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Abstract

The power of quantum chemistry to predict the ground and excited state properties
of complex chemical systems has driven the development of computational quantum
chemistry software integrating advances in theory, applied mathematics, and computer
science. The emergence of new computational paradigms associated with exascale tech-
nologies also poses significant challenges that require a flexible forward strategy to take
full advantage of existing and forthcoming computational resources. In this context,
the sustainability and interoperability of computational chemistry software develop-
ment are among the most pressing issues. In this perspective, we discuss software
infrastructure needs and investments with an eye to fully utilize exascale resources
and provide unique computational tools for the next-generation science problems and
scientific discoveries.

Introduction

The emergence of new computational technologies offers a unique opportunity to tackle im-
portant chemistry problems using methodologies and their implementations designed to take
full advantage of exascale computational resources. Access to these state-of-the-art resources
provides a means to define a new level of interoperability to propagate interaction-driven
models across spatial and temporal scales. In this Perspective, we discuss the role and im-
portance of the sustainability of computational chemistry software development focusing on
scientific challenges, theoretical formulations, algorithms, languages/programming models,
hardware, and developer communities. Computational chemistry suites developed over the
last decade (for example, ABINIT, ACES, BAGEL, CASTEP, C2PK, CHARMM,CFOUR,
COLUMBUS, DFTB+, DIRAC, eT1.0, FLOSIC, GAMESS, Gaussian, Molcas, Molpro,
MPQC, MRCC, NECI, NWChem, Octopus, ONETEP, ORCA, PSI4, PySCF, Q-Chem,
QMCPACK, Quantum ESPRESSO, SIESTA, TeraChem, Tyrbomole, VASP, and others;
see Refs.1–32 ) have integrated novel electronic structure methods of increasing computa-
tional complexity with applied mathematics algorithms and efficient computer science tools
to utilize existing and emerging computing architectures effectively. Co-design efforts have
been key in integrating novel approaches in electronic structure theories, computer science,
and applied mathematics. The latter has also been supported by new programming models,
focusing on modularity, interlanguage operability, and application programming interface
design rather than the creation of monolithic programs. Taken together, all these advances
have allowed developers and users to tackle complex chemical problems, develop workflows,
and provide insights into how existing methodologies can be extended to the next level of
complexity.

Here we concentrate on future directions for the co-existence and cross-fertilization of
various computational models and emerging technologies. Possible roadblocks that may
result in the loss of sustainability of the software development process are also considered.
Special attention is given to the elements of the stewardship program that are directly related
to the development, curation, hardening, and distribution of the scientific software needed
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for the efficient and productive utilization of next-generation high performance computing
(HPC) systems. Lastly, we emphasize the importance of training the next generation of
domain and computer scientists.

Figure 1: Visualization of layers of scientific challenges. The central core contains the fun-
damental challenges based on the chemical elements that compose target systems, which
determine their computational complexity. These core pillars are articulated in the Scien-
tific Challenges and Discoveries section. The intermediate layer contains transversal issues to
all pillars, of different origins ranging from the quantum mechanical nature of the problems
to the emergence of disruptive new technologies. The outer circle illustrates examples of
challenging systems and problems from recent scientific literature.

Our strategy for developing software for simulating complex chemical processes is based
on specialized modules and libraries that consider complicated dependencies between par-
ticular classes of methodologies and corresponding software components defined through
solvers, models and algebraic complexity, numerical representations, runtimes, paralleliza-
tion strategies, and specialized computational kernels. The following topics have to be
properly addressed to meet the future needs in computational chemistry:
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• Effective utilization of sparsity of multi-dimensional tensors in reduced-scaling models.

• Seamless integration of several levels of parallelism in the computational workflows.

• Operation/communication optimization of sparse models and workflows.

• New domain-specific languages (DSLs) to deal with the algebraic complexity of models
that effectively utilize sparsity in high-accuracy computational models.

• Support for parallel models on new architectures and accelerators.

• Coupling of methods to enable multi-scale modeling on complex chemical landscapes.

• Support for programming models that enable rapid prototyping and interfacing be-
tween new methods, algorithms, and applications, that utilize all the above advances.

The importance of these developments will significantly increase with the routine utilization
of exascale platforms planned for the next decade.

To ensure software integrity, continuous integration with stringent testing requirements,
code analysis tools, coding standards, and other best practices will be crucial. In the near
future, extending profiling capabilities to record detailed execution information will allow
the investigation of bottlenecks while keeping a record of the execution choices made over
the course of the application run. These data will be crucial for reproducibility as they
will allow us to re-evaluate the problem with the same execution choices. Furthermore, the
existence of an engaged user base and associated consulting support is crucial for ensuring
the scientific reproducibility of the results obtained with the developed software and assists in
the long-term planning for development that caters to the needs of the scientific community
at large.

The establishment of a sustainable software ecosystem in the future calls for the imple-
mentation of targeted support mechanisms to facilitate the design, development, mainte-
nance, and scientific applications. Due to the rapid evolution of hardware technology, new
factors must be taken into account to guide the design of next-generation software. The in-
tegration of multi-disciplinary research, including advanced theoretical formulations, applied
mathematics, high-performance computing, and computer science, is an essential component
of the strategy, with a focus on addressing outstanding problem in chemical and material
science. Simultaneously, the provision of training for the next generation of researchers is
crucial. Collaboration with industrial partners in relevant areas such as cloud computing
may offer an alternative means of enabling scalable research software for the broader user
community. This perspective builds upon earlier discussions on software development strate-
gies33–35, incorporating the experiences gained in the development of exa-scale software and
broader aspects of scientific software sustainability.1–32

We first focus on scientific challenges that require novel computational chemistry ap-
proaches and tools, this is followed by theoretical methodologies, programming models, and
a sustainable computational chemistry ecosystem.
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Scientific Challenges and Discoveries

Many scientific challenges (see Fig. 1 for examples) are triggered by technological demand,
which sets the goals of computational chemistry/physics research. While the list of scien-
tific applications is large, it is encouraging that they can be tackled with novel and robust
theoretical, applied mathematics, and computational tools that provide predictive modeling
capacities of the underlying electronic and structural properties of molecules and materials
in tandem with emerging computational technologies. Here we list a few areas that can
capitalize on these advancements.

(1) Battery Technology: Research in this context is aimed at developing more power,
through cheaper processes that produce denser and lighter batteries. A typical battery
is comprised of two electrodes (anode and cathode), a separator between the electrodes,
and an electrolyte. Ions emitted by one electrode reach the other electrode through
the electrolyte, cyclically. New active materials are needed for electrodes and elec-
trolytes36–38, while the use of multi-charged ions is desired to continue increasing the
power generation in a safe and efficient manner.

(2) Clean (solar) energy: Most commercial solar panels have an efficiency between 15%
and 21%, with peaks around 50%. Research on materials and interfaces, as well as on
electron and energy transfer, aided by computational tools34,39, aims at raising these
numbers while reducing the cost for users. In addition, the development of liquid
fuels using solar-driven processes has gained significant interest as a method to use our
existing liquid fuel infrastructure in a compatible manner40.

(3) Design of Catalysts41: 90% of chemical processes producing commercial chemicals in-
volve catalytic processes42 and catalysts are usually tailored for specific applications.
Catalysts enable faster and more efficient chemical reactions, by lowering activation en-
ergies. By modifying branching ratios, they are also capable of enhancing the amount
of desired products while at the same time reducing the amount of undesired prod-
ucts. Computational design of catalysts34 has the potential to accelerate the affordable
realization of desired reactions in search of new biodegradable plastics, new pharma-
ceuticals, environmentally safe fuels and fertilizers, and viable solutions to the critical
materials problem.43,44

(4) Rational Materials Design45: High-throughput calculations of the structural and elec-
tronic properties of materials, along with accurate prediction of various spectroscopic
features, produce databases that can be used to synthesize an advanced material that
is optimal for a specific application such as, for instance, a material harder than di-
amond. For an optimal management of this strategy, the databases should include
many different material categories, including as many chemical elements as possible
in different abundances and in different crystal symmetries. Furthermore, they should
include not only bulk materials, but also surfaces and interfaces. Materials design
includes the development of materials and chemicals for quantum hardware46, as well
as the exploitation of quantum hardware to predict the properties of materials and
chemical systems and reactions47.
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(5) Biological Chemistry: Studies in this context may impact the production of microbes
for energy applications and recycling processes48, as well as understanding fundamental
genetic mechanisms49 and finding solutions to genetic defects50,51.

(6) Separation Science52: Understanding the origin of and achieving selectivity in separa-
tion science is a fundamental issue, where it is important to discern small differences
in weak interactions between molecules and substrates. The challenge is especially rel-
evant to carbon dioxide and methane separation since, like the desirable atmospheric
components (molecular nitrogen and oxygen), the interactions between substrate and
adsorbate depends largely on the polarizability of the adsorbate. It is also essential in
the separation of materials that are critical for our technological society, such as the
rare earth elements53–55.

(7) Heavy Element Chemistry: The f-elements that appear at the bottom of the peri-
odic table (lanthanides and actinides) are relevant for technologies related to energy
and national security. f-electron systems are characterized by the simultaneous pres-
ence of itinerant (delocalized) and highly localized states and interactions between
them.54,56–58 While lanthanide chemistry can be mostly understood by studying the
impact of changing the size of the metal atom to tune the properties of a molecular
complex, actinides do not exhibit the same periodic trends, a fact that requires the use
of advanced electronic structure methods beyond mean-field approaches and accurate
treatments of relativistic and correlation effects.59,60

(8) Gas Phase Chemistry61–63: Most energy production processes involve combustion, a
gas-phase chemical process even with liquid and solid fuels; those fuels may be either
renewable (e.g., biofuels) or nonrenewable (e.g., fossil fuels). In addition to energy
production, the characterizations of soot formation, nitrogen oxides, and other reaction
products are also important to a broad range of scientific challenges.

(9) Strong Field Physics: Strong field interactions between ultrafast intense fields (at-
tosecond pulses) and matter has led to a plethora of new physical phenomena, such
as multiphoton ionization, above-threshold ionization, nonsequential double ionization,
high harmonic generation, attosecond pulse generation, coherent X-ray generation, etc.
This has led to the field of attosecond science, which represents a new frontier in funda-
mental ultrafast studies in the atomic, molecular, and the condensed phases requiring
new theoretical developments.64–69 In this context, the challenge of describing unbound
electronic states is particularly compelling70,71.

(10) Ultrafast Science: Emerging X-ray free electron laser (XFEL) sources like the Linac
Coherent Light Source (LCLS)72–76 offer new types of probes of matter with unprece-
dented spatial and temporal resolutions. The ability of these probes to spatially resolve
coherent motion in complex systems is crucial for harnessing electronic, vibrational,
vibronic (coupled electronic/vibrational) coherences, coherent solute-solvent motions,
charge flow between electron/proton donor-acceptor sites, and control of intramolecular
electron and proton motion on ultrafast timescales.
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Addressing the challenges outlined in the examples above requires the close integration
between state-of-the-art theoretical methodologies and high-performance-computing tools to
take advantage of exascale architectures.

Theoretical Methodologies

In this Section, we provide a brief overview of computational chemistry methodologies that,
due to their efficiency in capturing correlation effects, their ability to scale across time
and spatial domains, and their potential in utilizing exascale computational resources, are
vital elements in existing and forthcoming computing hardware infrastructure (see Fig. 2).
These formulations are crucial in addressing the science problems discussed in the previous
Section. The wealth of methodologies employed in modeling chemical processes also requires
discussing use cases and possible limitations, illustrated by the juxtaposition of the salient
features of electronic structure methods.

Quantum Chemistry Frameworks

The non-relativistic and relativistic frameworks are the two foundations in electronic struc-
ture theory that define the fundamental interactions in chemical and materials systems:

The Schrödinger framework is the foundation of non-relativistic electronic structure the-
ory. The underlying one-component electronic wave functions, in the exact limit, are eigen-
functions of the total spin angular momentum S2 as well as the spin projection along an
arbitrary axis, Sz, which is built-in as a constraint to the electronic structure methods. In
the Schrödinger framework, electron spin is a good quantum number and the speed of light
is treated as c = ∞.

The Dirac framework introduces relativistic effects through the Dirac-Coulomb-Breit
Hamiltonian77–79 that operates on a two- or four-component wave function. Relativistic
effects are known to be extremely important for describing heavy-element chemistry and
accurate prediction of spectral signatures – scalar relativistic effects cause significant con-
tractions of the core electron shells, while vector-based relativistic effects (e.g., spin-orbit,
spin-spin interactions) modulate the optical and magnetic properties of chemical complexes
in response to external perturbations.

The quantum field framework is a next frontier in electronic structure theory with an
even more detailed description of the interactions. In quantum field theory, photon-mediated
electron-positron correlations are introduced, which can alter the energetic ordering of quan-
tum states, such as the well-known Lamb-shift in spectroscopy. For electronic systems,
the time-dependent photon can be traced out via equal time integration, giving rise to
an effective quantum field method. The energetic contribution from the quantum field is
much smaller than the Dirac-Coulomb-Breit Hamiltonian, but increases significantly towards
heavy-element and highly charged states.
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Figure 2: A ”connected diagram” illustrates the hierarchy of methods and synergies between
various formulations towards providing the required accuracy level for the ever-growing com-
plexity and size of outstanding chemical problems.
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Classes of Many-Body Methodologies

Orbital-based models of electronic structure are the foundation of qualitative reasoning in
chemistry and physics as well as the bedrock of the modern quantitative toolkit of electronic
structure.

• The 1-body (mean-field) electronic structure models such as Kohn-Sham (KS) Density
Functional Theory (DFT) and Hartree-Fock (HF) are the dominant models used for
practical computations in chemistry and physics today. Although computationally
efficient (with O(N3) computational cost in conventional form, with more sophisticated
forms approaching linear scaling; N stands for the system size), the simplicity of 1-body
models precludes their broad ability to describe complex electron correlations, such as
those due to the coupling of spin degrees of freedom in open-shell systems and especially
excited states, as well as nonlocal interactions. Nevertheless, the permanent workhorse
status of such models demands continuing algorithmic developments of such methods
to improve efficiency/portability, as well as new conceptual developments addressing
known artifacts such as self-interaction errors80–82.

• The many-body models rely on the 1-body models (HF, DFT) as starting points
to provide them with a reference wave function, Green’s function, nodal surfaces,
etc. The rich landscape of many-body methods can be coarsely categorized into (a)
wave function-based methods [configuration interaction (also known as exact diag-
onalization), density matrix renormalization group (DMRG) and other tensor net-
work methods, variational Quantum Monte-Carlo (QMC)], (b) wave operator-based
methods (coupled-cluster (CC)83,84 , many-body perturbation theory (MBPT)), (c)
Green’s function-based methods (GW, Bethe-Salpeter Equation), and (d) diffusion
and auxiliary-field QMC. These methods are fundamentally more expensive than the
1-body methods, either due to the prefactor (diffusion QMC) or complexity (high-
order polynomial scaling, such as O(N7) for CCSD(T)85, and up to O(Nne) for full-CI
diagonalization; ne designates the number of electrons). Although algorithmic devel-
opments and numerical approximations can reduce the cost/complexity of some many-
body methods (even to linear86), the worst-case exponential scaling is unavoidable to
approach exactness.

Although the reach of orbital-based descriptions of electronic structure is often augmented
by coupling to the approximate models, such as classical atomistic force fields (QM/MM
embedding) or orbital-free DFT methods (QM/QM embedding), addressing the scientific
challenges (including those identified in Section II ) will involve breakthrough developments
of the orbital-based toolkit.

Specific Many-Body Classifications

Choice of Fundamental Variable

• Wave-function (ψ) methods offer the possibility to construct a hierarchical system of
approximations for ground and excited states. Their main drawback is their high cost:
intrinsic scaling with system size N is poor.
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• Density-functional (ρ) methods are by far the most efficient because all of the informa-
tion about the ground state is compressed into a simple scalar function, the density.
The blessing of DFT is also its curse: functionals are simple but uncontrolled and, in
several instances, not transferable across system sizes.

• Green’s function (G) methods form the fundamental variable for many-body pertur-
bation theory (MBPT). Although a Green’s function can be constructed by itself, it
can also incorporate the formulations based on ρ and ψ.

Single-reference vs. Multi-reference Formulations

It is useful to classify the various methods into single reference (SR) and multireference
(MR)87–91. SR approaches usually start from a single (often closed shell) Slater determinant,
whereas MR methods allow the inclusion of several (many) configurations (determinants or
configuration state functions (CSFs)) as a starting point. Many popular variational and
perturbational methods are available, among which Møller-Plesset perturbation theory and
coupled cluster theory rank among the most popular SR ab initio methods. For the sake
of convenience, DFT methods based on Kohn-Sham theory may also be included as SR
methods here.

These methods have demonstrated marvelous success in calculating ground state prop-
erties and electronic excitations in the Franck-Condon region, i.e., near the ground state
minimum. In view of this success, why do we need MR methods? The answer is given by
the increasing importance of treating more complex problems like the treatment of carbon-
based polyradicaloid low-bandgap nanomaterials, transition metal and lanthanide complexes,
and bond-breaking processes. In all these cases (and many more), strongly correlated, quasi-
degenerate orbital schemes are encountered for which SR methods quickly reach their limits.
When discussing MR methods, one often separates the treatment of the strongly-coupled
near-degenerate electronic configurations and the weakly-coupled configurations. To handle
the strongly coupled subspace, one can use a brute force CI treatment or systematically im-
provable types of ansatz, such as provided by the density matrix renormalization group79,92–95

(DMRG) method and the graphically contracted functions (GCF) approach,96–98 which can
treat much larger CSF expansion sizes. On top of this, many methods have been intro-
duced to handle the more weakly coupled configurations, including variational methods,
such as MR configuration interaction99,100 (MRCI) method; MR perturbation theories (with
CASPT2101–104 and NEVPT2105,106 as the prominent representatives), multiconfiguration
pair-density functional theory107,108 (MC-PDFT) (which combines a functional of the pair
density with a multiconfiguration self-consistent field (MCSCF) wavefunction) and multi-
Slater determinant auxiliary field quantum Monte Carlo methods.109,110 Stochastic sampling
techniques can also be used more broadly in the electronic structure problem, for example, to
treat all correlations in the full-CI quantum Monte Carlo111 (FCIQMC) method, or in hybrid
approaches that combine stochastic and many-body methods112. Significant advancements
have also been made in the extension of SR CC theories into the strongly correlated regime
through the implementation of alternative design principles.113–116
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Green’s function Formulation

The foundation of the Green’s function approach is the Dyson equation which encapsulates
the properties of the many-body system through one-body operators. A conceptual merit
of the one-particle many-body Green’s function (MBGF) is its ability to directly calculate
the key electronic properties of the ionization and attachment processes without resorting
to separate calculations for different states. Typical one-particle MBGF approaches can
usually be derived from the many-body perturbation expansions for the matrix of one-particle
Green’s function G and/or for the related self-energy Σ via the Dyson equation. For example,
in the Hedin formulation117, the theory consists of a set of five closed equations, which can
be expanded via perturbation theory as a set of Feynman diagrams in powers of the screened
Coulomb interaction, W. Many-body effects are captured — formally exactly — in the self-
energy Σ of the one-body Green’s function. Much of the complexity is embedded in the
frequency-dependence of W and Σ. The GW approximation may be viewed as an extension
of the Hartree-Fock approximation, with W replacing v in the exchange. Alternatively,
Green’s functions can be formulated using coupled-cluster theory (GFCC),118–122 algebraic
diagrammatic construction (ADC) approach,123–125 and perturbative many-body expansions
of the self-energy (Σ).126,127

These approaches vary in the degree of complexity in the way the many-body effects
are handled. When these effects become crucial, as often featured by satellite states in the
ionization process out of the inner valence band where poles will appear in the analytical
structure of the self-energy, a proper description of the poles in the analytical structure of
the self-energy is required.

Ground vs. Excited State Methods

Currently, an overwhelming number of quantum chemical calculations are applied to the
electronic ground state. The key aspect shared by all of the methods, and required for pre-
dictive results, is the ability to capture complex electron correlation effects. In this family
of many-body approaches, DFT is arguably the most popular method that is broadly ap-
plicable. However, although computationally more expensive, wave function based methods
(for example, Møller-Plesset perturbation theory, coupled cluster, configuration interaction,
DMRG, etc.) offer the possibility to construct systematically improvable classes of approx-
imation, where the accuracies achievable are intimately tied to the available computational
resources. Green’s function methods provide a complementary way of addressing the ground-
state electronic structure problem.128–130

Most of the above-mentioned methods are systematically extendable to compute excited
states. The most commonly used approaches are linear-response (LR) formulations (for ex-
ample, LR-TDDFT and LR-CC131–135), equation-of-motion coupled-cluster (EOMCC) meth-
ods,136–140 spin-flip variants,141 ADC formulations, multi-reference active space formulations,
in either perturbative or iterative flavors and many others. All these methods have been used
extensively to compute a range of linear and non-linear spectroscopies spanning broad energy
ranges (IR, UV/Vis, and X-ray) and non-adiabatic photodynamics simulations.

Over the last two decades, significant advances have been made in real-time (RT) ap-
proaches, which go beyond perturbative regime (for example, RT-TDDFT, RT-CC, RT-
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Green’s Function). Real-time approaches provide an unprecedented view of electron dynam-
ics on the atto- and femto-second timescales, with vast potential to yield new insights into
the complex electronic behavior of molecules and materials.142

Multicomponent systems

Recent efforts in electronic structure theory have also focused on extensions to multi-component
systems, where additional components include spin degrees of freedom, a quantized electro-
magnetic field, and/or the nuclear wave function. For spin-driven electronic dynamics, such
as intersystem crossing events, spin-couplings, and relativistic effects, variational treatments
within the two- or four-component Dirac framework are needed77–79,143. The coupling of a
molecule to a quantized electromagnetic field, real-time quantum electrodynamics (QED)144,
has led to studies of photon absorption and emission and simulations of cavity QED exper-
iments. For many light-driven dynamics in chemical systems, quantum mechanical repre-
sentations of proton dynamics have been demonstrated with the nuclear–electronic orbital
(NEO) approach in the context of multi-component RT-TDDFT and CC formulations for
molecular systems145,146. By treating protons and electrons quantum mechanically at the
same level of theory, NEO formulations automatically capture essential features such as
vibrational zero-point energy, proton delocalization, vibrational anharmonicity, and non-
Born–Oppenheimer effects. Although QED-enabled real-time methods have emerged as a
useful tool to study novel photon-driven chemical processes, a complete theory requires a full
first-principles QED electronic structure theory treatment with photon-mediated coupling
between electrons and positrons and treatment of retardation with the frequency-dependent
Breit Hamiltonian. A key challenge in the development of first-principles methodologies for
multi-component systems is developing systematically improvable and accurate formulations
on top of self-consistent field methods.147–149

Embedding Methods

One route to balancing computational cost and accuracy can be achieved by considering
the relatively local nature of chemical interactions. Interesting chemical phenomena tend
to be localized to active areas of extended electronic systems. Following this observation,
it is possible to split a larger system into an active subsystem, which can be tackled with
an accurate level of theory that would be prohibitive for the full system, and the environ-
ment, which is treated at a cost-efficient level that provides broadly acceptable accuracy on
larger systems. Over the years, a variety of schemes have been developed around the con-
cept of embedding subsystems150–155 at different electronic structure theory levels, includ-
ing ONIOM156,157, DFT embedding151,158,159, partition DFT160,161, fragment methods162–165,
potential-functional embedding166, embedded mean-field theory (EMFT)167, Green’s func-
tion embedding168,169, self-energy embedding170,171, EOMCC embedding172, density matrix
embedding theory (DMET)173–177, stochastic embedding DFT178, dynamical mean-field the-
ory (DMFT)179–181 and projector-based embedding182–186.
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Molecular Dynamics

The time-scale problem in chemistry can often be solved with Born-Oppenheimer molecu-
lar dynamics (BOMD) simulations.187,188 Typically, Newton’s equations of motion for the
(classical) atomic positions are integrated, step-by-step, to generate the molecular trajecto-
ries, where the interatomic forces are calculated on-the-fly from the ground state electronic
structure for each new configuration. For light nuclei such as hydrogen, the case has been
previously made189 that for BOMD simulations it is more appropriate to consider their nu-
clear statistical nature via Feynman path integral simulations,190 which are complex linear
quantum superpositions of classical trajectories.191 A major limitation of this approach is the
large computational cost in the iterative optimization of the electronic ground state that is
required prior to each force evaluation. Insufficient convergence may lead to non-physical dy-
namics with non-conservative forces. The problem is particularly challenging in combination
with low numerical precision or linear scaling methods. Time-reversible extrapolation meth-
ods have been developed to limit these problems. New formulations based on a backward
error analysis or a shadow Hamiltonian approach in combination with Car-Parrinello-like
extended Lagrangian techniques have also been introduced to reduce the computation cost
and to improve the accuracy and long-term stability.

To reach the time scale necessary for many problems it is not possible to use direct
molecular dynamics simulations. Instead, various accelerated molecular dynamics methods
can be used to boost the effective time scale, often by multiple orders of magnitude. However,
in general, these methods are applicable only to special rare event dynamics. For floppy
dynamical systems that are common in chemistry and molecular biology, we can instead use
accelerated sampling techniques or Monte-Carlo methods, though the actual time scale is
then lost.

Multiscale Methods

To computationally and efficiently model many important chemical and molecular processes
on large length and time scales requires the seamless integration of degrees of freedom with
different representations as well as external influences and environmental effects. Early efforts
to couple quantum methods with classical and continuum methods have been demonstrated
and reviewed192,193 and will continue to be necessary even as variable-accuracy quantum
methods begin to approach length scales that are currently associated with force-field mod-
els. As in the cases of quantum methods, it is anticipated that methodological domains will
include: (1) regions where classical charge-transfer and polarizable response is needed194,
(2) regions where only polarizability (electrical or magnetic) needs to be addressed, and
(3) other regions that simply required classical force fields or elastic continuum theories.
Similar to the case of coupling quantum-mechanical methods, the requisite coarse-graining
will require improved strategies for ensuring that the resulting interatomic forces associated
with atoms near methodological boundaries are invariant to whether or not the forces are
calculated with either the less- or more- sophisticated methods. Additionally, coupling vari-
able length-scale methodologies, dynamics simulations within these formulations will require
variable time-scale simulations and the ability to realistically shift dynamical simulations
when discontinuous stimuli from the external environment occur.
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Computational Approaches

Enabling predictive simulations on emerging architectures hinges upon effectively utilizing
the computational resources to address the inherent numerical scaling of theoretical formula-
tions, including efficient solvers, interoperable models, numerical representations, and novel
programming models (see Fig. 3). These requirements need a stable and sustainable pro-
gramming environment since solutions in terms of improvements of existing methods or the
development of new methods will be a continuous process that needs interaction between
different programming paradigms and program developers.

Numerical Scaling

The computational cost of canonical (i.e. without additional numerical assumptions) quantum-
mechanical electronic structure calculations scales, in general, with the cube, N3, of the sys-
tem size, N , or worse, which correlates with the expected accuracy of the predictions. For
example, the ubiquitous CCSD(T) method scales as N7 with the system size, which allows
one to tackle systems composed of 10-100 light atoms.195 In contrast, approaches like DFT
methodologies scale typically as N3 and can handle much larger systems.

Despite this steep canonical scalings, it is often possible to reduce the scaling of electronic
structure calculations due to additional physical features of the solution. Reduced scaling
methods based on mean-field methods like HF and DFT typically rely on the locality of
the orbitals (or Wannier functions, using Kohn’s nearsightedness principle). The electronic
locality occurs in non-metallic systems or for materials at a high electronic temperature.
Divide–and–conquer schemes or numerically thresholded sparse matrix algebra can then be
used to take advantage of the electronic locality to achieve linear scaling complexity. Some
of the key problems with linear scaling electronic structure theory include: 1) a reduced
numerical accuracy with errors that often are difficult to control; 2) a high computational
prefactor, where the linear scaling advantage kicks in only for very large systems; and 3)
additional overhead associated with parallelism.

In correlated wave function methods reduced scaling is achieved by taking advantage of
the rapid decay of many-electron correlations with distances in most chemical situations;
truncation of these interactions can be achieved in several ways, including (1) truncation of
incremental many-body expansions for the energy based on the partitioning of the system
into fragments of the size larger than the quantum correlation length of the system,162–165

and (2) truncations of the operators and wave functions directly by representing them in a
form that reveals their sparse structure. In molecular applications, this means using spatially
localized basis sets (AOs, localized MOs, and finite/spectral elements), pair-natural orbitals
(PNOs), or domain-local pair natural orbital (DLPNO) methods, to mention only a few
strategies.86,196–203 A significant effort has been devoted to extend the reduced-scaling prob-
lems beyond typical ground-state applications to excited-state or linear response methodolo-
gies formulated in the time or frequency domains.204–206 The numerical error of many-body
methods also suffers from slow asymptotic decay due to the singularity of the Coulomb
electron-electron interaction and the resulting cusps in the electronic wave function. This
translates into rapid asymptotic growth of the computational cost with the desired precision;
most importantly, using small basis sets results in unacceptably significant errors. To ad-

14



dress this problem, explicitly correlated formalisms, specifically in the form of the R12/F12
methods, build in the cusp-like structure into the wave function via terms dependent on
the inter-electronic distances. One of the pressing issues in computational chemistry will be
integrating the F12/R12 methods with various reduced-scaling frameworks.207–209

Machine Learning

The ability to generate large amounts of high-quality data from ab initio theory is a pre-
requisite for data-driven machine-learning techniques. These new technologies are based on
information theory and artificial intelligence and are rapidly evolving into a new field of re-
search in computational chemistry. Such new machine learning methods often complement
or can, in some instances, even replace many traditional approaches in computational chem-
istry.210–216 Particularly fruitful areas of the application of machine learning in theoretical
and computational chemistry include the design of interatomic potentials for molecular dy-
namics simulations, the development of new exchange-correlation functionals in DFT, and
the prediction of properties of chemical systems. Despite the success of machine learning
in computational chemistry, there are good reasons for some caution. Often the underlying
physical mechanism for a predicted property, e.g., generated by a deep neural network, is
missing. The accumulation of knowledge from machine learning will therefore be limited
and errors will be hard to detect. Often machine learning models act like an interpolation
between already explored data points and can not be used to discover new unexpected phe-
nomena. Interatomic forces are governed by long-range electrostatic interactions between the
positive nuclear charges and the negative charges of the relaxed electron density,217 which
cannot be captured by commonly used machine learned force fields, in which the energy is
cast as a sum of atomic terms. Incorporating electrostatic interactions into machine-learned
force field models of this type will then be like modified versions of traditional polarizable
flexible charge models, where the long-range charge interactions and relaxations are included
separately. Nevertheless, machine learning in computational chemistry is undoubtedly here
to stay.
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FORMALISM

⟨0 | ̂A2 H̄ | 0⟩ = ( 1
4 × A a1a2

i1i2 ga3a4
i3i4 t i3a1t i4a2 t i1a3t i2a4 + 1

8 × A a1a2
i1i2 ga3a4a1a2 t i1i2a3a4 + 1

4 × A a1a2
i1i2 f a3

i3 t i1i2 i3a1a2a3 + 1
4 × A a1a2

i1i2 ga3a4
i3a1 t i1i2 i3a2a3a4 + 1

4 × A a1a2
i1i2 gi1a3

i3i4 t i2 i3i4a1a2a3+

− 1
2 × A a1a2

i1i2 f a3a1 t i1i2a2a3 + 1
2 × A a1a2

i1i2 f i1
i3 t i2 i3a1a2 + 1

8 × A a1a2
i1i2 gi1i2

i3i4 t i3i4a1a2 + −1 × A a1a2
i1i2 gi1a3

i3a1 t i2 i3a2a3 + 1
4 × A a1a2

i1i2 gi1i2a1a2+
1
2 × A a1a2

i1i2 gi1a3a1a2 t i2a3 + 1
2 × A a1a2

i1i2 gi1i2
i3a1t i3a2 + 1

2 × A a1a2
i1i2 f a3

i3 t i1a3t i2 i3a1a2 + 1
2 × A a1a2

i1i2 f a3
i3 t i3a1t i1i2a2a3 + 1

4 × A a1a2
i1i2 gi1a3

i3i4 t i2a3t i3i4a1a2+

− 1
2 × A a1a2

i1i2 gi1a3
i3i4 t i3a3t i2 i4a1a2 + −1 × A a1a2

i1i2 gi1a3
i3i4 t i3a1t i2 i4a2a3 + −1 × A a1a2

i1i2 ga3a4
i3a1 t i1a3t i2 i3a2a4 + − 1

2 × A a1a2
i1i2 ga3a4

i3a1 t i3a3t i1i2a2a4 + 1
4 × A a1a2

i1i2 ga3a4
i3a1 t i3a2 t i1i2a3a4+

1
4 × A a1a2

i1i2 ga3a4a1a2 t i1a3t i2a4 + A a1a2
i1i2 gi1a3

i3a1 t i3a2 t i2a3 + 1
4 × A a1a2

i1i2 gi1i2
i3i4 t i3a1t i4a2 + 1

2 × A a1a2
i1i2 ga3a4

i3i4 t i1i3a1a3t i2 i4a2a4 + − 1
4 × A a1a2

i1i2 ga3a4
i3i4 t i3i4a1a3t i1i2a2a4+

1
16 × A a1a2

i1i2 ga3a4
i3i4 t i3i4a1a2 t i1i2a3a4 + − 1

4 × A a1a2
i1i2 ga3a4

i3i4 t i1i3a1a2 t i2 i4a3a4 + 1
4 × A a1a2

i1i2 ga3a4
i3i4 t i3a3t i1i2 i4a1a2a4 + 1

4 × A a1a2
i1i2 ga3a4

i3i4 t i1a3t i2 i3i4a1a2a4 + 1
4 × A a1a2

i1i2 ga3a4
i3i4 t i3a1t i1i2 i4a2a3a4+

1
8 × A a1a2

i1i2 ga3a4
i3i4 t i1a3t i2a4 t i3i4a1a2 + 1

2 × A a1a2
i1i2 ga3a4

i3i4 t i3a3t i1a4 t i2 i4a1a2 + 1
8 × A a1a2

i1i2 ga3a4
i3i4 t i3a1t i4a2 t i1i2a3a4 + −1 × A a1a2

i1i2 ga3a4
i3i4 t i3a1t i1a3t i2 i4a2a4 + − 1

2 × A a1a2
i1i2 ga3a4

i3i4 t i3a1t i4a3t i1i2a2a4+
1
2 × A a1a2

i1i2 ga3a4
i3a1 t i3a2 t i1a3t i2a4 + 1

2 × A a1a2
i1i2 gi1a3

i3i4 t i3a1t i4a2 t i2a3)

⟨0 | ̂A1H̄ | 0⟩ = (0 + −1 × A a1
i1 gi1a2

i2a1 t i2a2 + −1 × A a1
i1 f i1

i2 t i2a1 + A a1
i1 f a2a1 t i1a2 + − 1

2 × A a1
i1 gi1a2

i2 i3 t i2 i3a1a2+

− 1
2 × A a1

i1 ga2a3
i2a1 t i1i2a2a3 + A a1

i1 f i1a1 + A a1
i1 ga2a3

i2 i3 t i2a1 t i3a2 t i1a3 + A a1
i1 f a2

i2 t i1i2a1a2 + 1
4 × A a1

i1 ga2a3
i2 i3 t i1i2 i3a1a2a3+

−1 × A a1
i1 ga2a3

i2a1 t i1a2 t i2a3 + −1 × A a1
i1 gi1a2

i2 i3 t i2a1 t i3a2 + −1 × A a1
i1 f a2

i2 t i2a1 t i1a2 + − 1
2 × A a1

i1 ga2a3
i2 i3 t i2a1 t i1i3a2a3 + − 1

2 × A a1
i1 ga2a3

i2 i3 t i1a2 t i2 i3a1a3+

A a1
i1 ga2a3

i2 i3 t i2a2 t i1i3a1a3)

⟨0 | ̂A3H̄ | 0⟩ = ( 1
24 × A a1a2a3

i1i2 i3 gi1i2
i4 i5 t i3i4 i5a1a2a3 + − 1

4 × A a1a2a3
i1i2 i3 gi1i2

i4a1t i3i4a2a3 + 1
12 × A a1a2a3

i1i2 i3 f a4a1 t i1i2 i3a2a3a4 + − 1
12 × A a1a2a3

i1i2 i3 f i1
i4 t i2 i3i4a1a2a3 + − 1

4 × A a1a2a3
i1i2 i3 gi1a4a1a2 t i2 i3a3a4+

− 1
4 × A a1a2a3

i1i2 i3 gi1a4
i4a1 t i2 i3i4a2a3a4 + 1

24 × A a1a2a3
i1i2 i3 ga4a5a1a2 t i1i2 i3a3a4a5 + − 1

4 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4a1t i5a2 t i1a4 t i2 i3a3a5 + − 1
4 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i4a1t i1a4 t i2a5t i3i5a2a3 + 1

4 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4a4 t i1i5a1a2 t i2 i3a3a5+

− 1
8 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1a4 t i4 i5a1a2 t i2 i3a3a5 + 1

2 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i1a4 t i2 i4a1a2 t i3i5a3a5 + 1
2 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i4a1t i1i2a2a4 t i3i5a3a5 + − 1

8 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4a1t i1i5a2a3t i2 i3a4a5 + 1
24 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1a4 t i2a5t i3i4 i5a1a2a3+

1
12 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1a4 t i4a5t i2 i3i5a1a2a3 + 1

24 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4a1t i5a2 t i1i2 i3a3a4a5 + − 1
4 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i4a1t i1a4 t i2 i3i5a2a3a5 + 1

12 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4a1t i5a4 t i1i2 i3a2a3a5 + − 1
4 × A a1a2a3

i1i2 i3 ga4a5
i4a1 t i1a4 t i2a5t i3i4a2a3+

− 1
2 × A a1a2a3

i1i2 i3 ga4a5
i4a1 t i4a2 t i1a4 t i2 i3a3a5 + − 1

2 × A a1a2a3
i1i2 i3 gi1a4

i4 i5 t i4a1t i2a4 t i3i5a2a3 + − 1
4 × A a1a2a3

i1i2 i3 gi1a4
i4 i5 t i4a1t i5a2 t i2 i3a3a4 + − 1

4 × A a1a2a3
i1i2 i3 ga4a5a1a2 t i1a4 t i2 i3a3a5 + − 1

2 × A a1a2a3
i1i2 i3 gi1a4

i4a1 t i4a2 t i2 i3a3a4

− 1
2 × A a1a2a3

i1i2 i3 gi1a4
i4a1 t i2a4 t i3i4a2a3 + 1

48 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i1i2a4a5t i3i4 i5a1a2a3 + 1
24 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1i4a4a5t i2 i3i5a1a2a3 + 1

24 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i4 i5a1a4 t i1i2 i3a2a3a5 + 1
4 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1i4a1a4 t i2 i3i5a2a3a5+

1
8 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i1i2a1a4 t i3i4 i5a2a3a5 + 1

8 × A a1a2a3
i1i2 i3 ga4a5

i4 i5 t i1i4a1a2 t i2 i3i5a3a4a5 + 1
48 × A a1a2a3

i1i2 i3 ga4a5
i4 i5 t i4 i5a1a2 t i1i2 i3a3a4a5 + − 1

8 × A a1a2a3
i1i2 i3 gi1a4

i4 i5 t i2 i3a1a4 t i4 i5a2a3 + 1
2 × A a1a2a3

i1i2 i3 gi1a4
i4 i5 t i2 i4a1a4 t i3i5a2a3+

− 1
12 × A a1a2a3

i1i2 i3 f a4
i4 t i4a1t i1i2 i3a2a3a4 + − 1

12 × A a1a2a3
i1i2 i3 f a4

i4 t i1a4 t i2 i3i4a1a2a3 + 1
12 × A a1a2a3

i1i2 i3 gi1a4
i4 i5 t i2a4 t i3i4 i5a1a2a3 + 1

12 × A a1a2a3
i1i2 i3 gi1a4

i4 i5 t i4a4 t i2 i3i5a1a2a3 + − 1
4 × A a1a2a3

i1i2 i3 gi1a4
i4 i5 t i4a1t i2 i3i5a2a3a4+

− 1
8 × A a1a2a3

i1i2 i3 ga4a5
i4a1 t i1i4a2a3t i2 i3a4a5 + 1

2 × A a1a2a3
i1i2 i3 ga4a5

i4a1 t i1i2a2a4 t i3i4a3a5 + − 1
4 × A a1a2a3

i1i2 i3 gi1i2
i4 i5 t i4a1t i3i5a2a3 + 1

4 × A a1a2a3
i1i2 i3 f a4

i4 t i1i4a1a2 t i2 i3a3a4 + 1
12 × A a1a2a3

i1i2 i3 ga4a5
i4a1 t i4a2 t i1i2 i3a3a4a5+

− 1
4 × A a1a2a3

i1i2 i3 ga4a5
i4a1 t i1a4 t i2 i3i4a2a3a5 + 1

12 × A a1a2a3
i1i2 i3 ga4a5

i4a1 t i4a4 t i1i2 i3a2a3a5)

r_aa_vvoo("p1a,p2a,h1a,h2a") = 
    v_aa_vvoo("p1a,p2a,h1a,h2a") 
    -f_a_vv("p1a,p3a")*t_aa_vvoo("p2a,p3a,h1a,h2a") 
    +f_a_vv("p2a,p3a")*t_aa_vvoo("p1a,p3a,h1a,h2a") 
    +f_a_oo("h3a,h1a")*t_aa_vvoo("p1a,p2a,h2a,h3a") 
    -f_a_oo("h3a,h2a")*t_aa_vvoo("p1a,p2a,h1a,h3a") 
    +0.5*t_aa_vvoo("p3a,p4a,h1a,h2a")*v_aa_vvvv("p1a,p2a,p3a,p4a") 
    +v_ab_voov("p1a,h3b,h1a,p3b")*t_ab_vvoo("p2a,p3b,h2a,h3b") 
    -v_aa_vovo("p1a,h3a,p3a,h1a")*t_aa_vvoo("p2a,p3a,h2a,h3a") 
    -v_ab_voov("p1a,h3b,h2a,p3b")*t_ab_vvoo("p2a,p3b,h1a,h3b") 
    +v_aa_vovo("p1a,h3a,p3a,h2a")*t_aa_vvoo("p2a,p3a,h1a,h3a") 
    -v_ab_voov("p2a,h3b,h1a,p3b")*t_ab_vvoo("p1a,p3b,h2a,h3b") 
    +v_aa_vovo("p2a,h3a,p3a,h1a")*t_aa_vvoo("p1a,p3a,h2a,h3a") 
    +v_ab_voov("p2a,h3b,h2a,p3b")*t_ab_vvoo("p1a,p3b,h1a,h3b") 
    -v_aa_vovo("p2a,h3a,p3a,h2a")*t_aa_vvoo("p1a,p3a,h1a,h3a") 
    +0.5*v_aa_oooo("h3a,h4a,h1a,h2a")*t_aa_vvoo("p1a,p2a,h3a,h4a") 
    -v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p2a,p4b,h3a,h4b")*t_aa_vvoo("p1a,p3a,h1a,h2a") 
    -0.5*v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p2a,p4a,h3a,h4a")*t_aa_vvoo("p1a,p3a,h1a,h2a") 
    +v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p1a,p4b,h3a,h4b")*t_aa_vvoo("p2a,p3a,h1a,h2a") 
    +0.5*v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p1a,p4a,h3a,h4a")*t_aa_vvoo("p2a,p3a,h1a,h2a") 
    -v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p3a,p4b,h2a,h4b")*t_aa_vvoo("p1a,p2a,h1a,h3a") 
    -0.5*v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p3a,p4a,h2a,h4a")*t_aa_vvoo("p1a,p2a,h1a,h3a") 
    +v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p3a,p4b,h1a,h4b")*t_aa_vvoo("p1a,p2a,h2a,h3a") 
    -0.5*v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p3a,p4a,h1a,h3a")*t_aa_vvoo("p1a,p2a,h2a,h4a") 
    +0.25*v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p3a,p4a,h1a,h2a")*t_aa_vvoo("p1a,p2a,h3a,h4a") 
    +v_bb_oovv("h3b,h4b,p3b,p4b")*t_ab_vvoo("p1a,p3b,h1a,h3b")*t_ab_vvoo("p2a,p4b,h2a,h4b") 
    +v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p1a,p4b,h1a,h4b")*t_aa_vvoo("p2a,p3a,h2a,h3a") 
    +v_ab_oovv("h3a,h4b,p3a,p4b")*t_aa_vvoo("p1a,p3a,h1a,h3a")*t_ab_vvoo("p2a,p4b,h2a,h4b") 
    +v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p1a,p3a,h1a,h3a")*t_aa_vvoo("p2a,p4a,h2a,h4a") 
    -v_bb_oovv("h3b,h4b,p3b,p4b")*t_ab_vvoo("p2a,p3b,h1a,h3b")*t_ab_vvoo("p1a,p4b,h2a,h4b") 
    -v_ab_oovv("h3a,h4b,p3a,p4b")*t_ab_vvoo("p2a,p4b,h1a,h4b")*t_aa_vvoo("p1a,p3a,h2a,h3a") 
    -v_ab_oovv("h3a,h4b,p3a,p4b")*t_aa_vvoo("p2a,p3a,h1a,h3a")*t_ab_vvoo("p1a,p4b,h2a,h4b") 
    -v_aa_oovv("h3a,h4a,p3a,p4a")*t_aa_vvoo("p2a,p3a,h1a,h3a")*t_aa_vvoo("p1a,p4a,h2a,h4a"); 

SOFTWARE COMPONENTS
SOLVERS 

Seigen, SVD, CG, DIIS, GMRES, BFGS, SCF, ALS

 
Linear (LAPACK, SLEPc, ELPA), PDEs (PETSc)

MODELS
 

0 = ⟨0 | ̂A1[Ĥ exp( ̂T )]c |0⟩
0 = ⟨0 | ̂A2[Ĥ exp( ̂T )]c |0⟩
0 = ⟨0 | ̂A3[Ĥ exp( ̂T )]c |0⟩

(γm
i ĥ + γmk

ij ̂gj
k − ϵm

i ) |ϕi⟩ = 0

while (!converged) {
  rvec = residual(psivec);
  converged = norm(rvec) < eps;
  psivec = update(rvec, psivec);
}

auto R_P =
    vev(A(P) * (H() +
                H() * T(N) +
                H() * T(N) * T(N) * 0.5 +
                …);

auto gradop = madness::gradient_operator<T, 3>(world);

reconstruct(world, phi_p);
auto dvx = apply(world, *(gradop[0]), phi_p, false);
auto dvy = apply(world, *(gradop[1]), phi_p, false);
auto dvz = apply(world, *(gradop[2]), phi_p, false);

 

NUMERICAL REPRESENTATION

 

Kernels
 

Runtime

 

Real-space (finite/spectral elements, grids), spectral (PW, 
LCAO) naive (dense), compressed (element/block sparse, 

low-rank, PNOs)

1-body (HF, KS DFT, PZ), n-body (CI/ED,  MBPT, CC, DMRG, 
GF, QMC) embedded QM (MM, DFT, orbitals, DMET), 

open-system QM (DMFT)

Matrices (BLAS, BLIS, PETCs), tensors (numpy, TiledArray, 
CTF) PW (FFTW), grids (GauXC)

MBPT (SeQuant, Wick&d, OCE), tensor networks (iTensor, 
Block, Quimb)

Matrices (BLIS), LCAO integrals (libint, libcint), 
grids (libxc)

Shared-memory (threads, OpenMP), message passing 
(MPI), PGAStasks (PaRSEC, MADNESS, UPC++), device 

(CUDA, ROCm, SYCL)

Figure 3: Schematic representation of the interdependencies between various theoretical
formulations and software components needed for modern-era computational chemistry.
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Programming Models and Software Integration

Software Development Challenges for Modern Computing

While certain computational chemistry workloads can be supported by consumer grade com-
puting platforms, the true power of quantum chemistry to affect change and influence sci-
entific inquiry relies on its effective utilization of high-performance computational (HPC)
resources, supported by funding agencies in the US and world-wide. A driving force for the
success of computational chemistry has been its ability to adapt to an ever evolving computa-
tional landscape and to quickly adopt to emerging performance-driven technologies. Histori-
cally, this adaptation has focused on central processing unit (CPU) architectures, which have
been the dominant design feature in both consumer and HPC platforms across virtually all
industries for the last half century. While the pervasiveness of CPUs has supported progress
in this domain, it has also contributed to a degree of complacency among developers re-
garding the importance of performance-portability, extensibility, and other hardware-aware
considerations in their software efforts. In recent years, it has been recognized218–220 that
addressing these challenges represents a sizable hurdle for software sustainability efforts in
computational chemistry, and the identification of long-term solutions is critical for these
efforts in the years to come.

With the inevitable demise of Moore’s law, modern HPC has adopted the use of special-
ized hardware for performance critical computation over the general purpose, power-intensive
capabilities of CPU processors. While the homogeneity of CPU design has historically al-
lowed for a certain level of hardware-software co-design in computational chemistry, par-
ticularly in its use of numerical linear algebra, it is clear that the dominance of graphics,
artificial intelligence (AI), and machine learning (ML) will be the primary driver for special-
ized hardware innovation in the years to come. This paradigm shift is best represented by
the introduction of accelerators, such as graphics processing units (GPU) and more recently
AI-driven hardware such as tensor cores and tensor processing units (TPU), into the HPC
ecosystem. In addition to a need for the development of novel programming models, compiler
technologies, and optimized libraries to target these platforms, the move to accelerators often
requires the reevaluation of algorithmic design due to fundamental differences in execution
strategies being appropriate only for particular classes of workloads (e.g., vectorized, low
precision, and high arithmetic-intensity). AI-hardware’s low mixed-precision floating-point
operations, in particular, add new challenges to the numerical accuracy, algorithm stability,
and convergence estimates for quantum chemical methodologies221–224.

While there has been an enormous effort afforded to the incorporation of modern HPC
platforms into the scientific computing and computational chemistry ecosystems220–227, these
efforts have been fraught with challenges and cannot yet be considered as mature as their
legacy counterparts targeting CPU architectures. Outstanding challenges and opportunities
in these areas include how best to leverage low-precision arithmetic for computational chem-
istry applications, how to develop new or map existing algorithms onto particular compute
patterns (such as tensor contractions, convolutions, etc.) – especially for kernels which are
traditionally not linear algebra based, and how to rebalance existing codes by navigating
trade-offs between sparse and dense linear algebra. For computational chemistry to remain
viable, it is critical for its associated software and methods development efforts to continue to
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evolve with modern HPC and to adopt defensive, flexible programming philosophies to better
prepare them for the current and future architectures. In this section, we review a number
of topics salient to low- and high-level abstractions required to address these challenges in
modern computational chemistry software.

Low level abstractions

It has long been recognized in computational chemistry that compiler technology alone is
often insufficient to achieve peak performance of critical kernels on modern compute sys-
tems. As such, details regarding hardware design must be considered when attempting to
develop performant software. This statement is equally true for software targeting either
CPU or accelerator-based architectures. However, the vast majority of the workflow design
of chemistry software is not performance critical and there typically exist only a handful
of algorithmic kernels which need to be optimized for target architectures. Due to the size
and complexity of typical chemistry software packages, to completely refactor code bases for
each architecture of interest is impractical and sustainable software efforts should strive to
lessen developer effort to achieve performance portability to the largest extent possible. In
this section, we examine strategies to encapsulate and abstract low-level, hardware-specific
optimization for the development of sustainable computational chemistry software.

The development of performant computational chemistry software is particularly chal-
lenging in comparison to other scientific disciplines due to the relatively large number of
performance critical kernels which comprise typical algorithmic workflows. A certain num-
ber of these kernels are generic in the sense that they are common to other areas of scientific
computing, such as matrix and tensor algebra (multiplication, decompositions, etc), and
Fourier transforms to name a few. For these kernels, chemistry software can often rely on
community software in the form of libraries (e.g. BLAS228, LAPACK229, ScaLAPACK230,
and ELPA231–233) to act as sufficiently general low-level abstractions. Recent years have
also seen the assembly of software collections for targeting HPC architectures, such as the
Extreme-scale Scientific Software Stack (E4S)234,235 and the Extreme-scale Scientific Soft-
ware Development Kit (xSDK)236. Typically, these libraries are released in a manner that
targets a specific architecture of interest (CPU/accelerator, shared/distributed memory)
and is made accessible by standardized Application Programming Interfaces (APIs). Such
specialization has led to the development of chemistry-community driven abstraction lay-
ers such as the Electronic Structure Infrastructure (ELSI)237, the Basic Matrix Library for
quantum chemistry (BML)238, and the CECAM Electronic Structure Library (ESL)239. For
particular chemistry applications, many performance critical, low-level abstractions are able
to be satisfied by these libraries alone, but for other applications, there exist a number of
domain-specific kernels which cannot be satisfied by generic community software.

Many computational chemistry methods rely on domain-specific kernels to perform a
number of performance critical tasks. These kernels are most common in applications work-
ing with basis representations (e.g., Gaussian and Slater type orbitals, numeric atomic or-
bitals, wavelets, etc.) of integrodifferential operators encountered in physical Hamiltonians.
For example, in atomic-orbital based electronic structure theory, the evaluation and ma-
nipulation of the electron repulsion integral (ERI) tensor, or its various decompositions,
are highly sensitive to underlying hardware details and constitute a fair majority of the
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computational work encountered in these applications. While it would be possible to lever-
age community software in the implementation of many of these kernels, it is often the
case that the development of highly-specialized kernels and algorithms leads to significant
performance improvements on modern hardware. For example, the development of highly
optimized recursions240–250 and chemistry-specific quadrature schemes251–256 for operator in-
tegral evaluation and contraction257,258 are known to outperform generic numerical inte-
gral machinery on both CPU and accelerator architectures. In addition, domain-driven
tensor frameworks259–262 typically outperform generic tensor frameworks for computational
chemistry workloads. As such, many chemistry-community driven libraries have been de-
veloped for low-level operations such as analytical (e.g., libint263, libcint264, and simint265)
and numerical (e.g., GauXC266–268, libGridXC239) operator integrals, functional evaluation
(libxc269, XCfun270, ExchCXX266), and tensor algebra (e.g., TiledArray259,260, TAMM261,
and the Cyclops Tensor Framework (CTF)262) to name a few. The development and opti-
mization of these libraries is challenging, thus, it is of critical interest to the development
of sustainable computational chemistry software that these kernels be implemented in a
performance portable manner.

As with the implementation of many performance critical kernels, optimization of chemistry–
specific kernels is highly hardware specific. For CPU-based architectures, leveraging single-
instruction multiple-data (SIMD) and fused multiply-add (FMA) capabilities is paramount
to achieving peak performance. While typically generated by optimizing compilers, explicit
SIMD optimization can be performed in a portable manner through the use of low-level
abstractions such as vector intrinsics, as has been explored in several integral libraries263–265.
The situation is complicated on accelerator based architectures which often rely on ven-
dor specific programming models (e.g., CUDA271 for NVIDIA GPUs and HIP for AMD
GPUs) to directly manipulate hardware capabilities. To avoid refactoring code bases for
each accelerator, several attempts have been made by the compiler community to develop
unified programming models over multiple accelerator backends (e.g., OpenMP272, Ope-
nACC273, OpenCL274, SYCL ). In addition, software-driven performance portability layers
(e.g., Kokkos275 and RAJA276) have also been explored. While such efforts have proven to be
fruitful for some cases277, such approaches have limited features and performance portability
to be universally applicable.

Despite significant efforts in developing performance portable software within particular
classes of hardware, it is often the case that, in some sense, the execution strategies for
chemistry workflows must be optimized themselves apart from low-level hardware-specific
implementation details. For example, CPU-based ERI libraries typically expose integral
evaluation at the granularity of individual shell-quartets, while efficient accelerator algo-
rithms require a much coarser granularity to achieve good performance. Design choices such
as these lead to unsustainable development practices where large portions of code bases
must be refactored for different classes of hardware regardless of the implementation details
of performance critical kernels. The need to avoid (or at least minimize) such refactoring
creates a somewhat niche role that can be occupied by a “middle-layer”. This middle-layer
is designed to decouple the low-level and high-level layers from one another. As the quantum
chemistry software stack complexity continues to increase, middle-layers like PluginPlay278

— a framework for developing modular scientific software, where the developer chooses the
module granularity — will become increasingly important to help bridge the gap between

19



low-level and high-level abstractions, the distinction between which is becoming increasingly
blurry.

High level abstractions

Reflecting the hierarchical structure of the formal abstractions of our chemistry applications,
it is natural to hide the low-level abstractions, which deal with the hardware at its lowest
levels of granularity, under a layer of domain-specific high-level abstractions. Layered de-
sign can help improve sustainability by insulating implementations of models and algorithms
from the disruptive changes in low-level implementation details (kernels, programming mod-
els, architecture). When properly executed, it also naturally makes composition easier by
insulating the users of high-level abstractions from the low-level implementation details.

The high-level abstractions can take many forms, depending on the particulars of the
methods, algorithms, and even details of numerical representations. Perhaps the most no-
table example from electronic structure are tensor algebra libraries/frameworks, which sup-
port or encompass the implementation of many-body electronic structure methods in alge-
braic (second-quantized) representation. Tensor Contraction Engine (TCE)279,280 supported
the composition of complex many-body methods from a high-level operator specification in
a domain-specific language. The implementation of the resulting tensor algebra on a dis-
tributed partitioned global address space (PGAS) runtime Global Arrays (GA)281 was also
compiler-generated. In addition to many improvements and generalizations (SMITH,282

SMITH3283) of TCE, a major refinement of its ideas is becoming possible by decoupling of
the high-level operator algebra and tensor algebra layers, the latter including components
for optimization (e.g., factorization) of the algebra of symmetric tensors284 and its imple-
mentation using generic tensor frameworks (including distributed and heterogeneous).285–289

Similar high-level abstractions can be found in other areas of electronic structure, e.g., tensor
network computation290 and DFT291.

Yet higher up the abstraction ladder, the focus switches from the representation of elec-
tronic states to solvers for the associated quantum and classical equations-of-motion (e.g.,
non-equilibrium time-dependent electronic structure, Born-Oppenheimer and nonadiabatic
dynamics, etc.). For performing such tasks there exist multiple “frameworks” (ASE292,
NewtonX293, SHARC294, QCEngine295, among others296,297) for abstracting (interfacing to)
standalone packages; such frameworks can be viewed as domain-specific specializations of
generic workflow components. The highest level of abstraction is also where, typically, the
computational chemistry and machine learning models meet.298

In practice, both high- and low-level software abstractions are critical for the develop-
ment of performant computational chemistry software, particularly in the modern computing
era. However, the development and maintenance of such abstractions is time- and resource-
consuming, posing a considerable hurdle for sustainable software design. In the following
section, we examine development practices for sustainability in computational chemistry
software.
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Transitioning to Sustainable Computational Chemistry

Software

Most computational chemistry methods have very high space and time complexities. In
order for these methods to be applicable to realistic rather than toy systems, developers
need to spend a considerable amount of time optimizing the software. Historically, these
optimizations have been done on a per code basis leading to a somewhat substantial amount
of “reinventing the wheel”; e.g., nearly every electronic structure package contains an imple-
mentation of the self-consistent field (SCF) method, Møller-Plesset perturbation theory, and
coupled cluster theory, which has been hand-tuned by the developers of the package. Even
if a developer wanted to re-purpose an algorithm from another package this is often very
difficult because most algorithms have been developed with a “just get something working”
mindset. Broadly speaking, this often means that the developers, (i) did not write docu-
mentation (especially developer documentation), (ii) spent little to no time on design, (iii)
accepted a very tight coupling with the rest of the package, and (iv) skimped on test cover-
age. The fact that the resulting software tends to contain a large amount of technical debt
and anecdotal evidence suggests that unwillingness to address this technical debt is often
the reason why developers choose to re-implement algorithms (often perpetuating the cycle).
Here we argue that with the rate at which computational chemistry, software engineering,
and computer hardware is currently advancing, the field of computational chemistry can no
longer afford to accept this mindset. If we want to stay at the forefront of scientific ad-
vancement, we need to work together to develop and maintain sustainable and interoperable
software. Figure 4 is meant to accompany the present discussion by providing a succinct
summary of the main topics discussed in this section.

Figure 4: A “word web” highlighting the many considerations which go into designing,
writing, and stewarding sustainable software.
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Actually defining what it means for computational chemistry software to be sustainable is
a tricky task, especially since advancements in other fields “move the goal posts.” Presently,
we adopt the simple and practical definition that sustainable software outlives the original
use cases and can survive change. This means the software can readily be adapted to new use
cases, leveraged by different teams, and ported to new hardware. The software may be either
open or closed source, but its public-facing APIs and user interfaces must be stable and well
documented. The software, and the data it produces, should be standardized and curated to
ensure both remain accessible at later times. Throughout the process, it is imperative that
the high space and time complexity of computational chemistry be kept in mind, namely all
of the above must be done in a performance-aware manner.

In practical terms, this suggests that computational chemistry software must be designed
in a modular, encapsulated manner. The modules should be as decoupled as possible, in
order to facilitate refactoring, integration, and rapid-prototyping. The corollary to this point
is that modularity should be used to ensure a separation-of-concerns. While many quantum-
chemistry packages are modular at the level of computing an energy or an energy gradient, we
need to go far beyond that, including, but not limited to: nonadiabatic couplings, building
integrals, forming the Fock matrix, scanning potential energy surfaces, and numeric solvers.
Smaller, more fine-grained modules are easier to maintain, tune, and properly credit than
monolithic modules. It is also much easier to ensure correctness and reproducibility for
fine-grained modules.

From the perspective of sustainability, the computer language a module is written in
tends to be less important than the languages it provides APIs for. For example, C-bindings
exist for many Fortran libraries, and an increasing number of C/C++ libraries also provide
Python bindings. Generally speaking, computational science is moving away from Fortran.
While software written in Fortran is likely to persist for some time, it is our present recom-
mendation that developers prioritize providing C/C++ and/or Python APIs regardless of
the language in which the module is written. C/C++ retain critical roles in the software
implementation ecosystem as the most widely used languages for low-level implementation.
However, we note that in scientific computing and machine learning, Python has emerged
as a glue language capable of calling disparate pieces of software, in a cohesive manner,
even if the software is written in different languages. Combined with the fact that many
languages have the ability to interface with Python, this suggests that Python can con-
ceivably serve as a common API. The performance limitations of Python remain a relevant
consideration, even in its use as a glue language. However, this may be ameliorated by the
growing availability of Python just-in-time (JIT) compilers, such as PyTorch,299 JAX,300

etc., which utilize the Python syntax, but do not actually execute code via the Python in-
terpreter. Increasing examples of Python based quantum chemistry frameworks and APIs,
such as PySCF,301,302 NWChemEx,303 Psi4,304,305 Dalton,306, Gator307 etc. , showcase the
potential of this approach.

Beyond modularity, sustainability also suggests that the software be readily extensible
and customizable, which in turn requires a flexible and general infrastructure. However, this
can be challenging, particularly for computational chemistry software, which often has pre-
defined functionalities and highly optimized, hard-to-modify implementations. Introducing
decoupled, fine-grained modules with proper interfaces for extensions can partially address
this issue. A more comprehensive solution is to develop modular software which is amenable
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to meta-programming (writing code which uses other code as input). Meta-programming
allows other developers to programatically, and non-invasively, extend and customize existing
code. A particularly relevant example is given by recent auto-differentiation efforts308–316

which, as the name suggests, are able to automatically compute analytic derivatives of a
numerical routine. Meta-programming offers a major advantage to users outside of the
chemical sciences (e.g., workers in machine learning and quantum information theory), as
they can not only perform chemistry simulations but also extend and incorporate parts
of the software into their own projects. By increasing the number of people from diverse
communities using or contributing to the software, the likelihood of the software becoming
obsolete is reduced. Over time, an ecosystem may form around the platform, where an
interconnected community of developers and users from various fields can provide support,
feedback, and resources that help the software continue to improve and evolve. This may
also help to address some of the challenges associated with retaining developers and securing
funding as discussed below.

Another major piece of sustainability is stewardship. Here stewardship entails tasks
beyond initial method development meant to ensure the software remains viable over the
long term. To have staying power, software needs to be stable, accessible, reproducible,
and reliable which comes from good design, extensive testing, outstanding documentation,
robust deployment strategies, and community engagement. In practice, designing for the
dynamical nature of science is hard, but semantic versioning, combined with good version
control practices, can help minimize the damage when designs need to change. Extensive
testing requires more than unit testing and includes: integration, performance, deployment,
and acceptance testing. Testing should be combined with code coverage to ensure the code
is indeed exhaustively tested. Developer and user documentation, tutorials, and resources
are extremely important to ensure the software can outlive any particular developer’s in-
volvement. Without such resources, using or extending the software is time-consuming and
difficult. The software should be deployed in a manner that facilitates easy setup and reli-
able access. A somewhat underappreciated point pertaining to robust deployment is that it
becomes essential to treat the software’s infrastructure — such as the build system, testing
harnesses, code generators, and continuous integration workflows — as code too. Engag-
ing the user community ensures the software gets used, improved, and further vetted. It is
worth noting that part of supporting the user community is providing computer science and
engineering resources since many members of the community are scientists by trade.

While one can envision sustainable software which lacks interoperability, the reality is that
without interoperability, it is extremely time-consuming to develop and steward software.
For our purposes, interoperability means that two pieces of software “just work” together.
For components to exhibit true interoperability, it must be possible to swap the components
with no work other than telling the framework to use the new component. This means no
glue code, data conversions, language barriers, and/or additional configuration. In practice,
this is more of an ideal to strive for than a characteristic of the actual software. Nonetheless,
it is something we as a community should strive for and work towards if we want to avoid
reinventing the wheel. It is important to realize that interoperability must be a community
effort since we must agree on common standards for data and APIs. Inevitably, because of
the large amount of technical debt in most packages, there will be a large upfront cost to
move to interoperability, so the conversion is best done piece wise.
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The last piece of sustainability is growing and retaining the overall computational chem-
istry community. Without users or developers working together the field will slowly die.
Anecdotal evidence from the Exascale Computing Project shows that developers of scientific
software are in high-demand by industry, particularly by tech companies. Hence, sustainabil-
ity requires retaining these developers. We note that we are specifically focused on retaining
and expanding the number of developers in permanent positions (such as in professor and sci-
entist roles); positions such as student and post doctoral researchers are by design supposed
to turn over. Historically, retention has been difficult for many reasons, chief among them
being credit, salary/benefits, and difficulty securing external funding. Credit is an issue since
many universities or laboratories do not appreciate software development as much as they
appreciate publishing, patents, and conference presentations. Industry, on the other hand,
has a strong appreciation for how important software development is, which is reflected in the
salaries and benefits they are willing to offer to retain their developers. While it is unlikely
that universities or government laboratories will ever match industry salaries, addressing the
credit issue could go a long way towards retention as would lowering the barrier to securing
external funding for software development activities.

Moving forward, it is the recommendation of the authors that a higher emphasis be
placed on ensuring computational chemistry software be sustainable and properly stew-
arded. Admittedly, not every research avenue pans out, so there still needs to be an initial
proof-of-concept/“just get something working” phase. What we are arguing instead is that
once an idea has been vetted, developers must disseminate the feature in a sustainable man-
ner. At present, this can admittedly be a tall order; we therefore also recommend that the
community pursue true interoperability and build software infrastructure, such as reusable
frameworks, which can leverage the interoperability to facilitate sustainability. We also note
there are several existing scientific research software communities from which we can take
cues, such as Research Software Alliance317, Better Scientific Software318, US Research Soft-
ware Sustainability Institute319, and the Molecular Sciences Software Institute320. Notably,
these organizations have already considered many of the above issues in depth and provided
suggestions. The last recommendation is to ensure that our stakeholders (funding agencies,
journals, universities, etc.) are also prioritizing sustainable computational chemistry.

Finally, we want to note that there are a lot of open questions and challenges related
to sustainability. Perhaps the foremost of which is the availability of sustainable funding.
For larger projects, software stewardship is a full time job and finding the funds to support
stewardship positions is challenging. One potential solution is to monetize the software. This
is not without its own challenges though. For example, interfacing and interacting with both
open-source and closed-source software can be tricky, not just scientifically, but also legally.
Another potential hurdle faced by closed-source software is ensuring that scientific results
are reproducible. Admittedly, this is also a problem for open-source codes too; however,
users of open-source codes can always fall back to reading the source as a last resort. We
refer the reader elsewhere for a deeper discussion of choosing the commercial route for the
sustainability of a specific software package33.

Sustainability also faces challenges related to education. Since most scientific research
software deals with highly technical subject matter, finding someone who understands the sci-
ence, and is skilled in software engineering, is difficult. Furthermore, many existing software
engineering solutions can not be immediately ported to scientific software simply because
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the software was never designed to accommodate them. The net result is that we almost
need a new approach to education that teaches fundamental science from the perspective of
software engineering. That all said, we do not purport to have the answers to these chal-
lenges, but they are challenges that the community will need to contend with if we want to
transition to sustainable software in computational chemistry.

Conclusions and Future Outlook

Computational chemistry forms a complicated ecosystem that embraces formulations driven
by various design principles and scenarios for synergies and interoperability between them,
leading to unique and predictive computational frameworks working across multiple scales
and complexities. Therefore, a sustainable chemistry software development effort requires the
interplay between electronic structure theory, applied mathematics, and computer science.

With the advent of exascale computing and new computational paradigms associated with
rapid advances in cloud computing, edge computing, and broad utilization of machine learn-
ing models, computational chemistry is facing deep transformations and challenges leading
to a new level of computational abilities needed for understanding critical societal challenges.
New computational tools will allow for modeling processes and properties for system sizes
and accuracies, which were impossible to attain in the last decades. For example, exascale
computing offers a unique chance to integrate various representations of quantum mechanics
based on the wave functions, density, and Green’s function approaches that capture complex
correlation effects across spatial and temporal scales for the ground- and excited-states of
complex systems.

For these challenges to be addressed, the scientific community needs to work synergisti-
cally with public and private funders to address problems related to sustainable computa-
tional chemistry development based on the integration of broad classes of parallel computing
tools, algorithms, and programming models. As essential elements underpinning this effort,
one should mention the need for integrating hardware and application kernels for various
types of formalisms and using modular low-level abstractions encapsulating basic informa-
tion to ensure the high efficiency of scientific software. High-level abstraction in the soft-
ware’s design, maintenance, and interoperability is needed to compose many-body methods
through the use of domain-specific languages and flexible tools for distributed computing
and runtimes. These factors play a critical role in making software readily extensible and
customizable, as well as user friendly for complex chemical workflows.

The lasting effects of adapting to the unprecedented computational capabilities can only
be achieved if a coordinated effort is implemented to retain a qualified workforce and pro-
vide communication/collaboration conduits for multi-disciplinary teams to provide efficient
frameworks capable not only of supporting but also driving new scientific efforts.
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