
UC Berkeley
Indoor Environmental Quality (IEQ)

Title
Comfort under personally controlled air movement in warm and humid environments

Permalink
https://escholarship.org/uc/item/9s12q89q

Authors
Zhai, Yongchao
Zhang, Hui
Zhang, Yufeng
et al.

Publication Date
2013-03-27

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at 
https://creativecommons.org/licenses/by-nc-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9s12q89q
https://escholarship.org/uc/item/9s12q89q#author
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


 

Comfort under personally controlled air movement in warm and humid environments  

Yongchao Zhai
 a, b

, Hui Zhang
 b
, Yufeng Zhang 

a*
, Wilmer Pasut 

b
, Edward Arens

 b
  

Qinglin Meng
 a
 

a 
State Key Laboratory of Subtropical Building Science, Department of Architecture, South China 

University of Technology, Wushan, Guangzhou, 510640, PR China 
b
 Center for the Built Environment, University of California, Berkeley, CA 94720 

 

Abstract 

This study examined the effects of personally controlled air movement on human thermal comfort and 

perceived air quality (PAQ) in warm-humid environments. At temperatures 26, 28, and 30°C, and relative 

humidity (RH) 60% and 80%, sixteen human subjects were exposed to personally controlled air 

movement provided by floor fans in an environmental chamber. The subjects reported their thermal 

sensation, thermal comfort, and PAQ during the tests. Two breaks periods with elevated metabolic levels 

were used to simulate normal office activities. Results show that with personally controlled air movement, 

thermal comfort could be maintained up to 30°C and 60% RH, and acceptable PAQ could be maintained 

up to 30°C 80% RH, without discomfort from humidity, air movement or eye-dryness. Thermal comfort 

and PAQ were resumed within 5 minutes after the breaks. The 80% acceptable limit implicit in comfort 

standards could be extended to 30°C and 60% RH. The average energy consumed by the fans for 

maintaining comfort was lower than 10W per person, making air movement a very energy-efficient way 

to deliver comfort in warm-humid environments. 

 

Keywords: Thermal comfort; Perceived air quality; Warm-humid; Air movement; Personal control; Low 

energy. 

1. Introduction 

Compressor cooling in buildings is already the main contributor to peak load in long tropical or 

sub-tropical summers, affecting both energy use and electrical grid safety, and this trend is going to 

accelerate in the coming decades with the cooling demand growth in South China, South-east and South 

Asia. In the face of the huge energy impacts that this increase is causing, one must examine alternative 

ways of achieving comfort in warm-humid environments. 

 

In warm environments, air movement has the potential to conserve energy while maintaining occupants’ 

comfort. Field studies in warm-humid climates have shown that occupants remained comfortable in 

naturally ventilated buildings with natural wind and fans [1-7]. In air-conditioned buildings, a reanalysis 

of ASHRAE field study database also shows that a majority of occupants preferred more air movement 

when their thermal sensations are slightly warm or warmer [8]. 

 

Recently, ASHRAE Standard 55 “Thermal environmental conditions for human occupancy” increased 

allowable air movement for comfort in warm environments [9], providing more opportunities for air 

movement design for cooling [10]. Air movement has long been shown to be effective at increasing 

convective and evaporative heat loss in warm environments [11-14]. Laboratory studies have found that 

thermal comfort can be well maintained by personally controlled horizontal air movement in ambient 

temperatures as high as 27.8°C and 30°C [15][16]. Recent studies have shown that a 3W personal fan 

maintains a neutral thermal sensation up to 30°C and 50% RH [17].  
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Of such studies, relatively few have combined high temperatures and high humidity. One of these, by 

Tanabe and Kimura [18] tested horizontal air movement provided by an array of box fans on sedentary 

subjects wearing 0.6clo, and found that comfort could be maintained at 31°C, 50% RH with 1.6 m/s 

airspeed, and at 29°C, 80% RH with 1.4 m/s air speed. Kubo et al. [19] tested self-selected frontal airflow 

with subjects wearing 0.35 clo at 30°C and 80% RH. Subjects chose a cooler-than-neutral thermal 

sensation by selecting an average air speed of 1.27 m/s at 30°C and 80% RH. Even higher air speeds (up 

to 3 m/s) has been preferred by subjects in Thailand [20] and Hong Kong [21] at temperatures higher than 

30°C and at RH values as high as 85%. 

  

Studies have also shown that air movement significantly improves people’s PAQ in warm temperature 

and moderate humidity conditions up to 30°C [17][22-23], and in humid environment up to 28°C [24-26], 

although the causal mechanism behind this is not well understood. 

 

However, the cited research has mainly focused on overall thermal sensation, paying less attention to 

general acceptability of thermal environment, PAQ, humidity and air movement, and possible eye 

discomfort due to high air speeds. Previous studies used large fan-box or personalized ventilation systems; 

less has been done with regular room fans, which are easier and cheaper to implement in buildings. 

Another issue is human reaction to thermal transients, because air movement, unlike temperature and 

humidity, is almost never uniform across space, and the ability of air movement to restore comfort after 

periods of time spent in still air is important. These issues are of great importance because answers to 

these questions might impact the wide adoption of air movement devices.  

 

The aims of the study were to: (1) examine the ability of personally controlled low-energy fans to 

maintain thermal comfort and PAQ in warm-humid environments; (2) examine the ability of air 

movement to restore thermal comfort and PAQ after a short burst of activity; (3) determine the threshold 

values for temperature and humidity under which acceptable comfort can be maintained with personally 

controlled air movement.  

2. Methods 

The experiments were carried out at the environmental chamber at the Center for the Built 

Environment (CBE), University of California, Berkeley in June 2012.  

2.1. Facilities 

2.1.1 Climate chamber 

The CBE climate chamber measures 5.5m×5.5m×2.5m, controlling temperature to an accuracy of 

±0.5°C, and RH ±3%. The chamber has windows on two sides, South and West. The windows are well 

shaded by fixed external shades. The windows temperature is controlled by a dedicated air system. 

The room air temperature is controlled and ventilated by 8 floor grill diffusers, and the air is exhausted 

through a ceiling return grill. The outdoor flow rate in this study was around 85-104 L/s. Since the 

maximum number of occupants was 5 (four subjects and one experimenter), the minimum outdoor air 

supply rate was between 17.0 and 20.8.L/s person, much higher than the current requirement for office 

buildings (4.3 L/s.person) [27]. 

 

Fig. 1 shows the experimental setup. The chamber was set up to simulate a typical open plan office 

without partitions. Four workstations (WS) were set up so that four subjects could be tested at the same 

time. Each workstation was assigned a floor fan, a laptop and a mesh chair. The fans were placed in the 
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middle of the room, blowing air toward the corners in order to minimize interaction between the 

airflows.  

  

a. Chamber configuration b. Air speed measurement 

Fig. 1. Layout of the test chamber and air speed measurement 

2.1.2 The fans 

The commercially available fan is very energy efficient and consumes only 2 to14 W for fan speed 

settings 1 to 7 (Table 1). Each fan was placed 1.5m away from the position of the subject. The subjects 

controlled the fan speeds with a remote controller. Mean air speeds (1.1m height at where the subjects 

sat) ranged from 0.4 m/s to 1.7 m/s from level 1 to level 7 (Table 1). 

Table 1 Fan power and measured air speed at each setting 

level Power (W) 
Air speed (m/s) 

ws 1 ws 2 ws 3 ws 4 mean 

0 1
*
 0.05 0.05 0.05 0.05 0.05 

1 2 0.49 0.46 0.45 0.41 0.44 

2 3 0.54 0.58 0.56 0.61 0.57 

3 4 0.65 0.72 0.66 0.71 0.69 

4 7 1.19 1.30 1.25 1.34 1.27 

5 9 1.28 1.42 1.44 1.40 1.39 

6 11 1.54 1.55 1.62 1.63 1.59 

7 14 1.72 1.70 1.73 1.74 1.72 

*
Plug load  

2.1.3 Physical measurements 

Room temperature and RH were measured continuously with HOBO Temperature and RH data 

loggers attached to the back of each table during all the tests. The accuracy of temperature 

measurement was ± 0.35°C, and RH accuracy was ± 2.5%. 

 

Air speed was measured with omnidirectional hotwire anemometers (Sensor Inc., with a response time 

of 2s and an accuracy of 0.02 m/s ± 1.5% of reading). Measurements were made before and after the 

experiment to characterize the air speed at each workstation, at the 0.1m, 0.6m, and 1.1m levels.  Air 

speeds were determined for each of the available fan speeds.  During the tests, the fan power was 

measured each minute with wireless power meters with 1W accuracy, to determine the fan speed levels 

(Table 1) from which the air speeds at the workstation could be derived.  
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Indoor CO2 level was measured in the middle of the test chamber, and outdoor CO2 was measured in 

the supply duct, both with Vaisala CARBOCAP® GMW115Transmitters, at an accuracy of ±2 % of 

range and ±2 % of reading.  

 

Prior to the experiment, all these test instruments were calibrated against higher accuracy instruments. 

 

2.2. Test conditions 

Test conditions (Table 2) were selected to represent the typical temperature and humidity levels in free 

running buildings in warm-humid climates, based on the ASHRAE RP 884 database [28] and the 

extensive field data from naturally ventilated buildings in Guangzhou [5]. The corresponding ET
*
, 

SET (at still air and 0.1 m/s), PMV, and enthalpy values are also included in the table.  

Table 2 Test conditions 

Test conditions T (°C) RH (%) ET
*
 (°C) SET (°C) PMV Enthalpy(KJ/kg) 

1 26 60 26.3 25.7 0.12 58.34 

2 26 80 27.0 26.4 0.26 69.37 

3 28 60 28.5 28.0 0.67 64.51 

4 28 80 29.7 29.4 0.82 77.00 

5 30 60 30.7 30.4 1.42 71.15 

6 30 80 32.6 32.5 1.59 85.29 

 

2.3. Subjects 

Eight male and eight female subjects participated in the tests (see Table 3 for the subjects’ 

anthropology data). The subjects were instructed to dress in typical summer clothes (0.5 clo) – T-shirt 

or short sleeve shirts, jeans or light pants, underwear, light socks, and sandals. Mesh chairs were used 

to minimize the additional insulation of the chair. The subjects were allowed to lean forward or 

backward as in real offices, but not allowed to stand up or move around during the tests. 

 

Prior to tests all the subjects attended a training session to get familiar with the chamber, test procedure, 

control of fans, and survey questions. 

Table 3 Subjects’ anthropology data 

Sex Sample size Age Height (m) Weight (Kg) BMI
#
 

Female 8 30.6±6.4
*
 1.65±0.3 56.4±4.2 20.7±1.2 

Male 8 27.2±2.3 1.74±4.9 69.5±0.6 22.9±1.8 

Female + Male 16 28.9±5.0 1.70±0.6 63.0±8.5 21.8±1.9 

*Standard deviation; #Body Mass Index = weight (kg) / [height (m)]
2
 

2.4. Experimental procedure 

Before each test, the chamber was preconditioned to the temperature and RH according to Table 1 and the 

floor fans were turned on at a low speed to create background air movement in the chamber. 
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Each test took 2 hours, including one adaptation period, three 30-minute test periods, and two short 

breaks (Fig. 2). The subjects were instructed to adjust their fan speeds freely in the adaptation and 

sedentary periods, but not during break periods. 

 

At the beginning of each test, the subjects sat for 15 minutes in the chamber to adapt to the 

environment, while adjusting fan speed to maintain personal comfort. They answered computerized 

surveys at the beginning and end of this period. The first sedentary test period lasted 30 minutes, 

during which the subjects worked on their computers. They answered surveys at the middle and end of 

the period. 

 

The first break (low activity break) was 5 minutes, in which the subjects were asked to turn fans off, 

stand up and leave their workstations. They were instructed to walk around and stretch their arms and 

legs, and to take 12 vertical steps with a 22 cm height step stool. This was to simulate activity levels 

resembling those in offices when occupants are away from their desks (go to coffee machine, printer 

and etc.). After the exercise the subjects went back to their workstations, answered a survey, turned on 

their fan, and immediately took a second survey. Another 30 minutes elapsed until the second break, 

with three surveys. 

 

The second break (high activity break) was 10 minutes. The subjects were asked to turn the fans off 

again and take four sets of 20 vertical steps to simulate going upstairs and downstairs. After this break 

the subjects resumed sedentary in their workstations for a final 30 minutes, answered an identical set 

of survey questions, and left the test chamber. 

 

Fig. 2. Experimental procedure. 

2.5. Questionnaires 

The survey questionnaires include six parts: (1) overall thermal acceptability; (2) thermal sensation 

(TS) in a 9-point extended ASHRAE scale, thermal comfort (TC) and thermal preference; (3) 

perceived air quality (PAQ) and air freshness; (4) humidity acceptability and sensation; (5) air 

movement acceptability (AMA) and preference; and (6) eye-dryness discomfort. All the acceptability, 

TC, eye-dryness scale, and air freshness scales ranged from -4 to 4. A few examples of the survey 

questions are shown in the Fig. 3. The survey questions automatically appeared on the subjects’ 

computer screen based on the schedules described above (Fig. 2). 

   

a. thermal 

acceptability 

b. thermal sensation, thermal comfort and 

preference 

c. percieved air quality and air 

freshness 

Fig. 3. Sample survey screens. 
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2.6. Statistical analysis 

The statistical analysis was performed using Graphpad 6 Prism (Graphpad, San Diego, CA) with 

repeated-measure Friedman test with Dunn's post-hoc test. Statistical significance was tested at 

p<0.05. 

3. Results 

3.1. Indoor physical environment 

The indoor temperature and RH were controlled close to the planned conditions (Table 4) in the tests. 

The indoor CO2 level was 200 ppm above that of the outdoors during sedentary periods, and went up 

to 300 ppm higher during elevated activity periods. This means that the air quality in the chamber was 

good.  

Table 4 Planned and measured temperature and RH  

Planned Measured（mean over 4 WSs） 

T (°C) RH (%) T (°C) RH (%) 

26 60 25.97±0.17 61.9±0.8 

26 80 25.86±0.27 78.3±0.8 

28 60 27.99±0.07 61.5±0.6 

28 80 27.86±0.13 78.7±0.7 

30 60 29.84±0.07 61.9±0.6 

30 80 30.01±0.16 77.4±0.7 

 

3.2. Subjective responses 

3.2.1 Responses over time 

Fig. 4 displays mean overall TS, TC and PAQ over time for the entire experiment. The subjects’ mean 

TS in each sedentary period were between neutral to slightly warm in all test conditions except 30°C 

and 80% RH. The TS votes were slightly higher at the beginning of adaptation periods, and reached 

stable levels within 30 minutes (Fig. 4a). At the end of the first break, TS increased 0.5 scale units in 

condition 1, 4 and 5; and increased nearly 1 scale unit at the condition 2, 3 and 6. Turning on the fan 

after the break 1 significantly decreased TS to neutral levels. TS reached stable levels within 5 minutes 

in the second sedentary period. The second break increased TS from the last sedentary votes by 1 to 

1.5 scale units, to the “warm” or “hot” side. Again, TS decreased immediately after turning on the fan, 

and reached previous levels within 5 minutes.  

 

The subjects were thermally comfortable and acceptable with the air quality in all test conditions 

except at the beginning of adaptation periods and after the two breaks (Fig. 4b, 4c). Similar patterns 

were found for the TC and PAQ votes. The TC and PAQ votes were lower at the beginning of the tests, 

and improved by air movement over time in the first 45 minutes. The two high activities breaks 

decreased the TC and PAQ levels significantly; when exposed to air movement after the breaks, TC 

and PAQ were improved immediately and were completely restored within 5 minutes.  

 

In all test conditions, no significant differences were found between the 3 last votes for TS, TC and 

PAQ in any of the three 30-minute sedentary sessions, indicating that the adaptation period and the two 

high activities breaks have no significant effect on the subjects’ votes after they had been exposed to 
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personally controlled air movement for 30 minutes.  

 

Fig. 4. Mean overall thermal sensation, thermal comfort, and PAQ votes over time 

3.2.2 Steady-state responses 

As mentioned before, pre-conditions (adaptation and high activity breaks) had no significant effect on 

the subjects’ votes once stability was reached, and therefore the last votes of each sedentary period 

were pooled and analyzed as steady state responses.  

3.2.2.1 Thermal sensation, thermal comfort and thermal preference 

Fig. 5a shows the boxplot of TS votes at the six test conditions. The median TS votes were almost 0 at 

26ºC 60% and 80% RH; the distribution is well within ±1, indicating that almost all the votes are 

neutral. For the test conditions 2, 3, and 4, more than 75% percent of the TS votes were in the neutral 

range, with median TS at 0.2, 0.52 and 0.49 respectively. The test condition 6 is the only condition 

with significantly higher votes than the rest of the test conditions (P<0.001), with about 50% of TS 

votes above 1.  

 

The TC responses (Fig. 5b) shows that comfort was well maintained in test conditions 1 to 5, with 

nearly 100% of the subjects were comfortable in conditions 1 to 3, and more than 80% in conditions 4 

and 5. In condition 6, only 60% of the subjects reported being comfortable. 

 

The TP votes show that over 60% of the subjects wanted “no change” in test conditions 1 to 5, and 

40% in test 6 (Fig. 5c). However, more than 20% of the subjects wanted to be “cooler” in test 

conditions 3, 4, 5, and nearly 60% of subjects in test 6. 

 

Fig. 5 shows significant effects of humidity on TS, TC and preference votes at higher temperatures 
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(28ºC and 30ºC), which were associated with higher TS votes, lower TC votes and a larger percentage 

of the subjects wanting to be “cooler”. 

 

Fig. 5. Thermal sensation, thermal comfort and thermal preference votes at each test condition. The 

figure shows median votes (lines), 25% to 75% quartiles (boxes) and ranges (whiskers). Mean votes are 

shown as crosses. Red dots are shown if extreme values are more than 1.5 times the interquartile range 

of the box. 

3.2.2.2 PAQ and air freshness votes 

The PAQ votes were similar among test conditions 1 to 5 (Fig. 6a). The acceptability for test condition 

6 was significantly lower than the other conditions (P<0.001), but was still within the acceptable range. 

However, more than 20% of the subjects perceived the air to be stuffy in all the test conditions (Fig. 

6b). At the test conditions 4 and 6, nearly 75% of the subjects perceived the air stuffy. Nonetheless, the 

subjects reported acceptable PAQ, which suggests that providing air movement may maintain 

acceptability of PAQ, but may not make the air feel fresh. Post-hoc analysis shows that freshness votes 

were lower at 80% RH than 60% RH at 28 ºC and 30 ºC (P<0.001), and lower at 28 ºC 80% RH than 30 

ºC 60% RH (P<0.001). The subjects may have felt the air stuffy, despite the high fresh air supply rate 

in the chamber, because they were tested in a chamber with fixed windows. Also, the outdoor 

conditions during the test period were cool and dry rather than hot and humid. Further study in a 

hot-humid outdoor climate may be needed to determine this effect. 
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Fig. 6. PAQ and air freshness votes. See Fig. 5 definition of symbols. 

3.2.2.3 Fan usage, air movement acceptability and preference 

During all the tests the fan power for each WS was continuously measured. The measured fan power 

was continuously converted to fan speed levels. The air speed levels in the last 5 minutes during each 

sedentary session were selected to represent steady-state speed levels. The measured air speeds at the 

1.1m heights were used in the current analysis. Fig. 7 shows the air speed selected by the subjects 

under 6 test conditions (Fig 7a), and the corresponding fan power (Fig. 7b). The selected mean air 

speed was 1.3m/s at 30°C and 80% RH, 1 m/s at 30°C/60% RH, 0.7 m/s at 28°C/60% RH and 80% RH, 

and 0.4 m/s and 0.3 m/s at 26°C/80% RH and 26°C/60% RH respectively. The mean energy 

consumption based on the selected speed was 3W to 10W. There were big individual differences 

among the subjects. Some preferred high air speed even when they felt cool, while some preferred no 

air movement even when they felt hot and uncomfortable. 

 

Fig. 8a shows that the distribution of the subjects’ air movement acceptability votes was on the 

acceptable side, with nearly 75% votes at test condition 1 to 5 higher than 1 on the scale. There were no 

significant differences between test conditions 1 to 5. Only the test condition 6 was significantly lower 

than other test conditions (p<0.0001), however the majority of the votes were still on the acceptable 

side (89%). 

 

Most of the subjects (more than 60%) indicated “no change” as their preference for air movement, in 

all the test conditions except in the test condition 6 (50%) (Fig.8b). More subjects preferred “more” air 

movement rather than “less” in all test conditions except in test condition 2. Further analysis shows 

that only 10% of the subjects who wanted more air movement actually used the full power of their fan. 

For those subjects who didn’t choose full power, the reason may be that the control of fan speeds was 

not step-less, thus some subjects chose a lower air speed than needed because the next speed level was 

considered too high for them. The 10% of subjects who wanted more air movement even while using 

the full power of their fans (all at 30°C and 80% RH) did not have sufficient air speed for this test 

condition. This information could be useful for the design and implementation of floor fans on adding 

more air speed control options and increasing the maximum air speed for environments with higher 

temperature and humidity. 
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Fig. 7. Air speeds selected by the subjects, and corresponding fan power 

 

Fig. 8. Acceptability and preference of air movement. See Fig. 5 definition of symbols 

3.2.2.4 Humidity acceptability and humidity sensation 

Humidity acceptability votes were comparable among the test conditions 1 to 5, while in test condition 

6 they were significantly lower (P<0.001), with nearly 40% of the subjects reporting unacceptable (Fig. 

9a). The median humidity sensation votes were similar for the test conditions 1 to 5, with the subjects’ 

humidity sensation votes evenly distributed around neutral. At 30 ºC and 80% RH, 75% of the subjects 

sensed the air as humid (Fig. 9b); this may explain the low acceptability of humidity at this test 

condition.. 
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Fig. 9. Acceptability of humidity and humidity sensation. See Fig. 5 definition of symbols. 

3.2.2.5 Eye-dryness discomfort 

The distributions of Eye-dryness acceptability were mainly on the acceptable side at all tests 

conditions. No significant differences were found (P = 0.2895) among all the test conditions despite 

the high air speed chosen by the subjects, indicating that the elevated air speed controlled by the 

subjects did not cause eye-dryness discomfort in these warm-humid environments (Fig. 10).  

 

Fig. 10. Eye-dryness discomfort. See Fig. 5 definition of symbols. 

3.2.2.6 The acceptability threshold 

Fig. 11 shows the percentage acceptable (PA) with overall thermal environment, air quality, air 

movement and humidity. The PA only decreased at 30ºC and 80% RH (32.7ºC ET
*
). The PA of air 

quality and air movement was above 80% for all test conditions. The PA of overall thermal 

environment and humidity was higher than 80% in all conditions except 30ºC and 80% RH, 

suggesting an upper limit at 30ºC and 60% RH for cooling with such horizontal fans. 

 

Fig. 11. Percentage acceptable with overall thermal environment, PAQ, air movement and humidity 
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4. Discussion 

4.1. Comparison with the ASHRAE comfort zone with elevated air movement 

ASHRAE Standard 55 2010 specifies the air movement required to compensate for elevated 

temperatures above the standard’s summer comfort envelope, for both with and without occupant 

control over air movement. With occupant control, ASHRAE 55 specifies a comfort zone with 

elevated air movement up to 1.2 m/s. To compare our results with this comfort zone, we calculated 

equal SET curves for 60% and 80% RH respectively based on the method provided by ASHRAE 55 

(Fig. 12). The air speeds chosen by the subjects for this study’s temperature-humidity combinations 

are plotted on the same chart for comparison. It can be seen that, at 26°C and 28°C, the study’s results 

are well within the ASHRAE comfort zone, however at 30°C/60RH, most subjects chose higher air 

speed than 1.2m/s. At 30°C /80% RH, most subjects again chose higher air speeds but this time some 

of them were not able to be comfortable. These results suggest that at temperatures near 28 and 30°C 

air speeds of 1.8 m/s are practical, but may not be sufficient for the combination of 30°C /80% RH.  

 

Fig. 12. Comfortable temperature, RH and selected air speeds against the ASHRAE comfort zone at 60% 

and 80% RH with elevated air movement. The calculations were made with 0.5 clo and 1.1 met 

4.2. Comparison with previous studies 

The present results confirm previously findings that personally controlled air movement can maintain 

thermal comfort in warm-humid environments [18][19]. The mean TS votes in the current study were 

mostly within the neutral to slightly-warm range at 28ºC and 30ºC (see Fig.5a), while in study [18] and 

[19], the subjects’ TS were mostly on neutral to slightly cool range. The reasons may be that we used 

commercially available fans instead of fan-boxes producing air speed over a larger area of the body, 

and their subjects preferred slightly higher air speeds than our fans were capable of providing. 

 

Arens et al. [23] described the effect of air movement on restoring thermal comfort and PAQ at 28 ºC 

and 50% RH after breaks with high levels of activity. Our study extended their findings to higher 

humidity at 28ºC and 80%RH, and higher temperature at 30ºC and 60% RH, showing that air 

movement can restore comfort immediately after turning on the fan after a 12-step break, and that 
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thermal comfort and PAQ were improved immediately after a 80-step break, and were restored within 

5 minutes.  Because air movement can improve comfort so quickly, it can be combined with more 

slowly acting systems, such as radiant cooling systems, to improve comfort and to save energy by 

reducing the number pre-cooling hours. 

 

Another important finding of the current study is that PAQ was well maintained by elevated air 

movement at temperature-humidity combinations up to 30ºC and 80% RH, with less than 20% of the 

subjects dissatisfied with PAQ. This finding confirmed previous findings of Zhang et al. [17], Arens et 

al. [22-23] and Melikov et. al. [24-26], and extended the positive effect of air movement on PAQ to 

higher temperatures and humidity.  

 

The present study shows that the high air speeds chosen by the subjects didn't cause eye dryness 

discomfort in warm-humid environments. This confirmed previous findings by Melikov et al.[29], 

which suggested that in warm-humid environment the water evaporation due to elevated air speed was 

low, and that giving subjects personal control over air speed might act to reduce eye dryness 

discomfort. 

 

The mean power required to maintain a subject’s comfort with the floor fan was only 10W at 30ºC 

60% RH, a very energy-efficient way for providing comfort in buildings.  In air-conditioned 

buildings, less cooling is required with the raised temperature and humidity set points permitted by 

elevated air movement. Air movement saves further energy by increasing the number of days in which 

natural ventilation or economizer cycles can be comfortably employed [30][31]. 

 

Human performance was not addressed in the current study. It is suggested by Wyon that the thermal 

state of the body determines arousal thus also performance [32], therefore warm temperatures may 

reduce performance by inducing warm sensations [33-34]. Since air movement can offset warm 

temperatures and maintains occupants’ thermal state close to neutral, it may maintain performance 

close to that at neutral temperatures. This is supported by study [17] and [35], in which isothermal 

airflow was found to maintain performance at temperatures up to 30ºC. It is worth to note that 

parameters other than temperature and air movement may also affect performance, such as humidity, 

air movement characteristics, ventilation rates, pollution levels, further studies should be done to 

address this. 

 

Several limitations of the current study should be addressed. Only 16 subjects participated the current 

experiment. And the subjects were not acclimated to hot-humid climate. The chamber was ventilated 

with large amount of outdoor air, which is not always the case in real buildings. Further studies with 

more subjects who are acclimated to a hot-humid climate should be done to validate the findings of the 

current study, and the effects of different ventilation rates should be studied as well. 

5. Conclusions 

In conclusion,  

1. Thermal comfort can be maintained up to 30ºC and 60% RH, and PAQ could be maintained up to 

30ºC and 80% RH with personally controlled air movement, without causing discomfort from 

humidity, air movement or eye dryness; 

2. Thermal comfort and PAQ could be restored immediately after turning on the fans after the low     
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activity breaks, and comfort and PAQ were improved immediately after turning on the fans after 

the high activity breaks and restored within 5 minutes; 

3. The 80% acceptable limit can be extended to 30ºC and 60% RH with personally controlled air 

movement; 

4. The power required for maintaining comfort with the floor fan was less than 10W per person, 

which is a very efficient way to reduce energy consumption in hot-humid climate. 
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