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A central question in genetics is how different classes of DNA variants 

affect RNA splicing and expression. While there has been substantial progress in 
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associating single nucleotide polymorphisms and small indels with these 

phenotypes, only recently has affordable high throughput sequencing provided 

the opportunity to assess the impact of somatic, rare, and copy number variants 

(CNVs) on RNA splicing and expression. In this thesis, I use high throughput 

sequencing to investigate the effect of somatic variants in SF3B1 on RNA 

splicing and characterize the genetic regulation of gene expression in induced 

pluripotent stem cells (iPSCs). In the first part, I examine the effect of recurrent 

somatic mutations in the splicing factor SF3B1 on RNA splicing in three different 

cancer types and find that SF3B1 mutants use hundreds of cryptic 3’ splice sites 

that are rarely used in samples without SF3B1 mutations. Sequence properties of 

these cryptic 3’ splice sites suggest altered sterics may allow usage of cryptic 3’ 

splice sites in SF3B1 mutants. I also identify several candidate genes with out-of-

frame cryptic splice sites that are used in a majority of transcripts in the mutants 

and may contribute to oncogenesis. In the second part, I examine the genetic 

regulation of gene expression in a collection of 215 human iPSCs using 

transcriptome and whole genome sequencing. I identify expression quantitative 

trait loci (eQTLs) for nearly six thousand genes including markers of pluripotency 

such as POU5F1, LCK, IDO1, and CXCL5. A comparison to GTEx eQTLs 

reveals that iPSCs are well powered statistically for finding eQTLs and have a 

unique regulatory landscape. I identify biallelic and multiallelic CNVs eQTLs and 

find that a substantial proportion of CNV eQTLs appear to affect intergenic 

regulatory regions. I also find that rare promoter variants weakly disrupt gene 
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expression while rare CNVs that overlap genes tend to disrupt gene expression 

with relatively high effect sizes. Overall, this thesis helps define the roles of 

somatic, rare, and copy number variants in the regulation of gene expression and 

splicing and provide key insights into SF3B1-mutated cancers and iPSCs as a 

model system for molecular association analyses. 



 

 
  
 

 
 

1 

Chapter 1: Transcriptome Sequencing Reveals Potential 
Mechanism of Cryptic 3’ Splice Site Selection in SF3B1-
mutated Cancers 
 
Chapter 1.1: Abstract 

Mutations in the splicing factor SF3B1 are found in several cancer types 

and have been associated with various splicing defects. Using transcriptome 

sequencing data from chronic lymphocytic leukemia, breast cancer and uveal 

melanoma tumor samples, we show that hundreds of cryptic 3’ splice sites 

(3’SSs) are used in cancers with SF3B1 mutations. We define the necessary 

sequence context for the observed cryptic 3’ SSs and propose that cryptic 3’SS 

selection is a result of SF3B1 mutations causing a shift in the sterically protected 

region downstream of the branch point. While most cryptic 3’SSs are present at 

low frequency (<10%) relative to nearby canonical 3’SSs, we identified ten genes 

that preferred out-of-frame cryptic 3’SSs. We show that cancers with mutations in 

the SF3B1 HEAT 5-9 repeats use cryptic 3’SSs downstream of the branch point 

and provide both a mechanistic model consistent with published experimental 

data and affected targets that will guide further research into the oncogenic 

effects of SF3B1 mutation. 
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Chapter 1.2: Introduction 

One of the biggest surprises to emerge from the growing catalog of 

somatic mutations in various cancer types is the recurrent mutation of gene 

encoding the RNA spliceosome (Watson, Takahashi, Futreal, & Chin, 2013). 

Recurrent mutations in the highly conserved HEAT 5-9 repeats of splicing factor 

3B subunit 1 (SF3B1) have been reported in myelodysplastic syndrome, chronic 

lymphocytic leukemia (CLL), breast cancer (BRCA), uveal melanoma (UM), and 

pancreatic cancer (Biankin et al., 2012; Harbour et al., 2013; M. Martin et al., 

2013; Papaemmanuil et al., 2011; Wan & Wu, 2013; Yoshida et al., 2011). 

SF3B1 mutation is associated with poor prognosis in CLL but improved prognosis 

in myelodysplasia and UM (Harbour et al., 2013; Quesada et al., 2012; 

Schwaederle et al., 2013; Wan & Wu, 2013). Prior studies have shown that 

mutated SF3B1 CLL samples have differential exon inclusion and use some 

cryptic 3’ splice sites (3’SSs) relative to wild-type SF3B1 CLL samples (Ferreira 

et al., 2013; Papaemmanuil et al., 2011; Quesada et al., 2012; L. Wang et al., 

2011; Yoshida et al., 2011). However, it is unknown whether SF3B1 mutation is 

associated with the same 3’SS selection defects in different cancers. The 

mechanism underlying the cryptic 3’SS selection and the functional 

consequences thereof remain unresolved as well. 

SF3B1 is a core part of the U2-small nuclear ribonucleoprotein (U2-

snRNP) complex and stabilizes the binding of the U2-snRNP to the branch point 

(BP), a degenerate sequence motif usually located 21-34 bp upstream of the 
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3’SS (Gao, Masuda, Matsuura, & Ohno, 2008; Padgett, 2012). SF3B1 also 

interacts with other spliceosomal proteins such as U2AF2, which binds the 

polypyrimidine tract (PPT) downstream of the BP (Gozani, Potashkin, & Reed, 

1998; Wan & Wu, 2013; C. Wang et al., 1998). The binding of the U2-snRNP and 

other spliceosome proteins around the BP prevents 3’SS selection in a ~12-18 bp 

region directly downstream of the BP due to steric hindrance (Chua & Reed, 

2001; Smith, Chu, & Nadalginard, 1993). Inherited cis-acting splicing mutations 

beyond this ~12-18 bp region downstream of the BP that result in the use of 

cryptic 3’SSs have been shown to occur in Mendelian disease genes 

(Kralovicova, Christensen, & Vorechovsky, 2005). Additionally, a competitive 

region exists ~12 bp downstream from the first 3’SS after the protected region 

where AG dinucleotides can compete to be used as 3’SSs based on sequence 

characteristics such as the PPT length, distance from the BP, nucleotide 

preceding the AG dinucleotide, and other features (Chua & Reed, 2001). 

The role of SF3B1 and the U2-snRNP in recognizing and binding the BP 

and the localization of mutations to HEAT 5-9 repeats suggest that SF3B1 

mutations are dominant drivers that may alter 3’SS selection (Papaemmanuil et 

al., 2011). To test this, we examined splice site usage in transcriptome data from 

SF3B1 mutant and SF3B1 wild-type CLL, UM and BRCA cases. We identified 

619 cryptic 3’SSs used more frequently in SF3B1 mutants and clustered 10-30 

bp upstream of canonical 3’SSs. The majority of these cryptic 3’SSs were 

observed in all three tumor types despite the divergent clinical implications of 
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SF3B1 mutation. Our analysis of tumors with SF3B1 mutations shows that cryptic 

3’SS selection occurs only in samples with missense mutations at ~10 amino 

acid hotspots in the fifth to ninth HEAT repeats. We analyzed the organization of 

splicing motifs around the cryptic 3’SSs and found that only introns with an AG 

dinucleotide at the boundary of the sterically protected region downstream of the 

BP but >10 bp upstream of the canonical 3’SS are susceptible to cryptic 3’SS 

selection in SF3B1 mutants. We assessed the functional impact of SF3B1 

mutation and found that the cryptic 3’SSs are typically used at low frequency in 

the SF3B1 mutants (<10% relative to the canonical splice site) and are 

sometimes present in the SF3B1 wild-types but at an even lower frequency 

(<0.5% relative to the canonical splice site). However, we identified 10 candidate 

genes, some previously implicated in tumorigenesis, for which there is a high 

amount of out-of-frame cryptic splice site usage that may affect the function of 

these genes.  

 

Chapter 1.3: Results 

Chapter 1.3.1: Cryptic 3’ splice sites 10-30 bp upstream of canonical 3’ splice 
sites are used in SF3B1 mutants 

We used RNA-sequencing data from SF3B1 mutated and SF3B1 wild-type 

chronic lymphocytic leukemia (CLL; seven mutant, nine wild-type), breast cancer 

(BRCA; 14 mutant, 18 wild-type), and uveal melanoma (UM; four mutant, four 

wild-type) samples (Supplementary Figure 1.1, Supplementary File 1.1) to test 
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219,476 splice junctions present in the Gencode v14 gene annotation (Harrow et 

al., 2012) along with 87,941 novel splice junctions (not annotated in Gencode) for 

differential usage by comparing junction-spanning reads using a generalized 

linear model as implemented in DEXSeq (Anders, Reyes, & Huber, 2012). A 

splice junction is considered differentially used between mutant and wild-type 

samples if the expression level of that junction differs significantly after 

accounting for overall expression differences of the corresponding gene locus. All 

tested junctions were covered by at least 20 reads summed over all cancer 

samples in a given analysis, shared a 5’ splice site and/or 3’SS with a Gencode 

splice junction, and had a known splice site motif. We identified 1,749 junctions 

that were significantly differentially used between the SF3B1 mutant and SF3B1 

wild-type samples across the three tumor types including 1,330 novel junctions, 

of which 1,117 are novel 3’SSs (BH-adjusted p < 0.1, Supplementary File 1.2). 

These 1,749 significant junctions were highly enriched for novel splice junctions 

compared to annotated junctions (Fisher exact, p < 10-200) and the novel 

junctions were enriched for novel 3’SSs (Fisher exact, p < 10-200) showing that 

SF3B1 mutations result in the usage of a large number of novel 3’SSs. These 

1,749 significant junctions include 61 of 79 splice sites recently reported as 

specific to CLL cases with SF3B1 mutations (Ferreira et al., 2013) supporting the 

specificity of our approach while demonstrating an increased sensitivity that has 

allowed us to identify many more cryptic 3’SSs than previously reported. We 

plotted the distance between each significant novel 3’SS and its associated 
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canonical 3’SS (defined as the nearest Gencode 3’SS that shared the same 5’ 

splice site - see Methods). Of the 1,117 significant novel 3’SSs, 619 were 

proximal cryptic 3’SSs clustered 10-30 bp upstream of their associated canonical 

3’SSs while the remaining 498 cryptic 3’SSs were widely distributed (herein 

referred to as distal cryptic 3’SSs) (Figure 1.1A, Supplementary File 1.3). All of 

the 619 proximal cryptic 3’SSs were used more often in the SF3B1 mutant 

samples compared to the wild-type samples and 58% were out-of-frame relative 

to the nearby canonical 3’SSs, suggesting that these are not canonical 3’SSs 

missing from Gencode. 417 of the 498 distal cryptic 3’SSs were also used more 

highly in the SF3B1 mutants (Supplementary File 1.4). The distribution of the 

1,117 significant novel 3’SSs is different from that of novel 3’SSs whose usage 

did not differ significantly between the SF3B1 mutants and wild-types (Figure 

1.1B,C), further demonstrating that the usage of proximal cryptic 3’SSs is a 

property of SF3B1 mutants. Examining each tumor type individually, we observed 

the same enrichment of cryptic 3’SSs 10-30 bp upstream of canonical splice sites 

(Supplementary Figure 1.2). Given these observations, SF3B1’s role in binding 

the BP, and the organization of the BP and splicing motifs in the last 30 bp of the 

intron (Padgett, 2012), we focused our initial analyses on the 619 proximal cryptic 

3’SS.  
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Figure 1.1: Proximal cryptic 3’SSs used significantly more often in cancers with SF3B1 
hotspot mutations. log! distance in base pairs from associated canonical 3’SSs to (A) 1,117 
significantly differentially used novel 3’SSs, (B) 16,673 novel 3’SSs with canonical intron motifs 
(GT/AG) used more highly in the mutants but not significant, and (C) 18,660 novel 3’SSs with 
canonical intron motifs (GT/AG) used more highly in the wild-types but not significant. Zero 
represents the position of the canonical 3’SS. Negative and positive distances indicate that the 
cryptic 3’SS is respectively upstream or downstream from the canonical 3’SS. Inset in (A) shows 
base-by-base binning from zero to 50 base pairs upstream of canonical 3’SS. Red and blue 
histograms represent junctions with significantly higher usage in SF3B1 mutants or SF3B1 wild-
type samples, respectively. (D) Upper red and blue heatmap shows for each sample the 𝐥𝐨𝐠𝟐 
library-normalized count z-score for 619 cryptic 3’SSs used significantly more often in the SF3B1 
mutants and located 10-30 bp upstream of canonical 3’SSs (DEXSeq, BH-adjusted p < 0.1). Grey 
bars at left indicate frequency of SF3B1 mutant allele in RNA-seq data. Colorbars indicate SF3B1 
mutation status, cancer type, and whether the SF3B1 mutation is located in the HEAT 5-9 
repeats. Black and white colorbar indicates whether novel 3’SSs are out-of-frame (black) relative 
to canonical 3’SSs. Bottom green heatmap shows relative expression levels for the genes 
containing each cryptic 3’SS. We calculated the average expression of each gene in each cancer 
type and normalized by the maximum expression for each gene so that the maximum value in 
each column is one (see Methods). Cryptic 3’SSs not observed in all cancer types tend to have 
differing gene expression levels between cancers. (E) Locations and frequency of SF3B1 
mutations in HEAT repeats 5-9. Mutations observed more than once in COSMIC (upper axis) 
cluster in ~10 amino acid hotspots in each HEAT repeat; most frequent mutation in each hotspot 
is labeled. Bottom axis shows locations and frequency of mutations in our study. BRCA samples 
with A663V and Y765C mutations do not show evidence for cryptic 3’SS selection. 
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Chapter 1.3.2: Cryptic 3’SS selection is limited to tumors with mutations in HEAT 
repeat hotspots 

We clustered all samples based on the read coverage of the 619 proximal 

cryptic 3’SSs and found that four SF3B1-mutated BRCA samples did not cluster 

with the other mutants (Fig 1D). The SF3B1 mutation for one of these BRCA 

samples was a nonsense mutation not located in the HEAT 5-9 repeats while 

another sample had a subclonal (8.4%) HEAT 5-9 mutation with attenuated 

cryptic 3’SS selection (Supplementary Figure 1.3). The other two samples had 

mutations in the HEAT 5-9 repeats but outside of the apparent ~10 amino acid 

mutational hotspots (Fig 1E). We observed cryptic 3’SS selection in a TCGA lung 

adenocarcinoma sample with a hotspot mutation but not in lung cancer samples 

with SF3B1 mutations outside of the five hotspots (Supplementary Figure 1.4). 

These results show that cryptic 3’SS selection only occurs in tumors carrying 

mutations in one of the five ~10 amino acid hotspots in the HEAT 5-9 repeats 

and is not limited to cancers in which SF3B1 is recurrently mutated. 

 

Chapter 1.3.3: Cryptic 3’SSs are shared across different cancer types 

The majority of the 619 proximal cryptic 3’SSs were used in SF3B1-

mutated samples in all three cancer types suggesting that the mechanism of 

cryptic 3’SS selection in SF3B1-mutated tumors is the same between different 

cancers (Fig 1D). Some cryptic 3’SSs were not used in one or two of the cancer 

types due to lower expression of the corresponding genes in those cancers. 
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Differences in cryptic 3’SS usage due to varying gene expression may contribute 

to the divergent prognostic implications of SF3B1 mutation in various cancers 

(Harbour et al., 2013; Wan & Wu, 2013).  

To characterize the roles of the genes affected by cryptic 3’SS usage, we 

performed a gene set enrichment analysis for the 912 genes that contained the 

619 proximal and 417 distal cryptic 3’SSs used significantly more often in the 

SF3B1 mutant samples (Supplementary File 1.5). The gene set with the second 

smallest p-value consists of genes up-regulated in chronic myelogenous 

leukemia and the seventh gene set contains genes up-regulated in aggressive 

uveal melanoma samples (GSEA (Subramanian et al., 2005), q < 10-35). These 

results may reflect the fact that we are more likely to identify cryptic 3’SSs in 

genes that are highly expressed which may bias such a gene set enrichment 

analysis. Nonetheless, several gene sets with potential importance for cancer 

development are enriched such as genes positively correlated with BRCA1, ATM, 

and CHEK2 expression across normal tissues (GSEA, q < 10-28). 

 

Chapter 1.3.4: Cryptic 3’SSs are located ~13-17 bp downstream of the branch 
point 

We characterized the sequence features of the 619 proximal cryptic 3’SSs 

and their associated canonical 3’SSs to gain further insights into the mechanism 

of cryptic 3’SS selection (Figure 1.2A). We chose 23,066 control 3’SSs (see 

Methods) and plotted the nucleotide frequency (Crooks, Hon, Chandonia, & 
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Brenner, 2004) for the last 50 bp of the introns for all control, associated 

canonical, and cryptic 3’SSs as well as the enrichment of adenines relative to the 

control introns. The control introns have a typical nucleotide composition with a 4-

24 bp PPT preceding the 3’SS (Figure 1.2B) (Gao et al., 2008). The associated 

canonical 3’SS introns are enriched for adenines ~15-20 bp upstream of the 3’SS 

since the proximal cryptic 3’SSs are located in this region (Figure 1.2C). 

However, the introns for proximal (Figure 1.2D) and distal (Figure 1.2E) cryptic 

3’SSs have a strong enrichment of adenines concentrated ~15 bp upstream of 

the splice sites. These results suggest that the increased usage of the 619 

proximal and 417 distal cryptic 3’SSs in the SF3B1 mutants may result from the 

same mechanism. The human BP motif is highly degenerate except for a largely 

invariant adenine (Gao et al., 2008) leading us to suspect that the adenine signal 

upstream of the cryptic 3’SSs is caused by the associated canonical 3’SSs’ BP 

adenines. We used SVM_BP (Corvelo, Hallegger, Smith, & Eyras, 2010) to 

predict BPs for the associated canonical 3’SSs and calculated the distance from 

the highest scoring predicted BPs to the cryptic splice sites. We found that AG 

dinucleotides that serve as cryptic 3’SSs are enriched ~13-17 bp downstream 

from the predicted BP (Figure 1.3A) relative to random AG dinucleotides present 

in control 3’SS introns (Figure 1.3B, p < 10-7, Mann Whitney U). For cryptic 3’SSs 

not located 13-17 bp downstream from the highest scoring BP in Figure 1.3A, we 

calculated the distance from the second highest scoring BP to the cryptic 3’SSs 



 

 
  
 

11 

and found that overall, the majority of the cryptic 3’SSs were located 13-17 bp 

from either the highest or second highest scoring BP (Figure 1.3C).  

 

 
Figure 1.2: 3’ intron nucleotide composition for control, associated canonical, and cryptic 
3’SSs. (A) We identified 23,066 control 3’SSs whose junctions had a mean coverage greater than 
100 reads over all CLL, BRCA, and UM samples to compare to the cryptic and associated 
canonical 3’SSs. Nucleotide frequency for the last 50 bp of the intron for (B) 23,066 control 3’SSs; 
(C) 613 associated canonical 3’SSs; (D) 619 proximal cryptic 3’SSs; and (E) 417 distal cryptic 
3’SSs. Bar plots above each nucleotide composition plot are – log!" p-values from Fisher exact 
tests for enrichment of adenines at each position relative to control 3’SSs. Horizontal line marks 
significance level of p=0.05 (− log!" 0.05 ≈ 1.3). The p-value box plots have different scales in 
(C), (D), and (E); the smallest p-values for each panel are labeled. 
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Figure 1.3: Location of predicted branch point relative to cryptic and canonical 3’SSs and 
model of cryptic 3’SS selection. (A) Distance from highest scoring BP predicted for associated 
canonical 3’SSs to the corresponding proximal cryptic 3’SSs. A negative distance indicates that 
the cryptic 3’SS is upstream of the BP predicted for the canonical 3’SS. The small spike at 2 bp 
indicates that in a few cases the adenine in the cryptic 3’SS is predicted to be the BP adenine for 
the canonical 3’SS. (B) Distance from highest scoring BP predicted for control 3’SSs to 
downstream intronic AG dinucleotides that are not annotated as 3’SSs. (C) Distance from either 
highest or second highest scoring BP predicted for canonical 3’SSs to their associated cryptic 
3’SSs (see Methods). (D) Model for proximal cryptic 3’SS selection in SF3B1 mutants. yTnAy is 
the human BP motif. AG dinucleotides located at the edge of the sterically protected region can 
be used as 3’SSs in SF3B1 mutants (star). AG dinucleotides located in the protected or 
competitive regions (X’s) are respectively sterically hindered from being selected as 3’SSs or out-
competed by the canonical 3’SS. Distance from predicted BP to 3’SS for (E) associated canonical 
3’SSs and (F) control 3’SSs (see Methods) is significantly different (p < 10-23, Mann Whitney U). 

Chapter 1.3.5: Proposed mechanism of cryptic 3’SS selection 

3’SSs are typically not located within ~12-18 bp downstream of the BP 

because the proteins bound to the BP sterically hinder AG dinucleotides in this 

region and prevent them from being used as 3’SSs (Smith et al., 1993). Our 

results suggest that AG dinucleotides serving as cryptic 3’SSs in SF3B1 mutants 

are located at the end of this sterically protected region downstream of the BP 

(Figure 1.3D). Additionally, during the splicing reaction, the spliceosome 



 

 
  
 

13 

searches ~12 bp downstream from the first 3’SS after the BP for any other 3’SSs 

and chooses the strongest 3’SS based on sequence features (Smith et al., 1993). 

The lack of cryptic 3’SSs in the last 10 bp of the intron (Fig 1A) indicates that 

cryptic 3’SSs used in SF3B1 mutants are located far enough upstream of the 

associated canonical 3’SSs to avoid competition for splicing. We observed that 

the distance between associated canonical 3’SSs and their predicted BPs is 

significantly greater than the distance between control 3’SSs and their BPs such 

that the cryptic 3’SSs at the edge of the protected region do not compete with the 

canonical 3’SS for splicing (p < 10-23, Mann Whitney U, Figure 1.3E,F). We also 

predicted BP’s for the 619 proximal and 417 distal cryptic 3’SSs (as opposed to 

above where we predicted BP’s for the canonical 3’SSs associated with the 619 

proximal 3’SSs) and found that the majority of these cryptic 3’SSs were 13-17 bp 

downstream of their predicted BP’s (Supplementary Figure 1.5) providing further 

evidence that most cryptic 3’SSs (both proximal and distal) associated with 

SF3B1 mutations are located at the edge of the sterically protected region. 

Our results suggest that the mechanism of cryptic 3’SS selection in SF3B1 

mutants is not altered BP recognition because a more varied distribution of 

distances from the cryptic 3’SS to the canonical 3’SS BP would be expected if BP 

recognition was altered. Studying the role of cryptic 3’SS in inherited Mendelian 

disease genes, Královicová et al. 2005 used splicing reporters with cryptic 3’SSs 

located in the PPT and found that moving the cryptic 3’SS into the ~12-18 bp 

sterically protected region reduced or eliminated cryptic 3’SS selection. On the 
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other hand, moving an AG dinucleotide out of the sterically protected region 

allowed for its selection as a cryptic 3’SS (Kralovicova et al., 2005). These 

published experimental results and the rigid distance between the BP and the 

cryptic 3’SSs observed in our study are consistent with a model of altered 3’SS 

selection in SF3B1 mutants due to a change in the size of the sterically hindered 

region downstream of the BP. 

To test whether the sequences requirements defined here are sufficient for 

cryptic 3’SS usage, we identified 11,302 introns whose canonical 3’SSs passed 

our coverage cutoff of 20 reads summed over all samples and had potential 

cryptic 3’SSs (intronic AG dinucleotides that were 10-30 bp upstream of an 

annotated 3’SS and 13-17 bp downstream of the highest-scoring predicted BP). 

For 900 of these introns, the potential cryptic 3’SSs also passed the coverage 

cutoff, of which 310 were used significantly more often in the SF3B1 mutants. 

This analysis demonstrates that not every potential cryptic 3’SS is differentially 

used in the mutants, so the sequence requirements described here appear to be 

necessary for cryptic 3’SS usage but not sufficient. 

 

Chapter 1.3.6: Cryptic 3’SSs are used infrequently relative to canonical 3’SSs 

Although the cryptic splice sites described here are used significantly more 

often in the SF3B1 mutants, the biological effects are likely dependent on the 

proportion of transcripts that use the cryptic 3’SSs relative to the canonical 3’SSs. 

We therefore calculated the percent spliced in (PSI) for the proximal cryptic 3’SSs 
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relative to their associated canonical 3’SSs in the CLL samples since they have a 

higher sequencing depth than the other tumor samples (Supplementary Figure 

1.1) that allows for more accurate quantification of splicing and because the 

distribution of well-characterized low- and high-risk CLL prognostic factors was 

similar between the SF3B1 mutated and wild-type samples (Figure 1.4A). To 

calculate PSI for the 325 proximal cryptic 3’SSs used significantly more often in 

the SF3B1 mutants from the CLL-only analysis (Supplementary File 1.6, 

Supplementary File 1.7), we divided the number of reads that span the cryptic 

3’SS by the number of reads that span both the cryptic 3’SS and its associated 

canonical 3’SS. We observed that some cryptic 3’SSs are used exclusively in 

SF3B1 mutants while others are also used in SF3B1 wild-type samples but at a 

lower frequency relative to the mutants (Figure 1.4A). 67% of the cryptic 3’SSs 

were included in <10% of transcripts compared to their associated canonical 

3’SS. These results suggest that the cryptic splice sites are either included rarely 

even in the SF3B1 mutants or that transcripts with cryptic splice sites are subject 

to a higher rate of nonsense-mediated decay (NMD). To investigate the potential 

role of NMD, we identified differentially expressed genes between the SF3B1 

mutant and wild-type samples in a joint analysis of all three cancers and 

performed a gene set enrichment analysis. We found that genes in the 

“Reactome NMD enhanced by the exon junction complex” set were enriched 

(GSEA (Subramanian et al., 2005), q < 10-28) among the 272 differentially 

expressed genes (DESeq2, BH-adjusted p < 0.1, Supplementary File 1.8, 
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Supplementary File 1.9) suggesting that NMD may be different between the 

SF3B1 mutants and wild-types. 33 of the 582 genes that contained the 619 

proximal cryptic 3’SSs were differentially expressed with the expression of 29/33 

of these genes lower in the SF3B1 mutants. Genes containing a proximal cryptic 

3’SSs were more likely to be differentially expressed (Fisher exact, p < 10-8) and 

more likely to have lower expression in SF3B1 mutants (Fisher exact, p = 

0.0009). These results suggest that cryptic 3’SS selection may affect gene 

expression for a subset of genes. However, the observation that in-frame cryptic 

3’SSs likely not subject to NMD and out-of-frame cryptic 3’SSs potentially subject 

to NMD are included at similar rates relative to their associated canonical 3’SSs 

(Figure 1.4A) suggests that most genes’ expression are not affected by cryptic 

3’SS selection and most cryptic 3’SSs are observed at a low frequency because 

they are spliced in infrequently compared to their associated canonical 3’SSs. 
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Figure 1.4: Percent spliced in for cryptic 3’ splice sites in CLL analysis. (A) Heatmap shows 
the percent spliced in (PSI) values for cryptic 3’SS relative to the canonical 3’SS in CLL SF3B1 
mutated or wild-type samples for 325 proximal cryptic 3’SSs used significantly more often in the 
CLL mutants (DEXSeq, BH-adjusted p < 0.1). SF3B1 mutation presence and the status of 
prognostic factors IGHV and ZAP70 are shown in left colorbars. Black and white colorbar 
indicates whether novel 3’SSs are out-of-frame (black) relative to canonical 3’SSs. In-frame and 
out-of-frame cryptic 3’SSs are used at similar rates relative to their associated canonical 3’SSs. 
(B) Beeswarm plots indicating the PSI values for the cryptic 3’SS relative to the associated 
canonical 3’SS in ten genes with high levels of cryptic 3’SS inclusion in CLL SF3B1 mutants (M) 
compared to wild-type (W) samples. No reads were observed spanning the cryptic YIF1A junction 
in any wild-type CLL samples. The number in the upper corner of each plot is the distance in 
base pairs from the highest or second-highest scoring BP predicted for the associated canonical 
3’SS to the cryptic 3’SS. 

To identify cryptic 3’SSs with relatively high PSI values in the SF3B1 

mutant versus wild-type samples, we searched for cryptic 3’SSs that were 1) 

used more than 50% of the time in the CLL SF3B1 mutants; 2) used less than 

20% of the time in wild-type samples; and 3) had an average coverage of at least 

30 junction-spanning reads in the mutant samples. Despite the generally low PSI 

values for the 325 cryptic 3’SSs from the CLL-only analysis, we identified four 

genes previously implicated in cancer (TTI1 (Fernandez-Saiz et al., 2013; Hurov, 
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Cotta-Ramusino, & Elledge, 2010; Kaizuka et al., 2010), MAP3K7 (Hofer-

Warbinek et al., 2000; Kimura, Matsuo, Shibuya, Nakashima, & Taga, 2000; 

Yamaguchi et al., 1999), FXYD5 (Nam, Hirohashi, & Wakefield, 2007), PFDN5 

(Fujioka et al., 2001)) and six others (YIF1A, ORAI2, ZNF91, ZNF548, RP11-

1280I22.1, RP11-532F12.5) with out-of-frame cryptic 3’SSs that were 

consistently preferred to the associated canonical 3’SS in the CLL SF3B1 mutant 

samples (Figure 1.4B). Ferreira et al. identified the junctions in ORAI2, ZNF91, 

and TTI1 in CLL SF3B1 mutants as well (Ferreira et al., 2013). Nine of the ten 

junctions were significant in our BRCA-only analysis and showed high differences 

in relative inclusion (Supplementary Figure 1.6, Supplementary File 1.10, 

Supplementary File 1.11). These genes are not differentially expressed between 

the CLL SF3B1 mutant and wild-type samples (Supplementary File 1.12) but the 

frequent inclusion of out-of-frame cryptic 3’SSs may affect their biological 

function.  

 

Chapter 1.4: Discussion 

Here we have shown that a consequence of SF3B1 mutations in different 

cancer types is genome-wide selection of hundreds of cryptic 3’SSs. We have 

shown the cryptic 3’SSs have specific sequence requirements; AG dinucleotides 

used as cryptic 3’SSs in SF3B1 mutants are located at the end of the sterically 

protected region ~13-17 bp downstream of the BP but are >10 bp upstream of 

nearby canonical 3’SSs allowing them to avoid competition for splicing. These 
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sequence requirements limit the introns susceptible to cryptic 3’SS selection to 

those where the BP is located farther from the 3’SS than the typical ~24 bp. 

While these requirements appear necessary for cryptic 3’SS usage, they are not 

sufficient, as we did not detect cryptic 3’SS usage in all introns with AG 

dinucleotides that satisfy these requirements. Characteristics such as RNA 

conformation, RNA binding protein sites, BP prediction inaccuracies, cryptic or 

downstream canonical 3’SS strength, gene/transcript expression, sequencing 

depth, or other factors may also play a role in determining whether cryptic 3’SSs 

are used and detected by RNA sequencing. 

Examining differential splice junction usage allowed us to identify many 

more cryptic 3’SSs than previous studies while still identifying 61 of 79 cryptic 

3’SSs recently reported for CLL SF3B1 mutants using a method based on 

relative inclusion (Ferreira et al., 2013; Papaemmanuil et al., 2011; Quesada et 

al., 2012; L. Wang et al., 2011; Yoshida et al., 2011). When examining the three 

cancer types in our study individually, the number of cryptic 3’SSs identified was 

highly dependent on the sequencing depth of the samples (Supplementary 

Figure 1.1 Supplementary Figure 1.2, Supplementary File 1.2). Additionally, 

examining cryptic 3’SS expressed higher in the SF3B1 mutants but not 

significantly (Fig 1B) shows a modest enrichment of novel 3’SSs 10-30 bp 

upstream of canonical 3’SSs. These observations suggest that deeper 

sequencing will continue to reveal proximal cryptic 3’SSs in SF3B1 mutants that 

are used very infrequently or are present in lowly expressed genes.  



 

 
  
 

20 

Selection of cryptic 3’SSs in the region downstream of the BP has been 

reported for some inherited diseases including those resulting from disrupted 

tumor suppressor genes such as ATM, NF1, and TP53 (Kralovicova et al., 2005). 

Using a curated a list of aberrant splice sites associated with different diseases 

from the literature, Královicová et al. 2005 found that in cases where cryptic 3’SS 

selection was not caused by mutation of the 3’YAG consensus sequence, cryptic 

3’SSs were often located ~19 bp upstream of associated canonical 3’SSs and 

~11-15 bp downstream of the BP (Kralovicova et al., 2005). Most of the diseases 

considered in Královicová et al. 2005 are Mendelian diseases where a cryptic 

3’SS disrupts or abolishes the function of a single disease gene. In these cases, 

a mutation in the PPT between the sterically protected and competitive regions 

has introduced a cryptic 3’SS (Figure 1.3D). For cancers with SF3B1 mutations, 

we suspect that the size of the sterically protected region is slightly altered 

allowing for existing AG dinucleotides to be used as cryptic 3’SSs in hundreds of 

genes. It is also possible SF3B1 mutations could cause destabilization of the U2 

snRNP complex or alter interactions with U2AF2, affecting the ability to recognize 

the canonical 3’SS and leading to cryptic 3’SS selection. However, the rigid 

distance (~13-17 bp) from the predicted BPs to the cryptic 3’SSs for most of the 

cryptic 3’SSs is most consistent with a change in the size of the sterically 

protected region downstream of the branch point. 

We found that cryptic 3’SS selection is limited to tumors with mutations in 

the five ~10 amino acid hotspots in the SF3B1 HEAT 5-9 repeats and that these 
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mutations are associated with cryptic 3’SS selection across different cancer types 

and even in cancers in which SF3B1 is not recurrently mutated. 58% of these 

cryptic 3’SSs are out-of-frame relative to nearby canonical 3’SSs, but the 

biological impact of these cryptic 3’SSs is likely a function of how frequently they 

are used relative to the nearby canonical 3’SSs. We found that while the cryptic 

3’SSs are used more often in the SF3B1 mutated samples compared to wild-type 

samples, they are used relatively infrequently (<10%) compared to nearby 

canonical 3’SSs. While the differentially expressed genes between the SF3B1 

mutated and wild-type samples are enriched for genes in the NMD pathway, 

even in-frame cryptic 3’SSs are used at a low frequency indicating that the 

associated canonical 3’SS is mostly preferred to the cryptic 3’SS even in SF3B1 

mutants. Nonetheless, we identified ten genes, including four with known roles in 

cancer, which had a high frequency of cryptic splice site usage relative to the 

nearby canonical splice site. Further studies are required to determine whether 

low-frequency cryptic 3’SS selection in hundreds of genes, high-frequency cryptic 

3’SS selection in a small group of genes, and/or other splicing alterations drive 

the oncogenic effect of SF3B1 mutation. 
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Chapter 1.5: Methods 

Chapter 1.5.1: Sample selection 

Ethics statement 

For the chronic lymphocytic leukemia (CLL) samples, the UCSD IRB 

approved the study and all subjects gave informed consent (Project #080918). 

Refer to the informed consent for The Cancer Genome Atlas and Harbour et al. 

for consent information for other cancer samples (Harbour et al., 2013). 

CLL 

Seven SF3B1-mutated CLL cases and nine SF3B1 wild-type CLL cases 

were identified from the CLL Consortium database. The mutations were originally 

characterized by PCR and verified in the RNA-sequencing data (Schwaederle et 

al., 2013). Sample dates were chosen on average 95 days prior to treatment and 

at least 287 days after prior treatment to select samples with high tumor cell 

count. Samples were chosen to have relatively similar numbers of IGHV 

mutated/unmutated and ZAP-70 positive/negative samples (Fig 4).  

BRCA, LUAD, and LUSC 

SF3B1 mutant samples were identified using the Broad GDAC TCGA 

analysis (http://gdac.broadinstitute.org/runs/analyses__2013_02_22/) in TCGA 

tumor types with no publication restrictions. Samples with SF3B1 mutations 

outside of Gencode version 14 exons were excluded. We excluded any cancer 

types with less than four SF3B1 mutants or for which paired-end RNA-
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sequencing data was not available leaving breast cancer (BRCA), lung 

adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). We chose 

1.25 as many SF3B1 wild-type controls as mutated samples for each cancer type 

randomly from samples without mutations in SF3B1 or other splicing factors. 

RNA sequencing data was downloaded from CGHub (Wilks et al., 2014). 

UM 

Uveal melanoma samples were downloaded from the Short Read Archive 

(SRA062359) (Harbour et al., 2013). As reported in Furney et al., four uveal 

melanoma samples had SF3B1 mutations in codon 625 and four had wild-type 

copies of SF3B1 (Furney et al., 2013). 

 

Chapter 1.5.2: Library preparation and sequencing for CLL samples 

RNA was extracted from peripheral blood mononucleocytes from seven 

SF3B1-mutated CLL cases and nine SF3B1 wild-type cases per the 

manufacturer’s specifications using Qiagen RNeasy mini-spin columns, and RIN 

scores determined using an Agilent Bioanalyzer. RNA was polyA selected and 

processed using SMART cDNA synthesis (Clontech) to prepare sequencing 

libraries. Samples were sequenced on Illumina HiSeq2000 instruments 

generating an average of 239 million paired 75 bp reads per sample 

(Supplementary Figure 1.1). 
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Chapter 1.5.3: Adapter trimming 

Sequencing adapters and poly-A/T tails were trimmed for CLL samples 

only using cutadapt version 1.1 (-m 20 –n 10 –b 

AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTT –b 

AAGCAGTGGTATCAACGCAGAGTACGCGGG –b 

AAGCAGTGGTATCAACGCAGAGT –b 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT –b 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA) (Marcel Martin, 2011). Read pairs where or 

one of both reads were of length less than 20 were removed. 

 

Chapter 1.5.4: Read alignment 

RNA-seq reads were aligned to the human genome (hg19) using STAR 

2.3.0e (--alignSJDBoverhangMin 1 –seedSearchStartLmax 12  --

alignSplicedMateMapLminOverLmate 0.08 –outFilterScoreMinOverLread 0.08 –

outFilterMatchNminOverLread 0.08 –outFilterMultimapNmax 100 –

outFilterIntronMotifs RemoveNoncanonicalUnannotated –outSJfilterOverhangMin 

6 6 6 6) and a splice junction database consisting of junctions from Gencode, 

UCSC knownGene, AceView, lincRNAs, and H-Inv (Cabili et al., 2011; Dobin et 

al., 2013; Harrow et al., 2012; Hsu et al., 2006; Thierry-Mieg & Thierry-Mieg, 

2006; Yamasaki et al., 2010). Duplicate read pairs were removed prior to 
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alignment by comparing the sequences of all read pairs and keeping only one 

read pair per set of read pairs with identical sequences. 

 

Chapter 1.5.5: Splice junction read coverage 

Splice junction read coverages were obtained from the SJ.out.tab output 

file from STAR. 

Chapter 1.5.6: Novel splice junction identification 

Novel splice junctions were defined as those junctions identified by STAR 

not present in Gencode version 14 that (i) were covered by at least 20 reads 

summed over all cancer samples in a given analysis, (ii) shared a 5’ splice site 

and/or 3’SS with a Gencode junction, and (iii) had one of the following motifs: 

GU/AG, CU/AC, GC/AG, CU/GC, AU/AC, GU/AU. Novel junctions were 

calculated separately for each analysis.  

 

Chapter 1.5.7: Splice junction usage 

Known and novel junctions that had a coverage of at least 20 reads over 

all samples, used a known intron motif, and contained a known Gencode 5’ splice 

site or 3’SS were aggregated by gene and tested for differential usage using 

DEXSeq’s testForDEUTRT function (Anders et al., 2012). Splice junctions used 

in more than one Gencode gene were removed. When multiple cancer types 

were analyzed, we provided cancer type as a covariate to DEXSeq. Raw p-

values were adjusted for multiple hypothesis testing using the Benjamini 
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Hochberg procedure. To examine the impact of the coverage cutoff of 20 reads 

summed over all samples on our results, we increased the cutoff to 50, 75, and 

100 reads summed over all samples and found that 42%, 32%, and 24% of the 

significant novel 3’SSs remained at each of these cutoffs. The enrichment for 

proximal cryptic 3’SS remained at all cutoffs, so we used the 20 read cutoff to 

maximize sensitivity. 

 

Chapter 1.5.8: Identification of associated canonical 3’SSs for cryptic 3’SSs 

Associated canonical 3’SSs were identified for novel/cryptic 3’SSs as 

follows. First, all Gencode splice sites that shared a 5’ splice site with the novel 

3’SS were identified. Then, the closest Gencode 3’SS from these splice sites that 

was downstream of the cryptic 3’SS was chosen as the associated canonical 

3’SS for that cryptic 3’SS. If there was no Gencode 3’SS downstream of the 

cryptic 3’SS, the closest Gencode 3’SS upstream of the cryptic 3’SS was chosen 

as the associated canonical 3’SS. 

 

Chapter 1.5.9: Gene set enrichment for genes with cryptic 3’SS usage 

We performed a gene set enrichment analysis using GSEA (Subramanian 

et al., 2005) for the genes that contained cryptic 3’SSs by combining the genes 

that contained the 619 proximal (File S3) and the 417 distal cryptic (File S4).  
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Chapter 1.5.10: Identification of control 3’SSs 

We identified 23,065 control 3’SSs by choosing splice sites that are 

annotated in Gencode, whose average coverage over BRCA, CLL, and UM 

samples is greater than 100, and whose 5' splice site does not have any novel 

3'SSs. We characterized intronic AG dinucleotides for these control junctions by 

analyzing the intronic sequence downstream of the predicted branch points 

minus the last 10 bp of the intron since 3’SSs can be located in the last 10 bp of 

the intron. 

 

Chapter 1.5.11: Hierarchical clustering 

All heatmap rows and columns were clustered using 

scipy.cluster.hierarchy.linkage with either the “complete” or “single” distance 

metric. 

 

Chapter 1.5.12: SF3B1 mutant allele frequency 

Mutant allele frequency was determined by calculating per-base 

coverages using unique properly paired reads with samtools mpileup for the 

SF3B1 locus and counting the number of reads supporting either the reference or 

alternate alleles. 
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Chapter 1.5.13: Gene expression 

Reads that were not contained within Gencode v14 exons in the STAR 

genomic alignment were discarded. The remaining reads were re-aligned to the 

Gencode v14 transcriptome using Bowtie2 (v2.1.0, -t -k 400 -X 400 --no-mixed --

no-discordant) and transcript expression was estimated using eXpress (v1.3.0, --

max-indel-size 20) (Langmead & Salzberg, 2012; Roberts & Pachter, 2013). 

Gene expression was estimated by summing together the effective counts or 

FPKM values for all transcripts contained in a gene. 

 

Chapter 1.5.14: Relative average expression of genes with cryptic 3’SSs 

For the green heatmap in Fig 1D, the average expression (FPKM) of each 

gene containing a cryptic 3’SS was determined for each cancer type. The 

average expression values were then normalized for each gene by dividing by 

the largest average expression of the three cancers for that gene. Therefore each 

column in the green heatmap in Fig 1D has one value of 1.0 while the other two 

values are between 0.0 and 1.0 and represent the expression of the gene in that 

cancer relative to the maximum. 

 

Chapter 1.5.15: Definition of HEAT repeats 

HEAT repeat locations were defined according to the definition of HEAT 

repeats in Wang et al. 1998 (C. Wang et al., 1998). 
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Chapter 1.5.16: COSMIC SF3B1 mutations 

COSMIC v66 complete export was downloaded and the number of 

mutations at each location in the SF3B1 heat domains 5-9 was plotted for 

locations with at least two observed mutations in COSMIC (Forbes et al., 2011). 

 

Chapter 1.5.17: Nucleotide frequency plots 

Nucleotide frequency plots were constructed using WebLogo 

(unit_name=’probability’) (Crooks et al., 2004). Adenine enrichment was 

calculated by counting the number of adenines and non-adenines at each intron 

position for a given splice site class and comparing to the number of adenines 

and non-adenines in control 3’SSs using a Fisher exact test. 

 

Chapter 1.5.18: Branch point identification 

SVM_BP was used to predict branch points (Corvelo et al., 2010). The 

SVM_BP code was altered to allow for branch points eight bp from the 3’SS by 

setting mindist3ss=3 in svm_getfeat.py (see https://github.com/cdeboever3/svm-

bpfinder). SVM_BP was run with options “Hsap 50.” When multiple branch points 

were predicted for one 3’SS, we chose the branch point with the highest 

sequence score (bp_scr). In some instances, there was more than one cryptic 

3’SS associated with a canonical 3’SS, so we randomly chose only one of these 

cryptic splice sites for further analysis. For Fig 3C, we plotted the distance from 

highest scoring BP predicted for canonical 3’SSs to their associated cryptic 3’SSs 
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as in Fig 3A. However, the distances for cryptic 3’SSs located less than 13 bp or 

more than 17 bp from the BP in Fig 3A were replaced with the distance from the 

second highest scoring BP. Supplementary Figure 1.5 C and D were created 

similarly. 

 

Chapter 1.5.19: Differential gene expression 

Gene expression was estimated as described above. We summed the 

effective counts from eXpress for all transcripts from each gene to obtain 

effective read counts for each gene. We provided these read counts to DESeq2 

(v1.2.10, R v3.0.3) and tested for differential gene expression using 

nbinomWaldTest using cancer type as a covariate for the analysis with different 

cancers (Anders & Huber, 2010). We only tested genes where the sum of 

effective read counts over all samples was greater than 100. p-values were 

adjusted using the Benjamini-Hochberg procedure. Gene set enrichment analysis 

was performed using GSEA (Subramanian et al., 2005). 

 

Chapter 1.5.20: Percent spliced in for cryptic 3’SSs relative to associated 
canonical 3’SSs 

Percent spliced in (PSI) values for cryptic 3’SSs relative to canonical 

3’SSs were calculated by dividing the number of reads that span the cryptic 3’SS 

(c) by the number of reads that span the cryptic 3’SS plus the number of reads 

that span the canonical 3’SS (a), 
!
c

c +a
, for each sample. The ten 3’SSs with high 
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PSI values in CLL were identified by identifying cryptic 3’SSs whose median PSI 

was greater than 50% in the CLL SF3B1 mutants but less than 20% in the wild-

type samples and whose average coverage was at least 30 junction-spanning 

reads in the CLL mutant samples. These junctions were also chosen to be out-of-

frame although the cryptic 3’SS in ORAI2 is located in the 5’ untranslated region. 

 

Chapter 1.5.21: Code, data, and reproducibility 

We have made the code and intermediate data files needed to replicate 

this study available on Github (https://github.com/cdeboever3/deboever-sf3b1-

2015) and Figshare (http://dx.doi.org/10.6084/m9.figshare.1120663). Instructions 

are provided in the Github repository for reproducing our figures, tables, and 

statistical analyses. Sequencing data is available through dbGaP (phs000767). 
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Chapter 1.8: Supplementary Figures 

 
Supplementary Figure 1.1: Number of uniquely mapped RNA-seq reads from STAR 
alignment. We sequenced the transcriptomes of peripheral blood mononucleocytes from seven 
SF3B1-mutated chronic lymphocytic leukemia (CLL) cases and nine SF3B1 wild-type cases. We 
also obtained data from breast cancer (BRCA; 14 mutant, 18 wild-type), lung squamous cell 
carcinoma (LUSC; four mutant, five wild-type) and lung adenocarcinoma (LUAD; seven mutant, 
nine wild-type) samples from the TCGA and uveal melanoma (UM; four mutant, four wild-type) 
samples from Harbour et al. 2013. 
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Supplementary Figure 1.2: Proximal cryptic 3’SSs in individual cancer analyses. log! 
distance in base pairs from 280, 1,476, and 86 significantly differentially used novel 3’SSs (File 
S2) to their associated canonical 3’SSs in (A) BRCA, (B) CLL, and (C) UM analyses respectively. 
Novel 3’SSs were associated with canonical 3’SSs only if they shared the same 5’ splice site. 
Zero represents the position of the canonical 3’SS. Negative and positive distances indicate that 
the cryptic 3’SS is respectively upstream or downstream from the canonical 3’SS. Inset shows 
base-by-base binning from zero to 50 base pairs upstream of canonical 3’SS. Red and blue 
histograms represent junctions with significantly higher usage in SF3B1 mutants or SF3B1 wild-
type samples respectively. The number of cryptic 3’SS identified varied with the overall 
sequencing depth of the different data sets. 

  



 

 
  
 

34 

 
Supplementary Figure 1.3:  Breast cancer proximal cryptic 3’SS coverage. Heatmap shows 
for each BRCA sample the log! library-normalized count z-score for 192 proximal cryptic 3’SSs 
used significantly more often in the SF3B1 mutants and located 10-30 bp upstream of canonical 
3’SSs (File S2). SF3B1 mutants are labeled with the observed missense or nonsense (*) mutation 
as well as the frequency of the mutant allele in the RNA-sequencing data. Attenuated cryptic 3’SS 
selection is visible for the K700E mutant with only 8.4% allele frequency. A633V and Y765C 
mutants do not show evidence for cryptic 3’SS selection. Black and white colorbar indicates 
whether novel 3’SSs are out-of-frame (black) relative to canonical 3’SSs. 
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Supplementary Figure 1.4: Proximal cryptic 3’SSs used significantly more often in 
cancers with SF3B1 hotspot mutations including TCGA lung cancer samples. Heatmap 
shows for each sample the log! library-normalized count z-score for the 578 proximal cryptic 
3’SSs used significantly more often in the SF3B1 mutants in the CLL, BRCA, UM, LUAD, and 
LUSC joint analysis (File S2). Grey bars indicate frequency of SF3B1 mutant allele in RNA-seq 
data. Colorbars indicate SF3B1 mutation status, cancer type, and whether the SF3B1 mutation is 
located in the HEAT 5-9 repeats. Black and white colorbar indicates whether novel 3’SSs are out-
of-frame (black) relative to canonical 3’SSs.  
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Supplementary Figure 1.5:  Cryptic 3’SSs have branch points located ~13-17 bp upstream. 
Distance from 3’SS to highest scoring predicted branch point (BP). We were able to predict BPs 
for (A) 584 of 619 proximal cryptic 3’SSs and (B) 405 of 417 distal cryptic 3’SSs (as opposed to 
predicting the BPs for the associated canonical 3’SSs as in Fig 3). Distance from either highest or 
second highest scoring predicted BP to (C) proximal cryptic 3’SSs and (D) distal cryptic 3’SSs. 
Cryptic 3’SSs that are used more often in SF3B1 mutants have BPs located ~13-17 bp upstream 
regardless of whether they are 10-30 bp upstream of canonical 3’SSs.  
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Supplementary Figure 1.6:  Percent spliced in (PSI) in BRCA  analysis for junctions with 
high PSI in CLL analysis. Beeswarm plots showing the PSI values for the cryptic 3’SS relative to 
the associated canonical 3’SS in nine of ten genes with high levels of cryptic 3’SS inclusion in 
CLL SF3B1 mutants (M) compared to wild-type (W) samples that were also expressed in the 
BRCA samples. The number in the upper corner of each plot is the distance in base pairs from 
the highest or second-highest scoring BP predicted for the associated canonical 3’SS to the 
cryptic 3’SS. 
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Chapter 2: Genetic Regulation of Gene Expression in 
Human Induced Pluripotent Stem Cells 
 
Chapter 2.1: Summary 

In this study, we identified genetic variants associated with RNA 

expression for 5,619 genes using 215 human induced pluripotent stem cell 

(iPSC) lines from different donors. These expression quantitative trait loci 

(eQTLs) were enriched in stem cell regulatory regions and have evidence for 

disrupting transcription factor binding. We used whole genome sequencing to 

identify copy number variant (CNV) eQTLs, including some that appear to affect 

gene expression by altering the copy number of intergenic regulatory regions. We 

found that rare genic CNVs have a relatively strong effect on gene expression 

that is positively correlated with copy number, whereas rare regulatory single 

nucleotide variants have a weak negative effect. Additionally, X chromosome 

gene reactivation in female-derived iPSCs was dependent on gene chromosomal 

position. This work demonstrates the utility of iPSCs for genetic association 

analyses and provides a unique resource for investigating the genetic regulation 

of gene expression in stem cells. 

 

Chapter 2.2: Introduction 

Since their discovery 10 years ago, induced pluripotent stem cells (iPSCs) 

have been used to model a multitude of “diseases in a dish” by utilizing lines 
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derived from a relatively small number of diseased and healthy donors (Avior, 

Sagi, & Benvenisty, 2016; Takahashi et al., 2007; Takahashi & Yamanaka, 

2006). Several recent initiatives have begun to scale the generation of iPSC lines 

to create large banks of hundreds or thousands of iPSCs derived from diverse 

donors for studying stem cells and differentiated tissues in a variety of genetic 

backgrounds (Martin, 2015; McKernan & Watt, 2013). Due to iPSCs’ capacity for 

self-renewal, these banks potentially provide an unprecedented opportunity for 

performing genetic association analyses (Pai, Pritchard, & Gilad, 2015) and 

investigating developmental phenomena like X chromosome inactivation during 

reprogramming (Lessing, Anguera, & Lee, 2013; Pasque & Plath, 2015). While 

there is evidence suggesting genetic association studies will be possible in iPSCs 

(Rouhani et al., 2014; Thomas et al., 2015), such analyses could be confounded 

by non-genetic factors affecting expression such as reprogramming 

heterogeneity, somatic mutations (Gore et al., 2011; J. Ji et al., 2012), or 

epigenetic drift during passaging (Papp & Plath, 2013). Thus the suitability of 

these large sets of iPSCs for examining the effects of inherited genetic variants 

on molecular and physiological phenotypes remains largely unknown.  

Expression quantitative trait loci (eQTL) mapping is a type of genetic 

association analysis that identifies genomic regions that harbor polymorphisms 

associated with the RNA expression of a gene. Over the last 15 years, eQTL 

mapping has been performed in a variety of cell types and model organisms and 

has contributed to our understanding of how genetic variants regulate gene 
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expression (Albert & Kruglyak, 2015). eQTL mapping has not yet been performed 

in iPSCs due to the lack of hundreds of systematically reprogrammed lines with 

corresponding genotype and gene expression data, and thus the statistical power 

to map eQTLs in iPSCs compared to other cell types is not known. eQTL studies 

conducted to date have largely utilized arrays and low-depth whole genome 

sequencing (WGS) for genotyping. While these methods can accurately 

genotype single nucleotide polymorphisms (SNPs) and small insertions and 

deletions (indels), neither method is ideal for identifying and genotyping copy 

number variants (CNVs). Therefore, though CNVs likely play an important role in 

human diseases (Gamazon, Nicolae, & Cox, 2011; Sudmant et al., 2015), their 

effects on gene expression are not well understood. High-depth WGS combined 

with new CNV-calling algorithms that utilize information across samples to 

identify CNVs and estimate integer copy number genotypes (Handsaker et al., 

2015; Layer, Chiang, Quinlan, & Hall, 2014) greatly enhances our ability to 

investigate the contributions of and mechanisms by which CNVs regulate gene 

expression. 

Rare variants (minor allele < 0.5% in general population) constitute 

another class of variation that has been poorly assessed in previous eQTL 

studies despite their established importance for disease (U. K. Consortium et al., 

2015; Shendure & Akey, 2015; Zanoni et al., 2016) because they are generally 

not included on genotyping arrays and are harder to identify using low-depth 

WGS. Recent studies have begun to investigate the effect of the vast number of 
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rare regulatory variants on gene expression by leveraging unique family 

structures (Montgomery, Lappalainen, Gutierrez-Arcelus, & Dermitzakis, 2011) or 

deep targeted sequencing (Zhao et al., 2016) but no studies using high-depth 

WGS to identify rare variants and quantify their effect on gene expression in a 

large set of subjects have been reported yet. Thus the extent to which rare 

variants contribute to gene expression is not known, and it remains difficult to 

predict which of the estimated 40k-200k rare variants per genome may affect 

gene expression (Genomes Project et al., 2015). 

In this study, we leverage high-depth WGS to explore the genetic 

regulation of gene expression in a set of 215 iPSC lines. We demonstrate that 

iPSCs are well-powered for eQTL mapping and have a distinct regulatory 

landscape relative to somatic tissues. We functionally annotate the iPSC eQTLs 

and show they are enriched in stem cell regulatory elements and for overlapping 

the binding sites of transcription factors (including NANOG and POU5F1) 

important for establishing and maintaining pluripotency. To identify putative 

causative variants underlying the eQTL signals, we identify variants that are both 

associated with gene expression and alter transcription factor binding. We 

observe that a large proportion of common CNVs associated with gene 

expression levels are located in intergenic regulatory regions. We also find that 

rare genic CNVs have relatively large effects on gene expression that can be 

positive or negative dependent on their location relative to the gene while rare 

promoter SNVs overall have a small negative effect on gene expression. Finally, 



 

 
  
 

47 

we investigate X chromosome reactivation during reprogramming for iPSC lines 

from female donors and find that overall X reactivation is heterogeneous across 

lines but that the reactivation statuses of nearby genes are correlated. This work 

establishes iPSCs as a useful model for quantitative molecular association 

studies, identifies genetic regulators of gene expression in iPSCs, provides new 

information about the impact of CNVs and rare variants on gene expression, and 

reveals novel insights into X chromosome reactivation during reprogramming. 

 

Chapter 2.3: Results 

To investigate the genetic regulation of gene expression in iPSCs, we 

generated 30x germline WGS and RNA sequencing (RNA-seq) data for 215 

human iPSC lines from a diverse set of donors (median age 48.3, 55% female) 

consisting of both unrelated individuals as well as families (Supplementary Figure 

2.1) (Frazer, 2016). The donors represent several ancestries although the 

majority (66%) are European. We used the high-depth WGS data to identify 

22,461,624 single nucleotide variants (SNVs) and insertions/deletions (indels) 

using GATK and 15,735 CNVs using LUMPY and GenomeSTRiP after filtering 

for 1% minor allele frequency among our 215 subjects and violations of Hardy 

Weinberg equilibrium (Methods) (Handsaker et al., 2015). We compared the 

expression levels of nine pluripotency and 25 mesoderm markers from (Tsankov 

et al., 2015) in our iPSCs to publicly available RNA-seq data from human 

embryonic stem cells (hESCs), iPSCs, and fibroblasts and found little or no 
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expression of mesoderm markers but high expression of pluripotency markers in 

our iPSCs compared to fibroblasts and other stem cell lines indicating that our 

stem cell lines are of high quality (Supplementary Figure 2.2).  

 

Chapter 2.3.1: eQTL mapping in iPSCs 

We used gene expression estimates from RNA-seq and germline variant 

calls to map eQTLs in 215 CARDiPS iPSC lines from different donors (Frazer, 

2016). We estimated expression using RSEM (transcripts per million, TPM) and 

used PEER to remove confounding variation from the gene expression estimates 

to increase our power for identifying cis eQTLs (B. Li & Dewey, 2011; Stegle, 

Parts, Durbin, & Winn, 2010). For each gene, we identified biallelic variants, 

including indels and CNVs, within 1Mb of a transcription start site (TSS) and used 

EMMAX (Kang et al., 2010) to calculate association p-values that accounted for 

relatedness amongst our donors. We then calculated per-gene p-values using a 

permutation approach (G. T. Consortium, 2015) and performed multiple 

hypothesis testing correction (Storey & Tibshirani, 2003). Of the 17,819 

autosomal genes tested we found 5,619 (32%) with eQTLs (eGenes) including 

4,495 protein coding genes (33% of tested), 356 long non-coding RNAs (34% of 

tested), 342 pseudogenes (25% of tested), and 269 antisense genes (29% of 

tested) (Figure 2.1A, Supplementary File 2.1). An eQTL typically contains 

multiple variants associated with a gene’s expression due to the linkage 

disequilibrium structure of the human genome. For instance, the 5,619 eGenes 
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identified here have in total 253,231 significant variant-expression associations 

involving 195,589 unique variants. In total there were 4,892, 1,346, and 111 

eGenes with SNV, indel, and CNV lead variants respectively (some eGenes had 

multiple variants with equal significance) (Supplementary File 2.2). Consistent 

with previous eQTL studies (G. T. Consortium, 2015), lead variants were 

enriched around the transcription start sites (TSSs) of genes (Supplementary 

Figure 2.3) and eGenes were highly enriched for allele specific expression (ASE) 

(OR = 3.1, p < 10-292, Fisher exact test) which supports the presence of cis 

regulatory effects at these loci. We also found on average 93% agreement for 

lead SNV direction of effect compared to 44 GTEx v6 tissues demonstrating that 

our eQTLs are of high quality (G. T. Consortium, 2015). We tested for additional 

independent eQTLs in the 5,619 eGenes by using the lead variant as a covariate 

and found that 668 of the 5,619 eGenes had a second independent eQTL and 

201 had a third eQTL.  

Since gene expression is often used to estimate stem cell pluripotency, we 

compared our eGenes to nine stem cell marker genes from (Tsankov et al., 

2015) and found that four (CXCL5, IDO1, LCK, and POU5F1) had eQTLs (Figure 

2.1B-C, Supplementary File 2.2). The lead variants for these four genes 

explained respectively 18%, 11%, 6%, and 19% of the variance in gene 

expression in a model using only batch, sex, and donor age as covariates 

demonstrating that the genetic background of an iPSC line could affect 

estimations of pluripotency based on gene expression markers. We also 



 

 
  
 

50 

identified eQTLs for 35 of 191 genes involved in stem cell population 

maintenance (GO:0019827) such as the oncogene BCL9 and the developmental 

regulator FGFR1 (Ashburner et al., 2000) (Figure 2.1D-E, Supplementary File 

2.2) indicating that eQTLs might affect maintenance of pluripotency or 

differentiation. 

 
Figure 2.1 Summary of eQTL Results and Power Analysis. (A) Number of genes tested 
(green) and significant (blue) by Gencode gene type (see Supplementary File 2.1 for all gene 
types). (B-E) log10 RSEM TPM gene expression estimates stratified by lead variant genotype for 
(B) POU5F1, (C) CXCL5, (D) BCL9, and (E) FGFR1. The x-axis is labeled with the genotypes for 
the lead variant for each eQTL. We used residual expression values to identify eQTLs but plot 
raw TPM here to demonstrate the effect of the eQTL on the raw expression data. (F) Number of 
eGenes and (G) percent unique eGenes versus number of samples for 43 GTEx v6 tissues (blue 
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circles), 131 unrelated subjects from this study (red diamond), or all 215 subjects from this study 
(red star). 

To investigate if the power to detect eQTLs in iPSCs is diminished by non-

genetic sources of variation in gene expression, we compared the number of 

eGenes discovered in our study to the number identified in 43 GTEx v6 tissues, 

taking sample numbers in both studies into account (Figure 2.1F). Although we 

used EMMAX to account for relatedness among our 215 subjects, using related 

subjects can affect the power to detect eQTLs since some subjects may share 

substantial portions of their genomes. Therefore, to more accurately compare to 

the GTEx results, we performed our eQTL analysis again using 131 of the 215 

samples that were genetically unrelated and found eQTLs for 3,310 of 17,819 

genes compared to 5,619 eGenes for all 215 samples. The number of eGenes 

for both the 131 unrelateds and full 215 samples follow the same general trend 

observed in the GTEx data of an increase of about 30 eGenes per additional 

sample indicating that iPSCs are powered similarly to GTEx tissues for detecting 

eQTLs (Figure 2.1F). Since GTEx mostly focuses on somatic tissues, we 

hypothesized that the iPSCs might contain more unique eGenes (i.e. not found in 

other tissue types) than a typical GTEx tissue. To test this, we compared the 

percentage of eGenes that were unique to a given tissue relative to all GTEx 

eGenes plus the iPSC eGenes reported here (Figure 2.1G). GTEx tissues with 

more samples have a higher percentage of unique eGenes, with an increase of 

roughly 1.3% unique eGenes per 100 samples, likely reflecting the discovery of 

small effect size, tissue-specific eQTLs. Given this trend in the GTEx tissues, we 
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would expect 2.3% (95% confidence interval [0.1%, 4.4%]) of the 3,310 eGenes 

identified using the 131 iPSCs to be unique to iPSCs but instead observed that 

6.8% of these eGenes are unique to iPSCs. These results demonstrate that 

iPSCs are well-powered for identifying eQTLs and that the gene regulatory 

landscape of iPSCs differs significantly compared to the primary tissues and 

transformed cell lines in GTEx. 

 

Chapter 2.3.2: iPSC eQTLs Enriched in Stem Cell Regulatory Regions 

To determine whether our eQTLs correspond to annotated stem cell 

regulatory regions, we calculated the enrichment of 4,491 noncoding lead eQTL 

SNVs and indels in DNase hypersensitivity sites (DHSs) from 53 Roadmap 

Epigenomics cell types by determining if lead variants overlapped DHSs more 

often than expected given the density of DHSs in 5kb windows centered on the 

lead variants (Figure 2.2A, Tables S2 and S3) (G. T. Consortium, 2015; 

Roadmap Epigenomics et al., 2015). Although the lead eQTL variants are 

enriched in DHSs from most of the Roadmap cell types (most likely due to shared 

regulatory architecture across cell types), they are most enriched in DHSs from 

hESCs and iPSCs consistent with being located in stem cell regulatory regions. 

Lead variants also had a relatively high enrichment in DHSs from in vitro 

differentiated lines which likely reflects incomplete/heterogeneous differentiation 

or retention of some stem cell regulatory features in these lines. We also 

calculated the enrichment of noncoding lead SNVs and indels for 209 ENCODE 
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DHS experiments comprising 134 different cell types and again found that 

noncoding lead variants were most enriched in DHSs from stem cells followed by 

in vitro differentiated cells (Figure 2.2B, Supplementary File 2.3) (E. P. 

Consortium, 2012). The 209 ENCODE DHS experiments included nine skin 

fibroblast experiments that ranked from the 16th to the 207th most enriched, so 

there does not appear to be a strong signal of epigenetic memory for the original 

cell type (Supplementary File 2.3). The fact that lead variants are enriched in 

DHSs from both hESCs and iPSCs agrees with previous work showing that these 

two cell types have highly similar gene expression and epigenetic marks 

(Rouhani et al., 2014) and enables us to use the substantial amount of functional 

genomics data publicly available for the H1 hESC line to annotate our eQTLs. We 

calculated the enrichment of the 4,491 noncoding lead SNVs and indels among 

peaks from 49 ENCODE H1 hESC transcription factor (TF) ChIP-seq 

experiments and found that NANOG and POU5F1 were the most enriched TFs 

consistent with these factors’ known roles in reprogramming and pluripotency 

(Figure 2.2C, Supplementary File 2.3). Overall, these results demonstrate that 

the eQTLs identified here are strongly enriched for overlapping stem cell 

regulatory regions and provides further evidence that functional genomics 

annotations from hESCs are relevant to iPSCs. 
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Figure 2.2: eQTL Functional Annotation Enrichments. -log10 Fisher exact p-values for 4,491 
eQTL lead SNVs/indels in (A) Roadmap Epigenomics DNase hypersensitivity sites (DHSs) and 
(B) ENCODE DHSs. The replicate H1 and H7 hESC DHS experiments in (B) were performed in 
different laboratories which may account for their different levels of enrichment. (C) Fisher exact 
odds ratios for ENCODE H1 hESC transcription factor CHiP-seq peaks. Color indicates whether 
the enrichment was significant which can vary due to the number of ChIP-seq peaks for each 
particular mark. 

 

Chapter 2.3.3: Disruption of Transcription Factor Binding Sites by eQTL Variants  

Given that altered TF binding is thought to be one of the primary causes of 

eQTLs (Pai et al., 2015), we investigated how many eQTL SNVs and indels 

overlapped TF ChIP-seq peaks and disrupted motifs associated with those TFs. 

While an eQTL typically contains multiple variants due to linkage disequilibrium, 
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generally only one variant (not necessarily the lead variant) is the functional, or 

causal variant, termed the expression quantitative trait nucleotide (eQTN). To 

identify putative eQTNs (peQTNs) that disrupt TF binding, we focused on 5,437 

of the 5,619 eGenes that did not overlap a CNV eQTL and did not have an eQTL 

predicted to cause NMD since these eQTLs are unlikely to be caused by altered 

TF binding. We overlapped the 186,656 eQTL SNVs and indels associated with 

the expression of these 5,437 eGenes with H1 hESC ChIP-seq peaks from 40 

ENCODE experiments for 34 TFs (some TFs had multiple subunits assayed, like 

JUN and JUND for AP1) and identified 7,630 variants that overlapped a TF peak. 

We then predicted which of these 7,630 variants disrupted motifs associated with 

the overlapped TF ChIP-seq peak in (Kheradpour & Kellis, 2014) and found that 

3,058 (40%) distinct variants disrupted motifs (Supplementary File 2.4). While the 

peQTNs are predicted to disrupt motifs enriched in ChIP-seq peaks for specific 

TFs, these motifs do not always correspond to the known motif for the particular 

TF. Previous studies show that peaks for most TFs are enriched for motifs of 

other TFs (Kheradpour & Kellis, 2014) which likely occurs for several reasons 

including cooperative/interfering binding or motif similarity. Accordingly, we find 

that 70% of our 3,058 peQTNs disrupt a motif that is associated with the 

particular ChIP TF but is similar to a known motif for a different TF highlighting 

the cooperative nature of TF binding.  

In total, the 3,058 peQTNs we identified corresponded to 1,475 of the 

5,437 eGenes. 50% of these 1,475 eGenes have only one peQTN and 92% have 
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five or less peQTNs indicating that most eGenes have few peQTNs (Figure 

2.3A). Interestingly, a lead variant was a peQTN for only 19% of the 1,475 genes 

suggesting that lead variants may not often be the causal eQTL variant. Though 

we did not consider distance to the TSS when identifying peQTNs, 54% of the 

peQTNs were within 20kb of the nearest TSS for the associated eGene 

consistent with previous estimates of the distribution of eQTLs around the TSS 

(Wen, Luca, & Pique-Regi, 2015). We observed that 90% of the peQTNs overlap 

a DHS present in at least one of the four Roadmap stem cell lines (Figure 2.2A) 

and 61% overlap a DHS present in all four lines (Figure 2.3B). Figure 2.3C shows 

three example peQTNs for POU5F1 that are within 1,700 bp of a POU5F1 TSS, 

overlap TAF1 ChIP-seq peaks, and disrupt motifs associated with TATA TFs. 

One of these variants also overlaps an H1 hESC DHS and falls into a predicted 

strong enhancer. This variant disrupts motif TATA_disc7 from (Kheradpour & 

Kellis, 2014) which is highly similar to motifs for NFE2L2 and ETV6 (two TFs for 

which H1 ChIP-seq data is not available), suggesting that this variant may 

actually disrupt binding of one of these TFs. Overall, our observations are 

consistent with the peQTNs playing a role in the regulation of nearby genes and 

underscore the difficulty in interpreting eQTLs even for relatively well-

characterized cell types with substantial amounts of functional genomics data. 

We next sought evidence that the peQTNs we identified cause differential 

TF binding. (Maurano et al., 2015) tested ~360k heterozygous SNVs located in 

DHSs for allelic bias caused by differential TF binding in vivo and found that 18% 
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of tested variants affected TF binding. Of the 186,656 eQTL variants we used to 

identify peQTNs, (Maurano et al., 2015) assayed 13,366 including 974 peQTNs. 

We found that 37% of the 974 peQTNs showed evidence for altered TF binding 

in (Maurano et al., 2015) compared to only 19% of the 12,392 eQTL variants 

assayed by (Maurano et al., 2015) that we did not classify as peQTNs. Thus 

peQTNs are highly enriched for altering TF binding relative to eQTL variants that 

we did not classify as peQTNs (OR = 2.5, p < 10-36, Fisher exact test) and 

relative to all ~360k variants tested by Maurano (OR = 2.7, p < 10-43, Fisher exact 

test) indicating that these variants likely modulate gene expression via differential 

TF binding. peQTNs were also nearly five times more likely to interact with the 

promoter of the associated eGene according to ChIA-PET interactions from naive 

hESCs (OR = 4.6, p < 10-20, Fisher exact test) (X. Ji et al., 2016). That our 

peQTNs are strongly enriched for variants that alter TF binding and interact with 

the promoter of the associated eGene suggests that these variants are good 

eQTN candidates. 
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Figure 2.3: peQTN Characteristics and GWAS Enrichments. (A) Number of peQTNs per 
eGene for 1,475 eGenes with at least one peQTN. (B) Number of stem cell DHSs overlapped by 
eQTNs for four stem cell lines from Roadmap Epigenomics (H1, H9, iPS DF 6.9, iPS DF 19.11). 
(C) Putative eQTNs (red lines) for POU5F1 eQTL that overlap TAF1 ChIP-seq peaks and disrupt 
motifs associated with TATA TFs. Scatter plot shows -log10 association p-value from EMMAX for 
variants that are significantly (purple points) and not significantly (blue points) associated with 
POU5F1 expression. ENCODE H1 hESC TAF1 ChIP-seq peaks (red rectangles) and chromHMM 
chromatin state predictions (multi-color track) are displayed.  (D) Enrichment odds ratios of lead 
eQTL SNVs and peQTNs among GWAS associations for traits and diseases from the GRASP 
database. 
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Chapter 2.3.4: iPSC eQTLs are Enriched Among GWAS Associations 

To determine whether iPSC eQTLs are also associated with human 

diseases and phenotypes, we calculated the enrichment of eQTL lead SNVs and 

peQTNs amongst GWAS associations for 33 phenotypes from the GRASP 

GWAS catalog (Supplementary File 2.5) (Leslie, O'Donnell, & Johnson, 2014). 

We found that peQTNs were generally more enriched among GWAS hits than 

lead variants, especially for immune-related traits (Figure 2.3D). We 

hypothesized that this enrichment was driven by HLA genes, most of which have 

eQTLs, and were concerned that the extensive polymorphism in HLA genes 

might have resulted in misalignment of RNA-seq reads to the reference genome. 

We repeated the GWAS enrichment using peQTNs after removing HLA eQTLs 

and still found higher enrichments for most traits using peQTNs (Figure 2.3D). 

This demonstrates that peQTNs are enriched among variants that are associated 

with organismal traits and that iPSC eQTLs capture regulatory associations 

important for known diseases and complex phenotypes. 

 

Chapter 2.3.5: Intergenic CNVs Affect Gene Expression 

To examine the effect of CNVs on gene expression, we used our high-

depth WGS to identify 15,271 autosomal biallelic CNVs that were within 1Mb of 

at least one TSS and included these CNVs when testing for eQTLs as described 

above. Overall, we found significant CNV-expression associations (CNV eQTLs) 

for 247 genes including 111 genes for which the CNV was the lead variant (52 
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deletions, 38 duplications, and 26 mixed CNVs) and 67 genes whose expression 

was associated with a CNV but not a SNV or indel. While eGenes with no 

significant CNV associations showed only a slight bias toward lower expression 

for the alternate allele (p=0.001, binomial, Figure 2.4A), eGenes with CNV lead 

variants were heavily skewed toward positive associations between copy number 

and expression (Figure 2.4B). Lead CNVs also had larger effect sizes than lead 

SNVs and indels (Figure 2.4C). We compared all eQTL CNVs to CNVs that were 

not associated with the expression of any genes and found that eQTL CNVs are 

longer (median 2,386 bp versus 528 bp), more likely to overlap genes (p < 10-16, 

Fisher exact test), and closer to transcription start sites (median 3,547 bp versus 

12,390 bp) even after removing CNVs that overlap TSSs (median 5,606 bp vs 

13,705 bp) (Supplementary Figure 2.4). These data show that CNV eQTLs tend 

to be larger than a typical CNV and generally have strong effects on gene 

expression that are positively correlated with copy number. 

To explore the mechanisms underlying the correlation between CNV copy 

number and eGene expression levels we stratified the eQTLs on whether or not a 

significant CNV overlapped the eGene. Of the 111 eGenes with lead CNVs, 60 

(54%) overlapped an associated CNV while only 102 of the 247 (41%) genes 

with at least one significant CNV association overlapped an associated CNV. As 

expected based on previous studies (Handsaker et al., 2015; Schlattl, Anders, 

Waszak, Huber, & Korbel, 2011; Sudmant et al., 2015), the expression levels of 

eGenes that overlapped CNV eQTLs were positively associated with copy 
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number (data not shown) most likely due to altered gene dosage. Only 

considering the 51 intergenic CNV lead variants, we still observed a bias toward 

positive associations between gene expression and copy number suggesting that 

these CNV eQTLs may act by altering the copy number of regulatory regions 

(Figure 2.4D, Supplementary Figure 2.5). We calculated the enrichment of DHSs 

and several histone modifications from Roadmap iPSC and ESC lines in these 

intergenic CNV eQTLs and found that the intergenic CNV eQTLs are enriched for 

marks of active regulatory regions but not repressive marks or marks of active 

transcription (Figure 2.4E). Repeating the same analysis for CNV eQTLs that do 

overlap their associated eGenes revealed that they are also enriched for marks 

of active regulatory regions but are most enriched for H3K36me3, a mark of 

transcribed regions, consistent with these CNVs overlapping genic regions 

(Figure 2.4F). These data suggest that intergenic CNV eQTLs can affect gene 

expression levels by altering the dosage of intergenic regulatory regions. 
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Figure 2.4: CNV eQTL Effect Sizes and Functional Annotation. (A-B) Distribution of effect 
sizes for (A) lead SNVs/indels for eGenes with no significant CNV associations and (B) lead 
CNVs. (C) Density plot of absolute effect size for effect sizes from (A) and (B). (D) Effect sizes for 
lead CNVs for eGenes where no significant CNV overlaps the eGene. (E-F) Enrichment p values 
(Fisher exact test) of Roadmap stem cell DHS and histone modification ChIP-seq peaks in lead 
CNVs for eGenes where (E) no significant CNV overlaps the eGene or (F) a significant CNV 
overlaps the eGene versus CNVs that were not eQTLs for any gene. Different points for each 
mark represent different Roadmap stem cell lines. 

It was recently reported that multiallelic CNVs (mCNVs) are an important 

class of CNVs that can affect gene expression (Handsaker et al., 2015). Since 
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EMMAX is limited to testing for associations with biallelic variants and cannot test 

for associations with multiallelic loci, we identified mCNV eQTLs by regressing 

gene expression estimates against genotype using a linear model for the 131 

unrelated individuals. After filtering (Methods), we identified 152 mCNVs 

segregating in the 131 unrelated individuals that were within 1 Mb of one or more 

genes and found mCNV eQTLs for 89 genes of which 33 overlapped an 

associated mCNV and 56 did not. The effect sizes for mCNV eQTLs were again 

skewed toward positive associations between gene expression and copy number 

for both mCNV eQTLs that overlapped genes and those that did not 

(Supplementary Figure 2.6) indicating that mCNVs may also affect gene 

expression by altering the dosage of regulatory regions. For example, we 

identified a 2kb mCNV on chromosome seven whose diploid copy number 

estimates ranged from one to eight and that was associated with the expression 

of seven nearby genes (Figure 2.5A). While this mCNV slightly overlaps one of 

the genes it is associated with, it also overlaps a DHS, CEBPB TF ChIP-seq 

peak, and predicted enhancer in the H1 hESC line suggesting that the CNV 

alters gene expression in the region by changing the copy number of this 

regulatory region (Figure 2.5B). Although most of the intergenic mCNV eQTLs 

were associated with the expression of only one or two genes, the bias toward 

positive associations between copy number and gene expression and the scaling 

of gene expression with the dosage of intergenic regions indicates that intergenic 

CNVs can cause eQTLs.  
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Figure 2.5: mCNV eQTL Example. (A) Gene expression estimates for seven genes associated 
with a single mCNV in 131 unrelated donors. Jitter was added to the diploid copy number 
estimates (x-axis) to aid in visualization. (B) Genomic location of mCNV on chromosome seven 
along with six of seven associated genes (indicated by boxes). The mCNV overlaps a CEBPB 
ChIP-seq peak, DHS, and predicted enhancer from the H1 hESC line. 

 

Chapter 2.3.6: Effect of Rare Variants on Gene Expression 

Rare variants are another class of variants whose effect on gene 

expression has been difficult to investigate because accurate identification of rare 
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variants within an individual requires high-depth WGS, and large sample sizes 

are needed to achieve sufficient statistical power to detect rare variant 

associations. While we expect to observe many rare variants across our 215 

subjects, most of these will not fall in genes or regulatory regions and are not 

likely to affect gene expression. Therefore to investigate the effects of noncoding 

rare variants on gene expression, we decided to focus on rare variants located in 

the promoters of expressed genes. We identified 65,552 SNVs that (1) were 

located in the promoters of 18,556 robustly expressed genes (including genes on 

the sex chromosomes), (2) overlapped a DHS from at least one of the four 

Roadmap stem cell lines (Figure 2.2A), (3) had only one minor allele observed 

among the 131 unrelated subjects, and (4) were either not observed in 1000 

Genomes or whose minor allele frequency was less than 0.5% in all 1000 

Genomes populations (Genomes Project et al., 2015). We refer to these 65,552 

SNVs as rare promoter DHS SNVs (rpdSNVs). In total, 14,599 of 18,556 robustly 

expressed genes had an rpdSNV in at least one of the 131 unrelated subjects. 

To determine the effect of rpdSNVs on gene expression, we stratified the 

18,556x131=2,430,836 expression estimates for the 18,556 robustly expressed 

genes in the 131 unrelated subjects into two groups based on the presence or 

absence of an rpdSNV in the gene’s promoter in a given subject and obtained 

69,041 expression estimates from genes with an rpdSNV and 2,361,795 

estimates for genes without an rpdSNV. We restricted this analysis to the 131 

unrelated subjects to avoid confounding due to relatedness and used the PEER 
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residual gene expression estimates transformed into z-scores to compare the two 

groups. We compared the distribution of these 69,041 and 2,361,795 expression 

values and found that expression estimates for samples with rpdSNVs were 

slightly lower than estimates for samples without rpdSNVs indicating that the 

presence of an rpdSNV has a small but significant effect on gene expression 

(Mann Whitney U, p = 0.0026, Figure 2.6A). Additionally, genes were more likely 

to have significant ASE in samples with an rpdSNV versus samples without an 

rpdSNV (OR = 1.09, p = 0.015, Fisher exact test) consistent with rare variants 

regulating gene expression in cis. It was reported previously that evolutionary 

constraint and functional annotations can help predict which rare variants may 

affect gene expression (X. Li et al., 2014) so we filtered the rpdSNVs according 

to phyloP conservation and CADD scores (Kircher et al., 2014; Pollard, Hubisz, 

Rosenbloom, & Siepel, 2010). We found that the bias toward lower expression 

estimates was stronger for genes with an rpdSNV with a CADD Phred score 

greater than 20 (p < 10-4, Mann Whitney U) or a phyloP score greater than 3 (p < 

10-5, Mann Whitney U, Figure 2.6B). We also observed higher rates of ASE 

among genes with rpdSNVs with a CADD Phred score greater than 20 (OR = 

1.47, p = 0.011, Fisher exact test) or a phyloP score greater than 3 (OR = 1.49, p 

= 0.004, Fisher exact test) compared to genes that did not have an rpdSNV. 

These results show that rpdSNVs that affect gene expression generally cause a 

decrease in expression and that rpdSNVs are more likely to affect gene 

expression if they are in conserved sequences or have higher CADD scores. 
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We next asked whether rare CNVs that overlap genes may affect gene 

expression by altering the dosage or structure of the overlapped gene. We 

defined rare genic CNVs as CNVs that overlapped introns and/or exons of genes 

and were observed in only one of the 131 unrelated subjects in our study. In total, 

we identified 431 rare genic duplications and 2,157 rare genic deletions. We 

stratified expression estimates into three groups based on the presence or 

absence of either a rare genic duplication or deletion for a given gene and 

subject. We found that the 431 rare genic duplications had a much stronger effect 

on gene expression than rpdSNVs and generally caused increased gene 

expression (Figure 2.6C). This effect was stronger if we restricted to the 226 rare 

duplications that were predicted to overlap exons as opposed to the larger set of 

deletions which includes some deletions that are only intronic. We did observe 

some instances where rare duplications appeared to decrease gene expression 

which seemed dependent on whether the CNV duplicated the entire gene or just 

part of the gene which would likely disrupt the gene’s structure (data not shown). 

As observed for rpdSNVs, genes were much more likely to have significant ASE 

in subjects with rare genic duplications (OR = 5.55, p < 10-9, Fisher exact test) 

with nearly 16% of such genes demonstrating significant ASE. The presence of 

higher rates of ASE among genes with rare duplications indicates that the altered 

expression of these genes is likely caused by these duplications. As opposed to 

duplications, we found that the 2,157 rare genic deletions generally caused lower 

expression (Figure 2.6D). This effect was much stronger for the 511 rare 
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deletions that were predicted to overlap exonic parts of the genes (Figure 2.6D). 

9.1% of genes with rare exonic deletions in a given sample had significant ASE 

compared to 3.2% of the genes that did not have rare exonic deletions (OR = 3, p 

< 10-3, Fisher exact test). These results indicate that rare genic CNVs are more 

likely to affect gene expression than rpdSNVs and that the effect of rare CNVs is 

dependent on the location of the CNV relative to coding regions of the gene. 

 
Figure 2.6: Effect of Rare Variants on Gene Expression. Distribution of gene expression 
estimates for genes (A) with (green) or without (blue) a rare promoter DHS SNV (rpdSNV) and (B) 
without an rpdSNV (blue), with an rpdSNV with CADD Phred greater than 20 (green), or with an 
rpdSNV with a phyloP score greater than three (orange). Distribution of gene expression 
estimates for genes (C) without rare genic duplications (blue), with rare genic duplications 
(green), or with rare exonic duplications (orange) and (D) without rare genic deletions (blue), with 
rare genic deletions (green), or with rare exonic deletions (orange). 
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Chapter 2.3.7: X Reactivation Status Varies According to Gene Chromosomal 
Position  

X inactivation (Lyon, 1961) has been studied in iPSCs derived from female 

donors to determine the behavior of the inactive X chromosome during 

reprogramming and passaging (Lessing et al., 2013; Pasque & Plath, 2015) but 

the heterogeneity of X chromosome reactivation across a large set of 

systematically reprogrammed lines is unknown. Since our iPSCs are clonally 

derived from single fibroblasts, female-derived iPSCs should have one inactive 

and one active X unless the inactive X has been reactivated during 

reprogramming or passaging. iPSCs with residual X inactivation should have a 

higher amount of ASE for genes on the X chromosome relative to autosomal 

genes (i.e. ASE for genes on the X chromosome is a proxy for X inactivation). 

We calculated the percentage of X chromosome and autosomal genes with 

significant ASE per sample for 144 RNA-seq samples from the 116 iPSC lines 

derived from female donors (predominantly assayed at passage 12) and found 

that the X chromosome is highly enriched for ASE relative to autosomes with an 

average of 44% of X chromosome genes displaying significant ASE per sample 

compared to only 3% of autosomal genes per sample. We identified 120 robustly 

expressed X chromosome genes and stratified each gene’s expression estimates 

into two groups based on whether or not the gene had significant ASE in a given 

sample. We calculated the average expression of each gene in the two groups 

and observed that 78% of the genes had lower average expression in the group 
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of samples with significant ASE consistent with allelic silencing of these genes by 

X inactivation (Figure 2.7A). These results indicate that X inactivation persists at 

some level for most iPSCs derived from female subjects and affects the gene 

expression of X chromosome genes. 

To examine the heterogeneity of X reactivation across the iPSCs, we 

defined the strength of ASE for a given gene as the percentage of RNA 

transcripts estimated to originate from the parental haplotype with higher 

expression, referred to as the major haplotype frequency (MHF) (Mayba et al., 

2014). The distribution of MHFs for X chromosome genes was bimodal with 

some genes showing relatively balanced expression (MHF near 0.5) and other 

genes displaying nearly mono-allelic expression (MHF near 1.0) consistent with 

some X chromosome genes remaining silenced following reprogramming (Figure 

2.7B). In contrast, the MHFs for most autosomal genes was near 0.5 with few 

genes showing evidence for strong allelic bias (Figure 2.7C). Stratifying the 

MHFs by sample showed that there is considerable variation between samples 

with some iPSC displaying low levels of X reactivation and others displaying high 

levels of reactivation (Figure 2.7D). The percentage of X chromosome genes with 

significant ASE per sample (a proxy for the overall amount of reactivation per 

sample) is correlated with XIST (r=0.72, p<10-24, Spearman) and TSIX gene 

expression (r=0.51 and p<10-11, Spearman) showing that XIST and TSIX are 

down-regulated as the inactive X is reactivated. XIST (r=-0.18, p=0.029, 

Spearman) and TSIX (r=-0.17, p=0.044, Spearman) expression are also 
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negatively correlated with passage although passage is not correlated with the 

percentage of X genes with significant ASE (r=-0.07, p=0.43). However, most of 

our iPSC lines were at passage 12 so it is possible that we are not powered to 

find this latter association. These results suggest that XIST and TSIX are 

downregulated as the inactive X is reactivated during early passages. 

While we observed that the overall amount of X reactivation differs 

between lines (Figure 2.7C), we also asked whether the X reactivation status of 

genes was correlated with respect to their location on the X chromosome. We 

plotted the major haplotype frequency estimates for each gene in each sample 

versus the position of the gene on the X chromosome and observed that clusters 

of nearby genes tended to show similar levels of reactivation even in different 

lines (Figure 2.7E,F). Our data suggest that while the overall amount of 

reactivation differs between lines, reactivation follows the same physical pattern 

in different lines with some clusters of nearby genes consistently becoming 

reactivated faster than others. 
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Figure 2.7: Heterogeneity of X Reactivation Following Reprogramming. (A) Average 
expression for 120 X chromosome genes in samples with significant ASE versus samples without 
significant ASE. (B and C) Distribution of estimated major haplotype frequencies (MHFs) for (B) X 
chromosome and (C) autosomal genes for one representative RNA-seq sample. MHF is the 
percentage of transcripts estimated to come from the haplotype that is more expressed. (D) From 
left to right, the heatmaps show passage; XIST and TSIX expression; X chromosome MHF 
distribution; and autosomal MHF distribution for each RNA-seq sample from female-derived 
iPSCs. Each row corresponds to one one sample. Samples were sorted by XIST expression 
before plotting. (E and F) Estimated MHFs across the (E) p and (F) q arms of the X chromosome. 
Each point represents an estimate of the MHF for a gene/sample pair. Box 1 shows a largely 
reactivated cluster of genes with most MHFs near 50% while box 2 shows a cluster of genes that 
have not been reactivated with MHFs closer to 100%. 



 

 
  
 

73 

Chapter 2.4: Discussion 

We present here an analysis of the genetic regulation of gene expression 

in a set of 215 systematically reprogrammed human iPSCs. We used WGS 

variant calls and RNA-seq expression estimates to map eQTLs in iPSCs and 

found eQTLs for 5,619 genes including markers and regulators of pluripotency. 

We found that relative to the somatic tissues profiled in GTEx, iPSCs are well-

powered for identifying eQTLs and have a distinct gene regulatory landscape. 

These results show that iPSCs are a suitable system for genetic association 

analyses and provide important insights into the effect of genetic background on 

gene expression in stem cells. 

We demonstrated that iPSC eQTLs are enriched in regulatory regions of 

both iPSCs and hESCs from the ENCODE and Roadmap Epigenomics projects 

supporting previous findings that iPSCs and hESCs have similar gene expression 

and epigenetic profiles (Choi et al., 2015; Papp & Plath, 2013; Rouhani et al., 

2014). Since altered TF binding has been proposed to be one of the primary 

causes of eQTLs (Pai et al., 2015), we intersected our eQTL variants with TF 

ChIP-seq peaks from the H1 hESC line for 34 different TFs and identified putative 

eQTNs that both overlapped a TF peak and disrupted a motif associated with the 

TF. We identified 3,058 peQTNs and found that they were highly enriched for 

evidence of disrupted TF binding in vivo. In total, these 3,058 variants 

corresponded to 1,475 of 5,619 eGenes demonstrating that it may be necessary 

to profile more TFs in order to dissect the majority of eQTLs. Interestingly, only 
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19% of the 1,475 eGenes had a lead variant that overlapped a TF peak and 

disrupted a motif suggesting that for eQTLs lead variants may not often be causal 

variants. The high frequency of peQTNs that are not lead variants may be due to 

the presence of multiple independent eQTLs for most genes (many of which we 

may not be able to detect at this sample size) that affect which variants are most 

significant. We also found that iPSC eQTLs are enriched for GWAS hits from 

several human phenotypes. Due to the shared genetic architecture of gene 

regulation across tissues (G. T. Consortium, 2015; Flutre, Wen, Pritchard, & 

Stephens, 2013), these associations do not necessarily mean that stem cells are 

especially important for these particular phenotypes but do show that examining 

the regulatory landscape of iPSCs is relevant to human traits and diseases. 

We also explored the contribution of CNVs and rare variants to the 

regulation of gene expression. We showed that both common and rare CNVs can 

affect gene expression either by altering the copy number/structure of genes or 

intergenic regulatory regions. We presented an example of a mCNV causing 

gene expression changes by altering the dosage of a regulatory sequence 

though further experiments are needed to determine what fraction of eQTL CNVs 

act through this mechanism. We also observed that rare SNVs in promoters can 

cause decreased gene expression and that this effect is stronger for conserved 

variants or those that overlap functional annotations. It remains to be seen 

whether this signal is driven by a small fraction of functional rare variants with 

larger effect sizes or whether many rare variants have small effects on gene 
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expression. While our genotypes are derived from blood and fibroblasts, it is 

notable that somatic variants that arise during the reprogramming process may 

have similar effects as inherited rare variants. We anticipate future studies may 

benefit from genotyping iPSCs and germ cells to profile somatic variants 

genome-wide and incorporate them into association analyses. 

We investigated the heterogeneity of X chromosome reactivation following 

reprogramming from female donors and found that most samples retain some 

amount of silencing on the X chromosome although the amount differs from 

sample to sample. We found that all lines share similar physical reactivation 

patterns across the X chromosome, with clusters of genes in some areas 

escaping silencing more quickly than clusters of genes in other areas. This may 

be related to the fact that XIST physically coats the X chromosome. The differing 

rates of reactivation between samples and across the X chromosome shown 

here will need to be accounted for when investigating X-linked molecular 

quantitative traits. 

iPSCs are a promising system for mapping expression and other 

molecular trait QTLs for several reasons including their ability to self-renew and 

differentiate into other cell types (Pai et al., 2015). Genetic association analyses 

in iPSCs and differentiated cell types are not limited to gene expression or other 

molecular phenotypes like methylation levels, however, but can be extended to 

physiological phenotypes like electrophysiological responses or cellular 

phenotypes like cell survival after drug treatment (Avior et al., 2016). Merging 
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“disease in a dish” modeling approaches with large-scale genetic association 

analyses like the one presented here will useful for dissecting complex diseases 

and drug-genotype interactions and will likely become an important strategy for 

exploring the genetic and molecular causes of disease. 

Chapter 2.5: Experimental Procedures 

Complete information on the experimental procedures for this work can be 

in the Supplemental Experimental Procedures. 

 

Chapter 2.5.1: Sample collection, reprogramming, and cell culture 

Samples were collected, reprogrammed, and cultured as described in 

(Frazer, 2016). The UCSD IRB approved the study and all subjects gave 

informed consent (Project #110776ZF). 

 

Chapter 2.5.2: Whole Genome and RNA Sequencing 

Whole genome and RNA sequencing and data processing were performed 

using standard protocols and are described in detail in the Supplemental 

Experimental Procedures. 

 

Chapter 2.5.3: Data Analysis 

We mapped eQTLs using the permutation approach from (G. T. 

Consortium, 2015) except that we used EMMAX (Kang et al., 2010) to calculate 

association p-values that account for the relatedness between donors. We 
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calculated per gene p-values using the permutations and corrected these 

empirical p-values using the Storey method (Storey & Tibshirani, 2003). Allelic 

mapping bias was accounted for using WASP (van de Geijn, McVicker, Gilad, & 

Pritchard, 2015) and allele specific expression was identified using MBASED 

(Mayba et al., 2014). Complete details are described in the Supplemental 

Experimental Procedures. 

 

Chapter 2.5.4: Data and Code Availability 

Sequencing data are deposited in dbGaP (phs000924). Code for this 

project is available on Github at https://github.com/frazer-lab/cardips-ipsc-eqtl. 
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Chapter 2.8: Supplemental Experimental Procedures 

Chapter 2.8.1: Sample collection and reprogramming 

Samples were collected, reprogrammed, and cultured as described in 

(Frazer, 2016). The UCSD IRB approved the study and all subjects gave 

informed consent (Project #110776ZF). 

Chapter 2.8.2: RNA sequencing 

Library preparation and sequencing 

Total RNA was extracted from 222 iPSC lines using AllPrep RNasy Blood 

& Tissue Kit (Qiagen) following the manufacturer’s protocol. RNA quality was 

assessed based on RNA integrity number (RIN) using an Agilent Bioanalyzer. 

Libraries were prepared using the Illumina TruSeq stranded mRNA kits and 

sequenced using an Illumina HiSeq2500 (~11 samples per lane). Samples were 

sequenced to an average of ~22 million read pairs. Biological replicates were 

sequenced for some lines. 

Alignment and quality control 

2x150 bp RNA-seq reads were aligned with STAR (2.5.0a) to the hg19 

reference (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit) 

using Gencode v19 splice junctions with default alignment parameters except --

outFilterMultimapNmax 20, --outFilterMismatchNmax 999, --alignIntronMin 20, --

alignIntronMax 1000000, --alignMatesGapMax 1000000 (Dobin et al., 2013; 

Harrow et al., 2012). Bam files were coordinate sorted using Sambamba (0.5.9) 
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(Tarasov, Vilella, Cuppen, Nijman, & Prins, 2015) and duplicate reads were 

marked using biobambam2 (2.0.21) bammarkduplicates (Tischler & Leonard, 

2014). 

We repeated library preparation and sequencing for samples that were 

outliers for percent uniquely mapped reads as reported by STAR or percent 

duplicate reads or 5’/3’ bias as estimated by Picard Tools. Seven of the 222 

samples that were outliers after the second sequencing run were not used 

resulting in RNA-seq for 215 of the 222 lines. The minimum uniquely mapped 

read percentage was 86% and the median was 91%. 

Gene expression 

We estimated transcript and gene expression using the STAR 

transcriptome bam file and RSEM (1.2.20) rsem-calculate-expression (--seed 

3272015 --estimate-rspd --forward-prob 0) (B. Li & Dewey, 2011). 

Allele specific expression 

Uniquely mapped reads that were not marked as duplicates were tested 

for mapping bias using the WASP mapping pipeline (van de Geijn et al., 2015). 

Reads that mapped uniquely to the same location after swapping in alternate 

alleles were used to calculate the coverage of heterozygous variants overlapping 

Gencode v19 exons for all exonic regions unique to one gene using the 

ASEReadCounter from GATK (3.4-46) (Van der Auwera et al., 2013). MBASED 

was used to estimate per-gene and per-heterozygous variant allele specific 
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expression (ASE) p-values (Mayba et al., 2014). Heterozygous variants that met 

the following criteria were used as input for MBASED: (1) coverage greater than 

or equal to 8, (2) reference allele frequency between 2-98%, (3) located in unique 

mappability regions according to wgEncodeCrgMapabilityAlign100mer track, (4) 

not located within 10 bp of another variant in a particular subject (heterozygous 

or homozygous alternative). Additionally, for heterozygous variants within 300 bp 

of each other, only one variant was used to avoid double counting variant 

coverage from the same read pair. These filters are based on the GTEx and 

MBASED ASE pipelines (G. T. Consortium, 2015; Lappalainen et al., 2013; 

Mayba et al., 2014). A gene was considered significant for ASE if the MBASED 

“p_val_ase” was less than or equal to 0.005 (G. T. Consortium, 2015). 

 

Chapter 2.8.3: DNA sequencing 

Library preparation and sequencing 

Genomic DNA was isolated from blood (DNEasy Blood & Tissue Kit), or in 

19 cases directly from the fibroblast. The samples were normalized to 1 ug and 

submitted for whole genome sequencing. DNA was isolated (DNeasy kit, 

Qiagen), quantified, normalized and sheared with a Covaris LE220 instrument. 

DNA libraries were prepared (TruSeq Nano DNA HT kit, Illumina), characterized 

in regards to size (LabChip DX Touch, Perkin Elmer) and concentration (Quant-

iT, Life Technologies), normalized to 2-3.5nM, combined into 6-sample pools, 

clustered and sequenced on the HiSeqX (150 base paired-end). In total, germline 
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whole genome sequencing (WGS) was performed for 274 subjects though only 

222 were reprogrammed into iPSCs.  

Alignment and quality control 

We esitimated the quality of fastq files using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned 

against human genome b37 with decoy sequences (Genomes Project et al., 

2015) using BWA-mem and default parameters (H. Li & Durbin, 2009). The 

resulting bam files were sorted using Sambamba (Tarasov et al., 2015) and 

duplicate reads were marked using biobambam2 (Tischler & Leonard, 2014).  

SNV/indel calling 

The bam files were split into individual chromosomes to maximize the 

efficiency of the variant calling process on our cluster. We applied the GATK 

(McKenna et al., 2010) best-practices pipeline for variant calling that includes 

indel-realignment, base-recalibration, genotyping using HaplotypeCaller, and 

finally joint genotyping using GenotypeGVCFs (DePristo et al., 2011; Van der 

Auwera et al., 2013). We performed quality control for the genotypes of single 

nucleotide variants and indels using GATK’s Variant Quality Score Recalibration 

(VQSR) (Van der Auwera et al., 2013). We performed variant calling for sex 

chromosomes in males and females separately and resolved the 

pseudoautosomal regions of the sex chromosomes independently (considered as 

diploid in both males and females). 
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CNV calling 

CNVs were called using two algorithmic approaches with the goal of 

finding variants across a wide spectrum of sizes and making use of both read-

pair and read depth information. We used the population level read-depth and 

split-read caller Genome STRiP (svtoolkit 2.00.1611) (Handsaker et al., 2015) to 

discover and genotype biallelic and multiallelic CNVs using whole genome 

sequencing data from 274 subjects. We supplemented this CNV call set using 

the split and discordant read-pair caller LUMPY (Layer et al., 2014) as 

implemented in the SpeedSeq software (version 0.1.0) (Chiang et al., 2015). 

Speedseq SV calling was done individually on each of the 274 samples, 

excluding areas identified by the LUMPY developers with very high read-depth in 

family CEPH 1463 (Chiang et al., 2015). Calls for each sample were then filtered 

further, removing calls overlapping regions with over 200 split or discordant reads 

in a given sample, and calls that overlapped centromeres, telomeres, or low 

complexity regions (H. Li, 2014). Calls were then merged using svtools lsort and 

lmerge (https://github.com/hall-lab/svtools), before running the SVtyper Bayesian 

genotyping algorithm on these positions in each sample. Following genotyping, 

sites that were predicted as reference in all samples were removed as well as 

sites supported by less than 10 reads.  
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Chapter 2.8.4: eQTL analysis 

We first selected one iPSC RNA-seq sample per subject for which WGS 

variant calls were also available. We constructed an empirical kinship matrix for 

all subjects with WGS variant calls by intersecting biallelic SNVs with 1000 

Genomes phase 3 variants and LD pruning the resulting variants using plink 

1.90b3x (--biallelic-only --indep-pairwise 50 5 0.2) for unrelated EUR 1000 

Genomes subjects (Chang et al., 2015; Genomes Project et al., 2015). We used 

the remaining LD-pruned variants to construct the kinship matrix using EPACTS 

3.2.6 (epacts make-kin --min-maf 0.01 --min-callrate 0.95) keeping variants 

whose frequency was above 1% in our cohort and that were called in at least 

95% of our samples. 

We filtered RSEM gene TPM values by removing any genes whose 

expression was not greater than 2 TPM in 10 or more samples. We then 

transformed the expression values for each of the 17,819 autosomal genes 

passing these filters to match a standard normal distribution and ran PEER for 15 

factors (Stegle et al., 2010). We transformed the PEER residuals to match a 

standard normal distribution to minimize the effect of outliers on the eQTL 

analysis (G. T. Consortium, 2015). 

We filtered WGS variant calls by removing variants whose call rate was 

less than 95% or with Hardy-Weinberg p < 0.000001 for 104 unrelated European 

samples from our cohort.  
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We filtered GenomeSTRiP CNV calls to keep those that were observed in 

three diploid copy number states for at least 95% of our 215 eQTL samples. If a 

CNV was observed in three diploid copy number states for 95% of samples but 

also had other copy number states, we set those genotypes to missing. All CNVs 

were encoded as 0/0, 0/1, and 1/1 for increasing diploid copy number for the 

purposes of association. We filtered LUMPY CNV calls to keep calls with minor 

allele frequency greater than 1% in the 215 eQTL samples. 

We tested autosomal genes for eQTLs using EMMAX (assoc --maxMAF 1 

--maxMAC 1000000000 --minRSQ 0 --minCallRate 0.5 --minMAC 3) using the 

standard normal transformed PEER residuals and the empirical kinship matrix 

described above (Kang et al., 2010). We provided the sex of each subject as a 

covariate for EMMAX. For each gene, we tested variants within 1Mb of any TSS 

for that gene from the Gencode v19 gene annotation and whose call rate was 

greater than 95%. We identified genes with significant eQTLs (eGenes) using the 

permutation approach from (G. T. Consortium, 2015). For each gene, we 

performed 1,000-10,000 permutations of the expression values and recorded the 

minimum p-value from EMMAX. We stopped performing permutations when we 

obtained 15 minimum p-values less than the minimum p-value observed for the 

real data or when we reached 10,000 permutations. We calculated an empirical 

p-value for each gene as the fraction of permutations with minimum p-values less 

than the observed minimum p-value. We corrected these empirical p-values 

using the Storey method (Storey & Tibshirani, 2003). 
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We identified additional independent eQTLs for eGenes by providing the 

lead variant as a covariate for EMMAX and performing the same permutation 

procedure. We corrected these permutation p-values using the Storey method. 

Comparison to GTEx eQTLs 

We compared our eQTLs to those reported in GTEx v6 

(phs000424.v6.p1). When plotting the number of and percent unique eGenes 

versus the number of samples for Figure 2.1F-G, we omitted the GTEx testis 

results because they were highly different than all other GTEx tissues. 

 

Chapter 2.8.5: GO comparison 

Genes in the “stem cell population maintenance” (GO:0019827) category were 

downloaded on March 17, 2016 from the AmiGO database (Ashburner et al., 

2000; Carbon et al., 2009; Gene Ontology, 2015) and intersected with the 5,619 

eGenes. 

 

Chapter 2.8.6: Functional Annotation 

Roadmap Epigenomics DNase hypersensitivity site (DHS) enrichments 

We downloaded DHS data for 53 Roadmap Epigenomics cell types from 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/. 

We then defined one lead variant per eGene by randomly break ties and kept 

only SNVs and indels, resulting in 5,420 lead SNVs/indels. We intersected these 
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5,420 variants with exonic regions from Gencode v19 and removed any SNVs 

intersecting an exon, leaving 4,491 noncoding SNVs/indels remaining. We 

calculated how many SNV/indel bases did and did not overlap a DHS for each 

DHS experiment. We then created 5kb windows centered on each SNV/indel and 

calculated the number of base pairs that did and did not overlap a DHS in the 

window (excluding the lead variant). We used these counts to perform a Fisher 

exact test (fisher_exact, scipy) to determine an odds ratio and enrichment p-

value for each DHS experiment as in (G. T. Consortium, 2015). 

ENCODE DHS enrichments 

We searched for all ENCODE DHS experiments with narrowPeak files for 

the hg19 assembly using the ENCODE web API (encodeproject.org) and 

pyencodetools (https://github.com/cdeboever3/pyencodetools). We used the 

most recent narrowPeak file for each experiment or chose randomly when the 

date was malformed. We used the same set of noncoding lead SNVs/indels 

described above and calculated odds ratios and enrichment p-values as 

described above. 

ENCODE transcription factor (TF) enrichments 

We identified ENCODE TF ChIP-seq experiments for the H1 hESC cell 

line using pyencodetools as described above. We used the same set of 

noncoding lead SNVs/indels described above and calculated odds ratios and 

enrichment p-values as described above. 
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Chapter 2.8.7: Identification of putative eQTNs 

To identify putative expression quantitative trait nucleotides (peQTNS) for 

the 5,619 eGenes, we considered all significant associations with SNVs and 

indels but filtered out CNV associations because their mechanism of action is 

likely different than disrupting a TF binding site. We also removed any eGenes 

that overlapped a significant CNV or had an eQTL variant that was predicted to 

cause nonsense mediated decay according to SnpEff (Cingolani et al., 2012). We 

then overlapped the remaining 186,656 variants with ENCODE TF ChIP-seq 

peaks (Supplementary File 2.4). For each variant that overlapped a peak, we 

calculated motif scores for motifs associated with the particular TF that the 

variant overlapped (http://compbio.mit.edu/encode-motifs/motifs.txt) (Kheradpour 

& Kellis, 2014). We calculated the motif scores using MOODS (Korhonen, 

Martinmaki, Pizzi, Rastas, & Ukkonen, 2009) for both the reference and alternate 

alleles. If the MOODS scores for the reference and alternate alleles differed by 

more than 2.5, we said that the variant disrupted TF binding (Supplementary File 

2.4). When comparing to the data from (Maurano et al., 2015), we considered q < 

0.05 as evidence for significant TF allelic bias. 

 

Chatper 2.8.7: GWAS enrichments 

We downloaded the GRASP v2 database (Leslie et al., 2014). For each 

phenotype, we identified independent GWAS hits with p-values less than 10-5. 

We identified independent SNPs by creating a graph whose nodes were 
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significant variants that shared an edge if the two variants were in LD > 0.8 (1000 

Genomes phase 3 EUR). We then chose the variant with the smallest p-value per 

connected component. We created 50 random sets of null SNPs matched on 

minor allele frequency, number of SNPs in LD > 0.8, and distance to the nearest 

protein coding gene; these statistics were obtained from SNPsnap (EUR 

population) (Pers, Timshel, & Hirschhorn, 2015).  

We then LD pruned eQTL lead SNVs and counted the number of 

independent GWAS SNPs that were in LD (LD > 0.8, 1000 Genomes phase 3 

EUR) with an independent eQTL lead variant for both the real and null data. We 

summed the results for the 50 null sets and calculated enrichments using a 

Fisher exact test (fisher_exact, scipy). We LD pruned the peQTNs and calculated 

enrichments in the same way. We also calculated enrichments after removing 

any peQTNs associated with HLA genes (defined as any gene with HLA in the 

gene name). 

 

Chapter 2.8.8: CNV eQTL Analysis 

CNVs eQTLs 

We included GenomeSTRiP and LUMPY CNVs when mapping eQTLs as 

described above. While GenomeSTRiP calls multiallelic CNVs, we only used 

CNVs with at most three biallelic copy number states for 95% of the 215 subjects 

when identifying eQTLs. Mixed CNVs are defined by GenomeSTRiP as CNVs 

with diploid copy numbers consistent with both deletions and duplications relative 
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to the reference. We encoded the three copy number states as 0/0, 0/1, 1/1 in 

order of increasing copy number for use with EMMAX. For LUMPY, we used the 

genotypes from SVtyper.  

CNVs overlapping genes 

We took a conservative approach for identifying which eGenes overlapped 

CNVs. We observed that in some instances, GenomeSTRiP called one CNV as 

two different CNVs. This was apparent because the two CNVs were in perfect LD 

and next to each other on the genome. We therefore merged nearby CNVs with 

highly correlated copy number estimates. For a given eGene, we also merged all 

CNVs associated with that eGene for the purpose of determining whether the 

eGene overlapped a significant CNV. Thus if there were two CNVs on either side 

of a gene and they were both associated with the expression of the gene, we 

would merge these two CNVs and consider that eGene to overlap a significant 

CNV. 

CNV functional annotation 

We overlapped the eQTL mCNVs with functional annotations from 

Roadmap Epigenomics 

(http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/

) for stem cell lines ES-I3, ES-UCSF4, ES-WA7, HUES48, HUES6, HUES64, 

iPS, iPS-15b, iPS-18, iPS-20b. Some annotations were not available for some 

lines. We calculated enrichments using scipy’s fisher_exact. 
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Multiallelic CNV (mCNV) eQTLs 

We identified mCNVs using the GenomeSTRiP CNV calls by first 

removing any CNVs that did not have more than three diploid copy number 

states among the 131 unrelated subjects or that were in the MHC region 

(chr6:29,600,000-33,100,000). We further filtered the mCNVs to only include 

mCNVs for which at least 6 subjects had diploid copy number states that differed 

from the three most prevalent diploid copy number states to avoid including 

CNVs that may have been classified as mCNVs due to erroneous copy number 

estimates for a small number of samples. We identified eQTLs by regressing 

PEER residual expression values for genes within 1Mb of an mCNV against the 

diploid copy number estimates for the 131 unrelateds for that mCNV. We 

included sex as a covariate. In total, there were 152 distinct mCNVs that we 

tested for eQTLs with 1,493 genes (2,952 total tests). We corrected these 2,952 

test for multiple testing using the Benjamini Hochberg procedure. We determined 

whether an mCNV overlapped an eGene after merging the mCNVs as described 

above for CNVs. 

 

Chapter 2.8.9: Rare Variant Analysis 

Rare variant identification 

We first intersected GATK SNVs with promoters from Gencode v19. 

Promoters were defined as 2kb upstream and 200 bp downstream of a TSS for 

all Gencode genes. We only used promoters from 18,556 genes (including sex 
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chromosome genes) with TPM > 2 in at least 10 of the 215 samples. We 

obtained DHSs for the H1, H9, iPS DF 6.9, and iPS DF 19.11 cell lines from 

Roadmap Epigenomics and merged them into one bed file. We the intersected 

the promoter variants with these merged DHSs. We next annotated each SNV 

with its minor allele frequency (MAF) from the 1000 Genomes phase 3. We kept 

variants whose MAF was less than 0.5% in all 1000 Genomes population groups 

and that only had one observed minor allele among the 131 unrelated individuals. 

We identified 65,552 rare promoter DHS SNVs (rpdSNVs) in total. 

Effect of rare promoter DHS SNVs on gene expression 

To determine the effect of rpdSNVs on gene expression, we focused on 

the expression the 18,556 genes in the 131 unrelated subjects to avoid 

confounding due to relatedness. We used the PEER residual gene expression 

estimates transformed into z-scores so that we could compare across genes. We 

stratified each of the 18,556x131=2,430,836 expression estimates into two 

groups based on whether a given gene had an rpdSNV in a given sample. In 

total, there were 69,041 estimates from genes/samples with an rpdSNV and 

2,361,795 from genes/samples without an rpdSNV. We compared the distribution 

of these 69,041 and 2,361,795 expression values using a Mann Whitney U test 

to test whether the distributions differed. We also calculated whether a given 

gene/sample was more likely to have ASE if it contained an rpdSNV using a 

Fisher exact test.  
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We calculated CADD scores (Kircher et al., 2014) for all variants and used 

the CADD Phred scores to filter the 69,041 estimates from genes/samples with 

rpdSNVs to only include rpdSNVs with Cadd Phred greater than 20. We also 

filtered based on phyloP score (Pollard et al., 2010) greater than 3. 

Effect of rare genic CNVs on gene expression 

We identified rare CNVs that overlapped genes where a gene was defined 

as the entire region from its 5’-most TSS to its 3’-most UTR. A CNV was defined 

as rare if it was observed in only one of the 131 unrelateds. We also 

characterized whether the CNV overlapped any exonic part of the gene. We 

stratified the 2,430,836 estimates as described above based on the presence of 

a genic duplication or a genic deletion. We similarly compared the distributions of 

expression values using a Mann Whitney U and used a Fisher exact test to test 

for ASE enrichment. 

 

Chapter 2.8.10: X Reactivation 

We used 144 separate RNA-seq experiments from 116 iPSC lines derived 

from female subjects (some lines had biological replicates). We restricted the 

analysis to lines with no evidence of reprogramming-associated CNVs on the X 

chromosome (Frazer, 2016). We used the ASE results from MBASED described 

above. The major haplotype frequency estimates were also produced by 

MBASED. 
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Chapter 2.9: Supplementary Figures 

 
Supplementary Figure 2.1: Donor characteristics of the 215 iPSC lines used for eQTL 
mapping. (A) Distribution of ages, (B) self-reported ethnicity, and (C) sex. (D) Number of family 
members per family for families with more than one person in the 215 donor set. Note that some 
individuals within a family are genetically unrelated to each other due to marriage. In total, there 
were 131 genetically unrelated individuals out of the 215 subjects used for eQTL mapping. 
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Supplementary Figure 2.2: Gene expression for markers of pluripotency and mesoderm. 
Expression (log TPM z-scores) for nine pluripotency and 25 mesoderm markers from Tsankov et 
al. 2015 in 250 RNA-seq samples (some of the 215 subjects had biological replicate RNA-seq 
samples) and 35 ESCs, 21 iPSCs, and 17 fibroblasts from GEO accession GSE73211. 
Fibroblasts (green) have low expression of pluripotency markers but higher expression of most 
mesoderm markers relative to stem cells. 
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Supplementary Figure 2.3: Distance from lead variants to transcription start sites. (A-C) 
Distribution of distance from (A) SNVs, (B) indels, and (C) CNVs to the nearest transcription start 
site of the associated eGene for lead variants. If a gene had multiple lead variants due to p-value 
ties, all lead variants were included. 

 

 
Supplementary Figure 2.4: CNV eQTL characteristics. Distribution of (A) CNV length and (B) 
distance to nearest transcription start site (TSS) in log10 base pairs for 545 CNVs that had at least 
one significant gene expression association and 14,726 CNVs that did not have any significant 
associations. (C) Distribution of distances to nearest TSS in log10 base pairs after removing 
CNVs that overlapped a TSS. 
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Supplementary Figure 2.5: CNV eQTL effect sizes. There were 247 eGenes with at least one 
significant CNV eQTL. 126 of these genes had more than one significant CNV. Distribution of 
effect sizes for most significant CNV for (A) 102/247 eGenes where at least one significant CNV 
overlapped the gene and (B) 145/247 eGenes where no significant CNVs overlapped the gene. 
Distribution of effect sizes for all significant CNVs for (C) 102/247 eGenes where at least one 
significant CNV overlapped the gene and (D) 145/247 eGenes where no significant CNVs 
overlapped the gene. 

 

 
Supplementary Figure 2.6: mCNV eQTL effect sizes. Distribution of effect sizes for the most 
significant mCNV association for (A) 33 genes where at least one significant mCNV overlapped 
the gene and (B) 56 genes where no significant mCNV overlapped the gene. 
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