of the four cycles 

of all tests. Through this flexure stratagem, the barb can undergo large displacements without 

catastrophic failure.  These results are similar to visual observations by Butler et al. [153], who 

stated that the asymmetry, thinner lateral walls of the cortex, and slenderness of the barb result in 

its twisting  when dangerously large loads are applied.  It is important for the barbs to deform 

without mechanically failing because they are essential to bird flight and are only replaced during 

molting, which usually occurs annually [26].  This twisting action also ensures that loads are 

distributed more effectively to neighboring barbs. 

Figure 4.7 The deflection of a barb: a typical experimental plot of displacement and force as a 

function of time. Black indicates loading and blue indicates unloading.  The barb first (a) deflects 

in the y-direction, then (b) twists, resulting in a decrease in stiffness with respect to the y-axis. 
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To understand the repeatability of the flexure tests, the maximum force of the first and 

second cycle were compared.  The difference between these forces, measured in percentage (which 

we define as percent damage), is plotted versus the maximum force and effective barb length 

(Figure 4.7).  Shorter barbs require higher forces for damage and have a larger percent damage 

that likely corresponds to yielding, including linear and permanent deformation of the cortex.  

Longer barbs have lower maximum forces and a smaller percent damage which conceivably 

corresponds to elastic instability (buckling). Examples of experimental force versus deflection 

plots for two test cycles are shown in the inset of Figure 4.7, one with (a) 40% and another with 

(b) 7% damage.  Although some of the tests show significant amounts of damage, the barbs 

continue to offer some level of resistance and it has been reported (Liu et al. [154]) that this damage 

can be reversed by hydration.  

 
Figure 4.8 The repeatability of flexure tests: the maximum force and effective barb length are 

plotted against the percent damage between the first and second cycles. With shorter barbs there 

are higher resistive forces and stresses, therefore the percent damage increases.  The insets show 

examples of force displacement curves for two cycles of loading and unloading of single barbs 

with (a) 40% (b) 7% damage. 
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4.4.3.  Linear Deflection of Single Barbs 

The slope of the linear portion of the first cycle of force versus deflection curves for 

experimental trials was plotted against the effective length of the samples in Figure 4.8.  As 

expected by the classic cantilever equation, Force/Deflection=(3*EI)/Length3, the force/deflection 

increases with a reduction in effective length.  The average of the moments of inertia for the SEM 

images of the barb at the point of connection to the puck were taken and assumed to be a constant 

cross section for comparison to experimental data.  Since the barbs are a tapered cross section with 

some variation in size, there is slight deviation from this trend. 

 

Figure 4.9 Experimental slope of force versus deflection: the slope of the linear portion of the first 

cycle of experimental trials versus the effective length of each sample. The slope of a barb with a 

constant cross section throughout its length is shown for comparison. 
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4.4.4.  Comparison between the Experimental Results and Models 

Since we observed a rapid decay for the values of area moments of inertia along the length 

of the barb, we were able to predict equivalent moments of inertia for all samples for which we 

had clear puck and effective length end images.  We assumed an exponential decay correlation 

between the area moments of inertia of these two sections and integrated between the percentages 

of barb length to find an equivalent area moment of inertia representing the tapered structure.  By 

injecting these values of moments of inertia into Equation (4.22), we were able to calculate an 

analytical force/deflection for experimental data.  This is plotted with the experimental data as a 

histogram in Figure 4.10.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Comparison between the analytical and experimental force/deflection for the linear 

region of single barbs.  Analytical calculations are based on the method described in section 4.3.3. 

Images of the FEM simulation with the von Mises stresses plotted are shown in Figure 

4.11 at a prescribed displacement of 0.045mm.  Near the side of the barb held in place, stresses are 

highest on the dorsal and ventral sides.  Perhaps this further explains why cortex walls are thicker 
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on those sides.  At the point at which the barb contacts the wedge, stresses are highest on the dorsal 

side at the foam-cortex interface due to compression.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Finite element model of the deflected barb with the von Mises stress (MPa) plotted.  

Higher stresses appear on the dorsal and ventral sides of the end held in place and at the foam-

cortex interface of the end contacting the wedge.  This stress plotted corresponds to a prescribed 

displacement of 0.045mm.  For better visualization the image is scaled by 100. 
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The simplified block model, analytical model, and FEM are compared with a sample’s 

experimental data in Figure 4.12.  As demonstrated in this figure, all models are in reasonable 

agreement with the data.  The FEM simulations provide a method of justifying the experimental 

results by accounting for the complicated geometry and simulating experimental conditions to 

great detail.  The analytical model allows us to compare our theory with multiple experimental 

data points with relative ease.  Lastly, the simplified block model enables an improved 

understanding of the deflection and explains the structural response of barb deformation so that it 

might be applied to engineered synthetic structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Comparison of the force versus deflection of an experimental run, a representative 

simplified block model, analytical model based on analysis presented in section 4.3.3, and finite 

element model described in section 4.3.4. 
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4.4.5. Deflection of Multiple Barbs 

The linear region of the force-deflection curve describes flexure before the yielding of the 

structure.  Experiments reveal that this region extends to a larger displacement for groups of four 

zipped barbs compared to single barb samples.  The highlighted region of Figure 4.13a,b is the 

linear portion of four zipped barbs and single barb flexure test cycles, respectively.  The arrowed 

line in each plot represents the y-displacement corresponding to the linear region, which we define 

as r.  This value of r is plotted in Figure 4.13c against the effective barb length for four zipped 

barbs and single barb tests. 

 
Figure 4.13 Yielding point of four-zipped barbs and single barbs: an example of the first cycle of 

flexure tests for (a) four-zipped barbs and (b) single barbs.  The linear portion of the cycle to the 

point of yielding is highlighted.  The arrowed line “r” shows the y-displacement corresponding to 

the end of the linear region.  This displacement “r” is plotted against the effective barb length in 

(c) and indicates that four-zipped barbs are able to deflect to larger amount without yielding than 

single barbs. 

Four zipped barbs are made more robust by the adhesion of the barbules to one another.  

This adhesion postpones the onset of barb twisting, thereby preventing the reduction in stiffness 

with respect to the y-axis, which results in yielding of the structure.  This is consistent with visual 
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observations by Butler et al. [153], who stated that there is an increase in lateral stability when 

groups of barbs are attached to each other.  The flexure behavior of the feather vane can therefore 

be tailored by the adhesive mechanism between barbs, allowing for a system that mitigates 

damage.  For example, if a part of the feather vane is severely damaged, the total vane will not be 

compromised because the damaged portion will become detached as critically large loads are 

applied.   

4.4.6. Strengthening Mechanisms of the Feather Vane 

The adhesion mechanism that accounts for progressive deformation of the feather consists 

of the outward sliding of the barbules in the grooves of the juxtaposed barbs.  As stated in the 

introduction, this mechanism is similar to a “Velcro” connection that allows neighboring barbules 

to hold (hook) barbs together.  Hooklets on the distal barbules slide along the grooved proximal 

barbules, allowing barbs to move closer and further from each other.  Figure 4.14a is a micrograph 

of the hooklet interlocking with a grooved proximal barbule, and Figure 4.14b shows a series of 

zipped barbule connections. Ideas from the feather vane mechanism can inspire new types of 

single-direction adhesives or lightweight, damage tolerant aerospace materials.  

 

Figure 4.14 The interlocking structure of the barbules: micrographs of the House sparrow (Passer 

domesticus) show (a) the hooklet sliding into the grooved proximal barbule, (b) overlapping 

barbules within a feather. 

2 µm 200 µm

a b
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4.5.  Conclusions 

The morphology of the feather vane was investigated and the flexural behavior of un-

zipped and zipped barbs was quantitatively measured for the first time.  The following significant 

enhancements of our understanding were accomplished: 

• When loaded in cantilever orientation, un-zipped barbs deflect in the y-direction and then 

twist due to their asymmetry.  By twisting the barb becomes less stiff with respect to its y-

axis and therefore its maximum resistive force occurs before the maximum displacement 

of the barb.   

• A finite element simulation, analytical model and a simplified block model were found to 

be in close agreement with experimental data.  

• It was established experimentally that compared to un-zipped barbs, zipped barbs displace 

to a greater distance before yielding due to barbules which prevent barb rotation.  

• A barbule-inspired interlocking mechanism is proposed and created through additive 

manufacturing.   

• The insights obtained from this experimental study, along with the theoretical models and 

FEM, will be useful for creating a variety of bioinspired structures ranging from materials 

with a tailored stiffness to new adhesives. 

4.6. Acknowledgements 

 

Chapter 4, in full is published in Acta Biomaterialia and is authored by T.N. Sullivan, A. 

Pissarenko, S.A. Herrera, D. Kisailus, V.A. Lubarda and M.A. Meyers.  The dissertation author 

was the primary investigator and author on this publication. 



93 

 

We would like to thank Andy Kietwong and Kyle Adriany for helpful discussion and 

Paulina Villegas and David Moncivais for image data gathering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

5. Feather Barbules 

Barbules provide adhesion within the vane through an interlocking hook and groove 

mechanism to allow for the effective capture of air. This functional adhesive can reattach if 

structures unfasten from one another, preventing catastrophic damage of the vane. Here, using 

pelican primary feathers as a model material, we investigate the in-plane adhesion and stiffness of 

barbules.  With guineafowl, pelican and dove feathers we determine the effect of barbules on the 

feather vane’s ability to capture air. The vane is found to have directional permeability, and the 

effect of detaching barbules on the feather’s competency is determined to be a function of barb 

dimensions. Barbules are underexplored structures imperative to the adeptness of the feather in 

flight with potential to provide bioinspired solutions to aerospace materials. 

5.1. Introduction 

Flight feathers have an architecture consisting of a main shaft (rachis and calamus), and a 

vane in which barbs branch from the rachis and barbules branch from barbs [26,75] (Figure 5.1a). 

Rigid barbs serve as the vane’s backbone while barbules interlock, resulting in cohesion of the 

vane [149] (Figure 5.3c). On a given barb, proximal barbules are grooved while distal barbules 

have microhooks (hooklets) at their ends, adhering adjacent barbs [25,145] (Figure 5.1b-e, 5.2).  
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Figure 5.1  (a) Flight feathers are composed of a main shaft (rachis and calamus), barbs that branch 

from the rachis and barbules that stem from barbs.  (b) Hooked, distal barbules branch from the 

left barb to interlock with the neighboring barb’s grooved, proximal barbules.  This allows 

neighboring barbs to adhere to one another and form a tightly woven material that traps air.  (c) 

Grooved barbules are sliced to reveal their cross sections.   (d) Micro-hooks (hooklets), such as 

the one pictured here, occur at the end of hooked barbules.  In most bird species there are ridges 

at the ends of grooved barbules (e), possibly to increase friction.  Figure 1a taken from[47], other 

figures taken from [155]. 

The sophisticated architecture of barbule adhesion evolved during the Late Jurassic period 

with the advancement of aerial locomotion [13]. These structures are capable of detaching 

(unzipping) and reattaching, thus preventing irreversible damage to the entire vane [146] (Figure 

5.3b). The barbule is considered a fundamental element for bird flight because it allows the feather 

vane to capture air effectively, mitigates irremediable damage by permitting localized failure, and 

enables the repair of damaged areas through preening [6,147,148]. For these reasons, feathers are 

an advantageous material for the bird wing as opposed to a continuous structure, such as the bat’s 

skin flaps (patagium) (Figure 5.3a).   

Despite the importance of barbules to bird flight, they have been largely neglected from 

research, possibly due to their micro-scale dimensions. Kovalev et al. [146] investigated the 
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separation force of hooklets in swan (Cygnus olor) feathers and found they typically collectively 

separate at ~0.27mN. Additionally, despite a lack of experimental inquiry, many researchers 

assume that flight feathers are impervious to air [30,145] due the membranous flaps of barbules 

(Figure 5.1c) that overlap.  A few published experiments report vaguely that there is a difference 

in feather transmissivity of 10-1000% [29,156] between the dorsal and ventral direction, due to 

barbules that act as one-way valves (V. Lougheed is cited by [156]). While these works are 

fundamental to understanding barbule adhesion and vane permeability, there is ample room for 

investigation.   

 

Figure 5.2 Hooked Barbule SEM images of the American white pelican (Pelecanus 

erythrorhynchos) demonstrate their abundance on each distal barbule. 
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Here we examine three aspects of the barbule, essential to the vane’s function: 1) its 

adhesive properties, 2) stiffness, and 3) ability to capture air.  We demonstrate that these three 

facets of barbules allow the feather vane to be a versatile material capable of maintaining lift while 

remaining flexible, and provide insight into specific features of barbules that are of high relevance 

to the feather’s efficiency. Research in this area has the potential to lead to the fabrication of 

bioinspired control surfaces for enhanced performance of aerospace materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

 

 

Figure 5.3 (a) Bat’s wings are composed of continuous skin flaps (patagium) while the complex 

feathers of birds allow for localized failure. (b) One of the advantages of the feather vane is that it 

can be separated and reattached; images of the feather vane taken at various moments during 

unzipping and re-zipping.  The vane begins in tact (0s), then begins to unzip (5s), becomes 

completely detached (11s), is released and returns back to its original position (12s), and is 

unzipped again (14s).  A barb is highlighted in red to mark its position throughout the various 

frames.  (c) A micro-computerized tomography (μ-CT) generated image of an Andean Condor 

(Vultur gryphus) feather shows the cohesion of the vane.  Figure 5.3a left from Salix, Wikimedia 

commons (2011); Figure 5.3a right and 5.3b from [155], Figure 5.3c taken from [47]. 
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5.2. Materials and Methods 

 

5.2.1. Feather Samples 

 

All feather samples used in experiments were wing flight feathers (remiges) obtained 

postmortem and stored in ambient conditions. The San Diego Natural History Museum provided 

American White Pelican (Pelecanus erythrorhynchos) feathers. San Diego Zoo provided the 

Bartlett’s Bleeding Heart Dove (Gallicolumba crinigera) and Crested Guineafowl (Guttera 

pucherani) feathers. Feathers were obtained under our research group’s Federal Fish and Wildlife 

permit. 

5.2.2. Feather Vane Adhesion 

 

The trailing vane of American White Pelican remiges were cut into rectangular pieces at 

~50% of the shaft’s length and secured to a stainless steel shim using epoxy.  Each of the five 

samples tested had a width of 4-6 mm and length of 10-20 mm. The shim was clamped in a 

mechanical testing device and cut in its center just prior to testing (Figure 5.4). Tests were carried 

out in tension, with displacements applied perpendicular to the length of barbs at a strain rate of 

3x10-3 s-1. Force was measured with a 250 g load cell, and displacement determined using a linear 

variable differential transformer.  Experiments were done in situ with an optical microscope 

(objective of 2.5x) and images were analyzed using MATLAB (The Mathworks, Natick, MA, 

USA) software’s image processing functions to track two rows of points at predetermined y-

positions.   
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Figure 5.4 Schematics of various experiments: (a) experimental setup of feather vane tension tests; 

the darker lines within the feather represent barbs and lighter lines barbules.  (b) Bioinspired 

interlocking barbules, with arrows showing directions of displacement in tension tests.  (c) Atomic 

force microscopy (AFM) cantilever attached to the nano-manipulator, used to displace a single 

hooked barbule during in situ SEM flexure tests.  (d) Wind tunnel experimental setup; the feather 

is subjected to ventral airflow.  Figure taken from [155]. 

5.2.3. Barbule Flexure Tests 

The American White Pelican distal barbule’s out-of-plane stiffness was measured by in 

situ SEM. First, barbs from the trailing edge of remiges were cut off of the rachis at 20-50% of the 

feather shaft length (from the base). A single barb was then isolated and secured to a SEM stub 
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using conductive tape with the distal portion of the barb facing upwards.  Following this, a 

nanomanipulator applied a prescribed displacement via an AFM cantilever to a single hooked 

barbule of the barb secured on the SEM stub (Figure 5.4c).  These experiments were inspired by 

works of Naraghi et al. [157] and Roenbeck et al.[158], who did similar tests on inorganic 

materials.   

A digital image correlation program in MATLAB was used to determine the displacement 

of the hooked barbule, and the barbule stiffness was calculated as follows.  The bending of the 

AFM cantilever and barbule are analogous to springs in series:    

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑏𝑎𝑟𝑏𝑢𝑙𝑒 + 𝛿𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟     (5.1) 

The total deflection (𝛿𝑡𝑜𝑡𝑎𝑙 ) was applied to the system through the nanomanipulator.  The 

cantilever deflection ( 𝛿𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 ) was obtained directly from digital image correlation and 

therefore the barbule deflection (𝛿𝑏𝑎𝑟𝑏𝑢𝑙𝑒) was determined. We use a force balance between the 

barbule and cantilever (Equation 5.2) to obtain an equation for the flexural stiffness of the barbule 

(Equation 5.3).  The stiffness of the AFM cantilever (~0.58 N/m) can be estimated from geometry 

and materials properties (Table 5.1), so we are able to solve for the stiffness of the barbule. 

   𝐹𝑏𝑎𝑟𝑏𝑢𝑙𝑒 = 𝐹𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟       (5.2)  

   𝑘𝑏𝑎𝑟𝑏𝑢𝑙𝑒 = 𝑘𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 × 𝛿𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝛿𝑏𝑎𝑟𝑏𝑢𝑙𝑒⁄                (5.3) 

However, as shown in the images from the test, the cantilever contacts the barbule at an angle 

(Figure 5.5a).  Based on the angle theta (θ) the force component perpendicular to the barbule is 

computed and used to calculate the flexural stiffness of the barbule (0.061 N/m). 
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Table 5.1 Cantilever Stiffness Summary 

Parameter Value Units 

Elastic Modulus 169 GPa 

Length 457.16 μm 

Top Surface Width 49.09 μm 

Bottom Surface Width 61.22 μm 

Thickness 2.88 μm 

Normal Stiffness 0.58 N/m 

 

Figure 5.5  (a) The AFM cantilever contacts the barbule at angle θ to the normal; the dotted black 

line is the corrected force component.  (b) The barbule structure is simplified into three sections 

(purple, green and blue).  (c) The dimensions of the simplified barbule were found by averaging 

corresponding dimensions measured in SEM images.  All dimensions are in microns.  Figure from 

[155]. 

 

5.2.4. Wind Tunnel Test Specimens and Setup 

Wind tunnel tests were conducted on remiges from Bartlett’s Bleeding Heart Dove, the 

American White Pelican, and the Crested Guineafowl. These three birds represent a wide variety 

of flying birds of various sizes, lifestyles and flight styles.  Nearly all feathers were used in their 

entirety during tests, the exceptions being some Pelican feathers that were sliced from the base in 

order to properly fit in the wind tunnel.   
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A square wind tunnel with a height of 36 cm and a length of ~9 m was used in experiments. 

The wind tunnel was calibrated to determine the airspeed for each of its programed power settings 

by inputting pitot tube measurements and the atmospheric air density into Bernoulli’s equation. 

Following this, a force transducer (using load cell RB-Phi-203, 100 g ± 0.05 g) was fabricated, 

calibrated and mounted inside of the wind tunnel.  Feather samples were secured in an acrylic 

mount attached firmly to the force transducer.  For each test, the center of the feather shaft was 

marked and aligned with the center of the acrylic mount to ensure consistent directionality during 

tests.   

Force measurements were made at airspeeds of 0, 6.91, 10.20, 13.50, 16.80 and 20.09 m/s. 

This range of airspeeds covered the approximate range of speeds that the feathers encounter in 

actual flight. The force of the acrylic mount with no feather sample was measured at each airspeed 

to normalize force readings of the sample data.  Images of samples were taken during the tests 

using a camera mounted on the exterior of the wind tunnel. Figure 5.4d is a schematic of the 

placement of the force transducer and feather samples in the wind tunnel. 

5.2.5. Wind Tunnel: Barbule Adhesion and Air Capture 

For experiments testing the effect of unzipping in the wind tunnel, feather samples were 

placed unaltered into the acrylic mount with their ventral side facing the airflow; the force was 

measured at each airspeed. Following this, feathers were taken out of the mount, unzipped using a 

fine-tooth comb and tweezers, placed back in the wind tunnel, and re-tested. This was repeated 

once more with a more vigorous unzipping process. Three feathers from each species were tested. 

Images were taken before and after each unzipping process. 

5.2.6. Wind Tunnel: Directional Permeability of the Vane 

In experiments investigating the effect of the extended membranous “flaps” of barbules on 

the ability of the vane to capture air, the force of unaltered feather samples was measured first in 
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the ventral, then in the dorsal direction at each airspeed. Following this, each feather was lightly 

coated in SCIGRIP 66 Fast Set Flexible Vinyl Cement (SCIGRIP, Durham, NC, USA) which 

allowed the vane to remain flexible, yet sealed the flaps closed and prevented the vane from 

unzipping. After drying for at least 60 minutes, coated feathers were tested in the wind tunnel 

facing the airflow dorsally and then ventrally. The mass of feather samples was measured before 

and after the coating. Three feathers of each species were tested. 

5.2.7. Barbule Characterization 

Barbules of remiges from the American White Pelican (Pelecanus erythrorhynchos), 

Bartlett’s Bleeding Heart Dove (Gallicolumba crinigera) and Crested Guineafowl (Guttera 

pucherani) were imaged using SEM. Sections of the vane were sliced with a razor blade at 50-

60% of the total shaft length, and then sonicated in ethanol for a few minutes. Following this, they 

were air dried, mounted to an SEM stub and imaged. The dimensions of sections of the barbules 

were measured using the software ImageJ (National Institutes of Health, Bethesda, MD). All 

feather specimens were obtained from adult birds postmortem and stored at ambient conditions. 

5.2.8.  Statistical Analysis 

A General Linear Model and Tukey’s comparison test (95% confidence intervals) were 

used to compare results of unzipping experiments between bird species as well as the results of 

directional permeability tests.  All statistical analyses were carried out using Minitab version 17.   

5.3. Results and Discussion 

5.3.1. Adhesion Within the Feather Vane 

Adhesion within the pelican feather vane is investigated by applying in-plane tension to 

“unzip” a rectangular section of the vane separated from the shaft. As barbs rotate, hooks of distal 

barbules slide along the grooves of proximal barbules and then rapidly unhook and detach in 
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brittle-like separation (Figure 5.6a).  Prior to failure, barbules maintain adhesion as barbs rotate 

uniformly in the proximal direction (Figure 5.6b).  

Figure 5.7a schematically represents how samples were cut from the vane.  These samples 

were then mounted as demonstrated in Figure 5.4a and the vane was pulled apart in tension, with 

the distributed force (w) applied perpendicular to barbs along the barb length (L) (Figure 5.7b).  

The corresponding force applied to a hooked or grooved barbule is F= wd  where d is the spacing 

between barbules (as shown in Figure 5.7c).  A free body diagram containing one pair of barbules 

is shown in Figure 5.7d.  In this diagram, the forces are in equilibrium: 

      ∑ 𝐹 = 0       (5.4) 

Next, we establish the summation of moments using point O was a basis, where counter 

clockwise rotation is assumed positive: 

    ∑ 𝑀𝑂 = 𝐹(𝐿ℎ cos 𝛽 − 𝐿𝑔 cos 𝛼)    (5.5) 

where α= 17.9 ± 2.0°, β= 41.8 ± 2.3, Lg= 603.2 ± 8.6 μm, and Lh = 409.1 ± 20.8 μm. 

Inserting these values into equation 5.5, we have:  

     ∑ 𝑀𝑂 = (−2.69 × 10−4)𝐹     𝑁𝑚   (5.6) 

Thus, there is a clockwise rotation (in the proximal direction) until total equilibrium is 

reached. 

When connected to the shaft, however, the vane prefers to rotate distally due to the angle 

at which barbs branch from the rachis [159]. This difference in rotational preference between the 

hierarchical levels of the feather is thought to help maintain the area of the vane; if both barbs and 

barbules favored distal rotation, the vane would easily collapse. Similar geometric differences 

between hooked and grooved barbules are evident in many other flying birds such as the 
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guineafowl and the dove, indicating that the attachment behavior witnessed here is not specific to 

the pelican feather.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 In-plane tension tests of the pelican feather vane: (a) An example plot of the measured 

force vs. displacement reveals that on the macro-scale pelican feathers exhibit brittle-like failure 

when unzipped.  (b) Before failure, barbules maintain attachment as barbs rotate proximally at 

angle theta (θ) throughout the test.  This angle is shown in the optical microscope image (b, right) 

where dashed lines mark the original position of the barbs, and the solid white lines trace the 

ending position of barbs.  Figure taken from [155]. 
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Figure 5.7 Schematic of the lengths and angles of the hooked barbule (Lh, β) and grooved barbule 

(Lg, α) from in-plane adhesion experiments:  (a) A rectangular section of the feather vane is sliced.  

This rectangular section is mounted as shown in Figure 5.4a and pulled apart in tension with barbs 

secured perpendicular to the direction of the applied force, where L is the length of barbs (b).  (c) 

A closer view of a single barb and two pairs of hooked and grooved barbules, demonstrating the 

force applied to a single hook or groove is F which is equal to the distributed load w multiplied by 

the distance d between hooks and grooves.  (d) A free body diagram is drawn describing the force 

applied to a single hook or groove.    While the sum of forces is equal to zero, the sum of moments 

is not equal to zero (see Equations 5.4-5.6). 
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Modelling the detachment of a single hooklet is a very complex problem, and an accurate 

solution may require the use of finite elements.  As depicted in Figure 5.8, a load (P) is applied to 

the end of the hook (segment 2), which causes both it and the longer beam (segment 1) to undergo 

large deflections (Figure 5.8b).  The large deflection of both segments 1 and 2 results in the 

detachment of the hooklet from the groove. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 (a) The simplified hooklet is shown with an applied load P at the end of segment 2.  (b) 

Both the long and short segments (1 and 2) of the hooklet are expected to undergo large deflections 

with the application of load P.  An accurate solution to this problem would likely require the use 

of finite elements. 
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For large deflections, such as the deflections demonstrated in both segments 1 and 2 in 

Figure 5.8b, the exact differential equation of the deflection curve must be used, which assumes 

the beam material remains linearly elastic[160]:  

     𝜅 =
𝑑𝜃

𝑑𝑠
= −

𝑀

𝐸𝐼
      (5.7) 

where 𝑑𝜃 𝑑𝑠⁄  is the curvature of the beam, or the rate of change of the angle of rotation of the 

deflection curve (𝜃) with respect to the distance measured along the curve (s).  In the case of large 

deflections, simplifications cannot be applied to this equation, and therefore Equation 5.7 must be 

solved for using the exact expression for curvature[160]: 

     

𝑑2𝑣

𝑑𝑥2

[1+(
𝑑𝑣

𝑑𝑥
)

2
]

3/2 = −
𝑀

𝐸𝐼
          (5.8) 

Experimentally the detachment of barbules involves large deflections (segments 1 and 2).  

For simplification purposes and a first approximation, we assume segment 1 to be rigid.  We create 

a simplified model (Figure 5.9) to approximate the detachment of a single hooklet from a groove.  

Therefore, we can represent segment 2 as a cantilever beam which undergoes large deflections 

with the applied load (P) (Figure 5.9b). The dimensions used in calculations were approximately 

based on scanning electron microscope images and are listed in Table 5.2, where segment 2 is 

assumed to be a cylindrical beam with diameter t2.   

The cantilever beam AB representing segment 2 (Figure 5.9b) is subject to a load P at its 

end which results in the displacement of point B to B’.  The angle of rotation of the end of the 

beam is represented by 𝜃𝑏 , and the horizontal and vertical displacements are 𝛿ℎ  and  𝛿𝑣 .  The 

length of beam AB’ is assumed to be equal to the initial length L2 , following the assumptions of 

Gere and Timoshenko [160] that axial changes due to direct tension are disregarded.  The solution 
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to determine the angle 𝜃𝑏  for large deflections of a cantilever beam is presented by Gere and 

Timoshenko [160] as: 

     𝐹(𝑘) − 𝐹(𝑘, 𝜙) = √𝑃𝐿2
2

𝐸𝐼
         (5.9) 

where terms in Equation 5.9 are defined as [160]: 

     𝑘 = √
1+sin 𝜃𝑏

2
      (5.10) 

     𝜙 = arcsin 
1

𝑘√2
     (5.11) 

F(k) is a complete integral of the first kind: 

     𝐹(𝑘) = ∫
𝑑𝑡

√1−𝑘2𝑠𝑖𝑛2𝑡

𝜋 2⁄

0
     (5.12) 

 F(k, 𝜙) is an incomplete integral of the first kind: 

     𝐹(𝑘, 𝜙) = ∫
𝑑𝑡

√1−𝑘2𝑠𝑖𝑛2𝑡

𝜙

0
    (5.13) 

These equations are solved numerically, assuming that 𝜃𝑏  falls within 0º and 90º.  One 

subsequently finds k from Equation 5.10, F(k) from Equation 5.12, calculating 𝜙 from Equation 

5.11, and using k and 𝜙 to find 𝐹(𝑘, 𝜙) from Equation 5.13, which is then used to calculate load 

P from Equation 5.9.   

 If we assume that the angle 𝜃𝑏 for the deflection of beam AB (segment 2) is 45º, we can 

use the table of values presented in [160] which are adapted from [161].  This table shows that for 

an angle of 45º: 

      
𝑃𝐿2

2

𝐸𝐼2
≈ 2      (5.14) 

Therefore, we can solve for P by inserting values for L2, E and I2 presented in Table 5.2, where 

the area moment of inertia I2 is calculated assuming a circular shape with a radius equal to t2/2.  

This results in a calculated force (P) for the separation of a hook equal to 0.049 mN.   
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Table 5.2 Values used to determine the force necessary for a deflection of 𝜽𝒃 of 45º. Values are 

used in Equations 5.7-5.23. 

Variable Definition Value 

L1 Length of first segment of hook 100 μm 

L2 Length of second segment of hook 30 μm 

t1 Thickness of first segment of hook 4 μm 

t2 Thickness of second segment of hook 3 μm 

E 
Elastic modulus of hook, value from Bachmann, et al. 

[71] 
5.5 GPa 

I1 Moment of inertia of segment 1 1.25x10-23 m4 

I2 Moment of inertia of segment 2 3.98x10-24 m4 

Emodulus 
Elastic modulus of hook, value from Bachmann, et al. 

[71] 
5.5 GPa 

M1 Moment of beam L1 F*(28x10-6) Nm 

M2 Moment of beam L2 F(28x10-6) Nm 

Ehook Calculated energy required to detach a single hook 5.2x10-10  Nm 

ΔW Total amount of work in the experiment 2.0x10-5 Nm 

nhooked 

interface 
Total number of hooked connections per barb interface 792 

Wbarb 

interface 
Work per barb interface 1.25x10-6 Nm 

Whook Work of a single hooked connection 1.58x10-9  Nm 
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Figure 5.9  (a) Schematic of the idealized microhook used in calculations, where dimensions are 

listed in Table 5.2. (b)  Because segment 1 is assumed to be rigid, segment 2 is configured as a 

cantilever beam that undergoes large deflections.  Terms are defined in section 5.3.1. 

 

 

To compare the above results (which account for the large deflection of the smaller beam 

segment) with solutions following simplifications used in expressions for small deflections, we 

present another model based on Meyers and Chen, 2014 [1], which was originally used to calculate 

the separation force of VELCRO hooks.  First, barbule microhooks are simplified and idealized as 
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shown previously in Figure 5.9a. We assume that the hook will detach by slipping-off of the 

groove when segments 1 and 2 deflect a total of 90º:  

   𝜃 = 𝜃1 + 𝜃2 =
𝜋

2
     (5.15) 

where angles θ1 and θ2 are given in Figure 10.  The beams L1 and L2 are subjected to bending 

moments due to a force F.  Moment (M1) for beam L1 is given by: 

     𝑀1 = 𝐹 [𝐿2 − (
𝑡1

2
)] .     (5.16) 

Similarly, the moment (M2) for beam L2 is: 

     𝑀2 = 𝐹 [𝐿2 − (
𝑡1

2
)] .     (5.17) 

The beam deflections v are related to the angleθ by:  

     𝜃 =
𝑑𝑣

𝑑𝑥
=

𝑀

𝐸𝐼
𝑥      (5.18) 

Substituting equations 5.15, 5.16 and 5.17 into equation 5.18, we have: 

     𝜃1 + 𝜃2 =
𝑀1

𝐸𝐼1
𝐿1 +

2𝑀2

𝐸𝐼2
𝐿2 =

𝜋

2
                 (5.19) 

where the cross sections of the hook are assumed to be circular with the radius being half of the 

hook’s thickness. The resulting moments of inertia are listed in Table 5.2.  The calculated force 

of separation per hook is found to be 0.013 mN.  It is important to note that while this model takes 

into account the flexure of both segments of the hook, the simplification of this problem to use the 

small deflection equation is incorrect. 
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Figure 5.10  (a) Schematic of the idealized microhook used in calculations. (b) The definition of 

θ1 and θ2 are obtained when both segments 1 and 2 undergo large deflections.   
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Following this, the energy required for the separation of a single hooked connection (Ehook) 

is estimated.  We use our model describing the large deflection of segment 2 of the hook, and 

assume the maximum deflection is 𝜃𝑏= 45º at pull-off.  Considering the material to be linear elastic 

with a straight force-deflection curve we have:  

    𝐸ℎ𝑜𝑜𝑘 =
1

2
𝐹𝐿2sin (𝜋 4⁄ )           (5.20) 

Using the data plotted in Figure 5.6a, we obtain the work (ΔW) of deformation for the 

entire specimen by integrating under the curve.  Since there are a total of 16 barb interfaces in the 

sample, and only one interface where failure occurs, we determine the work per barb interface  

(Wbarb interface):  

    𝑊𝑏𝑎𝑟𝑏 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =
∆𝑊

16
               (5.21) 

Through measuring scanning electron micrographs, we estimate that there are an average 

of 6 barbules per 100 μm of barb length.  Because each barb within the sample is 4.4 mm in length, 

there are an estimated 264 hooked barbules along each barb interface.  Each hooked barbule 

however, is estimated to have three microhooks that engage and interlock with grooves. Therefore, 

there are an approximated 792 successful hooked connections (nhooked interface) per interface.  To 

determine the amount of work per hooked connection (Whook), the work for a single barb interface 

(Wbarb interface) is divided by the number of hooked connections per interface (nhooked interface) to 

obtain: 

   𝑊ℎ𝑜𝑜𝑘 =
𝑊𝑏𝑎𝑟𝑏 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑛ℎ𝑜𝑜𝑘𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
              (5.22) 

Finally, the first law of thermodynamics is used to relate the work and energy of a single 

hooked connection, where we neglect the heat term: 

     𝑊ℎ𝑜𝑜𝑘 = 𝐸ℎ𝑜𝑜𝑘                                  (5.23) 
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We find that Whook (1.58x10-9 Nm) is an order of magnitude different from Ehook (5.2x 10-10 Nm).  

The difference in these values is likely due to the assumption segment 1 is rigid, the simplification 

of the hook shape and dimensions, and not considering other factors such as sliding of hooks in 

grooves, stored elastic energy due to flexure of barbules, or angular differences between forces.  

However, this first attempt in solving for the force required to detach barbules demonstrates an 

initial approach in simplifying this complex problem into an intelligible process.  We highly 

recommend future work be done to more accurately describe the force required to detach a single 

hooklet, possibly through finite element simulations. 

 

 

5.3.2. Barbule Flexure 

Since barbules are the least rigid component of the feather vane, their stiffness is an integral 

part of the vane’s critical “unzipping” mechanism.  A method for measuring the stiffness of 

barbules is developed through in-situ scanning electron microscopy (SEM) experiments in which 

an atomic force microscopy (AFM) tip connected to a nano-manipulator displaces a single barbule 

(Figure 5.4c). Critical snapshots from in-situ SEM experiments are shown in Figure 5.11a. The 

flexural stiffness of a single hooked Pelican barbule was experimentally measured to be 0.061 

N/m.  

To confirm that the entire length of the barbule was deflected in experiments, we calculate 

a simplified theoretical flexural stiffness of the barbule using dimensions from SEM 

characterization.  The hooked barbule is modeled as three connected cylindrical sections with 

different diameters and lengths (Figure 5.5b).  Using the dimensions in Figure 5.5c, the stiffness 

of the simplified cantilever is calculated by finding the area moments of inertia of the cylinders 

and converting them to be a function of the area moment of inertia of section C through D.  These 

are then inserted into Equation 5.24 along with the accepted value of the Elastic modulus for 
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flexure of the rachis cortex (5.5 GPa)[71].  This value is used because the Elastic modulus of the 

barbule is unknown. 

                 𝛿 = ∫
𝑀

𝐸𝐼𝑡𝑜𝑡𝑎𝑙
𝑑𝑥

𝐿𝑒𝑛𝑔𝑡ℎ

0
= ∫

𝑀(𝑥)

𝐸𝐼𝐶𝐷
𝑑𝑥

𝐷

𝐶
+ ∫

𝑀(𝑥)

12.4 𝐸𝐼𝐶𝐷
𝑑𝑥 + ∫

𝑀(𝑥)

367 𝐸𝐼𝐶𝐷
𝑑𝑥

𝐵

𝐴

𝐶

𝐵
                      (5.24) 

Through this method, we find that the stiffness of the barbule is 0.048 N/m.  Since this highly 

simplified estimate is within 20% of the experimental value (0.061 N/m), the viability of this 

method is confirmed.  Although the stiffness measured in this experiment is specific to a hooked 

pelican barbule (since barbule length[47] and cross section vary among birds) the results can be 

used to determine an order of magnitude of barbule stiffness for these structures, as this is the first 

time barbule stiffness has been measured.  

In flight, forces due to airflow cause barbules to first deflect and then slide along one 

another until they rapidly detach.  It is hypothesized, therefore, that a stiffer barbule will allow the 

vane to handle larger out-of-plane forces before unzipping. This in turn would increase the vane’s 

capacity for loading before local failure, and thus impact the maximum force the vane could sustain 

in flight. Barbule stiffness can be used in conjunction with future work to relate the in-plane 

adhesive properties to the out-of-plane forces of flight.  

5.3.3. Barbule Adhesion and the Feather’s Ability to Capture Air 

 The significance of barbule adhesion to the feather’s ability to capture air is measured in 

wind tunnel experiments. In these tests, the drag force is compared between intact feathers and 

unzipped feathers, where barbules are disengaged.  Experiments reveal that the drag force of the 

feather decreases as the percentage of unzipped barbs within the vane increases. This effect is 

magnified at higher airspeeds (Figure 5.11b,c). The drag force [162],   

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑢2𝑐𝐷𝐴,      (5.25) 
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is comprised of several factors: ρ is air density, u is the speed of the feather relative to the air, CD 

is the drag coefficient of the feather, and A is the orthographic projected area of the vane onto a 

plane perpendicular to the flow. Due to its flexible nature, as air velocity increases the force on the 

feather vane causes barbs to deflect away from airflow. When deflected to an extreme the projected 

area of the vane (A) becomes smaller than its original size, subsequently decreasing the drag force 

(Fdrag). Since unzipped barbs are less restricted in movement [77], this deflection occurs at a lower 

velocity for unzipped barbs than zipped barbs.  In these experiments, a larger drag force 

corresponds to a vane that is able to capture air more effectively.  

While feathers from all three birds studied here (dove, pelican, and guineafowl) demonstrate 

a decrease in drag force with an increase in percent of unzipped barbs, each exhibits this at a 

different magnitude. Figure 5.11c displays the absolute value of the slope of force versus the 

percent of vane unzipped. The guineafowl feather consistently has the highest slope value, 

meaning that it is most dramatically effected by unzipping, while the dove feather has the lowest 

slope value, being the least effected by unzipping. This is again related to the drag equation: the 

guineafowl has long, narrow barbs (Figure 5.11d) that deflect relatively easier, reducing the 

vane’s drag force to a greater extent than the other species’ feathers (as demonstrated through 

Tukey’s comparison test).  The dove feather however, has thicker, stiffer barbs (Figure 5.11d) 

making deflection difficult and therefore maintaining a similar projected area whether or not the 

vane is unzipped. Perhaps this is an evolutionary reflection of the flight style of each bird; both the 

dove and pelican rely on flight as their primary mode of locomotion, whereas guineafowl mainly 

run with only occasional flight. Consequentially, a reduction in ability to capture air would 

arguably be more detrimental to the dove and pelican’s survival than the guineafowl. 

 



119 

 

 

 

 

 

Figure 5.11  (a) Critical snapshots of the barbule during in situ SEM flexure experiments: (left) at 

the initial position immediately before contact, (right) at the maximum load, just before separation.  

(b) Force versus percent of the vane unzipped for the guineafowl feather.  Colors correspond to 

the airspeed feathers were tested at: black is 6.91m/s, purple is 10.20m/s, orange is 13.50 m/s, blue 

is 16.80 m/s, and green is 20.09m/s. Images are examples of the guineafowl feather intact and 

highly unzipped.  (c) The absolute value of the slope of force versus percent of vane unzipped is 

plotted against airspeed.  The guineafowl consistently has the highest slope, meaning that it is most 

effected by unzipping.   (d) Dimensions of each species’ feather barbs relate to the effect of 

unzipping.  Figure from [155]. 
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5.3.4. Directional Permeability of the Feather Vane 

Not only do barbules provide adhesion to allow barbs to trap air effectively, they are 

hypothesized to capture air via thin, overlapping, membranous side flaps. These flaps (Figure 

5.12a) appear as one-way valves, impermeable to air flow in the ventral direction but not in the 

dorsal direction. An additively manufactured model conceptually demonstrates this in Figure 

5.12b,c: with dorsal airflow the flaps open and with ventral airflow flaps remain closed.  

 

Figure 5.12  (a) An arrow points to an example of a barbule membrane.   (b) A simplified, 3D-

printed model of the feather vane, and (c) the hypothesized reaction of membrane flaps as air is 

blown dorsally (top) and ventrally (bottom), where circles represent the location of airflow.  (d) 

Schematic of the expected differences in the vane with and without a coating for dorsal and ventral 

airflow.  Figures 5.9a,d from [155], figures 5.9b,c from [47]. 

The difference in permeability of the feather with ventral and dorsal airflow is measured 

by sealing barbule membrane flaps shut with a coating, and comparing the uncoated and coated 

drag force of the feather. The schematic in Figure 5.12d demonstrates the experiment’s 

hypothesis. Although a very thin coating of flexible vinyl cement is used to seal feathers, there are 

inherent differences in stiffness between coated and uncoated feathers. These are accounted for in 

a normalization whereby the ratio between coated and uncoated samples due to the added stiffness 

of the coating is assumed to be the same for ventral and dorsal airflow.  Thus one has: 
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    𝑓 =
𝐹𝑜𝑟𝑐𝑒𝑑𝑜𝑟𝑠𝑎𝑙,𝑐𝑜𝑎𝑡𝑒𝑑

𝐹𝑜𝑟𝑐𝑒𝑑𝑜𝑟𝑠𝑎𝑙,𝑢𝑛𝑐𝑜𝑎𝑡𝑒𝑑

𝐹𝑜𝑟𝑐𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑙 ,𝑐𝑜𝑎𝑡𝑒𝑑

𝐹𝑜𝑟𝑐𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑙,𝑢𝑛𝑐𝑜𝑎𝑡𝑒𝑑
⁄            (5.26) 

The factor f represents a normalized (accounting for the difference in stiffness introduced 

by coating) ratio between the dorsal and ventral drag force exerted by the feather.  If f=1 there is 

no effect of sealing barbule flaps closed, but if f >1 the opening of flaps reduces the drag force. 

Figure 5.13a demonstrates that this value (f) increases with airspeed, which corroborates its 

meaning as a measure of the effect of the barbule membranes. With higher airspeeds, membranes 

are bent back more intensely, resulting in an augmented difference between coated and uncoated 

samples reflected in the rising value of f.  Additionally, a General Linear Model determined that 

for all species the Forceventral,coated / Forceventral,uncoated is significantly different (P=0.00) from the 

Forcedorsal,coated / Forcedorsal,uncoated, further highlighting the effect of the membrane flaps on the 

directional permeability of the feather. 

It is proposed that flaps are designed with unidirectional permeability dependent on airflow 

direction because birds require more power in flight on the down/power stroke (corresponding to 

ventral airflow) than on the up/recovery stroke (dorsal airflow).  Interestingly, at the macro-scale, 

during the upstroke the bird’s primary feathers spread apart and separate from one another to allow 

air-flow between them and prevent excessive downward forces on the wing [144]. Our findings 

suggest that the microstructural barbule flaps of wing flight feathers assists with this efficient 

measure. 
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Since the effect of membrane flaps (f) is similar for all species tested (dove, pelican, 

guineafowl), the spacing between barbules that is covered by these flaps is measured to determine 

how this scales between birds (Figure 5.13b). As discussed in chapter 3, despite other dimensions 

of the feather scaling proportionally to mass1/3 [47,132,133], barbule spacing is found to narrowly 

vary between 8-16 μm for all birds measured, ranging from Anna’s Hummingbird (Calypte anna) 

(4 g) to the Andean Condor (Vultur gryphus) (11,000 g) [47] (Figure 3.12).  Constancy in barbule 

spacing is proposed to be to retain low permeability of air through the feather, independent of bird 

size. The feather must balance air flow with maintenance of its interlocking structure. 

Figure 5.13  (a) Experimental results plotting f , a quantitative measurement of the effect of barbule 

membranes on air capture, vs. airspeed for the three species tested. An example of the barbule 

spacing dimension is shown in (b) along with SEM images that exhibit the similarities between 

the micro-scale barbules of Anna’s Hummingbird (Calypte anna) (left) and the Andean Condor 

(Vultur gryphus) (right).  Figure 5.10a from [155], figure 5.10b from[47]. 
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5.4. Conclusions 

The intricate design of the feather contributes to the unparalleled efficiency of bird flight. 

Here we investigate aspects of the barbule, the smallest structure in the feather, essential to the 

vane’s function. Tests involving barbule adhesion demonstrate that the feather vane maintains in-

plane tautness through contrasting directions of rotational preference at each hierarchical level. 

Experiments on bioinspired hook and groove barbules reveal that hooks must balance conflicting 

requirements for adhesion and effective re-adhesion, two important properties of the vane. A 

method for testing barbule stiffness is developed by in-situ SEM experiments; this stiffness is 

crucial in understanding the critical failure of barbule connections. When barbules are unzipped, 

feathers are found to less effectively capture air; the magnitude of this effect is correlated to the 

barb’s dimensions. Lastly, the feather vane is found to have unidirectional permeability due to 

membranous barbule flaps that act as one-way valves and are similar in size among birds.  

Barbule features examined in this dissertation are highly interrelated and work 

cooperatively with barbs to create a feather vane system that is exceptionally efficient and 

effective. For example, barbule stiffness and hook and groove shape influence feather vane 

attachment, which, along with vane permeability and barb stiffness, impacts the ability of the vane 

to sustain loading in flight. Barbules are exquisitely developed structures that enable impressive 

failure aversion combined with air capture. These multi-functional structures provide inspiration 

for new, more efficient aerospace materials with features such as tailored permeability and 

localized failure.  Prototypes of designs incorporating these features are discussed in the next 

chapter. 
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6. Hydration Induced Shape and Strength Recovery of the Feather 

As a necessary appendage to the bird wing for flight, feathers have been optimized to fit 

the requirements of aerial locomotion.  One of the recently discovered, fascinating aspects of this 

is the feather’s ability to recover its shape with hydration.  This feature significantly enhances the 

maintenance of flying capability.  Thus, feathers damaged by predators or other external forces 

have a natural ability to recover their shape and strength.  We analyze this evolutionary capability 

and, for the first time, demonstrate that the feather shaft can recover its strength after being bent 

to failure when subject to a hydration step.  The matrix of the nano-composite structure within the 

feather shaft is thought to swell when hydrated, reorienting the stiffer fibers back to their original 

position.  While these straightened fibers allow for shape recovery, they also permit the restoration 

of feather strength.  Experiments were done to test this theory.  Smart, self-healing composites 

based on approaches learned from the feather shaft have the potential to allow for the creation of 

a new class of resilient materials. 

6.1. Introduction 

Imperative for bird flight, feathers are an evolutionary marvel designed to be lightweight 

yet able to endure the intense loads of flight [24].  Flying feathers of birds consist of a main shaft 

(rachis and calamus) and a vane that branches from the rachis.  The rachis is foam-filled and 

rectangular (Figure 6.1a), while the calamus is hollow and elliptical, embedded under the skin 

(Figure 6.1b).  Although the vane captures the majority of air in flight, it transfers loading to the 

shaft, which possesses higher rigidity and strength.  Maintenance of the shaft is therefore pertinent 

to a bird’s survival, especially since feathers are usually only replaced once a year [26].   

Feathers are composed entirely of β-keratin, a “dead tissue” formed by keratinous cells 

[78].  This biopolymer can be considered a hierarchical fiber-reinforced composite (Figure 

6.1c,d): at the sub-nanoscale crystalline β-keratin filaments (~3 nm in diameter) are embedded 
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within amorphous matrix proteins. This filament-matrix composite forms macrofibrils (~200nm 

in diameter) which are surrounded by amorphous inter-macrofibrillar material.  Macrofibrils then 

bundle to form fibers (3-5 μm in diameter) and these in turn form ordered lamellae within the 

dense exterior of the feather shaft [63,78,79,81,163].  The fiber direction within these lamellae 

varies depending on the side and location along the feather shaft [63] as well as the species of bird 

[87]. 
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Figure 6.1 The hierarchical structure of the feather: The flight feather of the Cape Vulture (Gyps 

coprotheres) is divided into the (a) rachis and (b) calamus.  Optical microscope images of both 

sections are shown in the leftmost images (scale bar is 0.5mm). Fiber models of the feather sections 

illustrate that fibers run longitudinally along the shaft (purple), and circumferentially (gray) within 

the calamus and dorsal side of the rachis, while fibers alternate at 45 angles (green) in the lateral 

walls of the rachis. On the right, SEM images of the dorsal rachis and calamus confirm the 

orientations of fibers in the corresponding sections of fiber models.  (c) TEM images reveal a 

filament and matrix structure that forms macrofibrils which in turn form fibers, (d) a schematic of 

this is drawn to clarify this structure.  Fiber model images in (a,b,d) adapted from B. Wang, et al. 

(2017)[164].  
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Studies on α-keratin reveal that matrix proteins are water-sensitive while intermediate 

filaments are crystalline and not mechanically affected[81,165,166].  Although the structure of β-

keratin differs from α-keratin, both possess similar structure consisting of an amorphous matrix 

and crystalline filaments, and therefore the matrix of β-keratin is generally agreed upon as 

behaving similarly to that of α-keratin [78,154,166,167].  Additionally, the mechanical properties 

of both keratins demonstrate similar sensitivity to water content: as the humidity increases, 

breaking strain increases while the stiffness and strength decrease [70,168].   

Along with other keratinous materials, the feather has demonstrated the ability to recover 

its shape from a deformed state when hydrated [169].  The amorphous matrix material in the 

feather can be likened to a shape memory polymer (SMP).  In SMPs, as described in section 2.9, 

the shape memory effect is often related to changes in the macromolecular structure due to factors 

such as glass transition, reversible cross-linking and melting transition [102].  For example, SMPs 

can be rigid and stiff below the glass transition temperature, but rubber-like and deformable above 

this temperature, allowing the polymer to recover its shape [117].  For the β-keratin matrix, 

hydration is hypothesized to serve as the actuator which raises the material above the glass 

transition point. 

Here, we examine the shape memory effect of the feather shaft due to hydration and reveal 

its relation to its strength recovery after failure.  A model for feather recovery by hydration is 

hypothesized and its recovery is described.  Research in this area has the potential to lead to the 

expansion of the capabilities of shape memory polymer composites by incorporating concepts 

developed by nature over millions of years. 
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6.2. Materials and Methods 

6.2.1. Test Specimens 

Flight feathers of the Cape Vulture (Gyps coprotheres) were obtained postmortem and 

stored in ambient conditions.  Sections of the calamus and rachis were sliced with a razor and 

measured using calipers to ensure similar dimensions between samples.  The ends of each feather 

shaft section were then fixed in the center of a 5 mm square aluminum tube using epoxy to prepare 

samples for bending tests.  Each completed sample had 18 mm of exposed rachis between the 

blocks, with a block length of 22 mm in length at each end.  Cortex samples used in swelling and 

tension tests were sliced into rectangular pieces from each corresponding section of the rachis or 

calamus.  The Los Angeles Zoo provided the Cape Vulture (Gyps coprotheres) feathers, which 

were obtained under our research group’s Federal Fish and Wildlife permit.   

6.2.2. Flexure Tests on the Feather Shaft 

Calamus and rachis samples were tested in four-point bending to mitigate the effects of the 

naturally curved feather shaft and prevent local crushing stresses.  Bending tests were initially 

done directly on feather sections, but due to the non-uniform cross section of the shaft, samples 

rotated and twisted in loading, preventing measurement of pure bending.  To address this issue, 

we adapted the method developed by Corning and Biewener[64] in which tests are conducted on 

the feather sample with its ends embedded (as described in 6.2.1).   

Feather samples were tested with their dorsal side facing upwards, to mimic the main 

loading orientation on the feather shaft when the bird is in flight.  As shown in (Figure 6.2), steel 

rollers of the top and bottom fixtures were placed at the inner and outer most location of the blocks.  

A rate of displacement of 0.01 mm/s was applied using an Instron Universal Testing Machine 

model 3347 (Instron Corporation, Norwood, MA, USA). 
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Figure 6.2 Four Point Bending: Flexure tests were conducted on feather samples embedded in 

aluminum tubing.  Steel rollers contacted the inner and outer parts of the top and bottom of the 

aluminum tubing. 

 

6.2.3. Cyclical Flexure Tests on the Feather Shaft 

All twenty calamus and rachis samples were tested to failure for five cycles.  Five of the 

calamus and rachis samples were hydrated for 24 hours between stress cycles, while the other half 

were not.  Samples were given the same amount of recovery time in total, with hydrated samples 

allowed to dry for 72 hours in ambient conditions, and dry samples placed in ambient conditions 

for 96 hours.  Before and after tests, samples were imaged using optical microscopy.  Additionally, 

each sample was weighed before testing.  This ensured that hydrated samples had returned to their 

original state. 

6.2.4. Water Retention and Swelling Experiments 

 The rachis and calamus were sliced into sections as well as rectangular cortex strips.  

Optical micrographs and the initial mass of each sample were recorded before and after 24 hours 

of hydration.  Dimensions were measured using ImageJ software (National Institutes of Health, 

Bethesda, MD). 
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6.2.5. Tensile Tests on Cortex 

 Rectangular strips of the cortex from each side (dorsal, ventral, and lateral) ~8-10 mm in 

length and along the transverse direction about ~1-2.5 mm in width were cut along the longitudinal 

direction using a razor blade.  Where applicable, the foam was removed mechanically without 

damaging the cortex by using a wooden scraper.  The sample extremities were secured in sand 

paper using a cyanoacrylate adhesive.  The samples were extended in tension using an Instron 

model 3347 testing apparatus at a strain rate of 10-3 /s. Four samples were tested for each side and 

section.   

6.2.6. Transmission Electron Microscopy 

 Transmission electron microscopy was used to view the filament and matrix structure 

within β-keratin.  To do so, feather sections were stained using an osmium tetroxide staining 

method with lead post-staining [170].  Small blocks of feather samples were soaked in a 0.15M 

Cacodylate buffer for 6 hours.  Samples were removed from the buffer solution and soaked 

overnight in a 2% Glutaraldehyde-buffer solution.  Following this, samples were taken out from 

the solution and rinsed with the Cacodylate buffer solution.  Samples were then placed in a 

potassium ferrocyanide, Cacodylate buffer, and osmium textroxide solution at a chilled 

temperature overnight.  Then feather specimens were rinsed with chilled distilled water and placed 

in a chilled 2% Uranyl acetate solution and soaked overnight.  Following this, they were washed 

with distilled water and gradually dehydrated to 100% ethanol and then 100% acetone.  After this 

step, samples were then infiltrated with Spurr’s low viscosity epoxy resin through a series of 

gradient solutions of epoxy and acetone.  Finally specimens were set to harden in the resin.  A 

Leica Ultracut UCT ultramicrotome with a diamond knife was used to prepare thin electron 

transparent slices.  These were placed on 300 mesh TEM grids and were post-stained with lead.  
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Lastly, these feather samples were imaged using an FEI Technai 12 Spirit transmission electron 

microscope. 

 

6.3. Results and Discussion 

6.3.1. Shape and Strength Recovery of the Feather 

Time-lapse images of severely deformed cortex and rachis sections submerged in water 

(Figure 6.3 a,b) demonstrate that the feather has the ability to recover its shape when subjected to 

hydration.  While this is quite interesting in itself, evolutionarily it is essential to a bird’s survival 

for the feather to also recover its strength with hydration.  An understanding of the nano-composite 

structure of the feather, with the amorphous matrix behaving as a SMP with hydration, suggests 

that the feather shaft strength does recover with hydration.  To evaluate this hypothesis, we 

cyclically test sections of the calamus and rachis to failure in four-point bending.  Half of the 

samples tested are hydrated for 24 hours after failure and dried for 72 hours before re-testing; the 

other half of samples are left in ambient conditions for 96 hours. 

The results corroborate this hypothesis.  The effect of shape recovery on strength is 

demonstrated in plots of the five cycles for a non-hydrated calamus sample (Figure 6.4a) and a 

calamus sample with a hydration step (Figure 6.4b).  It is clear from these plots that the sample 

with a hydration step is able to recover its ultimate strength to a much greater extent than the 

sample without hydration.  The rachis exhibited similar results. 
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Figure 6.3 Recovery of the feather shaft in water: (a) A strip of the feather shaft cortex is severely 

deformed and recovers in water. (b) A rachis section with the vane removed is bent and recovers 

in water, red arrows highlight the location of the deformation. All scale bars are 1mm. 
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Figure 6.4 Strength recovery of the feather shaft through hydration: Flexural test data of a calamus 

sample with no hydration step (a) and with a hydration step between test trials (b). The strength 

recovery of samples, as compared with the maximum strength of cycle one, without a hydration 

step (white squares) and with a hydration step (cyan circles) for calamus (c) and rachis (d) samples.  

 

To verify the differences between hydrated and non-hydrated recovery, optical 

micrographs of calamus samples are shown after failure (Figure 6.5 a,b left) and after recovery 

(Figure 6.5 a,b right), where a is not hydrated and b is subjected to a hydration step.  In images 

of the failed samples (left), buckling is visible perpendicular to the longitudinal axes, highlighted 

by black arrows.  After recovery (right), the hydrated sample (Figure 6.5b) appears to no longer 

have visible buckling while the non-hydrated sample (Figure 6.5a) remains largely unchanged.  
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These images represent the typical response of samples tested.  Thus, not only is the shape 

recovered upon hydration, but also the strength.  After five cycles, the strength of the hydrated 

sample is ~80% of the original strength, while that of the dry feather is only ~55%.  This strength 

recovery is important to the flying ability of the bird, after feathers are broken by predator attack, 

fight, or catastrophic events. 

Figure 6.5 (a) Optical microscope images of calamus samples tested until failure (left a,b) and 

recovered with no hydration step (a, right) and with a hydration step (b, right).  Scale bars are 0.5 

mm. 

 

In order to establish the structural changes induced by bending the shaft up to failure 

(irreversible buckling), sections were made after deformation. A schematic of the shaft cortex with 

the “squarish” section and cellular foam core is shown in Figure 6.6 a.  The segment was cut 

longitudinally as indicated by the dashed line.  The representation shown in Figure 6.6 a identifies 

the observation plane. Rachis samples in Figure 6.6b-d are cross sections sliced along the 

longitudinal axis of the shaft as shown in Figure 6.6 a.  Samples in Figure 6.6 c,d are tested until 

failure, while the sample in Figure 6.6 b is not tested.  The sample in Figure 6.6 d is hydrated 

after failure while the others are not hydrated.  Severe local buckling on the dorsal side of the 

rachis is apparent in the deformed, non-hydrated sample (Figure 6.6 c).  Corresponding scanning 

electron micrographs show the details of failure within this sample: fiber splitting at the cortex-

foam interface and within regions of local buckling.  Scanning electron micrographs reveal 
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minimal damage in the hydrated sample with micro-cracks forming between lamellae within the 

dorsal cortex.  At the macro-scale there appears to be no difference between the untested and 

hydrated rachis samples (Figure 6.6 b,d respectively).  The untested sample, which serves as a 

reference, does not show any damage, indicating that the cracks viewed in Figure 6.6 c,d are due 

to flexure tests.  

To compare all data of hydrated and non-hydrated samples, the percent difference between 

the ultimate strength of each cycle and the sample’s original cycle (cycle 1) was determined.  This 

value was found for each sample and is called the percent of original strength recovered.  These 

percentage values are plotted against the cycle number for both the calamus (Figure 6.4 c) and the 

rachis (Figure 6.4 d), where samples not subjected to hydration are represented by white squares 

and samples with a hydration step are cyan circles.  A general linear model determined that for 

both the calamus and rachis, samples with a hydration step have a significantly different percent 

of strength recovered than the dry samples (P=0.00).   

While rachis and calamus samples with a hydration step recover to a comparable degree 

during the second cycle (81.6± 4.4 %, 77.7 ± 7.2 % respectively), calamus samples are able to 

maintain a similar level of recovery throughout the five cycles while rachis samples decrease in 

recovery to an average of 56.4 ± 5.8 % by cycle 5.  A general linear model confirms this, with 

significantly different results for recovery between cycle 2 and cycles 3-5 for the rachis (P=0.00) 

and no significant difference between trials for the calamus (P>0.05).  Discrepancies in recovery 

behavior between the rachis and calamus after the second cycle could be due differences in cross-

sectional shape, the presence of foam in the rachis sections and the distinct lamellar structure 

within the cortex of each.  As a simpler structure, the calamus perhaps recovers to a greater extent 

in later trials because failure solely occurs on the dorsal side.  The rachis must recover not only in 
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its dorsal cortex, but also in the lateral walls, which collapse in failure.  Additionally, the rachis’ 

foam undergoes failure with each trial, and since it is composed of many very thin fibers, it 

undergoes unrecoverable damage such as fiber breaking after the second trial.  Differences in 

recovery due to lamellar structure will be discussed in detail in the following section.   
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Figure 6.6 Recovery of the feather shaft: Feather shafts were sliced open along the dotted line 

shown in (a) to view the y-z cross section.  Samples shown in (c,d) were tested to failure in bending, 

while sample (b) was not tested.  The sample shown in (c) was not hydrated after testing and 

buckling is clearly visible in the optical microscope and SEM images.  The sample shown in (d) 

was hydrated after buckling and clearly shows less damage, with small cracks visible at high 

magnification.  The untested sample (b) does not have damage. 
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6.3.2. Mechanism for Shape Memory Recovery 

A mechanism for the shape memory and strength recovery effect in feather keratin is 

proposed in Figure 6.7.  A β-keratin strip is shown in its initial configuration as a layered nano-

composite.  Since the tensile strength of fibers is much higher than their compressive strength, 

when the feather is bent buckling occurs with accommodation by the amorphous matrix.  This 

Euler buckling is shown in Figure 6.7,and is labeled “Deformation in bending”.  As mentioned 

previously, the matrix is more affected by hydration than the stiffer crystalline fibers [154,166–

168].  Therefore, upon wetting, water molecules penetrate preferentially into the amorphous 

matrix, causing it to swell and plasticize.  The flow stress of the hydrated matrix is assumed to be 

considerably lower than the fibers.  Figure 6.8 shows the hypothetical response of the cortex in 

dry and hydrated conditions, separating the responses of the fibers and matrix.  Fibers show 

minimal hydration effect, while the amorphous matrix softens considerably.  This is indicated by 

an increase in spacing between fibers from d0 to d1 in Figure 6.7, “Initial Hydration”.  This, in 

combination with the elastic energy stored in the fibers due to buckling, cause the fibers to 

straighten, since they are elastically loaded in compression.  As a result, the radius of curvature 

increases from R1 to R2.  The matrix swells further in Figure 6.7, “Final Hydration” to have a 

larger spacing d2 so that fibers completely reorient to their original position.  The last stage, 

dehydration, corresponds to the removal of water molecules from the amorphous matrix, which 

shrinks back to a spacing d0 (Figure 6.7, “Drying”).  Thus, the initial configuration is recreated 

and the shape memory effect cycle is completed.   
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Figure 6.7. The proposed mechanism for shape and strength recovery of the feather shaft.  The 

cycle begins in the “initial configuration” showing the composite structure of β-keratin filaments 

in an amorphous matrix.  The fibers undergo “deformation in bending” and buckle in compression.  

It is unclear if fibers buckle in plastic or elastic deformation, and this is the subject of future 

research.  When hydrated, water molecules penetrate preferentially into amorphous matrix causing 

swelling (indicated by d1>d0) and therefore straightening of fibrils and the radius of curvature 

increases from R1 to R2.  The matrix then fully swells as spacing grows to d2 and completely 

straightens fibers.  Lastly, the sample dries and water molecules diffuse out of amorphous material, 

which loses its plasticizing effect.   
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Figure 6.8 Schematic representation of different mechanical responses of fiber and matrix in the 

feather shaft.  (a) Cross-section showing crystalline fibers and amorphous matrix; (b) overall 

response of feather in dry and hydrated conditons; (c) matrix and fiber responses. 

 

To determine if this theory is accurate, various dimensions of shaft sections and cortex 

strips were measured and compared before and after hydration.  Significant swelling occurred 

within samples; Figure 6.9 b shows an optical micrograph of a feather cross section before 

hydration, with a tracing of the outer surface of the same feather after hydration.  Figure 6.9 a 

plots the percent difference in dimensions of the calamus and rachis with 24 hours of hydration, 

where measured dimensions of circumference and length are demonstrated in Figure 6.9 c.  The 
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rachis circumference is found to greatly increase in dimension while its length is not.  The calamus 

has a less extreme difference in swelling between the length and circumference, with on average 

less circumferential and more length swelling than the rachis. 

Figure 6.9 d shows the change in length, thickness and width of strips of the dorsal side of 

the rachis and calamus (as shown in Figure 6.9 e,f respectively).  The dorsal rachis is chosen 

because it is the side of the rachis that undergoes the most damage in flexure and, unlike the 

calamus, each side of the rachis has a different fiber orientation.  Dorsal rachis strips exhibited 

very low or even negative swelling in the length dimension, with the greatest amount of swelling 

occurring in the thickness.  Calamus samples, on average, demonstrated less swelling in both 

thickness and width when compared to the rachis, but more swelling in length.   
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Figure 6.9 Experiments were conducted to determine if the feather swells upon hydration: (a) the 

length, circumference and area of cross sections (as shown in c) of the rachis and calamus were 

compared before and after hydration.  (b) The images show the initial cross section, while the 

yellow outline shows the cross-sectional profile of the sample after hydration (scale bar is 1 mm).  

(d) The length, thickness and width of cortex strips from the dorsal rachis (e) and calamus (f) were 

measured before and after hydration. 

 

The proposed mechanism described in Figure 6.7 should theoretically result in hydration-

induced swelling in the dimensions perpendicular to the fibers, and no swelling in the direction of 

the fibers.  While both the dorsal rachis and the calamus have an inner layer in which fibers run 

along the length of the shaft and an outer layer in which fibers run perpendicularly to the shaft, the 

calamus has a much thicker outer layer than the rachis.  This is demonstrated in the scanning 
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electron micrographs in Figure 6.1a,b.  As a result, the calamus has more fibers running 

perpendicularly to the shaft than the dorsal rachis.  This is shown in the schematics in Figure 6.9 

e,f where dots indicate fibers running out of the page.  Based on these differences in fiber 

alignment, the rachis should swell more extremely in thickness and width and less in length than 

the calamus.  This hypothesis is supported by the results of the swelling tests, which on average 

demonstrate this trend.  Interestingly, the data indicate that on average the thickness dimension 

swells most in the rachis.  Overall, data show that the feather swells more in the direction 

perpendicular to the fibers, and less in the direction of the fibers.   

 

6.4. Conclusions 

 Synergistically, the design and material properties of the feather shaft allow for its shape 

recovery through a hydration step.  Here we quantitatively prove, for the first time, the feather’s 

ability to recover strength with hydration, and explain this phenomenon through experimentally 

supported models involving the swelling of the feather’s matrix material with hydration.   

The shape was completely recovered after hydration, when deformed beyond the buckling 

limit.  Both the calamus and rachis were found to recover their strength to a considerably greater 

degree with a hydration step than without one.  The calamus flexure strength consistently 

recovered to a larger extent over multiple cycles (to ~80%), than the rachis’ (to ~55%) with the 

number of test cycles.  This is likely due to the macro-structural differences between the rachis 

and calamus, especially the foam within the rachis, which likely becomes permanently damaged 

as cycles progress.  Sections of the rachis and calamus were found to swell when hydrated, with 

the rachis swelling more extremely in circumference than the calamus, and the calamus swelling 

more in the length.  These results support the hypothesized behavior of the matrix material swelling 

perpendicularly to the fiber direction, due to differences in the fiber direction in the rachis and 
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calamus. Lastly, failure in local buckling and recovery of the feather shaft was simulated, 

providing insight into the location of stresses as the shaft fails in flexure and recovers. 

Perhaps the shape memory recovery of the feather contributes to an explanation for why 

birds of most species take baths.  In a behavioral biology study it was found that birds with access 

to bathing water flew more accurately than those without bathing water.[171]  Our research here 

could serve as a possible reason for why bathing is highly important to the bird.  Additionally, 

understanding the phenomenon witnessed with strength recovery in the feather shaft can be applied 

to further the capabilities of shape memory composites, resulting in new smart, self-healing 

materials.  Although multiple deformation cycles to the onset of buckling were applied, it is highly 

unlikely that a feather will be subjected to this extreme damage during its lifetime, and one 

deformation cycle is a good measure. 
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7. Bioinspired Designs of the Avian Feather 

Bioinspiration is the appreciation of knowledge learned from nature to create novel, 

insightful designs.  Although it is not a new concept, the field has experienced recent growth and 

popularity due to new experimental techniques.  Bioinspiration requires the distillation of only a 

few relevant aspects of the natural design from a highly complex biological organism or system.  

Due to this simplification process, bioinspiration is also used to develop a deeper understanding 

of biological materials; this process is called bioexploration.  Figure 7.1 shows the cycle of 

investigating a biological specimen, in this case the mandible of a sea urchin, studying it through 

the lens of materials science and engineering, creating bioinspired designs based on what is learned 

(bioinspiration), and in turn learning more about nature through bioexploration[172]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 The study of nature allows for the creation of refined bioinspired designs which  

ultimately allows for a better understanding of the natural system through bioexploration [172].  

This is shown here for the sea urchin.  Its mandible mechanism is studied using materials science 

methods, and inspires a synthetic prehensile mechanism, which, in turn, improves our 

understanding of the animal through bioexploration. 
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In this chapter we briefly cover a background of bioinspired and analogous designs based on 

the bird wing and its components, discuss our recent advances in bioinspired feather designs, and 

introduce ideas for additional bioinspired designs based on the feather. 

7.1. Introduction and Background: Bird Wing Bioinspiration and Analogous Designs 

Advancements in engineering and design have resulted in solutions similar to those utilized 

by the bird wing and its components. While some of these solutions are bioinspired, others arose 

independent to the study of natural systems. Despite recent advances, there is still much room for 

development of bioinspired materials, structures, and designs using insights from the study of 

birds.   

7.1.1. Avian Wing Shape Design 

There have been many advances in commercial wing shape; two significant improvements 

with striking resemblance to the bird wing are winglets and the flexible wing.  Winglets are small, 

roughly vertical surfaces usually located at the wing tips of an aircraft.   They are used on aircraft 

because they can lessen wingtip vortices, reduce drag by about 20%, and allow wings to provide 

the same amount of lift with a smaller wingspan [173].  Likewise, in many large flying birds, 

feathers curl upward in flight at wing tips (Figure 7.2a) to serve as winglets.  A more recent 

improvement, the composite wing of the Boeing 787 allows it to flex to be more efficient and 

dampen turbulence [174,175]. The wing’s flexibility is especially apparent in take-off and landing.  

Similarities between the in-flight wingspan shape of the Andean condor and the Boeing 787 are 

depicted in Figure 7.2a and b, respectively. 
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Figure 7.2 Many analogous solutions have been developed through evolution and engineering: (a) 

The Andean condor’s feathers curl upward at its wing tips for more efficient flight.  (b) A similar 

curvature is observed in the flexible wings of a Boeing 787.   

7.1.2. Avian Wing Bone Design 

Reinforcing struts identified in pneumatic avian bone inspired the fabrication of a nickel 

metallic foam with crisscrossing “struts” (Figure 7.3a) [176].  As in avian bone, these struts 

provide a lightweight method of maintaining structural integrity.  Research has suggested that a 

structure with a core of angled micro-struts (Figure 7.3b) is theoretically at least 7 times stiffer 
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than the best open cell foam [177–179].  Although not bioinspired, inclined struts are commonly 

used to reinforce the ribs of airplane wings (Figure 7.3c) [180–182].  These ribs transmit loads 

from the skin of the wing and stringers to the spars.  

Bird bones suggest lightweight solutions for torsion resistant structures. Through the 

process of convergence engineers have developed similar solutions for increasing the torsional 

stiffness in large container ships, which have significant torsional moments generated by 

unsymmetrical wave or cargo loading [183–185].  Torsion boxes, or stiffened skins of materials 

with a lightweight core, are installed in the upper hulls of ships to increase the strength of the ship’s 

exterior in high-risk areas, while maximizing space for cargo and minimizing weight [185].  

Torsion boxes in ships are analogous to the dense exterior found in torsionally resistant bird bones. 

 

Figure 7.3 Engineering has led to similar designs as those found in the avian feather and bone: (a) 

Nickel metallic foam inspired by the struts in avian bone (taken from X. Jin et al. (2014) [176]), 

(b) a computer aided design model of diagonal struts in a multifunctional cellular material (taken 

from A.G. Evans et al. (2001) [177]).  The supporting structures in airplane wing ribs (c) have an 

analogous design and purpose to the struts in avian bone.    
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7.1.3. Feather Design 

Similar to the foam-filled feather, recreational snow skis are designed primarily for a 

tailored longitudinal stiffness.  These skis are composites with faces generally made of aluminum 

or fiber-reinforced polymer separated by a foam-filled core [43,186–188].  For additional 

longitudinal reinforcement some skis have reinforcing ridges along their length, similar to the 

stiffening dorsal ridges of the feather rachis [43,189] shown in Figure 7.4a. 

 

Figure 7.4 (a) A cross section of a primary feather from the American White Pelican (Cathartes 

aura) demonstrates the reinforcing ridges on the dorsal side of the feather [47]. The hierarchical 

synthetic composite (b) is inspired by the degrees of hierarchy in the feather (taken from V. 

Drakonakis et al. (2014) [190]).    

As demonstrated in the avian feather, hierarchical composites can greatly increase the 

efficiency and mechanical properties of a structure.  Although it is extremely difficult to 

manufacture materials with the same level of hierarchy as nature, several techniques have been 

used to fabricate micro- and nano-structured materials including self-assembly, freeze casting and 

electrospinning [190–203].  The latter method was used to create a feather-inspired composite 

structure with nanofibrous fractal interlayers [190].  In this design, a polymer-carbon nanotube 

suspension was electrospun onto a carbon fiber bed as an interlayer between lamina.  Carbon 

nanotubes represent the micro- and nano-scale barbules, the eletrospun fiber the micro-scale barbs, 

and the carbon fiber serves as the rachis (Figure 7.4b).  This composite was shown to have 

significantly higher mechanical properties than the carbon fiber laminate with no interlayer [190]. 
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7.2. Materials and Methods 

7.2.1. Fabrication of Barbule Inspired Structures by Additive Manufacturing 

 Bioinspired feather vanes were drawn in the Computer Aided Design program SolidWorks 

(SolidWorks Corp., Waltham, MA, USA) and fabricated via additive manufacturing (3D printing).  

Our first model was created using ABS plastics to illustrate the concept of interlocking barbule 

attachment.  Following this, flexible barbule hooks and grooves were printed using thermoplastic 

polyurethane NinjaFlex filament (http://ninjatek.com/products/ninjaflex-filaments) with a 

Makerbot 3D printer.  The remaining barbule-inspired designs were 3D-printed using a Stratasys 

Objet260 Connex3 printer (Stratasys, MN, USA).  TangoBlack and VeroClear (Stratasys, MN, 

USA) filament as well as combinations of the two were used to print the structures. 

7.2.2. Fabrication of Bioinspired Feather Laminate 

Since synthetic materials with β-keratin-like properties are not easily accessible, and 

because we are observing differences in fiber orientations, we used regularly available composite 

materials.  The center of the composite, which resembles the medullary foam of the shaft is 

composed of a polyethylene foam cylinder with a density of 0.035 g/cm2 and a compressive 

modulus of 0.139 MPa.  The foam cylinders were 1½” in diameter and 14” long, purchased from 

the foam factory (www.thefoamfactory.com).  The cortex of the synthetic feather shaft was 

fabricated using unidirectional S-glass fiberglass (www.acpsales.com) with an elastic modulus of 

86 GPa, fracture strength of 4.5 GPa and tensile strength of 4.7 GPa.  Epoxy resin system 2000 

epoxy resin and hardener 2020-A (www.fibreglast.com) was used with the fiberglass to create 

each lamina.  The epoxy and hardener had a tensile modulus of 2.89 GPa, flexural strength of 0.12 

GPa, and tensile strength of 0.07 GPa. 

http://www.thefoamfactory.com/
http://www.acpsales.com/
http://www.fibreglast.com/
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Four types of samples were fabricated with a total of four layers of fiberglass in each 

sample.  Sample type A had all fibers oriented longitudinally, B had all fiber oriented 

circumferentially, C had fibers oriented at a 45° angle, and D had the first two layers oriented 

longitudinally and the outer two layers oriented circumferentially.  Each of these types of samples 

either reflected the orientation of fibers in a part of the feather shaft or served as a means of 

comparison. 

7.2.3. Adhesion Tests of Flexible Bioinspired Hooks and Grooves 

Hooks and grooves inspired by the barbules of the feather vane were drawn in SolidWorks 

(SolidWorks Corp., Waltham, MA, USA) and 3D printed using a MakerBot 2 Replicator 

(MakerBot, New York, NY, USA).  In order to explore the differences in adhesion due to hook 

shape, five different hook shapes were created and with the same groove shape.   

In the adhesion experiments, hooks and grooves were manually interlocked before testing 

and “barbs” were secured in testing grips. Tension was applied to the sample by displacing barbs 

apart from one another at a strain rate of 1.6x10-3 s-1 using an Instron 3342 mechanical testing 

machine (Instron Corp.) with a load cell of 500 N ± 0.5 N. Each set of hooks was tested three times 

with the same set of grooves.   

Hooks and grooves were then tested for their ability to re-adhere without external 

assistance (as witnessed in the feather vane). This was done by bringing hooks and grooves back 

to their original gauge length, and then displacing barbs apart from one another (without manually 

interlocking hooks and grooves) at a strain rate of 1.6x10-3 s-1. This test was repeated three times.   

7.3. Results and Discussion: Barbule Inspired Structures 

 Results from previous chapters provide new insight about the feather, leading to the 

creation of bioinspired designs.  While these bioinspiration efforts provide innovative solutions, 

they also allow us to simplify the feather’s complex structure so that we may more easily 
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understand nature’s design.  Arguably the most important aspect of barbule adhesion is the 

interlocking hook-and-groove mechanism.  Despite their importance in flight, they are 

understudied and the author of this dissertation does not know of any attempt to create a barbule 

inspired structure.  Here we develop several barbule-inspired designs based on results obtained in 

studies discussed in previous chapters.   

7.3.1. Barbule Structure Simplification 

Using scanning electron micrographs, the general interlocking structure of the barbule’s 

hook and groove mechanism was explored with the goal of capturing the principal elements of the 

mechanism.  Multiple hooks were observed to branch from a single distal barbule and fit into 

juxtaposed grooved proximal barbules.  Both sets of barbules branch from barbs at an angle and 

are thought to slide along one another initial detachment occurs.  From these initial observations, 

the first bioinspired model of the barbule structure was fabricated through 3D printing (Figure 

7.5).  
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Figure 7.5 The interlocking structure of the barbules: micrographs of the House sparrow (Passer 

domesticus) show (a) the hooklet sliding into the grooved proximal barbule, (b) overlapping 

barbules within a feather.  This interlocking mechanism was simplified and then constructed using 

additive manufacturing to create a three-dimensional model (c).  Taken from [77]. 

7.3.2. Flexible Barbule Design 

 Observing the unzipping of the feather clearly reveals that barbules exhibit elastic 

deflection when pulled apart.  This is not captured by the initial model, which is composed of rigid 

ABS plastics.  In an attempt to copy the compliance of barbule connections, hook and grooved 

barbules were printed with a flexible filament material (NinjaFlex filament, Elastic Modulus=12 

MPa) (Figure 7.6).  However, the thick groove structure was too rigid to flex when barbules were 

unzipped, and therefore this model did not exhibit the elastic response desired. 
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Figure 7.6 The second attempt at a barbule bioinspired model, using a flexible filament material 

for the barbule hooks and grooves. 

Following this, hooks and grooves were altered to have a thinner, more flexible design.  

These were 3D-printed using the same flexible filament material and were found to exhibit a 

controllably elastic response (Figure 7.7).  Different hook designs were printed and mechanically 

tested in adhesion to determine any differences in response based on shape.   

 

 

 

 

 

 

 

 

Figure 7.7 The third attempt at creating a bioinspired barbule model.  Barbules were thinner and 

composed of a flexible filament material. 
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Adhesion experiments with 3D-printed grooves and various bioinspired hooks elucidate 

important features of hook design in the vane through simplification and scaling-up. Bioinspired 

barbules are composed of material with a considerably lower elastic modulus (NinjaFlex filament) 

than the feather to compensate for their significantly larger dimensions, providing a similar 

stiffness and comparable adhesion characteristics to the feather.  The hook thickness, shape and 

wrap at its end were investigated as aspects influencing adhesion. Hooks A-C are thicker at the 

base of the hook (4mm) than hooks D and E (2.2mm); hooks A,C and D have a rectangular shape 

while hooks B and E have a circular shape. Lastly, hook C has a shorter tip and therefore wraps 

around grooves less effectively than the other shapes.  

Figure 7.8 Adhesion of bioinspired hook and groove structures [155]: (a) Hooks A-E were created 

through 3D printing.  (b) The maximum force vs. displacement for tension tests of the hook and 

groove structures reveal that hook A has the maximum force of adhesion.  (c) Hooks D and E were 

found to have the highest percent of maximum force recovered in re-adhesion tests.  The same set 

of grooves were used for all adhesion tests. 

As one of the thicker hooks created, A, has the highest maximum adhesion force, 

effectively wrapping around the groove structure with a rectangular-shaped hook (Figure 7.8 a,b). 
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Re-adhesion experiments, measured by the percent of maximum force recovered in cyclical tests 

without manually interlocking hooks, reveal that hooks D and E perform best while hook B re-

adheres worst (Figure 7.8c). The flexibility of hooks D and E (due to their small thickness) allow 

them to easily bend around grooves and re-attach when displaced back to their original position.  

Hook E, however, has less total hook length than hook D, resulting in a smaller displacement at 

its maximum force. The increased curvature of hook B serves as an obstacle for re-adhesion, 

though it provides a tight-fitting connection to the groove for interlocking adhesion. In these 

experiments it was found that a rectangular hook shape provides more strength for interlocking 

attachment than a circular hook shape [63]; thinner hooks allow for enhanced recovery of 

attachment, and a wrapped hook tip (as compared between A and C) increases the maximum force 

but does not significantly influence re-adhesion. Both experiments demonstrate the importance of 

the hook shape on two necessary functions of the vane: adhesion and the ability to re-adhere. 

Hooks evolved to strike an optimum balance between these two functions with seemingly 

contrasting requirements. 

7.3.3. Barbule Inspired Designs With Membrane Flaps 

Research on the directional permeability of the feather vane (as described in Section 5.2.6) 

shed light on the importance of the membrane flaps that extend from each barbule.  These flaps 

act as one-way valves, allowing air to flow dorsally through the vane but not ventrally (Figure 

7.9a,b).  In this manner, the flaps act as one-way valves to capture air when the bird is executing 

a downstroke, but allow air through in the upstroke.  A bioinspired model of barbules with these 

flaps was 3D printed out of flexible material (Stratasys FLX9095 filament) to describe this 

directional permeability (Figure 7.9c,d). 
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Figure 7.9 The directional permeability in the feather vane is due to membrane flaps that extend 

from barbules to act as one way valves covering the space between barbules.  Scanning electron 

micrographs show these flaps (a,b).  (c) A simplified 3D printed model of the feather vane, and (d) 

the reaction of membrane flaps as air is blown dorsally (top) and ventrally (bottom) where blue 

circles represent air flow. Images from [155]. 

 

With this information acquired, a complete feather structure was 3D printed (Figure 7.10).  

The membrane flaps were printed with a flexible material to allow them to flex open with dorsal 

airflow.  Barbules, however, were composed of stiff material to permit hooks to slide along grooves 

with ease.  Barbs were made out of flexible material so that they are able to bend apart from one 

another as barbules are unzipped.  
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Figure 7.10  (a,b) Features of the feather vane were simplified and 3D printed into a bioinspired 

model of the entire feather. 

7.3.4. Barbule-Inspired Designs to Allow for Tailored Air Permeability 

 By analyzing 3D printed models we realized that the feather vane may have two levels of 

control over air permeability.  First, as previously discussed, membranes allow for air to flow 

through the spaces between barbules dorsally but not ventrally.  Second, as hooks slide along 

grooves, expansion within the feather vane perhaps offers another level of tailored permeability.  

When hooks are slid close to the base of the groove, the vane is much tighter than when hooks are 

at the tip of the groove, nearly ready to detach.  This concept was used to create a bioinspired 

design that mimics this behavior.  Figure 7.11 shows an assembly of barbules attached on either 

end with a flexible material.  As this is stretched, barbules slide along one another leading to slight 

openings between each barb’s set of barbules.  Figure 7.11 b shows the opening within the vane 

by stretching, indicated by the four hands pulling it apart. 
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Figure 7.11 (a) Barbules are bounded on both ends with a flexible material, (b) when these ends 

are pulled apart, feather become more permeable as space between each barb’s barbules opens. 

  

 Hooks were identified as a weak point of the design, because their thin structure has a 

tendency to break.  To overcome this, another design was created with only grooves, where each 

groove slides into one another (Figure 7.12).  These structures are not able to completely detach 

due to stoppers placed at the end of each groove.  Adding this feature makes the design more 

amenable to real-world applications where tailored permeability is desired, but complete material 

failure is detrimental. 
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Figure 7.12 Grooved structures that slide along one another were created to allow for a design that 

has tailored permeability based on the distance edges are pulled apart from one another. 

 

 To display the same behavior, we realized the structure could be simplified even further 

to aid in ease of manufacturing.  Therefore, a square tubing model was created that allows for 

increased permeability when pulled apart (Figure 7.13a).  A square slides within a hollow tube 

until it is stopped at the end of the tubing, behaving similarly to a piston.  This model was scaled 

down further to allow for more flexibility in the material (Figure 7.13b,c).  
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Figure 7.13 The square tubing model: (a) Squares slide through a tube and are stopped at the end.  

This allows the material to have tailored permeability.  (b) As the material is scaled down smaller, 

it becomes more flexible as shown in (c).   

 

 One of the shortcomings identified with this design is that it maintains a rigid structure in 

the direction perpendicular to the sliding.   To allow for more flexibility, the design was altered to 

have sliding in two dimensions (Figure 7.14a-d).  This structure also becomes more flexible when 

stretched open (Figure 7.14d) due to the increase in spacing between sections.   
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Figure 7.14  (a,b)The square tubing model was altered to stretch in two dimensions, allowing for 

increased flexibility in the material (c) which is reflected in images of the maximum radius of 

curvature of closed and opened samples (d).   

 

 In further departure from the original barbule mechanism, a tridimensional structure was 

created by using, now triple grooved elements (along three axes) that slide in three dimensions.  

The cube manufactured by this method is shown in Figure 7.15 with its bottom right corner shown 

compressed and top left corner shown stretched in Figure 7.15 b.  
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Figure 7.15 Tridimensional structure using the grooved design in which each element has six pegs 

aligned with three orthogonal axes. 

 

7.3.1. Summary of Bioinspired Barbules 

The complex nature of barbules provides fertile ground for insight into new, biosinpired 

designs.  Here we pursue designs that relate to the most important aspects of our research 

discoveries.  The timeline of our bioinspired designs shown in Figure 7.16 demonstrates the 

evolution and incorporation of various features into designs. 
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Figure 7.16 Timeline of the evolution of bioinspired barbule designs: from the feather to 

tridimensional structures. 
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7.4. Designs Inspired by the Feather Shaft 

7.4.1. Bioinspired Medullary Foam Design 

The study of the avian feather shaft provides unique opportunities for the development of 

novel bioinspired structures and materials.  The extreme requirements of lightweight, structural 

stiffness and strength are highly desirable features in synthetic structures, especially in 

transportation systems.  For example, the structure of the feather’s foam can be mimicked through 

3D-printing and/or electrospinning to create a new type of hierarchical foam composed of fibrous 

closed cells.  This “foam within a foam” concept is shown Figure 7.17.  This hierarchical foam 

would result in a novel design that maintains stiffness while decreasing overall weight.   

 

 

 

 

 

 

 

 

 

 

Figure 7.17 A foam structure inspired by the fibrous closed-cell structure of the feather’s 

medullary foam would have novel properties. 

7.4.2. Bioinspired Feather Laminate Design 

By simulating the fiber directionality within the distal rachis, where fibers run 

longitudinally on the top and bottom and at ±45° angles on the sides, a new type of composite I-

beam can be created with increased torsional stiffness [204].  Its bending stiffness would be 

maintained while the ±45° fibers would provide additional torsion resistance to expand the 

functionality of the common I-beam structure.  While we did not attempt to fabricate an I-beam 

structure, foam-filled fiberglass composites were created following fiber directions utilized in the 

feather shaft (Figure 7.18).  Four configurations for the reinforcing fibers are shown.  This is akin 
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to the design of conventional composites, but the presence of a cellular core adds an additional, 

and important component to the cylindrical beam. 

 

Figure 7.18 Four types of cylindrical feather shaft-inspired samples were created.  (a) Has fibers 

running longitudinally along the shaft, (b) Has fibers running circumferentially around the shaft, 

(c) has fibers running at a 45 degree angle along the shaft, (d.) Has two inner layers running along 

the axis of the shaft and a two outer layers running circumferentially around the foam. 

 

7.4.3. Shape Memory Recovery Inspired Design Concept 

The mechanisms discovered in shape memory recovery of the feather shaft can be 

employed to create more effective shape memory composites.  We have created a simplified 

bioinspired model that employs the swelling concept witnessed in β-keratin (Figure 7.19).  In this 

model, the cellulose sponge (light color) swells when hydrated, reorienting the stiffer “fibers” 

(dark color) back into position.  This same concept could be used to create new bioinspired shape 

memory composites for applications ranging from biomedical devices to self-healing materials. 
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Figure 7.19 Shape Memory Bioinspired Composite Structure.  

 

7.4.4. Shape Change Inspired Design 

Lastly, a column inspired by the changing shape of the rachis from circular to rectangular 

provides a structure that is optimized for torsion in one area (circular portion) and for bending 

stiffness in the other (rectangular portion).  A possible use for these structures would be as support 

columns to create more earthquake-resistant buildings where both torsional or bending stiffness 

can be tailored along the length of the column [205]. 

 

7.5. Conclusions 

  There is great potential for the creation of novel, bioinspired designs based on the feather.  

Through the evolution of over 3 billion years of life on Earth, nature has developed unique 

structures and materials.  Bird flight has evolved starting over 50 million years ago, providing the 

intricate designs witnessed today.  In this chapter, the barbule structure is simplified to create 

bioinspired designs for the first time.  Experiments on synthetic hook and groove barbules reveal 

that hooks must balance conflicting requirements for adhesion and effective re-adhesion, two 



171 

 

important properties of the vane.  New designs based on the tailored permeability of the feather 

vane are created.  Bioinspired feather shaft designs are discussed, and the laminate structure within 

the feather vane is fabricated using fiberglass and epoxy.  Research on the feather vane is just 

beginning, and we believe it is still rich in potential for novel bioinspired designs.  
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8. Summary and Future Outlook 

For thousands of years mankind has marveled at the bird’s ability to fly; in Greek 

mythology, Icarus gained this ability using bird feathers and wax but approached the sun and fell 

to his death as the feathers loosened.  Leonardo da Vinci, Otto von Lilienthal, and the medieval 

monk Eilmer of Malmesbury developed glider designs based on birds and bats.  The crowning step 

was to attach a motor and propeller to it, which was done by the Wright brothers and Alberto 

Santos-Dumont. 

While advances in science and technology have provided us the ability to fly using 

airplanes and spaceships, the efficiency of a bird in flight continues to be elusive.  Over fifty 

million years of evolution and natural selection have allowed for birds with a multitude of designs, 

with the most efficient, effective, and better adapted structures being what we witness today.  These 

structures and materials are a source of inspiration to engineers.  In this dissertation, elements of 

the flight feather are explored to uncover novel concepts transferable to the design of manufactured 

aerospace materials and structures.  A particular emphasis is placed on the feather’s resilient and 

lightweight properties as these are highly desirable traits to mimic in commercial applications. 

8.1. Summary 

To better understand the efficiency of bird wings in flight, we investigate scaling 

relationships of the bird wing and its components.  The strength of avian bone is hypothesized to 

be a limiting factor in the scaling of the humerus with mass.  This is supported by its experimentally 

determined allometric scaling relationship.  We also find that the relative humerus length relates 

to increased wing loading and speculate that this allows for greater variability in specific 

applications and flight styles.  By studying scaling effects in feathers, we have uncovered a 

fascinating fact: while feather shaft length, rachis width and barb length all scale isometrically 

with bird mass, barbule spacing is approximately the same, 8-16 μm, independent of the size of 
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the bird.  We suggest that this spacing is an optimal dimension evolved over millions of years to 

provide a specific level of  permeability through the vane for enhanced flying efficiency.  

In this dissertation, each component of the feather vane is investigated.  Due to its 

asymmetrical shape, the rotation or twisting of barbs allows it to become less stiff with respect to 

its y-axis.  Several models were created to describe the barb’s linear flexure behavior. Zipped and 

un-zipped barbs demonstrate different flexure behaviors, with zipped barbule connections 

preventing the rotation of barbs and allowing for a more robust vane. An interest in the significance 

of barbule connections led us to further investigate these structures. 

Barbule adhesion experiments indicate that the feather vane maintains in-plane tautness 

through contrasting directions of rotational preference at each hierarchical level.  The stiffness of 

a single barbule, which is crucial in understanding the critical failure of barbule connections, is 

found by in-situ SEM experiments.  When barbules are unzipped feathers are found to less 

effectively capture air, where the magnitude of this is correlated to barb dimensions. Finally, the 

feather vane is experimentally determined to have unidirectional permeability due to membranous 

barbule flaps that act as one-way valves. Barbules are exquisitely developed structures that enable 

impressive failure aversion combined with air capture. 

The resilience of the nanoscale composite β-keratin is revealed through experiments on the 

feather shaft.  The feather’s ability to recover strength with hydration is demonstrated, and 

explained through experimentally supported models.   The swelling and softening of the feather’s 

matrix material with hydration is thought to allow for the reorientation of crystalline fibers, 

enabling the recovery of the shaft’s strength.  

Finally, bioinspired structures reflecting the most significant parts of our research on 

barbules and feather shaft were created.  An invention disclosure was submitted on the design of 
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the interlocking mechanism.  This mechanism has many interesting potential applications such 

directionally-controlled adhesive or a novel aerospace material. 

8.2.  Future Outlook 

In closing, this dissertation points to the possibility of framing avian flight feather design 

as a combined material and structural optimization problem subject to aerodynamic constraints. 

Feathers provide a complex synergy that enables the efficiency of birds through material-structure 

specialization for flight.  These multi-functional β-keratinous structures provide inspiration for 

new, more efficient aerospace materials with features such as tailored permeability and localized 

failure.  While modern research has resulted in some instances of analogous solutions to increase 

torsional and bending stiffness, there are very few efforts of deliberate bioinspiration of the feather.  

We feel that this is an area rich with opportunity for creating advanced materials and structures.  

Therefore, we anticipate that with improvements in mathematical and computational tools for 

multi-material multi-scale optimization and design, and experimental tools based on additive 

manufacturing, bioinspiration based on studies contained in this dissertation will be applied to 

further man-made structures to exhibit the same degree of sophistication and complexity as 

observed in bird’s wings. 
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9. Appendix 

9.1. Foam Calculations 

The closed-cell foam inside of the barb was simplified to a hexagonal prism shape.  The 

relative density was calculated where Ar is the aspect ratio [43] :  

𝜌∗

𝜌𝑠
=

2

√3

𝑡

𝑙
{1 +

√3

2𝐴𝑟
} .     

Table 9.1 below shows the definitions and values measured for each variable. 

Table 9.1 Values for Foam Calculations 

Variable Definition Value 

𝜌∗/𝜌𝑠 Density of Foam / Density of solid 0.152  0.08 

𝑡 = 𝑡𝑓 Thickness of foam cell-wall 0.875  0.37 μm 

        𝑙 Foam cell edge length 9.78  2.37 μm 

𝐴𝑟 Aspect ratio h/lf 1.83  0.67 

ℎ Height of foam cell 17.92  4.97 μm 

𝑡𝑒 Thickness of foam cell edge (corner) 3.39  2.08 μm 

𝜙 Volume fraction of cell located in the cell edges 0.627  0.83 

𝑍𝑓 Number of faces that meet at an edge on a single cell 3.6   [10] 

𝑛̅ Average number of cells per single cell 4.5 [10] 

𝐸∗

𝐸𝑠
 

Foam elastic modulus / Solid material elastic modulus 0.066 

 

Next, the volume fraction was calculated [43]: 

𝜙 =
𝑡𝑒

2

𝑡𝑒
2+

𝑍𝑓

𝑛̅
𝑡𝑓𝑙

  . 

This is the volume of solid material contained in cell edges.  The remaining volume fraction of the 

cell (1 − 𝜙) is in cell faces.    

Lastly, to find the relative elastic modulus we used [43]:  

𝐸∗

𝐸𝑠
≈ 𝜙2 (

𝜌∗

𝜌𝑠
)

2

+ (1 − 𝜙)
𝜌∗

𝜌𝑠
 ,  



176 

 

where the influence from internal gas pressure is ignored because of the porosity observed in SEM 

images of the cells. 

9.2. Determining the Location of the Neutral Axis 

 

The solutions for the specific case of the barb are found in section 9.2. 

Using the dimensions given in Figure 9.1, the location of the neutral axis for each rectangular 

piece is solved for in terms of an arbitrarily set location of the overall neutral axis (x0, y0), which 

incorporates the elastic modulus of each piece: 

The location of the centroid of each rectangular piece (xci) is determined along the x-axis: 

𝑥1 = −ℎ3 + 𝑥𝜊 +
𝛿1

2
      

𝑥2 = −ℎ3 + 𝑥𝜊 + 𝛿5 +
𝛿2

2
     

𝑥3 =
ℎ3

2
− 𝑥𝜊      

𝑥4 = 𝑥𝜊 − ℎ3 + 𝛿2 + 𝛿5 +
𝛿4

2
     

𝑥5 = −ℎ3+𝑥𝜊 +
𝛿5

2
   

The location of the centroid of each rectangular piece (yci) is determined along the y-axis:  

𝑦1 = −ℎ2 + 𝑦𝜊 −
ℎ1

2
      

𝑦2 = −
ℎ2

2
+ 𝑦𝜊      

𝑦3 = 𝑦𝜊 +
𝛿3

2
       

𝑦4 = −
ℎ4

2
+ 𝑦𝜊      

𝑦5 = −
ℎ5

2
+ 𝑦𝜊      

These equations are used in the Equations (4.8) and (4.9) to find the actual location of the neutral 
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axis x0, y0.   

𝑥0 = ℎ3 −
𝐸1[δ1𝐴1+h3𝐴3+𝐴4(2δ2+δ4+2δ5)−δ5𝐴5]+𝐸2(δ2𝐴2+2δ5𝐴2)

2[𝐸1(𝐴1+𝐴3+𝐴4+𝐴5)+𝐸2𝐴2]
  ,     

𝑦0 =
𝐸1(2ℎ2𝐴1+ℎ1𝐴1−δ3𝐴3+ℎ4𝐴4+ℎ5𝐴5)+𝐸2(ℎ2𝐴2)

2[𝐸1(𝐴1+𝐴3+𝐴4+𝐴5)+𝐸2𝐴2]
   .          

The specific values used in calculations can be found in Table 9.2. 

Table 9.2 Simplified barb dimensions.  Units are in micrometers unless otherwise labeled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimension  

𝜹𝟏 79 

𝜹𝟐 48 

𝜹𝟑 39 

𝜹𝟒 16.5 

𝜹𝟓 16.5 

 𝒉𝟏 40 

  𝒉𝟐 454 

𝒉𝟑 103 

𝒉𝟒 454 

𝒉𝟓 454 

𝒛 7809 

Ixcortex 6.93 x108μm4 

Ixfoam 3.76 x108μm4 

Ixycortex 1.14 x107 μm4 
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9.3. Deriving the Inverse Curvature of My 

 

The derivation of the relationship between the moment 𝑀𝑦 and the inverse curvature is 

listed below.  This was used to obtain Equations (4.17) and (4.18) of the main text.  

We begin with the moment-stress relationship: 

𝑀𝑦 = ∑ ∫ 𝑥𝜎𝑧
(𝑖)

𝑑𝐴
 

𝐴𝑖

𝑛
𝑖=1 .    

By substituting expressions of 𝜎𝑧
(𝑖)

, we obtain: 

𝑀𝑦 = ∑ ∫ 𝑥𝐸𝑖(𝑎𝑥 + 𝑏𝑦)𝑑𝐴
 

𝐴𝑖

𝑛
𝑖=1            

i.e.,  

𝑀𝑦 = ∑ 𝐸𝑖
𝑛
𝑖=1 [𝑎 ∫ 𝑥2𝑑𝐴 + 𝑏 ∫ 𝑥𝑦𝑑𝐴]

 

𝐴𝑖

 

𝐴𝑖
].   

Therefore:    

−𝑀𝑦 = 𝑎 ∑ 𝐸𝑖
𝑛
𝑖=1 𝐼𝑦

𝑖 + 𝑏 ∑ 𝐸𝑖
𝑛
𝑖=1 𝐼𝑥𝑦

𝑖 ,  

where  

𝐼𝑦
𝑖 = ∫ 𝑥2𝑑𝐴

 

𝐴𝑖
 and  𝐼𝑥𝑦

𝑖 = ∫ 𝑥𝑦𝑑𝐴
 

𝐴𝑖
. 
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