
UC Irvine
ICS Technical Reports

Title
FastMesh : efficient view-dependent meshing

Permalink
https://escholarship.org/uc/item/9s30k0b0

Author
Pajarola, Renato

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9s30k0b0
https://escholarship.org
http://www.cdlib.org/

I;

Renato Pajarola

UCI-ICS Technical Report No. 01-15
Department of Information & Computer Science

University of California, Irvine

April 2001

Notice: This Materlal
may be protected
by Copyright Law
(Title 17 U4S.C.)

FastMesh: Efficient View ... dependent Meshing

Renato Pajarola

UCI-ICS Technical Report No. 01-15
Department of Information & Computer Science

University of California, Irvine

April 2001

Renato Pajarola
Information & Computer Science

University of California Irvine
Irvine, CA 92697

Abstract
In this paper we present an optimized view-dependent meshing

framework for adaptive and continuous level-of-detail (LOD) ren­
dering in real-time. Multiresolution triangle mesh representations
are an important tool for adapting triangle mesh complexity in
real-time rendering environments. Ideally for interactive visualiza­
tion, a triangle mesh is simplified to the maximal tolerated percep­
tual error, and thus mesh simplification is view-dependent. This
paper introduces an efficient hierarchical multiresolution triangu­
lation framework based on a half-edge triangle mesh data struc­
ture, and presents an optimized computation of several view­
dependent error metrics within that framework providing conser­
vative error bounds. The presented approach called FastMesh, is
highly efficient both in space and time cost, and it spends only a
fraction of the time required for rendering to perform the error
calculations and dynamic mesh updates.

CR Categories: I.3.3 [Computer Graphics]: Image Generation - Dis­
play algorithms; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Surface and object representations.

Keywords: level-of-detail, multiresolution modeling, mesh simplifica­
tion, interactive rendering

1. Introduction
Increasingly complex polygonal models exist today ranging from
, detailed CAD/CAM representations, high-resolution isosurfaces, exten­
sive terrain surface models, iarge virtual environments, to complex digi­
tized shapes (see also [LPC 00]). Such large models are hard to render
at interactive frame rates due to the exceedingly large number of trian­
gles.Level-of-detail (LOD) based visualization techniques [FS93] allow
rendering the same object using triangle meshes of variable complexity.
Thus the mesh complexity can dynamically be adjusted according to the
object's relative position and importance in the rendered scene, and the
complexity can also be adapted to guarantee stable interactive frame
rates. Several mesh simplification and multiresolution triangulation
methods [DP95, HG97, CMS98, LT99] have been developed to create
different LODs, sequence of LOD-meshes with increasing complexity,
and hierarchical triangulations for LOD based rendering.

Ideally for rendering, a triangle mesh is simplified to the maximal
tolerated perceptual error that can be distinguished on screen. While
finding this minimal mesh representation is a very hard problem, and
much too time-consuming to do in real-time, the following heuristics
can be used to guide mesh simplification efficiently:

1. Parts of the surface outside of the visible area can be simplified
to the maximum. This reduces the number of vertices processed
by the rendering pipeline for view-frustum culling.

2. Invisible surface areas oriented away from the viewer can be
simplified to the maximum. This reduces the amount of work
for back{ace culling in the rendering pipeline.

3. Silhouettes should be preserved due to their visual importance.
4. Surface regions with a very small projected area on screen may

be represented with fewer triangles. Simplification can be per­
formed until a user specified area screen-projection tolerance is
reached.

Real-time rendering of a triangulated surface exhibits an extremely
high frame-to-frame coherence of the rendered triangles. Thus if a trian-

gle has been rendered in one frame, it is very likely that it also has to be
rendered in the next frame since the viewpoint and view-directions
change smoothly over time. Therefore, to take advantage of processing
only the minimal number of mesh elements the simplification has to be
updated incrementally from frame to frame. Instead of performing mesh
simplification on the entire mesh every time the view has changed, sim­
plification and refinement operations can be performed on the current
mesh if one of the surface properties 1 through 4 listed above changes
locally. In fact, only this incremental update makes simplification
according to the properties 1 and 2 really useful.

While a lot of work has been done on mesh simplification only a
few approaches have addressed the problem of view-dependent simpli­
fication for real-time rendering [XV96, Hop97, LE97], and performance
optimization was not the main focus. In this paper we present a view­
dependent meshing method called FastMesh with optimized data struc­
tures and algorithms for efficiently maintaining a dynamically simpli­
fied mesh using minimal amount of storage and data structures, and
short preprocessing time. Furthermore, we present an optimized imple­
mentation with low CPU cost for the four view-dependent simplifica­
tion criteria listed above. The two main contributions of this paper are:

• A hierarchical, half-edge data structure based multiresolu­
tion triangulation framework for view-dependent LOD ren­
dering.

• Optimized computation and implementation of view­
dependent error metrics for mesh simplification with con­
servative error bounds.

2. Related Work

2.1 Mesh simplification
Numerous methods for mesh simplification have been developed in the
last decade, and a discussion is beyond the scope of this paper. For an
overview on the various mesh simplification methods see [HG97],
[CMS98], or [LT99]. Here we want to highlight the work of [Hop96] on
progressive simplification of meshes, and [GH97] on simple geometric
error measures. In [Hop96] a sequence of n edge collapse (ecol) opera­
tions is applied to simplify an arbitrary mesh M1 to a much simpler mesh
NfJ of the same topology, reducing the number of vertic~ by n. Given
the coarse mesh MJ, i different LOD approximations M1 can be recon­
structed by applying i vertex split (vsplit) operations - the inverse of the
ecol operation - to the base mesh MJ. In FastMesh we use the half-edge
collapse variant shown in Figure 1 that collapses a directed half-edge
--..---:. . .
v 1v2 to its endpomt v2.

split-vertex

FIGURE 1. Half-edge collapse (ecol) and vertex split (vsplit)
operations for triangle mesh simplification and refinement.

To create an initial set of ecol simplification operations we use the
quadric error metric introduced in [GH97]. This quadric error metric is
based on the fact that the squ~ distance of a point v = (x, y, z, I)
from a plane p = [a, b, c, d] with a 2 + b2 + c2 = 1 can be com­
puted by a matrix multiplication (pr · v)2 = vT · KP · v where the

2

4x4 quadric KP is defined by the plane parameters as shown in [GH97].
Furthermore, the sum of squared distances to a set of planes P is then
computed by d(v, P)2 = I, vT. K . v = vT. I, K . v. Thus a

P.EY. P peP P
set of planes can be represented by one quadric Q P = I, K . In our
implementation we additionally normalize the coefficieritse 6f Qp by the
number of planes !Pl. Each vertex v is assigned a quadric Qv that is ini­
~zed to the planes of the incident triangles. For a half-edge collag,se
V1 v2 the quadrics of the collapsed vertices are added Q = Qv1 + Q 2

,

and the approximation error~oduced by that edge collapse is esti­
mated by vi· Q · v2 (edge v1v2 iscollapsedtovz).

2.2 View-dependent meshes
Three methods on view-dependent meshing related to FastMesh have
previously been proposed. We will briefly review and compare these
approaches below.

In [XV96] a binary vertex hierarchy based on ecol and vsplit opera­
tions is constructed in a preprocess that allows interactive selective
refinements at run-time. A very simple error metric using edge length is
used to select the ecol operations at initialization. At run-time a front in
the vertex hierarchy defines the currently visible mesh, and this front is
interactively adjusted according to the current view point. The front is
moved up and down in the hierarchy based on the screen projections of
the edge lengths. In [XEV97] the approach is extended to consider sur­
face normal information.

A similar approach to [XV96] is presented in [Hop97] where a
sequence of ecol operations as proposed in [Hop96] is used to construct
a binary vertex hierarchy. Furthermore, two image-space visibility
attributes are implemented, and a screen-space geometric approximation
error metric is proposed to modify the vertex front interactively.

In contrast to [XV96] our run-time simplification actually computes
the four image-space error metrics outlined in the introduction in real­
time using the same amount of storage - two scalar values per node.
Furthermore, our half-edge collapse hierarchy imposes much fewer
dependencies on the ecol and vsplit operations, and causes no storage
cost thereof. Compared to [Hop97] our approach generates a more bal­
anced half-edge collapse hierarchy due to selecting sets of independent
ecol operations to create the hierarchy. Nevertheless, our method
imposes even fewer restrictions for simplifying the mesh at run-time,
thus provides a better view-dependent mesh adaptivity. We also intro­
duce additional and more efficient image-space error metrics that
require less storage and are faster to compute.

Our data structures do not require any extra storage for dependen­
cies between vsplit and ecol operations, and only require two scalar val­
ues to be stored with each node in the half-edge collapse hierarchy to
compute the view-dependent error metrics. Therefore, and due to the use
of a half-edge data structure for dynamically maintaining the mesh con­
nectivity, the data structures are extremely compact. The complete Fast­
Mesh representation uses significantly less memory (also on disk) than
the previous approaches. Moreover, based on vertex position, normal,
and only two scalar values per ecol operation we present a highly effi­
cient implementation of all four image-space error metrics defined in the
introduction.

A generalized framework on the basis of vertex hierarchies created
from any kind of vertex contraction is presented in [LE97]. While this
approach is very general it uses much more storage, and does not pro­
vide highly optimized calculations of view-dependent error metrics.
While the method in [LE97] can be viewed as the least restricted gener­
alization of view-dependent meshing, our approach provides best opti­
mized performance with visibility culling integrated into the mesh
simplification step.

3. Dynamic Meshing
In this section we describe the data structures and algorithms for dynam­
ically maintaining a view-dependent mesh using a half-edge data struc­
ture [Wei85]. The use of a half-edge data structure makes the dynamical
management of a constantly changing triangle mesh connectivity very
efficient.

3.1 Half-edge data structure
In FastMesh, a half-edge data structure stores the connectivity informa­
tion of the triangle mesh, and each triangle face is represented by an
ordered set of three oriented half-edges. Every half-edge h stores infor­
mation on its reverse twin half-edge (hr), the next (hn) and previous
(hp) half-edges in the triangle, and the starting vertex (h v) of the half­
edge as shown in Figure 2.

·h.n
h.p.'

h.v·' '· h.r

FIGURE 2. Half-edge data structure.

FastMesh stores a mesh of m triangles as an array of 3·m half-edges,
and each group of three consecutive half-edges defines a triangle. In this
representation the previous hp and next hn fields of a half-edge h with
index ih do not have to be actually stored, and can be computed effi­
ciently by integer division (DIV) and modulo (MOD) operations, or by a
simple conditional statement, but we will keep the notation hn and h.p
for simplicity.

The connectivity of the triangle mesh can efficiently be updated for
a half-edge collapse, see also Figure 3. Collapsing the half-edge hand
removing its incident triangles from the list of rendered triangles,
requires the reverse information of the affected half-edges a, b, c and d
to be updated such that the triangles A and B as well as C and D share an
edge as shown in Figure 3 on the right. For triangles A and B, and given
the half-edge h to be collapsed this can efficiently be done by:

h.p.r.r = h.n.r

h.n.r.r = h.p.r

Two similar assignments are required to setup the reverse informa­
tion between triangles C and D. Note that the entries of all half-edges of
the two triangles incident on hare not altered in any way, these triangles
are just marked as not being used for rendering. Thus the inverse vsplit
operation can reuse that information, and only the index ih of the col­
lapsed half-edge h has to be known for a vsplit operation.

In addition to updating the reverse information, all half-edges that
have the same start-vertex h v as the collapsed half-edge h need their
start-vertex to be reassigned to the end-vertex of h which is hn. v.

FIGURE 3. Half-edge collapse and vertex split.

Given a collapsed half-edge h by its index ih, a vsplit operation must
update the mesh connectivity to include the two triangles originally inci­
dent upon h. Note that the entries in the half-edge table for these two tri­
angles have not been altered after collapsing h, and the incident faces A,
B, C and D are valid faces in the current mesh as shown in Figure 3 on
the right (see also preconditions on ecol and vsplit operations in
Section 3.3). Therefore, for triangles A and B the connectivity can by
restored by reverse-edge reassignments:

h.p.r.r = h.p

h.n.r.r = h.n

3

Similarly triangles C and D can efficiently be updated. Furthermore,
all half-edges incident on the split-vertex, and between and including tri­
angles A and C that currently used h.n. v as a start vertex, now have to be
reassigned to h.v. Note that h.v is indeed the correct start vertex because
nothing has been changed for h since its collapse.

3.2 Vertex hierarchy
Conceptually, a sequence of ecol operations computed during a prepro­
cessing step defines a binary hierarchy as in [XV96] and [Hop97], and a
view-dependent mesh is defined by a front through this hierarchy. How­
ever, the hierarchy in FastMesh differs significantly in implementation
and semantics from these previous approaches.

To reduce storage cost, FastMesh defines the hierarchy H on half­
edge collapses since the leaf nodes of a vertex hierarchy do not carry any
information required for collapsing an edge or splitting a vertex. Thus H
requires only half as many nodes as the vertex based representations.
Furthermore, this half-edge collapse hierarchy as shown in Figure 4. is
implemented as a separate binary tree data structure, not merged Wl~h
the vertex data, and only stores additional information per node that IS
required for the view-dependent error metrics. A node t e H consists
of pointers to a parent node t.p, left t.l and right t.r child nodes, and an
index t.ih of a collapsed edge h, plus two scalar values to compute the
view-dependent error metrics (see also Section 4).

V5

a) vertex hierarchy b) half-edge collapse
hierarcnyH

FIGURE 4. Binary half-edge collapse hierarchy H.

This definition of the binary half-edge collapse hierarchy H com­
pletely changes the semantics of the front F ~ H through ~e hierarchy
that defines a particular mesh. Although F defines a particular LOD
mesh based on which edges are currently collapsed, it does not contain
all visible mesh elements (triangles or vertices) of the current mesh.

Definition In FastMesh the front F consists of all active nodes in H, see
also Figure 5. A node tis defined to be active if and only if one of the
following two properties holds:

1. t. ih is currently not collapsed, and both child nodes t.l and t. rare
either currently collapsed or not existing. (subset Fi of F)

2. t. ih is currently collapsed, its parent t.p is not collapsed, and its
sibling child node in t.p exists and is not collapsed. (subset F2 of
F)

At any time F contains a node of every possible path from the roots
to the leaves of H, but only one node of any particular path at a time, and
is implemented as a doubly-linked linear list. In fact, F contains exactly
all nodes for the current LOD that can potentially be collapsed (nodes of
F1), or that must be checked for mesh refinement (nodes of F2, and all
child nodes of F 1, CF = { t Ip = t. p A p e F 1 }). 1

not collapsed half -edges
D collapsed half-edges

front F of active nodes

FIGURE 5. Front F of the current view-dependent mesh
through the binary half-edge collapse hierarchy H.

At run-time, for every change in view parameters the front Fis tra­
versed and updated. First, nodes F 1 are tested to be collapsed. Second,
all nodes F 2 and children C Fl of F 1 are tested to be split. ~ simplifica­
tion and refinement operations have to be tested at run-time first to be
legal as described in the following section, since they are performed out­
of-order with respect to their ordering at initialization.

3.3 Preconditions
Multiple vertices can be collapsed to one and the same vertex by a set of
ecol operations. Such a set of ecol operations forms a subtree in our half­
edge collapse hierarchy, and must be performed bottom-up in correct
partial order. Furthermore, an ecol operation is uniquely defined by an
index ih into the half-edge table, and any half-edge h that by collapsing
may cause a topological singularity is not a legal ?alf-edge collapse. 1:­
half-edge h is considered to be illegal if there exists a vertex V that Is
adjacent to both endpoints P and Q of h, and for which the three con­
nected vertices P, Q, and V are not a triangle in the current mesh as
shown in Figure 6.

~Q
FIGURE 6. Topological ecol constraint. Half-edge h cannot
be collapsed because of P and Q being connected to V.

Therefore, the half-edge h referenced from a node tis a legal candi-
date for an ecol operation only if:

1. no descendants oft have to be collapsed first,
2. and h is a topologically correct half-edge collapse.

Precondition 1 for ecol operations is satisfied by our definition of
the front F of active nodes, and its subset F1 that is tested for collapsing.
Precondition 2 can be tested efficiently at run-time by examining the set
of vertices V and edges e incident upon the endpoints of h. Condition 2
holds if:

{Vj3e:V = e.v A e.n.v = h.v} n
{Vl3e:V = e.v A e.n.v = h.n.v} = {h.p.v, h.r.p.v}

A vertex split operation is also uniquely defined by an index ih into
the half-edge table, and vsplits must be performed partially ordered top­
down in the hierarchy. The indexed collapsed half-edge h, and its two
incident triangles contain all the required information to perform the
vsplit operation as described in Section 3.1. However, the triangles A, B,
C and D (referenced by h.p.r, hn.r, hr.n.r and hr.p.r, see Figure 3)
must currently be valid triangles in the half-edge data structure. Thus the
half-edge h referenced by node t is a legal candidate for a vsplit opera­
tion only if:

1. all ancestors oft have been split,
2. and all four half-edges hp.r, h.n.r, h.r.n.r and hr.p.r pertain to

valid faces in the current mesh.

Precondition 1 is met for all nodes F2 and all children CF1 ofnodes
F1 by definition of F. Precondition 2 is enforced by propagating vsplits
to the nodes tA, tB, tc and tD, of H referenced by triangles A, B, C and D,

4

before actually performing the vertex split of node t. However, note that
this propagation can cause nodes to be split for which precondition 1 is
not yet satisfied. Thus the recursive vsplit operations must first be propa­
gated to the parent node t.p before recursively splitting nodes tA, tB, tc
andtv.

To be able to propagate the vsplit operations as outlined above, each
triangle face A must record the node t A that causes the collapse of a half­
edge h of triangle A, thus h is referenced by index t A-ih. Maintaining this
information can be done dynamically at run-time whenever a half-edge
h is actually collapsed.

4. View-dependent Error Metrics
In this section we describe the view-dependent error metrics outlined in
Section 1. These error metrics have to be computed for all active nodes
when the front F is traversed for updates as explained in Section 3.2.
The nodes are collapsed or split based on: view-frustum culling, back­
face culling, silhouette preservation, and screen-projection tolerance.
Since the number of times these criteria must be computed per frame is
in the order of the number of vertices in the current mesh, their computa­
tion must be extremely fast. FastMesh' s view-dependent error metrics
are designed to minimize computational costs, but nevertheless compute
conservative error bounds on all four criteria.

As mentioned earlier, only two scalar values per node t E H in the
half-edge collapse hierarchy are required to compute all four error met­
rics, and these two parameters are explained below.

Bounding sphere radius The bounding sphere centered at the end­
point of half-edge t.ih with radius t.radius encloses all triangles that are
affected by the half-edge collapse t and all its descendants in Has shown
in Figure 7. The bounding spheres can be computed bottom-up when
building the hierarchy Hat initialization.

half-edge collapse
hierarchy H

sphere\ _\

FIGURE 7. Bounding spheres of a sequence of half-edge
collapse operations.

Normal cone angle The cone defined by the semi-angle 0 (t.theta)
about the vertex normal at the endpoint ofhalf-edge t. ih bounds the cone
of normals [SA93] of all triangles that are affected by the half-edge col­
lapse t and all its descendants in Has shown in Figure 8. The bounding
normal cones are also built bottom-up during the initialization process.
Note that FastMesh actually only maintains the value of sin 0 instead of
0 itself, since only sin 0 is needed to compute the view-dependent error
metrics.

vertex normal half-edge collapse
hierarchy H

4.1 View frustum
In order to reduce the graphics load of performing view-frustum culling
for a large number of invisible triangles, the mesh regions outside of the
view frustum can be kept at the coarsest possible resolution. Thus a half­
edge collapse can be performed if its bounding sphere does not intersect
the view frustum.

The distance to the view frustum can easily be computed given its
four bounding planes as presented in [Hop97]. However, the 16 plane
parameters must be calculated for every frame from the current view
parameters since they are usually not given in a 3D graphics system. To
avoid computation of the plane parameters we bound the view frustum
by a cone with semi-angle ro about the viewing direction n. The view­
point e, normalized view-direction n, and field-of-view (FOV) angle 2ro
are the standard viewing parameters defining a perspective projection,
and are easily available in a 3D graphics system.

As shown in Figure 9, a half-edge collapse with endpoint vis out­
side the view frustum and can be performed if d - a > b . This can effi­
ciently be computed if given the vectors v, e, n with lnl=l, the bounding
sphere radius r, and the FOV semi-angle ro by

c=n·(v-e)

d = lv-e-cnl

a = ctanro

b = r/ cosro

~·--- bounding sphere

/vertex:\

dj:::~r:::::\ ,1""
~ ~ ~ ~ 1 ~ ~ ------- ro cone semi-angle

view direction n

c
view frustum

FIGURE 9. Outside view-frustum simplification.

An example view-frustum simplification is shown in Figure 14.
Within the indicated view frustum, bounded by the yellow planes, the
triangle mesh is rendered in full resolution, also the invisible parts, and
the remaining parts of the mesh are greatly simplified.

4.2 Back-faces

For large and complex triangle meshes, a large fraction of the triangles
that are within the view frustum will be discarded in the graphics render­
ing pipeline's back-face culling stage, or if rendered, are not visible to
the viewer because obscured by other triangles. These unnecessary tri­
angles can cost a significant amount of computation time, even if only
processed and discarded using back-face culling. Thus back-facing
regions of the mesh can be kept at the coarsest possible resolution.

Therefore, a half-edge with endpoint v can be collapsed if its associ­
ated normal cone is back-facing, that is if no normal within the cone can
be front-facing. As can be seen from Figure 10, given the normal cone
with semi-angle 0 and the angle y between the normalized vertex normal
nv and the vector ev from the viewpiont e to v, this is the case if:

y < 90° -0 =::}cosy> cos(90° - 0) =::}cosy> sin8

5

/
viewpoint e /

Cll

'

/
/

/

vertex normal nv

vectorev ,

FIGURE 10. Back-face simplification.

As mentioned at the beginning of this section, sine is stored with
each half-edge collapse instead of the actual semi-angle e of the nonnal
cone. The cosy tenn can be computed by nv · (v - e)/Iv - el , the dot
product of the nonnalized vertex nonnal nv and the vector ev from e to v
divided by the length of ev. Note that ev has already been computed for
the view-frustum simplification and can be reused for back-face culling.
Furthennore, since our bounding nonnal cones are correctly computed
for each half-edge collapse, the back-face simplification criterion is not
an approximation as it is the case in [Hop97].

Figure 15 shows an example for back-face simplification. Only the
surface regions that are oriented towards the viewpoint are displayed in
full resolution, back-facing areas are simplified as much as possible.

4.3 Silhouettes
The silhouette outline of an object carries a lot of visual infonnation on
the object's 3D shape, and is perceptually very important. Distortion
along the silhouette has a low visual tolerance, and can quickly lead to a
limited spatial understanding of the object's 3D shape. Therefore, view­
dependent mesh simplification should take care of preserving the silhou­
ettes as much as possible.

An edge in a triangular mesh is defined to be a silhouette edge if one
of the incident triangles is front-facing and the other is back-facing with
respect to a particular viewpoint. In our multiresolution mesh we addi­
tionally have to consider the nonnal cone associated with a half-edge.
Therefore, given the nonnal cone semi-angle e, the angle y between the
vertex nonnal and the vector ev from the viewpiont e to v, and the face
nonnals n1 and n2 of the incident triangles as shown in Figure 11, a half­
edge is considered to be part of the silhouette, and thus cannot be col­
lapsed, if one of the following inequalities holds:

I sin(90 -y)I <sine=> (cosy)
2

< (sine)
2

(n1 · ~)(n2 · ~) < 0 (with~ = v- e)

vertex normal nv
normal cone
semi-angle
e

face normal n2 /

/
/

viewpoint e /
•

,vectorev

FIGURE 11. Silhouette preservation.

The cosy tennis already computed for back-face simplification,
thus can be reused, and sine is stored with each half-edge collapse. The
negative sign of the product of the dot-products of the triangle face nor­
mals n1 and n2 with vector ev determines if the nonnals have different
orientations towards the viewpoint. Note that also ev has been computed
previously and can be reused here without further computation.

The example in Figure 16 shows silhouette preservation nicely.
While the triangle mesh has a high resolution along the silhouette area,
other regions are simplified to the coarsest possible resolution.

4.4 Screen projection
If a polygonal mesh is rendered without the use of antialiasing tech­
niques, it is intuitively clear that sufficiently small polygons (i.e. pro­
jected area smaller than a pixel) can only create visual artifacts in the
rendered image but not contribute to a smooth display. Even when using
antialiasing it makes little sense to render thousands of insignificantly
small triangles with respect to the limited screen display resolution. Fur­
thennore, the perfonnance bottleneck in interactive rendering of large
polygonal scenes and objects can also effectively be reduced by simpli­
fication of very small triangles. This is particularly true for graphics sub­
systems that are geometry (transfonnation and lighting) limited and not
pixel fill-rate limited, which is the case for most systems.

Therefore, to improve rendering perfonnance mesh simplification
can be used to remove triangles whose projected area on screen is suffi­
ciently small with respect to an application specific or user given thresh­
old "C. Note that an ecol operation affects all triangles incident on the
removed vertex. In FastMesh we can bound the projected area of trian­
gles affected by a half-edge collapse using its bounding sphere with
radius r, bounding nonnal cone with semi-angle e, and the nonnalized
vertex normal llv· For better understanding and simple graphical repre­
sentation, Figure 12 shows the situation of projecting a back-facing sur­
face area onto the view plane. The front-facing situation is handled
analogously after inverting the vertex nonnal llv·

With respect to a given viewpoint e, the visible area is maximal if
y = 0° =>cosy = 1, and minimal if y = 90° =>cosy = 0, see
also Figure 12. However, due to the nonnal variation bounded by 0, the
maximal visible area for y < 90 ° can already occur when cos (y - e)
is 1. Thus for y ~ 90° =>cosy~ 0' y ~ e =>cosy~ cose 'and given
the area nr2 of the intersection of the bounding sphere with a plane, the
maximal visible area can be bounded by cos(y- 0) · nr2. therefore,
the projected area on the view plane at distanced from the viewpoint can
be bounded by:

nr2 2
cos(y-0) · --

2
d

Iv-el

normal cone vertex normal nv
semi-angle

focal Ian~,,'

viewpoint e

, e

/
/

vectorev ,

bounding sphere
with radius r

(EQ 1)

FIGURE 12. Simplification based on screen projection.

The computation of the projected area according to Equation 1
would require an expensive calculation of the explicit value of y, fol­
lowed by another expensive cosine ofy-0. We avoid such costly trigo­
nometric functions by the use of the trigonometric equality
cos (a) = sin (90 - a) , and inequality sin (a + f3) ~ sin a + sin f3 ,
to get cos(y- 0) ~cosy+ sine. Thus for y ~ 90° and y ~ e the
projected area can be bounded by

nr2
(cosy+ sin0) · --

2
d2 ,

Iv-el
(EQ 2)

6

and a half-edge with bounding sphere radius rand nonnal cone with
semi-angle e can be collapsed if evaluation of Equation 2 is smaller than
the given threshold 't.

For y < e we set cosy+ sine to 1. For y::;; 90° the cosine tenn
can be reused from the back-face simplification, otherwise we can invert
the vertex nonnal nv and recalculate it from
cosy= -nv· (v-e)llv-el. Note that also the length Iv-el has
already previously been computed and can be reused here.

Figure 17 shows an example with projected area error tolerance of
't = 1/210 = 0.00098, measured as a fraction (percentage) of the
viewport size - red square of size 't on the imaginary unit viewing plane
at the base of the transparently rendered view-frustum pyramid. The
example shows nicely, but very subtle, the variance in simplification
based on the distance from the viewpoint, and based on the angular ori­
entation of the surface with respect to the view direction.

5. Initialization
The preprocessing, or initialization stage of the presented view-depen­
dent mesh framework consists of the following steps:

1. Reading the triangle mesh input file, and creating the half-edge
data structure.

2. Selecting a partially ordered set of half-edge collapses for sim­
plifying the input mesh M'1 to the base mesh JvfJ.

3. Generating the binary half-edge collapse hierarchy H, and com­
puting the bounding sphere radius and bounding nonnal cone
semi-angle for each node t E H .

4. Initialize the active front F to the coarsest mesh /l;/J,
For Step 2 above, a simplification process based on an object-space

geometric error metric is appropriate since less important features in
object-space will also likely to be of less visual importance in image­
space. Also, the view-dependent simplification criteria cannot be used
for the view-independent preprocess. We use the quadric error metric
described in Section 2.1 to guide the preprocess simplification. Further­
more, to balance the hierarchy H, and to reduce dependencies of the par­
tial ordering of nodes t e H , the selection of simplification operations
is perfonned in batches similar to [PROO].

Initializing the binary half-edge collapse hierarchy H in Step 3
involves setting the correct parent-child relations between the selected
half-edge collapse operations. Additionally, the view-dependent error
metric coefficients, the bounding sphere radius and the nonnal cone
semi-angle e (respectively sine), have to be computed. This is per­
fonned by a recursive depth-first traversal of H. At every node t E H
the coefficients t.radius and t.e are initialized according to the vertices
and triangles adjacent to the start point h v of the collapsed edge h, and
maximized over t. r. radius and t. l. radius, respectively t. r. e and t. l. 9 oft' s
children. Finally, all entries t. 9 are converted to sin (t. e) .

Note that Steps 1 to 3 can actually be perfonned once per object or
triangulated surface, and the half-edge collapse hierarchy can be stored
with the vertex and triangle mesh data as outlined in Section 7.1.

6. Implementation Details

6.1 Data structures and algorithms
The data structures used in FastMesh to maintain the view-dependent
multiresolution mesh are fairly simple, and reflect the simplicity and
efficiency of our approach. A view-dependent multiresolution mesh

with n vertices and m triangles consists of several arrays: vertex coordi­
nates (float vertices[n][3]), vertex nonnals (float nonnals[n][3]), half­
edges (halfedge hedges[3m]), and triangle faces (tface faces[m]). Addi­
tionally, it also includes the nodes of the binary half-edge collapse hier­
archy, and at run-time the doubly linked list of activ nodes. The main
data structures are given in Figure 13 below.

struct half edge { II half-edge data structure
int rev;
int vertex;

} ;
II auxiliary information per face
II 0 if not currently used in the mesh

struct tface {
char flag;
bintree *split; II node that deletes (inserts) this triangle

} i
struct bin tree { //binary half-edge collapse hierarchy

bin tree * 1, * r, *p ; // left, right, and parent links
int edge; //collapsed half-edge index
float radius; II bounding sphere radius
float s intheta; II sinus of normal cone semi-angle

} ;
struct list { //doubly linked list of active nodes

list *next, *prev;
bin tree *node; II pointer to active node in hierarchy

} i

FIGURE 13. FastMesh main data structures.

For each face we maintain a flag that specifies if that face is cur­
rently rendered or not, and a pointer to the corresponding node in the
half-edge collapse hierarchy H. This is necessary to propagate forced
splits as described in Section 3.3. A node of H consists of the parent­
child links, and the collapsed half-edge index as explained in
Section 3.2, and of the error metric coefficients introduced in Section 4.
Given a half-edge with index i, its corresponding face is indexed by i/3 if
both half-edge and face arrays are ordered consistently.

fu the main rendering loop, the active nodes F have to be traversed
and tested for each new frame (with changed viewing parameters). After
traversing the active nodes, the front F has to be adjusted within the hier­
archy H. fu Algorithm 1 below, the necessary steps for testing an active
node E F are given. For each node, the tests described in Section 4 are
evaluated, and if the node represents a collapsed half-edge it is refined if
required by' the error metric. Otherwise, the half-edge is collapsed if
allowed by the error metric, or its children are tested to be split.

void viewTestNode(bintree *node) {
int merge;
merge=viewTest (node); II perform view-dependent tests
if (faces[node->edge/3] .flag== COLLAPSED)

if (!merge) split(node);
else

if (merge) collapse(node);
else

if (node->l) viewTestNode(node->l);
if (node->r) viewTestNode(node->r);

ALGORITHM 1. Testing a node of the active nodes front.

The procedure to evaluate the view-dependent error metrics is given
below in Algorithm 2. The code has been modified from standard C++
to be more concise, it uses vector variables (i.e. v) and vector operations
(+, -, and dot product ·), and complex variable names such as cosy or
sin92

• Additionally, it assumes that the view parameters are given
by the viewpoint (eye), the view direction (dir), view frustum aper­
ture semi-angle co (respectively tanm and cosro), and focal length d.

7

int vieW'l'est(bintree *node) {
float v[3], a, q[3]~ qlen, ev[3], len, dot,

cosy, cosf, sine , factor, parea;

~et vector ev from current viewpoint
ev = v - eye; II vis start vertex of node->edge

II check if mesh element is in front of viewpoint
if ((dot= ev · dir) <= 0.0) return 1;

II check if mesh element is in view frustum
q = ev - dot * dlr;
qlen = sqrt(q[0] 2 + q[1] 2 + q[2] 2);
a = dot * tanro;
if (qlen - a > node->radius * cosro) return 1;

II get squared length of ev and other variables
len = sqrt (ev · ev);
cosy = (nv • ev) I len; II nv is vertex normal
cosi = cosy * cosy;
sine2 = node->sine * node->sine;

II check for back-face simplification
if (cosy > node->sine) return 1;

II preserve silhouette ed?es, n1 and i!z_are a~acent face normals
if (cosf <sine 11 (n1 ·ev)*(n2 ·ev) < 0.0)

return O;

II check screen projection tolerance
cosy = I cosy I ;
if (cosY. < 1. 0 - sine2)

factor = cosy + node->sine;
if (factor > 1.0) factor = 1.0;

else
factor= 1.0;

parea = factor * n * node->radius 2 * d I len;
if (parea < ~) return 1;

return O;

ALGORITHM 2. Evaluating view-dependent error metric.

6.2 limitations
As presented in this paper, this view-dependent simplification method
using a half-edge triangle mesh data structure, and a half-edge collapse
hierarchy works well on manifold triangular meshes of arbitrary topol­
ogy (genus). Altough the special cases are not discussed here, simplifi­
cation near and on boundary vertices and edges of the mesh is possible
with minor modifications.

Moreover, our method naturally handles meshes which have a man­
ifold mesh connectivity but that may have non-manifold vertices only.
Handling of non-manifold edges would require significant changes to
the half-edge data structure, half-edge collapse operation, and its inverse
vertex split operation.

1. Experimental Results
We tested our view-dependent meshing approach on various models of
different sizes and varying shapes. The experiments include measure­
ments of the compactness of the FastMesh data structures, as well as
run-time performance of the view-dependent error calculations, and tim-

Initialization
Model ecol rendering

ing of the dynamic mesh updates using the half-edge collapse hierarchy.
Graphical examples are also given in Figure 18 for a triangulated terrain
surface.

7 .1 Space cost
The main memory usage of FastMesh is determined by the number of
mesh elements, and the size of the data structures of Figure 13. Note that
the number of nodes in the half-edge collapse hierarchy is smaller than
the number of vertices. For a mesh with n vertices, and thus about 2n tri­
angles and 6n half edges, the nm-time space cost consists of: 24n bytes
for vertex coordinates and normals, 5·2n bytes for the faces, 8·6n bytes
for the half edges, and 24n bytes for the half-edge hierarchy. Thus the
overall main memory size is only 106n bytes, see also Table 1. The
main space cost advantage is due to the fact that the half-edge collapse
hierarchy only requires half the number of nodes compared to a binary
vertex hierarchy, and due to the compact vertex, face, and edges data
structures.

Storage of a FastMesh on disk requires even less space. Note that
the faces data as well as the reverse fields of half-edges can be recovered
at initialization, and need not to be stored. Thus since the binary hierar­
chy can also be recovered by the collapsed half-edge index of each node,
the disk space reduces to 24n (coordinates and normals) + 4·6n (half
edge start vertices) + 12n (node half-edges indices, and error metric
coefficients) = 60n bytes.

Model
Full resolution FastMesh

vertices faces memory disk gzipped
bunny 35947 69451 3.5 2.0 1.5
fandisk 6475 12946 0.7 0.4 0.2
happy 49794 100000 5.0 2.9 2.0
horse 4a4a5 96966 4.9 2.a 1.9
phone a3044 165963 a.4 4.a 3.4
terrain 90000 11aao2 9.0 5.1 2.5

TABLE 1. Space cost of the FastMesh data structure in main memory,
on disk, and gzipped on disk given in MBytes.

7 .2 Time cost
The run-time performance tests were performed on a Sun Ultra60 work­
station, equipped with a 450MHz UltraSPARC-11 CPU, an Expert3D
PCI-bus graphics card, and running SunOS 5.7. The CPU time usage
was measured with the high-resolution timing function gethrvtimeO in
conjunction with the ptime command for microstate CPU accounting
available on Sun/Solaris machines.

Table 2 in the left-hand columns reports construction time of a Fast­
Mesh data structure when initialized from a plain triangle mesh (col­
umns ecol selection and hierarchy) as well as initialization from a
FastMesh representation stored on disk (column.from disk). Initializa­
tion from a plain triangle mesh includes the selection of half-edge col­
lapses as outlined in Section 2.1, as well as the construction of the half­
edge collapse hierarchy, and computation of error metric coefficients as
described in the introduction of Section 4. Initialization from disk con­
sists of reading and reconstructing the half-edge data structure, as well as
reading the error metric coefficients and reconstructing the binary half­
edge hierarchy from the sequence of half-edge collapses.

Run-time (averaged per frame)
error metric updating mesh

selection
hierarchy from disk

IA! time o/oofframe ltestsl time o/oofframe I updates I time o/oofframe
ounny 10s 1J.4s Us [15402 [23.5 ms 44% 5423 1f.9ms 17% 1348 -4.Tms 1Wo
fandisk 1.7s 0.06s 0.3s 3790 3.9ms 35% 1242 1.8 ms 16% 294 0.7ms 6%
happy 20s 0.6s 7.4s 224a7 31.a ms 33% 75a4 14.4 ms 15% 2101 7.0ms 7%
horse 15s 0.6s 2.2s 18889 25.7 ms 34% 670a 12.1 ms 16% 2719 a.ams 12%
phone 26s 1.1s 3.4s 31175 60.7 ms 38% 10735 20.9 ms 13% 4522 16.6 ms 10%
terrain 40s Us 17s 251a5 a9.1 ms 46% 9314 16.7 ms 9% 2771 9.2ms 5%

TABLE 2. Initialization performance given in seconds to preprocess a given triangle mesh and constructu the half-edge hierarchy, or read a FastMesh data
structure from disk. Run-time performance for rendering, computing error measures, and updating the triangle mesh data structure is given by the average

number of elements processed, the time in milliseconds to perform each task, and its percentage of overall CPU cost per frame.

8

Run-time performance was also measured in CPU time usage using
gethrvtimeO and ptime. The three tasks that were timed are:

1. Rendering, which includes setting up the graphics context and
calls to the OpenGL GLvertexO and GL normalO functions.

2. Calculating and testing the view-dependent error metric for
active nodes.

3. Updating the mesh using vertex split and half-edge collapse
operations according to the results of the view-dependent tests
on active nodes.

For each task we counted the number of elements that were pro­
cessed, and measured the CPU time that was used. The test run con­
sisted of moving the view-frustum continuously around the object, and
constantly varying the threshold 't.

Table 2 presents the achieved results averaged per frame, and shows
the run-time cost of each individual task in relation to the overall CPU
cost. As can be seen, by far most of the CPU time is spent on the render­
ing task. Even though a significant number of view-tests has to be per­
formed each frame, our approach is very efficient and only consumes a
small fraction of the overall time to perform these tests. Furthermore,
also the dynamically changing half-edge based triangle mesh data struc­
ture is extremely efficient, it mostly consumes less than 10% of the per
frame CPU cost. The computation of the view-dependent error metrics
for a single half-edge collapse only requires less than 2µs, and an indi­
vidual ecol or vsplit mesh update operation needs about 2.4 to 3.7µs on
average.

8. Conclusion
In this paper we have presented an efficient view-dependent meshing
framework for interactive visualization of highly complex triangle
meshes called FastMesh. We introduced a half-edge data structure based
hierarchical multiresolution triangulation framework, developed algo­
rithms for adaptively refining and simplifying the triangle mesh using
this half-edge hierarchy, and devised a set of effective view-dependent
error metrics and a highly efficient implementation to guide mesh sim­
plification. Experiments on a variety of meshes have shown the effi­
ciency of the presented view-dependent error metric calculations, as
well as the compactness of the required data structures. Compared to
previous methods, our approach exhibits much fewer dependencies
between refinement and simplification operations, uses simpler and
more compact data structures, and integrates highly optimized calcula­
tions of several view-dependent error metrics.

Future work related to this area includes view-dependent simplifica­
tion of non-manifold triangle meshes and triangle soups, dynamic trian­
gle strip generation, and out-of-core view-dependent triangulation.

References
[CMS98] P. Cignoni, C. Montani and R. Scopigno. A comparison of

mesh simplification algorithms. Computers & Graphics,
22(1):37-54, 1998.

[DP95] Leila De Floriani and Enrico Puppo. Hierarchical triangula­
tion for multiresolution surface description. ACM Transac­
tions on Graphics, 14(4):363-411, 1995.

[FS93] Thomas Funkhouser and Carlo Sequin. Adaptive display
algorithm for interactive frame rates during visualization of
complex virtual environments. In Proceedings SIGGRAPH
93, pages 247-254. ACM SIGGRAPH, 1993.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification
using quadric error metrics. In Proceedings SIGGRAPH 97,
pages 209-216. ACM SIGGRAPH, 1997.

[HG97] Paul S. Heckbert, and Michael Garland. Survey of polygonal
surface simplification algorithms. SIGGRAPH 97 Course
Notes 25, 1997.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings SIG­
GRAPH 96, pages 99-108. ACM SIGGRAPH, 1996.

[Hop97] Hugues Hoppe. View-dependent refinement of progressive
meshes. In Proceedings SIGGRAPH 97, pages 189-198.
ACM SIGGRAPH, 1997.

[LPc+oo] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusink­
iewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean
Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade,
Duane Fulk. The digital Michelangelo project: 3D scanning of
large satues. In Proceedings SIGGRAPH 2000, pages 131-
144. ACM SIGGRAPH, 2000.

[L T99] Peter Lindstrom and Greg Turk. Evaluation of memoryless
simplification. IEEE Transactions on Visualization and Com­
puter Graphics, 5(2):98-115, April-June, 1999.

[LE97] David Luebke and Carl Erikson. View-dependent simplifica­
tion of arbitrary polygonal environments. In Proceedings SIG­
GRAPH 97, pages 199-208. ACM SIGGRAPH, 1997.

[PROO] Renato Pajarola and Jarek Rossignac. Compressed progres­
sive meshes. IEEE Transactions on Visualization and Com­
puter Graphics, 6(1):79-93, January-March 2000.

[SA93] Leon A Shinnan and Salim S. Abi-Ezzi. The cone of normals
technique for fast processing of curved patches. In Procee~­
ings EUROGRAPHICS 93, pages C261-C272, 1993. also m
Computer Graphics Forum 12(3).

[Wei85] Kevin Weiler. Edge-based data structures for solid modeling
in curved-surface environments. IEEE Computer Graphics
and Applications, 5(1): pages 21-40, January 1985.

[XV96] Julie C. Xia and Amitabh Varshney. Dynamic view-depen­
dent simplification for polygonal models. In Proceedings
Visualization 96, pages 327-334. IEEE, Computer Society
Press, Los Alamitos, California, 1996.

[XEV97] Julie C. Xia, Jihad El-Sana and Amitabh Varshney. Adap­
tive real-time level-of-detail-based rendering for polygonal
models. IEEE Transactions on Visualization and Computer
Graphics, 3(2):171-183, April-June 1997.

9

FIGURE 14. Example view-frustum simplification with two
sides of a simulated view frustum shown as transparent
yellow planes. Rendered 62%, or 43463 out of 69451 faces.

FIGURE 15. Example back-face simplification for the
displayed view frustum. Rendered 51%, or 6684 out of
12946 faces.

Reduced resolution
Rendered 31476 out of 178802 faces (17%)

(screen projection tolerance 0.006, normal tolerance 0.6°}

c

FIGURE 16. Example of silhouette preservation. Rendered
19%, or 19154 out of 96966 faces.

FIGURE 17. Example of screen projection basid
simplification with projection tolerance 't = 1121 .
Rendered 19%, or 32755 out of 165963 faces.

Full resolution within view-frustum
Rendered 84932 out of 178802 faces (47%)

FIGURE 18. Images a) and b) show the view-frustum and mesh simplification from a bird's eye view, and images c) and d) show the
terrain as viewed from the actual viewpoint. The right-hand column images b) and d) have only view-frustum simplification enabled,
thus show the terrain in full detail within the visible view. The left-hand column has all view-dependent simplifications enabled, and
strict silhouette preservation is relaxed by coupling it with the squared length of the silhouette edge as projected on the view-plane
and thresholding it with O.Oh.

10

