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ABSTRACT OF THE DISSERTATION

Diffusive Growth and Noisy Replication: Models at the Interface of Statistical
Physics and Biological Evolution

by

Christopher Scott Wylie

Doctor of Philosophy in Physics

University of California, San Diego, 2009

Professor Herbert Levine, Chair

The bulk of this dissertation consists of three separatarel projects. Each of
them involves models of multi-locus evolution in the contekfinite population size,
genetic linkage, and both beneficial and deleterious nartati Each project employs
stochastic computer simulations and numerical solutionsquations which approxi-
mate a full stochastic model.

The first project, presented in chapter two, was conceived @®blem in the
field of non-equilibrium statistical physics known as “ftgropagation” and was pub-
lished inPhysical Review EThe connection to biological evolution is due to my advjisor
Herbert Levine, and his colleagues who pointed out an agddetyveen diffusive fronts
propagating through physical space and a mutating populatiolving through fitness
space.

The second project, presented in chapter three and pudliisiBeneticsis more
biologically oriented than the first project. It concerns @volutionary pressures acting
on the rate at which organisms produce spontaneous mutdonresults agree with
experimental data and also make testable predictions. Htleematical methods used

XVii



are familiar from non-equilibrium statistical physics,tlawre quite distinct from those
used in the first project.

The third project, presented in chapter four, is currending prepared for pub-
lication. It concerns the evolutionary advantage of “cotepee” for genetic transfor-
mation in bacteria, which is conceptually similar to sex.u$hissues related to the
evolution of sex have bearing on this project, and vice vekgauzzling feature of com-
petence in many species is that normal, vegetatively grpwaétis stochastically switch
in and out of the competence phenotype. We believe that thjeg provides a novel
explanation for this puzzling “mixed strategy.”

A common theme in this dissertation is the drastic effectaviig a finite popu-
lation sizeN. In each project, the system behageslitativelydifferently in theN — o
limit than for any finiteN. Thus, although “mean field theory” provides helpful approx
imations in many areas of physics and stochastic procassésuld be used cautiously
in evolutionary problems or those with a similar mathenatstructure.
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1 Introduction

1.1 General features of evolutionary models

From the outset, it may be unclear how one could quantiigtivedel evolu-
tion. The term “evolution” might conjure thoughts of one sigs transforming into
another or of organisms’ beautiful physiological and bédwal adaptations to their en-
vironment. The worthwhile and fascinating study of evalaton that scale is called
“macroevolution.” This dissertation has, at most, only gu& conceptual bearing on
macroevolution.

By contrast, “microevolution” focuses on the frequencyectories of genetic
variants in a population. These trajectories are goveriyetthd (stochastic) processes
of birth, death, mutation, and, in most species, recomimnatAbstract mathematical
models of these processes were pioneered in the 1930’s hyHisler, J.B.S. Haldane,
and S.G. Wright, thus spawning the field called “populatienefics.” Population ge-
netic models have the following core features:

e Representation of the genom&he model genome often consists of of many
“sites.” In some studies these are interpreted as base gragsdon triplets, in
which case the model sequences can be directly comparedltseguences. In
many other studies, including those in this dissertatianhesite is interpreted ab-
stractly, as a more or less fit variant. In chapter three, thelevof each organism
is reduced to its genome, thus neglecting the specific featfrits physiology or
behavior. In chapter four, cells also express one of twoesmtjcally determined
phenotypes.

e Fitness functior Each genome is assigned a fitness which is manifested in its



birth and/or death rate. A time dependent fitness functiaidbe used to model
a changing environment, although this is not done in thiseatistion.

e Mutation model Genomes may change due to mutation. In real systems, these

include point mutations, small and large insertions/dietes, translocations, in-
versions, etc. As is common in population genetics, onlynpoutations are
explicitly modeled in this dissertation.

e Recombination modelGenomes may also change due to “recombination,” where

genomic fragments are somehow exchanged between differemtbers of the
population. Chapters two and three concern strictly adesstdution, in which
there is no recombination. Chapter four concerns bactieaasformation, which
is a form of recombination. Details of the model can be found.B.4.

¢ Birth death processCells replicate themselves and can also be removed from the

population by death. Chapter three of this dissertationleysgMoran’s overlap-
ping generations model, whereas chapter four, for reasisosstsed there, uses
a density dependent “logistic” model. Birth-death modes @escribed in more
detail below.

Many population genetics models also include migration,this effect is not investi-
gated in this dissertation.

Once these choices are made, the “cells” in the populatiemaléowed to repli-
cate, mutate, die, etc. Often, the mean fitness of the cellsnerease and the cells
become better adapted insofar as they increase the chasessfiunction. However,
it is also possible for the mean fithessdecrease In particular, if the population is
sufficiently small and fitness increasing mutations (i.@rféficial mutations”) are suffi-
ciently rare compared to fitness decreasing mutationsdie¢eterious mutations”), then
mean fitness will actually decrease. This phenomenon iscc&lluller’s ratchet.” As is
common (although not universal) in population geneticsillingfer to both the fitness
increasing and fitness decreasing cases as “evolutiong sivay each emerge from the
same mechanistic process. The example of Muller’s ratechphasizes the crucial point
thatevolution is distinct from, and sometimes even opposedifptation. Adaptation
(i.e. fitness maximization) is merely one very importantssguence of evolution.



1.2 Genome, mutation, and fithess model

Throughout this dissertation, genomes are representedtoyg ofL bits {c; }.
In chapters two and three, each bit should be interpretechas-&@onserved nucleotide
that (ignoring transversions) can be in either a favored)an disfavored (zero) con-
figuration. 1— 0 and 0— 1 mutations each occur with ratg per cell replication. The
fraction of mutations that are beneficial (deleterioushisstdetermined entirely by how
many zeros (ones) are in the genome.

In the setting of chapter four, it is more appropriate torptet each biig; as
a fairly long (~ 10%, see 4.3.4), contiguous set of nucleotides. In this caséation
is more likely to damage the fragment than to improve it. Tai is incorporated by
setting the transition rate from-8 1 much lower than that from 4 0 in chapter four.

In general, fitness is determined by both birth and deatls rater the bulk of
this dissertation, we assume a simple additive form for timedis function:fithess=
151, 0i. There are several implicit assumptions in this fitnesstfangincluding:

e Each bit contributes independently to fitness. In biololgi@alance, we assume
that there is no epistasis. In real cells, many genes oblyiauigract with one
another (e.g. in the same metabolic pathway) and thus plpbate non-additive
fithess effects. These interactions are often incorporatedsimplistic way by
introducing curvature into the fitness function: Deletasditness effects of pairs
of mutants can be either greater than (“synergistic epss)as less than (“antag-
onistic epistasis”) their individual effects. Experimaintiata suggests that these
cases occur more or less equally often [Ric02]. In a moresteabut intractable
model, fitness would depend on tetiregenomic configuratiofg; } rather than
simply on the number of ones.

e The fitness of a genome is independent of its frequency in dpailption. For
complex ecological situations (e.g. mimicry, division abbr, etc.), this approxi-
mation is certainly not true. However, it may be true moremwfh simple micro-
bial populations, although there are exceptions, e.g.QRps



1.3 Birth-death models

Without birth and death, the genetic composition of poparet would be de-
termined mainly by the random processes of mutation andnwbtwtion. Differential
birth and death decrease the genetic diversity and incs¢hsayenetic order in popula-
tions. The stochastic fluctuations in these processes igwéa “random genetic drift,”
which is perhaps unfortunate nomenclature since idgfasionterm in the correspond-
ing Fokker-Planck equation. This section discusses thplsitiirth-death models used

throughout this dissertation.

1.3.1 Moran’s model

Each cell carries a birth rate determined by its genome. Birth and death are
strictly coupled. The following sequence of actions ocawsry discrete timestep:

1. Arandomly selected cell is chosen as a potential parent.

2. The selected cell gives birth with probability propontb tor;. All selection
occurs here, and thusreflects the fitness of the cell. If it does not give birth, the
simulation advances to the next timestep.

3. Arandomly chosen cell, other than the baby, is killed c8ithis step follows the
birth of another cell, it forms a sort of implicit interactidoetween cells.

4. The baby undergoes a deleterious (beneficial) mutatitmpvobability equal to
its deleterious (beneficial) mutation rate.

1.3.2 Logistic model

Each cell carries both a raw birth ratehat is determined by the genome, as well
as a death rat§. This setup allows these processes to be decoupled. Tqialgimn
size is controlled by scaling all birth rates by the densépehdent logistic facta® =
1—N/k. Since the replication of one cell decreasgsfor all others, it represents
the implicit interaction between cells in this modelis called the “carrying capacity”
which is imagined to be set by the availability of space andidrients.



1. Arandom waiting time is chosen according to an exponksig&ribution with rate
parameteR equal to the total sum of all birtlB(= £’ 5 rj) and deathf = 5 &)
rates throughout the population.

2. A second random number is generated, this time uniforngiyiduted between
zero andR. If this number is less thaB, birth occurs. Otherwise death occurs.

3. If birth was chosen in step two, a particular cell is nows#rowith probabilityr;
in a procedure similar to step two of Moran’s model.

4. Upon birth, mutation may occur, exactly as in Moran’s mode

5. If death was chosen in step two, a particular cell is nowegronith probabilityd
and removed from the population.

Since each cell carries both a birth and death rate, the pooéditness is more subtle
here than in Moran’s model. As discussed in chapter fourctiexistence condition for
two cell types igij/& = r;j/9;. In this sense, fitness is captured by the ratid. On the
other hand, if we imagine the overall growth of the populaiis it expands to fill the
carrying capacity, each of two types will grow exponenyialh that case — o captures
fitness. These and many other issues relating to this modeliscussed in references
[PQO7a, PQO7b, PQPOS].

1.4 Mean-field theory

A full description of the population entails the number diswith each possible
sequencen; (t). The deterministic description (mean-field theoryhgf, () is called
“quasispecies theory,” pioneered by Eigen[Eig71]. In tbatext of the Moran birth-
death model, the quasispecies equation simply keeps tfdtikln death, and mutations

d
gio) = Moy =MNgey + 3 Mion) (0)T (01 Mo} (1.1)
(o

M{o1 {0} IS the mutation rate from sequenfe’} to { o'}, which depends on the number
of mutations separating themis the average birth rate which always equals the average
death rate in Moran’s model. Although useful in some comstextimitation of Eq.1.1 is



that it neglects fluctuations. This might not be essentidgfnumber of sequenceg;,
is large compared to its quctuations\/nm, i.e. Mo} > 1. However, there are'2
possible sequences and oiycells to occupy them. Therefore, unldgs- 2-, Eq.1.1
will not apply in sparsely populated regions of sequenceepa

One way to improve the situation is to bin sequences acogtditheir fitness.
This increases the density of states and decreases thegilomality at the expense of
losing the ability to resolve between different sequenndke same fitness class. Using
a very simple fitness function= % Y 0i, we obtain

d 1 1
ar T ne(r—r)+p(r(r+ E)nr+1/L =y +(1=r)(r— E)nr—l/L (1.2)

If \/nr ~ 1 for somer > r, as is the case for a population evolving up a fitness fungction
then Eq.1.2 will not apply to the most fit individuals at thadeng edge. Because those
individuals grow exponentially faster than everyone elbis, turns out to be a serious
error. The fundamental problem is underscored by analyarapproximation of Eq.1.2
in which ther dependent terms in brackets are treated as constants-ané. In this
case,r diverges in finite time [BLT91]. The conclusion is that the r term is deeply
flawed because it neglects large fluctuations in the mostitapbpart of the evolving
fithess pulse.

It thus seems that a full stochastic treatment is extremélgwlt and that mean-
field approximations are qualitatively incorrect. Recerdrkv[RWCO03, DF07] has
demonstrated the possibility of treating populated fitrdssses deterministically, treat-
ing the sparsely populated regions stochastically, ancebom matching together the
separate answers. A related, though more heuristic agpraa¢o simply impose a
growth cutoff in the leading edge until the number of cellshat region iSO(1). This
is accomplished by replacirrg-r with (r —r)6(n—n¢), wheref is the Heaviside step
function [BD97, TLK96a].

In chapter two, | employ this cutoff approach in the contetant propagation
in two dimensions. In chapter four the approach is used ag#ne context of evolution.

The methods in chapter three are in some sense compleméeottry cutoff
mean-field approach described above. The cutoff approaclrately describes the
dynamics in populated regions and heuristically treattgkly stochastic region. By



contrast, the strategy in chapter three involves a detaskedhastic analysis of certain
rare cells (the mutators). Once they become more commomtit@tor dynamics are
treated stereotypically.



2 Two dimensional front propagation

2.1 Introduction

Several well known processes in spatially extended syseibit fronts that
propagate through space. Most of these processes that bawecbnsidered to date
occur in media in which the governing dynamics are spatiatifjorm. Recently, how-
ever, some interesting findings have been made concerrongsfpropagating in sys-
tems with spatially heterogeneous dynamics. In partictite simple infection model
A+ B — 2A on a lattice with equal hopping rates and a linear reactitngeadient has
been studied[CKL0O5a, CKLO5b]. Two versions of this systeamenbeen examined in
some detail: one in which the gradient is defined with respetite medium itself (the
"absolute gradient"), and another in which the gradienefned relative to the front’s
interface and travels along with the front (the "quasiistgtadient”). One can imagine
numerous systems that can be described by the absolutegtaelg. a chemical reac-
tion occurring in a temperature gradient. The quasi-sgadient is more analytically
tractable and also arises naturally in models of biologewalution[TLK96b, RWCO03].

The usual way to analytically study a system with a propagdtont, such as the
infection model mentioned above, is within a mean field, tieaediffusion framework.
The simplest MF analog to our infection model is the usudi&igquation [Fis30], with
a spatially varying reaction rate:

29

—¢ =Po+r(X9(1-9) (2.1)

For our simple infection model, Eq.2.1 (the "naive MFE")ddb capture many
of the qualitative aspects of the stochastic problem withegiabsolute or quasi-static



gradients. These failures, as well as many other issuel/ingdhe MF description of
similar front propagation problems, are largely remed@K1[05a, CKLO5b, CKLO5c,
CKO06, CKLO06] by introducing a cutoff factor in the reactioartn [TLK96a, BD97,
KL98a]:

29

5= DO?@+r(X)o(1—9)0(9p— @) (2.2)

This added factor causes the reaction rate to abruptly drapro in regions far
into the front’s leading edge wherg drops below a critical leveq., and is meant to
roughly mimic the effect of finite number fluctuations in thechastic process. In other
words, the discrete nature of individual particles impliest a sufficiently small value
of the density fieldp < @ ~ 1/N corresponds, in an average sense, to zero particles
present and thus zero reaction rate. In previous work, wevatidiow this modified
MF treatment gives a quantitatively accurate predictiothefstochastic model in one
dimension.

The purpose of this paper is to extend these investigatioihettwo-dimensional
system. We will work in a channel geometry, with no-flux cdiudis on the sidewalls,
such that the front propagates down the channel. In paaticwe are interested in the
patterns generated by the system, due to an instabilitatswerse fluctuations.

As mentioned previously, this system can be viewed as beiafpgous to cer-
tain problems in biological evolution. In this context, tleéevant equation is similar to
Eq. 2.2, but with a simpler rate term:

‘Z—f =D?g+ (x—~X)¢- 6(¢— @) (2.3)

Here, @ represents the fraction of individuals in a population vatgiven fithesx. If

the size of the population is fixed, the growth rate of indists with a particular fithess
is proportional toc— X, wherex s the mean fitness in the population. The diffusion term
represents the effect of mutation, and the dynamics of te&eBy corresponds to the
population evolving towards greater mean fithess. The vessy coordinate, being
orthogonal to the fitness, represents the frequency of some selectively neutrdl trai
Instability of a planar pulse would then correspond to etroiutoward a non-uniform
frequency distribution of this neutral trait. Due to thefeiénce in the structure of
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the rate term, Eq. 2.3 describes an evolviugsewhereas Eq. 2.2 describedrant.
However, this difference should not alter the stabilityp@dies of the system since, as
we shall see, these properties are determined by the leadopg where the front and
the pulse are identical. The cutoff term is appropriate is tontext because members
of a population, like particles, are quantized.

In this study, we turn our attention to the quasi-static gmain two dimensions
and ask how finite number fluctuations and the related cuppif@ach affect the stability
of planar fronts propagating in a rectangular channel. latvibllows we will see that
in contrast to the predictions of the naive MFE, the resultstochastic simulations
point to unstable planar fronts. Furthermore, once agarcthoff term will rescue the
effectiveness of the mean field description of the stocb@sticess. We first study the
cutoff mean-field equations, both numerically and anadyiyc showing the instability.
We then turn to the stochastic model, demonstrating thahigy there as well. An
appendix contains details about the numerics.

2.2 Mean-field stability calculation

The full equation of motion governing the quasi-static geatlin the MF cutoff
framework is Eq. 2.2 with

O(x,y,t) =Na/N
r(X) = max(rmin,fo+ a(X—X))
X(t) = § / @(xy.t)dxdy
@ =k/N
yP(x,0,t) = dyp(x,b,t) =0
Herex is the direction parallel to the channel’s long axi¢y is the number of
A’s at a given site and\ is the equilibrium number oA particles per lattice sitek is
someO(1) fitting parameter.x serves to define the interface position of the front by
essentially comparing the front’s profile to a step functiandb is the cross-channel
width. rmin merely serves to keep the reaction rate from going negaivbdhind the
front and plays no role in the front dynamics.
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To investigate numerically the stability of the planar fome start with a front
which is a slightly perturbed planar front, with

0(x,y,0) = 8 <0.0lcos<%y) _ ) (2.4)

with 8(x) again the Heaviside step function. Direct numerical iraéign of a spatially
discretized version (with lattice spacing unity) of the ¢irdependent Eq. 2.2 shows
that planar fronts are in fact unstable to transverse fltictose For a sufficiently wide
channel, perturbed planar fronts develop into long, thdirgte, fingers whose length
increases with increasing channel width. An example of sufihger is shown in Fig.
2.1. We see that there is a deep narrow “notch” on the traslidg of the finger, so that
the width of the interface is much greater here than for teeakthe finger. Defining the
finger length by [@(x,0) — @(x,b)]dx, the data for finger length versus channel width
is presented in Fig. 2.2. We now turn toward an analytic ustdeding of this result.

Due to the translational invariance of the system, it is redtio investigate first
steady-state propagating planar front solutions. Plugmito Eq. 2.2 the traveling wave
form, @(Xx,y,t) = @(x— vt), with velocityv, we obtain

D@y + v +r1(2)@(l— )6 (qb—g) =0 (2.5)

in terms of the comoving coordinate= x — vt. A quick analysis of the linearized
version of Eq. 2.5 provides insight into the role of the clitdks z — —oo, @ — 1.
Linearizing aroundmy = 1, we find two exponential solutions, but one must be dischrde
since it decreases with increasingSimilarly, asz — o, @ — 0. Linearizing around
@ = 0, in the region past the cutoff, once again we find only oreepiable, decaying
solution. This leaves our solution with a total of two undetmed constants. Fixing
translational invariance reduces this number to one. Riegucontinuity of @ at the
cutoff determines the remaining coefficient, and continafte, determines the velocity.
Thus, mathematically, the cutoff fixes the velocity by owdetmining the boundary
conditions, i.e. converting Eqg. 2.5 into an eigenvalue fgaob An analysis for largél
yields the leading order result [CKLO05a]:

v=[24D2aIn(N/K)]"° (2.6)
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Figure 2.1: Snapshots of the growing finger for the cutoff Mielnpared to that for the
stochastic model. The parametersBre 1,rg =6, a = 0.3. Lengths are expressed in
units of the lattice spacinig= 1. Left: The cutoff MFE withk/N = 8.7 x 10°. Center:
The stochastic model with = 90801. Right: The stochastic model with= 2881.



13

100 .

(o)} (00}
o o
| |

Finger Length
S
<R

20

O ] | ] | ] | ]
0 10 20 30 40 50

Channel Width

Figure 2.2: Finger length (as defined in the text) versus mblawidth for the cutoff
MFE. The parameters ar® =1,ro=6,a = 0.3,k/N=8.7x107° | = 1.
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In the limitk/N — O we regain the naive MF approach, in which- . Thus the naive
MF and the cutoff MF predict qualitatively different resitith respect to velocity. Not
surprisingly, stochastic fronts in fact approach a (finstielady-state velocity that agrees
well with that given by the cutoff MF.

Turning now to 2D fronts, we wish to study the linear stapilif the planar
solution to transverse perturbations. We wijes, y,t) = @(2) + @(z y,t) and linearize
Eq. 2.2 with respect t@. The invariance of the system with respect to translations i
time and the transverse spatial directjamplies@(z,y,t) = é*té%n (z). The governing
equation fom (z) is then:

D" +vn'+nr(2) [(1—2@)0(@ —k/N) + @(1- @)d(@w—k/N)|=Qn  (2.7)

with
Q=D+ w (2.8)

The delta function arises from differentiating the stepction and is due to the shift in
Z.ut caused by the perturbatign We have assumed here thgt 0 so thatf ¢(z,y, t)dy=

0. The casey = 0 has to be treated separately, but in any case the least stetule
should be the translation mode with= 0. Notice that Eg. 2.8 implies a simple stabi-
lizing quadratic dependence of the growth rateng. Thus the least stable mode is that
with the smallest non-zerg which, assuming a zero-flux sidewall boundary condition,
iS gmin = 77/b. This implies a minimum channel widtsi below which even the longest
wavelength mode has too much curvature for any instabdigxist:

D
b* =/ — 2.9
O (2.9)

whereQnmaxis the largest (positive) eigenvalue of the stability opareEq. 2.7.

Like the steady-state problem, insight can be gained int®Efby considering
the boundary conditions at— +o. We require that) — 0 asz— —o. As @ ~ 1
in this region, we find two exponential solutions figr one growing with increasing
z and the other decaying. The latter must of course be extlufene perform the
same procedure past the cutoff,zas> , we find two decaying modes. However, one
of the modes decays more slowly than the steady-state @olatid thus dominates it
for sufficiently largez. This is unacceptable behavior for a perturbation and thexe
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this solution is discarded. Thus, our solution has two eahytconstants, one of which
may be chosen arbitrarily since Eq. 2.7 is lineaninThe remaining constant is fixed
by requiring continuity ofn at the cutoff. Matching)’ at the cutoff determines the
eigenvaluef2. Thus, once again the cutoff has played a central role inrahéng the
problem’s interesting quantities.

As with the steady-state problem, we can make analytic pssgim the limit
of largeN. In this case, the cutoff is at large in the region wherep, is small. If
we consider Eg. 2.7 in the region whepe < 1 andz < 7z, and fix the translation
invariance by setting = 0 for the unperturbed state, we obtain

Dn” +vn' +n(ro+az) =Qn (2.10)

Up to a similarity transformation, this is the Airy equatjonith the general

solution
n=e2 [AAi (rT_Z) + BB (rT_Z)} (2.11)
with
= v2/4D;ro+Q
5=(3)"°

We argue that the Bi term must vanish by considering the baleit of Eq. 2.7
and matching onto Eq. 2.11. As shown in [CKLO5b], in the lavdiit, the diffusion
term in Eq. 2.5 can be ignored, and the solution in the regibareg < 1 is

n o~ e—%[(fo—9)2+%0’22] (2.12)

Expansions ofAi and Bi for large argument show that the diffusionless result
Eq. 2.12 matches onto Eq. 2.11 only if tBeterm is absent. The constafstmay be
arbitrarily set to unity since the problem is linear. Thushese forz < z;

n=e BAi ()
We have to match this result to the simple exponential smiutr z > z;. Thus,

e B Al (r_;"”‘) :Ce{_%(lw =3 (2.13)
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The derivative of) must also match properly at the cutoff. Looking back to E@, @e
see that the delta function term causes a discontinuity &t z:

i) S(1—k/N y
nr/ight - r’lleft = r(z[(; t> Ni%(zcui) ) = _r(ZC t>(

Computing the derivatives in (12) and dividing by (11), weaoib

1—k/N) (2.14)

1 1AI/(|-(Q)—Z(:U1>
> 1 _ _ =7\ o
1+4DQ /v V(fo+azcut)(1 k/N) 5 pi( ) e

\Y

55 (2.15)

This equation determine3 if the quantitiesyr andz; are known. Now, for large the
LHS of (12) is also large. For the RHS to balance it, the Ainydiiion in the denominator
must be small. Thusf‘% ~ o, Whereéy ~ —2.3381 is the first zero of the Airy
function. For the position of the cutoff, we quote anothsutefrom [CKL0O5a] obtained
by matching the linearized steady-state equation at thedfcut

V2 /4D — 1 2D
Loyt =~ —a —505—7 (2.16)
Plugging this expression into Eq. 2.15, expanding arajghdnd dropping higher order
terms, we obtain the leading order result valid for lavge

~ 2Da
Y,

o (2.17)

This result is tested in Fig. 2.3, where we plot the eigere&uwersus velocity deter-
mined by an exact numerical solution of Eq. 2.7, togethehwie numerical solution
of the matching condition, Eqg. 2.15, and the leading ordeulteEq. 2.17. We see that
indeed the leading order result approaches the exactsemvlincreases.

Our leading-order result, Eq. 2.17, yields the interestiogclusion that planar
fronts become stable in the limit &s— o, i.e. N — oo, i.e. the cutoff disappears. EQ.
2.17 can be interpreted as saying the ®as proportional to the ratio of the diffusive
length scale@/v) to the length scale over which the rate changes apprec{apty).
Thus, heuristically incorporating the effects of finite riuen fluctuations qualitatively
changes the system’s stability properties by limiting ttusfs velocity, which in turn
makes the diffusive length scale finite. In practice, howewéghout a cutoff, an initial
front which is compact (or decays sufficiently rapidly) vélit as a time-dependent cut-
off [KNS98], so that at least initially transverse fluctuets will grow. The fluctuation
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Figure 2.3: The circles represent the exact numeric solwdfdeq. 2.7. The solid line
is the exact numeric solution of Eq. 2.15 which is itself géar approximation. Exact
numerically generated values Nfand z;,; were used to generate this approximation.
The dashed curve is the analytic approximation Eq. 2.17 pah@metersa@ =ro=1,

o =0.3.

induced instability in this system is similar to that in [K8&)], where it was found that
that a coupled reaction diffusion system with no reactiadgnt, but with unequal dif-
fusion coefficients, is unstable with a cutoff but stableheiit one. Furthermore, Eq.
2.17 shows that the fronts become stable as 0, for any value oN. This is consistent
with the stability shown in [KL98a] in the case of equal ddfan coefficients.

Thus, once again, the presence of the cutoff qualitativeBnges the simple
mean field predictions. If the cutoff approach indeed casttine effect of finite number
particle fluctuations, we should expect to see some analtigsofront instability in the
stochastic, discrete infection model discussed earbexich we now return.
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2.3 Stochastic system

We ran simulations in which the lower rectangular portiortr@ channel was
initially populated withN type A particles per lattice site and the upper rectangular
portion of the channel was populated Bytype B particles per lattice site. During
each time step, a binomially distributed random number ofigges hops to adjacent
sites. Furthermore particles probabilistically cause sorBegarticles to change inta
particles . The reaction probability and hopping rates whesen so that the discretized,
stochastic equation fakNa reduces to Eq. (2.1) (with the quasi-static form f¢x))
when the expectation value is taken in the small time, sna#tiice spacing limit. In
particular, for the hopping probability we todkep ~ D%, wheredt is the simulation
time step and is the lattice spacing. The number of particles reactingngueach
time step was chosen as a binomially distributed randonabkericharacterized biyia
repetitions of a Bernoulli process with individual evenplpability 1— (1 — %)NB.

The simulation results are easiest to interpret when theraiavidthb and the
average number of particles per lattice SNeare large. For fixed largd, there is some
b beyond which there is a pronounced finger which survives &y Vong times. An
example of such a finger is seen in the middle frame of Fig.vZhkreN was chosen to
correspond to the cutoff chosen for the MF simulation seahereftmost frame. The
overall similarity of the patterns is clear. A$is reduced for the same the statisti-
cal fluctuations become larger, as expected, and give therfaglearly finite lifetime
before it succumbs to the noise. The pattern eventuallynesgées, sometimes with
opposite parity, and the cycle of destruction and regeioeratarts anew. Such a noise-
roughened finger in seen in the rightmost frame of the Figlitee very visible effect
of the noise is striking given the still quite large valueNoEémployed, underscoring the
extreme sensitivity to fluctuations of our system.

For very narrow channels, on the other hand, the interfapeas to be essen-
tially planar, with random short-lived fluctuations. Allishs in accord with our expec-
tations based on our study of the cutoff MF dynamics. Whatasensubtle, however,
is a quantitative measurement of the critical valu® ébr the onset of the pattern. On
the smallb side of the transition, the pattern is not exactly planar tdugoise. On the
large b side, the pattern is smeared out due to noise. This problexaserbated by
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the supercritical nature of the transition, such that théepa has very small amplitude
near the transition. In order to compare the stochastiesysb the MF prediction, we
need a way to distinguish this random roughening of thefiaterfrom the genuine pat-

tern formina mechanism discussed in the previous sectianni&sent below two tests
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Figure 2.4: Evidence of the transition to instability. Theear envelope of the different
curves demonstrates thNerenormalizatiorNe s t ~ Nbrequired by widening the channel.
The dotted lines show th& resulting from the corresponding deterministic, MF cutoff
simulation k=.25). Each data point represents an ensemble averageesefltng trials
(100 time units each). The parameters@re 1,ro=6,a =0.3,1 =1

Both of these tests exploit the predicted transition betwstable and unsta-
ble states that occurs when the channel width exceeds eatnitilueb*, as stated in
Eq.(2.9). First, we measured the ensemble averaged welotcihe mean interface
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Z=y;; Nb as a function ob (Fig. 2.4). The increasing trend along the envelope
of the different curves can be understood as a result of vinderfaces presenting an ef-
fectively larger number of particléd: ¢ . In fact, since in the steady-state;- (In N)1/3,
we see from the figure the remarkably simple resSalt; ~ Nb. This simple dependence
continues untib approache®* (dotted vertical lines), where the velocity suddenly in-
creases. This increase can be understood as a result ofstieensypending much of its
time in a configuration in which one side of the interface gigantly leads in front of
the other. The lagging side then effectively stalls while ksading side is in a region
of large reaction rate, and thus propagates quickly. Theativeffect is an increase in
the velocity averaged over the width of the channel. Thetfzattthe change occurs so
near theb* calculated earlier suggests that the cutoff approach éc®fkly capturing
the stochastic dynamics.

As a second test, we plot the mean roughness of the intéNaceb (Fig. 2.5).

W is defined in the standard way

W2 = ([(3;AG,))/N) -2

where () denotes ensemble average and the bar denotes average evangverse

direction. Forb < b* we see power law scaling reminiscent of that discovered by&ia
Parisi, and Zhang [KPZ86] for a growing interface. Howetee, data shows no sign of
a universal exponent. It may be that the very weak stabifithe interface neab” is
responsible for a long crossover. This issue clearly reguinore extensive study. For
a fixedb, W decreases with increasimdj consistent with the hypothesis that interface
roughness is noise driven in this regime. However,ligr b* this simple dependence
is lost. The curves converge nda, showing that particle number and its associated
noise are no longer the relevant factor in determining fater roughness. Past this
intersection, there is no apparent correlation between WhanWe interpret this as a
crossover from noise driven interface roughness to gradigwen pattern formation
occurring very near the* predicted from the cutoff MF approach.

Thus, the cutoff MF approach is quantitatively successfuydriedicting the tran-
sition of the width and velocity observed in ensemble avedagfochastic fronts when
the channel is widened. In contrast, the naive MF approagetigis no such transition
and an infinite steady-state velocity, in stark qualitath@greement with the simula-
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Figure 2.5: Noise driven roughness scalinglder b*, gradient driven scaling thereatfter.
Each data point represents an ensemble average of thregi&da @100 time units each).
Parametersa@ =1,rg=6,a =0.3,1 = 1.

tion results. The cutoff MF approach also predicts the vglaxf the average interface
for b < b*, provided we také&l — Nb.

Another aspect of the stochastic system which one wouldttikgredict is the
ensemble-averaged shape. We find that qualitatively thiaves as expected; namely,
for small channel width the average shape is flat, and ab@veritical width, a nontriv-
ial shape is apparent. The amplitude of the averaged patbetimues to increase with
increasing width. However, we do not know how to quantiegivelate the average pat-
tern to the results of the cutoff MF equations. One obviouysadiment is the fact that
the stochastic system switches parity at random, with tite and left sides alternating
as the leading edge. Thus, a naive ensemble average pradshape which is highest
in the center, clearly at odds with the deterministic caltoh. Another aspect of the
problem that we would like to correlate with the determikisglculation is the growth
rate of the pattern near onset. This problem is also diffleedtause the width, measured
in the usual way, consists of a contribution from noise drik@ighening and one from
pattern formation. Clearly, the usual MF approach can onikenpredictions about
the contribution from patterning and thus the stochassalte and MF predictions are
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intrinsically difficult to compare. Even though the noisemses with increasing,
the dominance of the dynamics by the leading edge where #itichs are unavoidably
present makes this a nontrivial task, even at I&g&hese questions remain challenges

for the future.
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3 Mutation rate evolution

3.1 Introduction

The most evolutionarily important characteristic thatadividual inherits from
its parents is the average number of offspring that it wédl/kein the next generation, i.e.
its fitness. But, is fitness thanly evolutionarily relevant heritable trait? The ultimate
fate of an individual depends not only on its immediate proeg, but on those of its
entire lineage of descendants. Therefore, the genetiersytat shapes the statistical
properties of this lineage is also an evolutionarily refegyaelectable trait.

In this article we study one such property, namely a globelyated mutation
rate. In practice this property is inherited via a mutateolyoof a gene, called a mutator
allele, involved in DNA copy or repair. We ask the followingdic question:What
is the fixation probability of an initially rare mutatorThis is a generalization of the
classic population genetic calculation for the fixationlgability of a static mutant with
selection coefficiens [Fis30]. If the fixation probability of a mutator allele d#fifs from
that of a neutral one (i.e./N), then the average mutation rate of the population will be
under selective pressure.

The selective forces acting on mutators is not purely a #texal issue. Natural
populations quite often contain a mixture of wild-type andtator strains [LLPC96,
LCB*00, GMT'01, MRT"97, dCMdIP 04, BSF 04, OCC 00, PML"03, RYPSO02,
WBSO04]. Furthermore, the somatic tissues of multicellldaxual organisms com-
prise populations of asexually reproducing cells posagssepportunities for an in-
creased growth rate. Correspondingly, tumoregenesis &éas associated with mu-
tator alleles [Loe91]. Even more strikingly, laboratogake evolution experiments
[SGL97, MLLM97, TSB54, Miy60] have resulted in examples pbataneous mutator
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fixation. Several experimental studies [GNT1, CC83, LPG 05, SDS 02, MLLM97]
indicate that mutators achieve fixation because of the agapiutations they generate
and not because of any intrinsic fithess advantage. Thusgte®l on mutator alleles
occurs via an indirect mechanism. One of the goals of our vi@lo make semi-
guantitative contact between our model of indirect sebecand the existing data of
mutator fixation in laboratory experiments.

The evolution of mutation rate is a problem that dates badkeédl930’s. The
general issue was articulated by Sturtevant [Stu37], afebitant theoretical contribu-
tions date back to Kimura [Kim67] and Leigh [LJ70]. Theocatistudies proliferated
during the last decade, and the field is reviewed in [SGJS@Dhasso in [DMO06]. Given
the abundance of existing theoretical articles, it is caitto understand how our work
relates to and improves upon this body of literature. We esklthis issue in detail in
the Discussion section. For now, we merely provide a briefdk First, we neglect the
complicating influences of recombination and environmigildatuations. This allows
for a direct and comparatively precise treatment of the BBigituation: a strictly asex-
ual population adapting in a constant environment. Evendimplest scenario has rich
and often counterintuitive behavior. Secondly, our methaoaturally treat both strong
(e.g. 100 fold) mutators and weak modifiers of mutation r&aterdly, unlike most pre-
vious work, we combine fully stochastic simulations with @malytic approach. Our
analytic results for weak modifiers are a generalizationrejpus work by Andre and
Godelle [AGO06], but we find that both approaches often faihich simulations. How-
ever, our work for strong mutatodoesmatch simulations over the expected parameter
range. The simulations thus provide vital checks and gue#or the analytic approach.
Conversely, the analytic approach deepens our undersdimutator fixation and
makes predictions in parameter regimes that are compuéliyanaccessible via sim-
ulation. Finally, unlike previous work, our diffusion bakanalytic approach captures
the effects of random genetic drift. This not only allows &xploration of regimes
where random drift is important, but also a quantitativeamsthnding of when it can be
neglected.

The outline of this article is as follows. We begin with a hstic discussion
of mutator dynamics. Next, we construct and simulate a ststoh model of asexual
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Table 3.1: Notation used in chapter 3.

Symbol Usage

N Total population size

[T Wild-type mutation rate per genome

i Mutator mutation rate per genome

U Mutation rate into mutator state

L Length of genome

b Number of 1's in genome

o) Fraction of mutations that are lethal

X Mutator frequency

u=(1-x)u_+xu; Average mutation rate per genome
R=py/u- Mutator strength

r=>b/L Growth rate per individual per simulation time-step
s=1/b Selection coefficient of non-lethal mutation
a=1-b/L Fraction of O’s in the genome
de=0a(1-9) Fraction of mutations that are beneficial

populations that include mutator alleles. We do not exiyi@llow for the formation
of mutators, merely the competition between mutators amdtype strains once muta-
tors arise. Afterward, steered by the outcome of simulatiare develop a quantitative
understanding of the results of the stochastic simulatiatteough a full mathematical
treatment turns out to be intractable, we are able to devisgparoximation scheme
that captures many features of the simulation results. \&e slolve our approximation
scheme, both numerically and analytically. The resultixgressions allow a compari-
son to thekE. coliexperiments of Lenski and co-workers [SGL97].

3.2 Heuristic analysis

In this section, we briefly explain the conceptual factordertying mutator fix-
ation. The equations in this section should be consideradlynas heuristic guides and
not formal results.

Since mutator alleles do not directly affect fithess, thgivaimics must be guided
by association with other genes which do have a direct fiteffest. In asexuals, all
loci sharing the same genome with a sweeping beneficial roaotatill also become
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fixed via “hitchhiking” [MSH74]. Whereas most alleles hitdke completely passively,
the mutator allele plays a somewhat active role in facihigaits own hitchhiking by
increasing the probability of a beneficial mutation elsesghie the genome. This well
known mechanism occurs in our simulations and is evidenigr8F..

At the same time, the wild-type subpopulation also gensrativantageous mu-
tations. When this occurs, mutators become extinct due atidix of their counterpart
wild-type alleles. Although the wild-type generates mutas more slowly on a per
capita basis, if it vastly outhumbers the mutator subpdmnathen thetotal mutation
rate in the wild-type background may be larger. Along théses| it is tempting to
think of the number of mutators as initially constant, anat titne mutator will achieve
fixation if and only if it generates a sweeping beneficial rtiatabefore the wild-type
background does. This means that

K+ XoH+
U Yot +(1—Xo) U

wherex, is the initial frequency of mutators and. (u-) is the genome-wide mutator

Prix = Xo (3.1)

(wild-type) mutation rate. This equation has striking djied. First, itis independent of
the followingprima facieimportant parameters: population sidgeselection coefficient
of mutationss, and the fraction of mutations which are beneficial versustdgous.
Secondly, and more subtly, the equatiorxplicitly frequency dependenit will turn
out that Eqg.3.1 arises as a limiting form of our analytic e@gsion, but doesottypically
match the results of simulations.

In contrast to the frequency dependent Eq.3.1, a classitt fesm population
genetics [Fis30] is the fixation probability of a mutant watkimple selective advantage:

1— e N%S

PfiX = 1_e NS

(3.2)

This result holds for haploid populations using Moran pescdynamics, and merely
requires factors of two in the exponents to handle diploidé/aght-Fisher dynamics.
In Eq.3.2,P;ix depends on the frequency of mutants only via the protixgt i.e. the
initial numberof mutants. Thus, Egs.3.1,3.2 scale differently with papah size. The
form of Eq.3.2 implies that (WheNS>>> 1), Py ~ 1 — e NS~ 1— (1—- 5)N*% and we
can think of each mutant as an independent “trial” with fixatprobabilityS. In other
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words, if the fractionk, is kept constant an is increased, Eq.3.1 says tht, should
remain unchanged whereas Eq.3.2 saysPhatshould increase. On the other hand, if
NXo is held constant a is increased, Eq.3.1 predicts a decreadgiinwhereas Eq.3.2
predicts thatPsjx remains unchanged. Since mutators achieve fixation by Hikicty
with mutations which are themselves governed by Eq.3.haper we shoula@ priori
view EQq.3.1 with suspicion. Indeed, our simulation dataamalytic methods will show
that mutator fixation is often governed by an equation withftrm of Eq.3.2.

While Eq.3.1 completely neglects deleterious mutationey tare the basis for
another heuristic line of thought. In any realistic biokeagi population, regardless of
how maladapted, deleterious mutations vastly outhnumbeardegeous ones. Because
of this, upon first thought, one might think that the mutatt@la will do more harm than
good and therefore be selected against. Although it is raean elevated mutation rate
will quite likely cause an immediate decrease in the popurié mean fitness, evolution
does not always act to maximize this quantity. The situasamderstood more clearly
in the following game theoretical context. A beneficial ntigta often greatly increases
the probability that a lineage will achieve complete evioltary success by sweeping
through the entire population, whereas a deleterious mouatahly slightly decreases the
low probability of a neutral sweep. More quantitatively, @& think of the “payoff” for
a sweeping advantageous mutant as the entire populatenl sigor this to occur, the
mutator must generate a beneficial mutation which must thamve in spite of random
drift. In contrast, the payoff for a deleterious mutant isrefg a single individual who
is destined to die out with near certainty. The mutationtsgy is favored when its

expected payoff is greater than zero, i.e.
N - 77(S) - Upen— 1- Ligel > O (3.3)

wherert(s) is the fixation probability of a simple mutant, given by EQ.8ndLipen (Ugel)
are the beneficial and deleterious mutation rates, respéctNote that this expression
weights beneficial mutatiors - 71(s) times more heavily than deleterious ones, under-
scoring their asymmetric effects. Later in this article, stw that Eq.3.3 also follows
from a rigorous mathematical analysis.

Thus far we have argued that the fate of mutators is in priadimited both by
competition with wild-type and by their increased load ofedierious mutants. Addi-
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tionally, random genetic drift is commonly a potent forcérag on rare subpopulations.
Each mutator begins its existence selectively neutralantlme shown that random drift
eliminates neutral alleles from the population with a higbhability = 1— 1/N, and
that the average time taken to do so is merelyn(N) generations [Cro70b]. Although
we cannot write down a “back of the envelope” estimate of ¢fffisct, we will later de-
rive a formula that fully incorporates random drift and dfies the parameter regimes
in which it dominates mutator fixation.

Our analytic work results in a formula for the mutator fixatiprobability in
terms of simple parameters. Examining this expressiordyial quantitative sense of
the relative importance of random drift, deleterious mote, and beneficial mutations.
This allows us to define “strong-effect” and “weak-effectutator regimes in terms of
the model parameters. In the strong-effect regime, mutstio the wild-type back-
ground do not affect mutator success and our analytic appraarks well. In the
weak-effect regime, mutations in wild-type backgrounds @redicted to be the dom-
inant influence on mutator fixation. However, in the case odkveffect mutators, we
will show that our analytic approach, like existing work bypdye and Godelle [AG06],
typically overestimates the competitive effects of muatasi in wild-type backgrounds.
When this is true, EQq.3.1 provides a poor description of toutixation. We now turn
toward a discussion of our stochastic simulations, thatigeoan invaluable reference
to which we compare our analytic work.

3.3 Description of stochastic simulations

We model haploid asexual populations of fixed $\zendergoing stochastic pro-
cesses of birth, death, and mutation. Initially, a fractigr« 1 of the population are
mutators and all individuals have the same fithess. The-de#th-mutation process is
iterated until the population consists entirely of eithertators or wild-type. Transitions
between the mutator and wild-type states are not allowedd®Veot model environmen-
tal changes explicitly, thereby assuming that the procéssutator fixation occurs on a
time-scale much shorter than that associated with envieortah changes.

Our stochastic simulations are based on the well known “Mé&@cess” [Mor92].
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The following sequence of actions occurs every discretestep:
1. Arandomly selected individual is chosen as a potentiadia

2. The chosen individual gives birth with probability praponal to its fitness. If it
does not give birth, the simulation advances to the nextdiape

3. Arandomly chosen individual, other than the baby, iskill

4. The baby undergoes a deleterious (beneficial) mutatitmpvobability equal to
its deleterious (beneficial) mutation rate. This mutatiate rof course depends
on whether the baby is a mutator or a wild-type. Mutationsveen mutator and
wild-type alleles are not allowed. In effect, this assunied mutators are gener-
ated on a time-scale much longer than that of the entire “@ditign experiment”.

We model the genome of each individual as a string. bits [Cro70a, WH96,
TLK96b]. A fraction & of these bits correspond to critical sites in the genome that
when mutated, cause a lethal phenotype. In this case, theibalever born, and the
simulation simply advances to the next time-step. Chanthegvalue ofd in effect
allows for some adjustment of the distribution of deletesianutational effects. The
birth probability per unit time, which we denoteis proportional to the log-fitness of
the chosen individual and equals the fraction of 1's in theogee, denoted bly/L. Key
parameters are = 1—b/L andae = (1—9)a, i.e. the fraction of sites that would be
beneficial if mutated. Thus, all non-lethal mutations hdwetame strength and genes
do not interact. This scheme for assigning fitness to gemstyp known as a “mul-
tiplicative Fujiyama” fitness landscape, and is e= O version of Kaufman’s “NK”
model [Kau93]. This toy landscape is obviously a useful reatatical simplification.
Additionally, recent experimental work [HSHK06, DFMO7]askis that some dynamics
of real bacteria and yeast populations can be captured Isidenmg mutations of only
a single strength.

Mutation is implemented by “flipping” bits with a probabﬂit“Ti per bit per
birth event, depending on whether the baby is a mutatyrof a wild-type ). The
total number of flips is determined by drawing a binomiallgtdbuted random number
with success probabilit#Li and number of trial&. Each mutation has a probabilidy
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Figure 3.1: Some sample runs from simulations where the-typ)¢ mutation rate is
zero. The top panels depict the number of mutators in thelptpn vs. % wherer is
the birth probability per time step which is proportionathe (initial) mean population
fitness. The bottom panels show the average number of bextgficitations in the
mutator subpopulation. The dark lines resulted in fixatibtihe mutator allele, whereas
the lighter lines resulted in its loss. When the mutatioe @t the mutatorsy(.) is
not too large, the mutator hitchhikes to fixation with a sengkeneficial mutation (left
panels). When, is larger, many beneficial mutations occur during the fixapmocess
(center and right panels). Our analytic approximation sehassumes that the fixation
process idriggered by merely the first beneficial mutation to survive drift. Nabat
in each case the population is always far from the fithess maxi when the mutator
achieves fixation since there are 80 possible beneficialtronta Parameters aié =
10°, %o = .005, 8 = 0, wild-type mutation ratgi_ = 0, andu,. = 107° (left), u, = 103
(center),u; =1 (right). o = .4,s=1/120 (initial values).
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Figure 3.2: Averaged results of simulations, and the utit S, as the measure of
mutator success. Whdhix < 1, Psix increases linearly witl, (data not shown). The
left panels show the (least squares) slope of said lineaea@se when the population
is well adapted (bottom) and poorly adapted (top) to its @mment. The data on the
bottom row are quite noisy because of the small number dtresulting in fixation.
The panels on the right express the same data, but in ternie adffective selection
coefficientS, of the mutator allele obtained by inverting Eq.3.2. Wherdasvalues
from the left obviously depend oN, the values on the right panels anelependent of
N whenN§, > 1. This suggests th&,, which exposes an underlying simplicity to the
simulation results, is a more natural measure of mutataressctharPsx. Notice that
when the mutator is favore, is always less than the selective advantagka single
beneficial mutation; this is due both to deleterious mutetiand loss due to random
drift. Parameters are=1/120u_ = 0,0 = 0,a = .4 (top) and.008 (bottom). See
Supplementary Information for details concerning averggi
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Figure 3.3: Dependence on the underlying selective adgastal he data correspond-
ing to two values 0§, i.e. two values of., approximately collapse onto a single curve
whenS, and pi;. are each scaled by The scaling of the independent variable un-
derscores the fact that mutator success for fixad largely controlled by the ratio of
timescales for mutation (34, ) and selection (4s). In particular, the sharp decrease in
Sy at largep occurs when these timescales become comparable, i.e. veleBribus
mutations accumulate in an expanding lineage before it hffisisnt time to achieve
fixation. Parameters aidé=5000,u_ =0,a = .4,0 =0.

of being lethal. If no mutations are lethal, the number thattzeneficial is determined
by drawing another binomially distributed random numbethveiuccess probabilitgr
and number of trials equal to the number of flips. Unlgsds O(1), the probability of
more than one mutation occurring during a single birth ei®negligible and we will
refer to the genome-wide mutation rateLas

Another useful parameterss= %/(1— a) which, likea andae, changes through-
out the simulation as the population evolves. We emphakegethis fithess dependent
value ofsdoes not represent an epistatic effect. Rather, it is a quesee of mutations
which result in a fixed, additive increment in “log-fitness.”

A consequence of our genomic model is that both the beneéfindeleterious
mutation rates will be larger than values encountered itogioal populations unleds
is extremely large. While this may seem like an unnecessatyadesirable restriction,
it will turn out that our analytic results, which readily hila arbitrary values of the
mutation rates, are insensitive to these details of outttitgssimulation model.
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3.4 Simulation results

To simplify matters, we first investigate the case where tiid-type mutation
rate is zero; results for the more general case will be gia#ar.l Fig.3.1 shows typical
runs for this case. These graphs make it clear that if the tovubautation rateu.,
is sufficiently small, the mutator allele hitchhikes to fixat with a single beneficial
mutation. This simple observation reminds us that mutakatifin or loss is not the
result of winning the race up the fitness landscape, butraitehhiking with beneficial
mutations. Thus, mutator alleles are better thought alomsequencesf asexual evo-
lution thancauseof more rapid evolution [SGJS00]. When is larger, the dynamics
are more complex. Despite this complexity, we will laterwhwia the success of our
analytic approximation scheme, that the fixation processggered mostly by the first
beneficial mutation to escape random drift.

3.4.1 Dependence op:

Fig.3.2 presents simulation results for three differerfgation sizes and two
different degrees of adaptation. The fundamental measjuraatity is the fixation prob-
ability Psix of an initially rare mutator. WheRsix < 1, the mutators are completely
independent of one another aRg, increases linearly witl, (data not shown). To nor-
malize against the effect of, we consider the slope of said linear increat@;x /dxo,
which equals the mean number of mutator descendants letidéyrautator, as our pre-
liminary measure of mutator success. Fig.3.2 (left pareips howd Prix/dx, depends
on .. The small and larger, limits make qualitative sense: as — 0, the muta-
tor phenotype is “turned off” and therefore neutral, raésglin dPsx/dx, — 1. On the
other hand whemp = 1, a mutation occurs nearly every birth event and the fitnéss o
an evolutionary line of individuals takes a biased randortkw@awvard the much lower
fithess of a completely random genome. Thus, although itrgeationally prohibitive
to measure a negligible fixation probability, it is cleartthae mutator allele is nearly
lethal at sufficiently largeL, .
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3.4.2 Dependence oNl, and mutator effective selection coefficient:

Fig.3.2 also shows thatPsiy/dX, increases with increasing. This behavior is
incompatible with Eqg.3.1, which is independent\fbut is fully consistent with Eq.3.2:
1— e N%S

1—e NS

We now quantitatively consider whether Eq.3.2, which aggpto mutants with direct

Prix =

fithess advantage, also describes mutators withiect fitness effects. For this to be the
case, the fixation probability measured from simulatiorth wiffering values olN and
Xo would all correspond to a single valueQf(a, s, u;, u—, d). Using the values dPsiy
measured from simulations, we used a computer to invert Egt#ereby obtaining cor-
responding values &,. Fig.3.2(right) shows that, wheMS, >> 1, there indeed exists
an underlying quantitys,, which we call the “effective mutator selection coefficient
that remains invariant ds, Xo, andPsjx change.

There are several advantages to usygas the measure of mutator success.
First, it allows Eq.3.2 to determine in advance hByy depends oM andXx,, thereby
reducing our number of parameters by two. Secondly, it alaa to apply aspects of
our conceptual understanding of direct mutants to the bradif indirect mutators. For
example, whemNS, >> 1, Psjx for a single mutator becomes independeniof.e. the
notion of a frequency independent per capita fixation proiamakes sense. Thirdly,
the existence 0§, in the sense of Eq.3.2, invites future questions. For exanome
may wonder whethe§,, in addition to determinindiy, also describes the average
dynamicalbehavior of the mutator subpopoulation, e.g. wheth&r)) ~ e when
rare. In this article we do not apply such an interpretatinrSp. Rather, we merely
interpret it as a succinct descriptor of mutator success.

3.4.3 Dependence on strength of mutations:

Fig.3.3 shows hov§, depends on the strength of the mutations on our fitness
landscape, as measureds¥ig.3.3 (left) shows that ass increased$, also increases,
and reaches its maximum value at a faster mutation rate3.B{gight) demonstrates
that the curves in the left panel are not as different as tippear: wher, and pi,
are each scaled g/ the curves become nearly identical. This means$pas directly
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proportional tes, and thatS, is governed by the single composite paramgtefs rather
thanyu, andsseparately. Thus, an examination of the simulation datalased us to
reduce our number of parameters by three.

3.5 Instantaneous single locus approximation (ISLA)

Stochastic simulations provide valuable signposts albegmay to understand-
ing mutator fixation. However, a deeper understanding, dsasehe ability to probe
computationally prohibitive regions of parameter spaeguires an analytic approach
as well. At a given time, the state of the population is fupgsified by (i) the number of
mutators, (ii) the fitness distribution of the wild-type gpalpulation, and (iii) the fitness
distribution of the mutator subpopulation. A complete $ioluto the stochastic process
requires an enumeration of the transition probabilitiesveen each of these states at
each pointin time. The problem with such an approach is ttreely large number of
possible fitness distributions and the correspondingli dighensionality of the result-
ing governing differential equations. In order to make pesg, we note the heuristic
rule that deleterious mutations are rapidly removed froengbpulation, whereas ben-
eficial mutations, and all loci linked to them, become rapiiited. This observation
motivates the following approximations that handle muotadgi which are the ultimate
source of the aforementioned daunting multiplicity of fgaelistributions.
Approximation 1 (A1) We assume that when a beneficial mutation arises, it ingtant
becomes fixed with a probability given by the classical fosafprobabilityrr of a bene-
ficial mutation in a static, homogeneous environment. FoiMaran process dynamics,
this probability is simplysif s< 1 andNs> 1. All loci in the genome in which the
beneficial mutation arose also achieve fixation via hitcimgkThis represents the most
common process by which the mutator allele achieves fixatidoss.

Approximation 2 (A2) The remaining fraction * s of beneficial mutations are sim-
ply ignored and treated as if no mutation occurred. This @ipration is necessarily
somewhat awkward. On the one hand, A2 is unnatural in théibiva lineages which

are destined to be extinguished by random drift to remaihénpopulation and poten-
tially generate their own beneficial mutants. An alterratiwhich we call A2, is to
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immediately kill the beneficial mutants which do not sweepich is clearly too harsh.
These two alternatives lead to a trivial difference in ounfalas, and are discussed in
Supplementary Material.

Approximation 3 (A3)Deleterious mutations are treated as effectively letiate their
descendants are quickly removed from the population. Tdsslts in an effective re-
duction in the birthrate of the mutator strain.

3.5.1 Derivation of diffusion equations

Since the approximations (A1-A3) preclude fitness polyrhiam over finite
time intervals, they allow us to describe the dynamics ofahgre population by the
frequency of the mutator allelec {0, %, %, ...,1}. Let T;(x) denote the probability that
the system makes a transition from the state with a fractiohmutators to the state
with a fractionx+ % of mutators. This may occur in one of the following two ways:

1. A mutator is selected for birth, a wild-type is selecteddeath, and no mutation
occurs.

2. A mutator is selected for birth, a wild-type is selecteddeath, a beneficial mu-
tation occurs, and this mutation is part of the fractiondthat is destined for loss
by random drift .

Computing these probabilities in the order listed, we aravthe following expression
for T; (x)

I X201 ) XA X ae(1 )
—  XA-X)[1- s (1—ae(1-9))] (3.4)

The factor ofr on the LHS is just the birth probability per time-step whielecording

to A1-A3 is common to all members of the population and wilbsde scaled out. In a
similar way we calculatd| (x), the probability that the system makes a transition from
the state with a fractior mutators to the state with a fraction- % mutators. In fact,
we may simply interchange«— 1—xandu, < u_ in Eq.3.4 which results in

L R | ST RACE)) (35)
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Within the framework of A1-A3, the population may also maiege, non-local transi-
tions to the “absorbingX = 0 andx = 1 states if the mutator or wild-type strains produce
an advantageous mutant which is marked for fixation. Thiegise to

T.
% = XU, 0eS (3.6)
T'%ss = (1-X)p-aes (3.7)

The probability that the population undergoes no changendw timestep is simply
what remains
To

T 1—T(X) = T3(X) — Tiix — Tioss (3.8)

These transition probabilities allow us to write down thealbed forward and backward
Kolmogorov diffusion equations which describe the timeeategent probability density
P(x,t) that the mutator frequency isat timet. The forward equation reads:

AP 10+ T 0] Pl
+ ﬂ@+%WU+$M+R&—%P&—%M
—  [Trix(X) + Tioss(¥)] P(x, 1) (3.9)

A pictorial representation of this equation can be seengn34. Taking the continuum
limit and plugging in the specific expressions for transitpyobabilities, we obtain for
the forward equation

2
% = %%[x(l—x)P}
b )1 a1 -9)] o (1P
— Naesxpuy +(1—x)u_|P (3.10)

wheret has been rescaled BY/r so that the units are now “generations.”

Each of the three lines in EQ.3.10 has a straightforwardiphlmterpretation.
The first line represents “random genetic drift.” The secbne represents the muta-
tional load of the mutator. The final line represents the ayéof probability from the
open intervak € (0,1) due to beneficial mutations that instantaneously sweep.

An approximation to a limited version of EQ.3.10 is solve@ppendix D. How-
ever, we can write an equivalent “backward Kolmogorov” égprawhich is often more
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Figure 3.4: Diagrammatic representation of ISLA. The blaakws correspond to local
transitions representing random genetic drift. Althouglse transitions are locally
symmetric they are smaller near the- O,N, leading to the accumulation of probability
at these endpoints. The blue arrows represent the fixatimeeps of mutators, which
ISLA caricatures as an instantaneous, nonlocal jump totdters= N. Likewise, the
red arrows correspond to the instantaneous fixation of aficealenutation in the the
non-mutator (wild-type) background, which drives the nioit@xtinct.
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mathematically convenient than Eq. 3.10. Definia@,t) as the probability that the
mutator has beelost by timet, given thatx = x, att = 0, we find

1 1
G(Xo,t +At) =T G(Xo — Nvt) +T1G(% + Nvt) + ToG(Xo, 1) + Tioss(%o) (3.11)

The backward equation is especially useful in its steady $tam. DefiningG(xo,t —
) = Gw(Xo) and taking the continuum limit, we obtain the ODE

1 d?

- (m—u)[l—ae(l—S)]&Goo

+NU_QeS (3.12)

— Nu+aesl

3.5.2 Solution and analysis without wild-type mutations

We return for now to the simpler cage = 0, deferring until later the more gen-
eral situation. Eg.3.12 can be solved exactly in terms o¥thétakerM function[AS65].
This exact solution is however not immediately instruc{i@ad in any case cannot be
generalized to the case of finite wild-type mutation rates simpler in practice to solve
Eq.3.12 numerically (see Supplementary Information) #iso possible to extract some
useful information directly from the differential equatio

First, we note that a simple analysis reveals when the mutdiele will be

favored. For notational convenience we define the constants

py [1—ae(1—9)]

C = UiQes

According to ISLA, the mutator is neutrédr all p; whenGe (%) = 1—Xo. Plugging
this into Eq.3.12, we find that this requirBs= NC, or

crit __ 1 1

9 T 1r(N—1s_ 1+Ns (3.13)

First note that Eq.3.13 is equivalent to our heuristic guess3.3, ifNs> 1. Exam-
ining Eq.3.13, we see that conditions which favor the emargeof mutators (at least
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Figure 3.5: Behavior near the transition from favored téedisred mutators. Wheme is
greater than a critical valtmg”t, the mutator allele is favore®( > 0) for small enough
1. Our analytic approach (ISLA) predicts that the transit@ours afNs+ 1)aS™ =
1, which agrees extremely well with simulation data. ParanseareN = 5000 s =
1/120 u— = 0,6 = 0. The number of available beneficial mutations are, in ooder
decreasing mutator success: 10, 5, 3, and 1.
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Figure 3.6: Comparison of simulation, numerical solutiércq.3.12, and the analytic
approximation Eq.3.16. The exact numeric solutions to 8WA Eq.3.12 for different
N converge to the analytic approximation Eq.3.16 wiNs, > 1 (left). Solutions to
Eq.3.12 show, in agreement with simulation, tBafs depends om. /srather tharpi,
ands seperately (right). Parameters are those used in Figs3.3.2,

when the resident mutation rgte is negligibly small) are large population size, potent
mutations, and a relatively large fractiomg of sites that would be beneficial if mutated,
perhaps due to an environment to which the organism is ndtadgelpted. The fact
that largedae favors mutators is obvious. The dependencd&laa simply a result of the
fact that as population size increases, the neutral fixgtiobability 1/N becomes an
easier benchmark to exceed. The qualitative dependensé&aitso straightforward in
hindsight, given A1-A3: increasinglincreases the fraction of beneficial mutations that
achieve fixation, but does not affect the fate of deleterinusgations, all of which are
treated as lethal. Also notice that for sufficiently laige¢he mutator is always favored,
although its fixation probability may be very small: it is éaed only in the sense that it
fares better than a neutral allele whose fixation probghdit/N. Fig.3.5 demonstrates
the success of Eq.3.13 when /s < 1. The failure of ISLA for largent;. /s will be
discussed later. We next develop approximate solutiong|t8.[2, withu_ = 0.

Strongly Favored Mutators (NS, > 1)

In this regime, we exped¥iy to increase rapidly witlx,. Therefore, we expect
the loss probabilityG.. (X,) to decrease rapidly, and/(l1 — %,) to differ significantly
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from 1 only whenG., ~ 0. Then, forx, < 1, we can approximately take-1x, — 1,
and the solution to Eq.3.12 wifla. = 0 is simply

Go(Xo) = € N® (3.14)
, VvB2+4C-B
- 2

Our approximation is self consistent if inde&gd, decays rapidly, i.eNz> 1. This
solution does not satisfy the boundary conditiorxgt= 1 since our solution is only
valid for X, < 1. Beyond this region the structure of the solution is momaglcated,
which need not concern us here since fixation is essent@hyin this regime. We then
have for the fixation probability of the mutator

Prix(%o) = 1—e 2% (Nz> 1) (3.15)

A comparison with Eqg.3.2 shows that, according to A1-A3 amdhie limitNz> 1,
the mutator effectively behaves like a simple advantageautsint with a well defined
selection coefficien, = z

VB2 +4C—-B
S“:z:#m%[\/(1—ae)2+4aes/m—(1—ae) NS, >1

(3.16)
A comparison of the stochastic simulation data with bothmeical solution of Eq.3.12
and this approximate analytic expression (Eq.3.16) isrgime=ig.3.6. We see that our
approximateS, /s only depends o /srather tharu ands separately, as we noted in
the Simulation Results section.

For smally, < aes, C > B? andS, ~ +/C = \/[i; 0gS, and thus only advanta-
geous mutations are relevant to mutator success. Thig (educh is directly supported
by Fig.3.10 to be discussed later), shows that in this regiam&lom drift, and not dele-
terious mutations, is the only check on mutator success.

In the complementary regime whefg. >> aes, |S,| approaches its maximum
valueS;; with respect tqu. Here, the solution is the same as if the second derivative
term, which represents random drift, were dropped from HG.&ee below). Therefore,
random drift is irrelevant in this regime and deleteriougtations alone limit mutator
success, giving

C
S=g~ S (3.17)

1-ae
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The factor in Eq.3.17 multiplyingis the ratio of beneficial mutations to deleterious and
lethal mutations. In real biological populations, thisgas certainly less than one, and
henceS;, < s.

Marginal Mutators (NS, < 1)

We can readily make progress in this regimdlji, > 1 andN?p. des>> 1. In
this case, th® andC terms dominate Eq.3.12 and the solution®y is simply

Goo(Xo) & (1= %)V (3.18)

with a fixation probabilityPrix(Xo) ~ N%S;. In obtaining this solution, we dropped
the second derivative term in Eq.3.12, which could in ppleintroduce large errors
nearx, = 1, whereG”(x,) from Eq.3.18 is in fact large. Nonetheless, it turns out that
Eq.3.18 satisfies the boundary conditionxagt= 1 and thus remains a valid leading
order approximation for ally. SincePiy is comparable to AN in the present marginal
case, we cannot interpr§, as a mutator selection coefficient here. Rather, we have
Prix = Xo(14+ NS, /2), from which we obtailN§, = 2“‘3(%‘}?_1, independent ofi, .
The numerator of this expression makes clear the agreenignour previous estimate
for the critical value ofoe given by EQ.3.13.

The case wherblu, < 1 andNS, < 1 requires a more lengthy analysis, and is
presented in appendix B.

3.6 Effect of wild-type mutations

We now turn our attention to the more complicated case wheatous in wild-
type backgrounds are allowed, i.g.. > 0. We begin by solving Eq.3.12 fqr_ > 0
in the largeNp.. limit, where the second derivative term can be neglectedrkiivg
in this limit simplifies the mathematics, and is sufficient fitustrating the points that
we intend to make. An approximation that incorporates tltese derivative term and
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Figure 3.7: Small effect of mutations arising in wild-typadigrounds. ISLA predicts
that these mutations will become important in the weakegffieutator regime defined
R(1-ae)

by ~Naws <1, whereR= p, /u_. However, the simulation data show that mutations

in wild-type backgrounds sometimes have a negligible irhpaen in the weak-effect
mutator regime. In the panel on the rigrﬁﬁg—e‘f) has the values 18, 3.6, and .18,
respectively, af is increased. Accordingly, ISLA predicts a decreas§jnbut S,
did not change in simulations. The panel on the left showslibaeficial mutations in
wild-type backgrounds eventually decre&efor large enoughR, though the decrease
here is smaller than what ISLA predicts. Parametersare.4,s=1/120,6 = 0, and
U+ /- = 100 (right).
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Figure 3.8: The distributions of fixation and loss times fases wher®;x ~ 1%. The
left (right) column shows the distribution of fixation (Igssmes. The top row corre-
sponds tgu_ = 0 and the bottom row t@i, /- = 100. Notice the logarithmic scale
and the extremely long tails on thgssdistributions. The twaqssdistributions have the
same meal)ss~ 40 generations, which is of the same ordetgag = Nx,In(1/%o) ~
92 generations. Thigix distributions have meansy ~ 1300 generationgu_ = 0) and
trix ~ 1400 generationsy; /U = 100). Sincetsweep~ '”(2'5) ~ 800 generations are
required for an advantageous mutant to sweep the populatiersee that 506 600
generations passed before a beneficial mutant destineddtioh was generated. Thus,
when mutator fixation occurs, such beneficial mutations ypeally generated early
compared tdmu = (asi:NXp) ~1 = 3 x 10* but late compared ttyrist. Sy is deter-
mined mostly by the probability that the mutator survives tbng drift period and
this is barely affected by wild-type beneficial mutant fipatievents. Parameters are
N=10s=1/120a = .4,% = 1046 =0, u, = 10~3. Note that the initiabverall
mutation rate in the wild-type population is 19@hat in the mutator subpopulation.
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random drift is included in appendix E. In the lafyg. limit,

d
0= - (H+—H7)[1—ae(1—5)]%ew
— Nu+aesl_°°X0
Nl Ce

This first order, linear ODE can be solved by standard methbDe§iningR= . /u_,
we obtain

Prix ~ NXoS

Oe 1 Oe(Ns+1) -1
1—ae R(l—ae)

) 1+O(x§,) (3.19)

The prefactor in Eq.3.19 is identical to our previous exgi@s for they_ =0
case (Egs.3.17,3.18) when< 1. Recall that the sign of the quantiig(Ns+1) — 1 ~
Naes— 1 determines whether mutators are favored (Eq.3.13). Tareremutations in
wild-type backgrounds decreaBgx when mutators are favored aimtrease By when
they are disfavored. This latter effect occurs because tingtés generally a losing
strategy wherog(Ns+ 1) — 1 < 0 (see Eq.3.3): the small persistent cost of deleterious
mutations exceeds the huge occasional benefit of a selsetgep. Thus, in this regime
the wild-type aids the mutator by participating in this logstrategy.

Eq.3.19 also determines wheis sufficiently large to ignore mutations in wild-
type backgrounds. In other words, Eq.3.19 allows us to defataral “strong-effect”
and “weak-effect” mutator regimes. For weak-effect mu&t@% ~Naes> R,
and Eq.3.19 reduces Bix = XoR, which isindependent of NThis is the same as Eq.3.1
for X, < 1. Thus, in this regime, ISLA predicts that mutational cotitps with the
wild-type is the dominant factor limiting mutator fixatiosnd we recover the explicitly
frequency dependent heuristic picture. In the oppositemeé of strong-effect mutators,
regardless of the sign afe(Ns+ 1) — 1, we recover oup— = O result (Egs.3.17,3.18)
where deleterious mutations are the dominant factor limgithutator fixation.

These are pleasing mathematical results that seem to likcopposing heuris-
tic viewpoints. However, they do not always match simulagion the weak-effect mu-
tator regime. Fig.3.7 (right) shows numerically generaelditions to Eq.3.12 (Eq.3.19
gives the largeu limit of these curves) as compared to the outcome of sinuuiati
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The disagreement is obvious: ISLA drastically overestenale effect of the mutations
in wild-type backgrounds. Fig.3.7 shows that beneficialatiahs in wild-type back-
grounds eventually decreaSg for large enoughR, though the decrease here is smaller
than what ISLA predicts. The small effect of these mutatipessisted even when we
used parameters such that the wild-type subpopulationrgetkemutations at a rate
N(1—X,)u- that was equal to or even greater than the correspondindlsgte; in the
mutator subpopulation. Although we do not fully understéimd discrepancy, we can
point to its source: There is a subtle error involving thelfieam of both Eqs.3.10,3.12
which states that during a single time-step, the mutatomh@®bability(1 — X) u_aeS
of becomingnstantlylost. This is incorrect. The correct statement is {iat X) u_ aes

is the probability that during one time-step, the wild-tygenerates a beneficial mu-

tation that will eventuallyescape loss to random drift. Such mutations sweep through

In(Ns)
3

the population during a mean time intert@lee p~ generations which is typically
much longer than the time to extinction of a mutator due talcam drifttgyis; ~ In(N)
[Cro70b]. A more detailed picture is gained by examining dirstribution of fixation
and loss times of the mutator allele. Fig.3.7 shows thatetligstributions are barely
affected by _, suggesting that these mutations play a very small roleemthltator
fixation process.

Despite these complications, for sufficiently lagy&weepis small, A1 becomes
a better approximation, and ISLA more closely matches satmaris. An example of
this agreement is presented in Fig.3.9, wrerel /3 N = 100Q a. = .4,R= 10. Thus,
ISLA provides accurate results except in the weak-effectatou regime with suffi-
ciently smalls. Unfortunately, we do not have a quantitative sense as tolamye s

must be in order to achieve accuracy. We plan to addresssgus in future work.

3.7 Comparison of ISLA to simulation

We now return to the case_ = 0, where the results of ISLA agree with sim-
ulations whenR = i, /u_ is sufficiently large. Figs.3.5,3.6 illustrate the agreame
between ISLA Eq.3.12 and simulations, wheneuer's is not too large. However, for
larger ;. /s, we see the emergence of two qualitatively distinct disanepes between
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Figure 3.9: Simulation data for very largeWhens=1/21, ISLA greatly overestimates
the the effect of mutations in wild-type backgrounds, whsrthe agreement is much
better whers = 1/3. Parameters amfé = 1000, /u- = 10,0e=.4,06 =0
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Figure 3.10: The role of non-lethal deleterious mutatioie. “turned off” deleterious
mutations, both in simulations and in ISLA, by setting théetlrious mutation rate to
zero and leaving the beneficial mutation rate unchanget).(lefie difference between
these results and the corresponding owéh deleterious mutations is plotted on the
vertical axis on the left. Fop /s < 1, deleterious mutations have the same effects
in ISLA EQ.3.12 as in simulations (left). ISLA essentiallgats deleterious mutations
as lethal (A3), instead of merely having a selective disathge—s. We tested this
approximation directly in simulations by varying the pastersa andd while holding

the productr (1— d) = ae constant (right). Parameters are 1/120,N =500Q u— =0
anda = .4,0 = 0 (left only).
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ISLA and simulations. Fou, /s < 1, a relatively small difference accumulates, whereas
whenp /sreaches values @(1), a drastic difference emerges. In this section, we an-
alyze the sources of these discrepancies.

The broad reason that ISLA and simulation do not agree fopralls simply
that A1-A3 and the resulting transition probabilities ardycan approximation of the
complex stochastic process executed by the simulationkeebh strictly speaking, the
simulation does not even undergo a Markov process with c¢spdahe variablex;t:
one must also consider the fitness distributions of the sultlptions in order to write
down the exact transition probabilities. When viewed thas/wit is perhaps surprising
that A1-A3 work as well as they do. We now specifically point the errors introduced
as a result of A1-A3, all of which are associated with mutaigrocesses.

A3 is accurate whenp, /s<1

We first analyze the way that ISLA treats deleterious mutetiovhich includes
both A3 (which treats all deleterious mutations as lethat) A1 (which does not allow
deleterious mutations to arise in the course of fixation dfeaolved” clone). Fig.3.10
(right) compares simulation results from two sets of patansavith identical beneficial
mutation ratesdept ) but different allocations of lethal and deleterious miotag via a
difference in the parametér. The results are essentially identical as longiags < 1.
This shows that as far as mutator fixation is concerned, muat&bf effect—s can be
considered lethal, i.e. A3 is accurate in this regime.

Al is accurate whenu, /s<1

Furthermore, we can test all the effects of deleterious timns by removing
them from both the simulations and ISLA: the deleteriousationh rate is set to zero
whereas the advantageous mutation rate is left unchanged. résults of this case
are presented in Fig.3.10 (left). Predictalfy, increases monotonically witp. in
this case (data not shown). To compare the effect of detetenmutations in simu-
lations against those same effects according to ISLA, ER,3ve plot the difference
AS,; = S no—deleterious— Su,deleteriousPetween results with deleterious mutations “off”
and those with deleterious mutations “on” in the two cases séé in Fig.3.10 (left) that
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AS, from ISLA matches that from simulation unfi, /s — 1. Also note than\S, ~ 0
for u; /s< .1, illustrating the negligible effect of deleterious minas in this regime.
Thus, both A1 and A3 are accurate whep/s < 1.

A2 failswhenp, /s<1

Since Al and A3 remain valid in this regime, the mild discrepabetween sim-
ulations and ISLA must originate in A2, which handles benaffimutations. Specif-
ically, the fraction(1—s) of advantageous mutants that are lost to random drift are
treated as neutral mutators which can later give rise tofte@enutants that may sweep
through the population. In some sense, this overstatestieatal of these mutants be-
cause, in fact, they are typically lost to random drift witlai few generations [Cro70b].
There is no simple remedy for this deficiency in A2, but anraliéve, which we denote
A2*, is to immediately kill these advantageous mutants, thetedating them equiva-
lently to deleterious and lethal mutants. Whereas A2 ovenesesS, in this regime,
A2* underestimates it. Thus, the simulation data is boundedhdytedictions of A2
and A2 whenp, /s< 1. See Supplementary Information for a graphical compariso
and further discussion of A2

Al fails when i, /s~ 1

We now turn to the large discrepancy between ISLA and sinaudatwhenu, /s
is O(1), as seen in Fig.3.10. Roughly speaking, this occurs whetirtescales of
(deleterious) mutation and selection become comparabléid regime, members of an
expanding “evolved” clone are “lost” due to deleterious atiains faster than they are
“added” due to selection. Consequently, the fixation prditabf an advantageous mu-
tant in a homogeneous genetic backgromris) < sand Al fails. Semi-quantitatively,
we expect this effect to set in whéh— ae) /s~ 1. Theae dependence can be seen
by comparing Figs.3.5,3.6.
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Table 3.2: Values of relevant parameters for non-mutatois.icoli, as reported in
various references. We assume that all mutation rates & gfeater in mutators.
Mutation rates are per genome per replication. “Selectaefficient” refers to that of
advantageous mutations only.

Reference Hoen Hdel U §
[HSHK06] 20x 10’ 0.054
[LRST91] 28x10°10 0.10
[PFMG07] 2x10°8 0.023
[1S01] 4%x107° 0.02
[RAVGO2] 59x10°8 0.0235
[KL96] 1.9%x10°%

[KEW99] 1.6x10°3

[TMGR97] 5x 107

[BDK +00] 5x 1076

3.8 Comparison to experiment

As mentioned previously, the spontaneous emergence otonatieles has been
documented in laboratory evolution experiments Vtholi [SGL97, SDS 02]. In this
experiment, mutator alleles witR =~ 100 became fixed in 3 out of 12 independently
evolving E.coli populations within 10,000 generations. The total numbemnaofators
generated among 12 lines during 10,000 generations is dppately Ne x U x (10% x
12), whereU is the mutation rate into the mutator state awdis the effective pop-
ulation size [WG01, WGSV02]U has been measured betweer 50’ [TMGR97]
and 5x 107 [BDK T00], and we find\Ne = 6.3 x 10’ (see Appendix C). Since three
of these mutators achieved fixation, the experimental txepirobabilityPsix expt IS ap-
proximately given by 3(Ne x U x 10* x 12) and bounded by

7.9% 1078 < Pyiy expt < 7.9x 1077 (3.20)

This value is 5-50 times that of a neutral allel¢X).

In order to compare this value to the predictions of ISLA, wecdh experimental
values for the parametefs, , de, ands. It turns out that the equivalent set of param-
eterss, the beneficial mutation ratgyen; = Qell+, and the deleterious mutation rate
Hdel+ = (1— de) - are more readily available in the literature. A survey ofsthea-
rameter values is presented in table 4.1. Presently, weheskeneficial mutation rate
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Upen = 2.8 x 10~8 and selection coefficiert= .1 obtained by Lenski and co-workers
[LRST91]. Following reference [KEW99], we takeye = 1.6 x 1071, These muta-
tion rates are based on the measured wild-type values antha$s= 100. Since
Neldel + > 1, Néuben+s>> 1, andNe0es < R, these populations are in the drift-less,
strong-effect mutator regime. Therefore, the appropfiateula is either Eq.3.18 or
Eq.3.19, which give the same results. Plugging our paranvalees into ISLA, we
obtain
Prixjsla = 1.8 x 1078 (3.21)

in reasonable agreement with the rough experimental valgs3(20). Other choices for
parameter values, particularpypen, would result in less impressive agreement with
experiment.

The interpretation of “beneficial mutation rate” deservasetul attention. In bi-
ological populations, mutants with a spectrum of benefiftagcts are generated at spe-
cific ratespppp(s)ds wherep(s) is likely a decreasing function af[Orr03, EWKO7].
The weakest mutants are generated frequently, but areelyntil achieve fixation be-
cause (i) their intrinsic fixation probabilityt ~ sis small, and, (ii) in reasonably large
populations, several of these mutations exist simultasig@nd thus compete with one
another. Conversely, stronger mutants are seldom gedefause likely achieve fixa-
tion. These conflicting influences result in beneficial motet of some intermediate
sizes[p(s), N, Upp] typically achieving fixation [GL98, DFM07, HSHKO6]. Theseum
tants are generated at a per capita (@&~ Hpp Js P(S)ds The dependence @fyen
ands’on N has been theoretically predicted [GL98, DF07] and direotigerved ex-
perimentally [PFMGO07]. Thus, whenever the population sizkarge enough for the
aforementioned effects to play a strong role, the microscpgrametersgi,, andp(s)
result in themacroscopic paramete&and U, These are the parameters that we list
in table 4.1 and plug into our model.

It is also interesting to note that, according to these erpartal parameters,
Naes= 1.1, indicating that thesE. coli populations only very marginally favored mu-
tators. This could explain why no mutators fixed during thetra&b, 000 generations:
Naeshad decreased below the threshold value of one as fewergssigdtent, beneficial
mutations became available.
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Due to the relatively large population sidg = 6.3 x 10’ and the anticipated
small fixation probability, we cannot obtain an accurate sneament ofPsix using
our simulation method. However, for these experimentadupatersy, (1 — de)/s=
Hgel+/s is O(1) and therefore we expect the data to lie in the decreasingopoof
curves such as Fig.3.6. Thus, our ISLA estimaté’@f is possibly much larger than
what simulations would yield. We briefly return to this issa¢he Discussion.

3.9 Discussion

3.9.1 Relation to Previous Theoretical Work

As mentioned in the introduction, there are many existirgpthtical models of
mutator evolution. In this section we briefly review the ¢ixig body of knowledge and
place our present work in this larger context. Studies aseusdised roughly in order of
increasing similarity to our present work.

Models with explicit environmental change

Leigh [LJ70] endeavored to calculate the mutation ratertfeatimizes the growth
rate of its corresponding modifier locus. An infinite popigdatwith this wild-type (“res-
ident”) mutation rate is evolutionarily stable in the setis& it cannot be invaded and
swept by any modifier of mutation rate. Such an evolutiopasibble strategy (ESS)
is referred to as the ESS mutation rate. Leigh developed plsitwo locus, two al-
lele model of mutator dynamics in an environment that redylternates between two
states. One locus is under selection, and its two alleleslggenately favored in the
two different environments. The second locus is not underctiselection and merely
modifies the mutation rate at the selective locus. The dycsuwmi the mutator allele
are deterministically governed by two effects. First, intiagely after the environment
changes, the mutator increases its frequency because #iepsarpulation of mutants,
which is favored in the new environment, is over-represgimtéhe mutator background.
This favors the higher mutation rate. Secondly, after theamisweeps through the pop-
ulation, the frequency of the mutator decreases due to iaseocwith the deleterious
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Figure 3.11: The scaling behavior of Eq.3.1 and ISLA qualitatively different. If

the initial number of mutatorblx, is kept constant whilé\ is increased, then ISLA
predicts thatPsx remains invariant, whereas the frequency dependent Egr8dicts

a large change. Simulations are in better accord with ISlaktBq.3.1. These scaling
predictions could be experimentally tested by observingtivbr the “threshold” number

of initial mutators changes witN. Here, we have defined the threshold as the number
of mutators for whichPsix = 1/2, and depicted these values with vertical dotted lines.
Parameters are = .4,0 =0, u, =s=1/120.
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mutants that it generates at its new fitness peak. This favaesr mutation rate. The
cycle repeats itself many times, and Leigh finds that the lengn ESS mutation rate
is equal to the rate of environmental change. Over the y#assbasic model was im-
proved by incorporating the effects of timing of environrt@mthanges, varying selec-
tive coefficients [IMIS89], intermediate genotypes [TTO@hd multiple mutable sites
[PLO6].

While these models doubtless provide valuable insight aeidain biological
scenarios, they are rather orthogonal to our work. Thrderdifices seem especially im-
portant. First, most obviously, mutator success requepsated environmental changes
in these models. In contrast, our model shows that envirotehehange is onlyec-
essaryfor mutator fixation insofar that it provides a rationale faving a population
displaced from its fithess peak. Secondly, they endeavanddliie global ESS mutation
rate whereas we focus on quantifying, via fixation probahilhe probabilistic result of
a single competition experiment. While full knowledgeRfx (N, s, a, iy, U, d) im-
plies the value of the ESS, the converse is not true. Thitkdgir mechanism of mutator
success is very different from ours. Whereas they rely upenatternating selective
effects of existing mutants to boost mutator frequencyoodel analyzes the dynamic,
stochastic interplay between random drift, deleterioutatons, and advantageous mu-
tations in a constant environment. We propose that, on th@eylbur model contains
fewer special assumptions than models with explicit emritental change. Regardless
of whether fluctuating or constant environments are morkgically informative, our
results constitute an important null model of mutator figati

Constant environment models

Work by Tanaka and co-workers [TBL0O3] also involves a chaggnvironment.
However, unlike the models described in the previous sectleirs contains no alter-
nating selective effects: when the environment changesntitations acquired during
the previous environmental cycle simply become neutralisThs in our work, all bene-
ficial mutants are generateé novo In further similarity with our work, they pursue, via
guasi-stochastic simulations and analytic approximatian understanding of the long
term mutator behavior by concentrating on a single enviremtad cycle, i.e. by exam-
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ining populations in a constant environment. These autiverg interested primarily
in the case whemMNx,u: < N(1—X,)u—, where the fixation of mutators is in some
sense unlikely. With this in mind, instead Bfix, they measure and calculate the (much
larger) probabilityPyain that the initially rare mutator increases its frequencyhsyend
of a “time cycle.” These cycles are defined to end when an ekpgrclone in a wild-
type background reaches a sizeQ{iN), at which point the simulation is halted. Their
most interesting result is th&ain is substantial even whex,p < N(1—Xo)p—. In
other words, mutators can still “break even” if the wild-€/packground generates the
first beneficial mutation, which is important if the enviroam changes. Nonetheless,
without environmental change in their model, mutators aiNlays be doomed unless
they are the first to generate a beneficial mutation. Furtbernthey model birth and
death processes deterministically, in a way that precled#sction. For these reasons,
our Psix and theirPyajn are truly distinct quantities, and no direct comparison ban
made with our work.

We next discuss a simple calculation by Lenski [Len04] baseiddirect mutation-
selection equilibrium of the mutator subpopulation. If teeminant processes occurring
in the population are mutation into the mutator state andtie of deleterious muta-
tions by mutators, then the frequency of mutators appraaahequilibrium value. This
frequency is easily calculated if, as in A3 of ISLA, deleters mutations are treated as
immediately lethal:

U N U
1—ae)(ur—H) i (1—ae)

The time taken for the population to reach this equilibriiates as well as a much

Xeq:<

more careful calculation ofeq, was investigated in reference [Joh99b], but presently
we assume that this simple estimate is sufficient. In equilib, beneficial mutations
therefore arise at a raléxeqli;- e from the mutators, and raté(1 — Xeq) U—ae from the
wild-type. If all beneficial mutants of equal effect have slaene probability of achieving
fixation, regardless of whether they originate in a mutatavitd-type background, then
thefraction of substitutioninked to a mutator is approximately
U I U

pi(l—ae) p N H(1—ae) (3.22)

Plugging in reasonable values, Lenski [Len04] finds thdt% of substitutions should
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be linked to mutators. Furthermore, given that each ling.afoli in experiments from
reference [SGL97] generated 10-20 substitutions, thisuéation is impressively con-
sistent with the observation that B lines became mutators.

In order to relate this approach to our own, we must reintcecilynamics into
the picture. We can interpret the quanb’rt%}t as the conditional probability that a muta-
tor achieves fixation, given that a selective sweep occuiaglits lifetime. Our quantity
Psix is this conditional probability multiplied by the probabylthat a selective sweep
occurs during the lifetime of a mutator. Assuming that setecsweeps and death each
occur as Poisson processes with ratgsaes and (u; — p-)(1— ae), respectively, it
is straightforward to show that the probability that at temse selective sweep occurs
before death is given by

N OeS N Oes -1
(1—ae)(Hy — ) ( (1_09)(U+_U))

Multiplying this expression by the conditional probaly'ljt“ﬁ ~ XR, we obtain Eqg.3.19.

Thus, the approach suggested by Lenski [Len04] is the équith version of ISLA, in

the limit where mutational processes occur frequently ghda overwhelm random ge-

netic drift. Thus, remarkably, even though this approaamis the problem of mutator

fixation in terms of competition with beneficial mutationswiid-type backgroundsR

cancels out of the solution in the strong-effect mutatoimegR > Naes/(1 — de).

It is also worthwhile to examine the conditions under whiahexpect the equi-
librium assumption to hold. Let us imagine that an evolugaperiment is conducted
for T generations, during whicH substitutions occur. ISLA predicts that the expected
number of mutator fixations N PsixU T, whereas according to Eq.3.22, the equilibrium
approach yields a value equall-ﬂdﬁ. Setting these two values equal to one another, and

plugging in (from EQ.3.17Psix (% = 1/N) = slf’ge, we obtain

a _
©  ~NpaesT

H = NsIT
17

- Ue

This expression merely states that the (mostly wild-tymguation is in the “successive
mutations regime”, i.e. only a single beneficial mutatioregis at a time. Alternatively,
one could imagine turning this argument around and askireg Ry must equal given
that the equilibrium approach is valid and that the popataticcumulates substitutions
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“one by one”. In that case, one would, remarkably, arriiggtx, = 1/N) = aes, which
(for smallae andN§, > 1) is what we obtained earlier (Eq.3.17) by more sophistitat
methods.

Turning to another study, Tenaillon and co-workers [TT199] investigated,
via stochastic simulations and very brief analytic argutsemulti-locus mutator evo-
lution in a constant environment. These extensive simaratare a generalization of
earlier work [TRMS97] and are partly amenable to comparison with our work. Some
noteworthy differences with our simulations are that thearsa larger range , they
have a more realistic implementation of mutation, and, nmgortantly, they allow
flux into and out of the mutator state. Thus, mutators are maveolutely fixed during
their trials, which necessitates a different terminationdition than ours: They declare
a trial “over” when the population reaches its maximum figyeshereas we declare it
“over” when the mutator is completely and permanently fixetbet. Upon termination
of the trial, they consider the mutator “fixed” if its frequsnis > 95%. They measure
the fraction of trials that terminate with mutator frequenc95% and denote this quan-
tity the “frequency of mutator fixation,” which differs fromur Psix because of reasons
discussed below.

One important consequence of their method is that the tataber of mutators
generatedduring a trial varies with the choice of parameters. Thisesduse each
replication event presents a chance for the creation of ametator, and the number
of replication events that occur before termination ckeddpends oM, s, ., u_, and
the number of mutational steps required to reach the peaks,ehchange in the value
of any of these parameters may alter the “frequency of mutixttion” simply because
it changes the number of mutators that are typically credtethg the trial. OurPyiy,
on the other hand, remains invariant under such changeslland ais to filter out this
background effect. Their system is doubtless a more li{eaaicurate representation of
biological reality, which has its virtues but also majortspsvhich we discuss below in
the context of two important examples.

First, they measure that the “frequency of mutator fixatioCreases withN.
This is an interesting and potentially practical result,their method makes it very dif-
ficult to determine the extent to which the increase is sintlig the background effect
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that more mutators were created in the larger populati®@isA] on the other hand, un-
ambiguously states that wh&f, >> 1, Psjx for a single mutator becomes independent
of N. Therefore, ISLA predicts that the dependence of mutatatitix frequency on
population size observed by those authors is entirely driyethe simple background
effect.

A second example has even more dramatic conceptual comsaxpue These
authors ask whethé¥iy is determined by the number of potentially advantageousimut
tions (steps away from the peak) or merely byridwe that such mutations are generated.
In order to investigate this question, they devised two eé®mulations. In one set,
there were 12 available advantageous mutations, acoessidrate of 108 each. In the
other set, there was a single mutation of the same effeasaitile at a rate of 1210 8.
The explicit difference between these sets of simulatierthé number of steps to the
fitness peak, but an additional, implicit difference is tthegt set with 12 beneficial mu-
tations runs for more generations. Therefore, more mgatme created in that set of
simulations. Now, ISLA predicts th&;x depends only on the advantageous mutation
rate, and that therefore the two simulations should result insdr@ePsix. In seeming
contrast, they found the “frequency of mutator fixation” tjual approximately5 for
the first situation and approximately zero for the seconds dhservation led them to
conclude that mutators succeed because of their advamtagpidly creating genomes
which carry multiple beneficial mutations, which is fundartadly different from our
conceptual picture. We propose that this simulation finagimght be explained by the
simple background effect that far more mutators are createrbute to acquiring 12
beneficial mutations than to acquiring a single beneficialation. ISLA completely
neglects multiple beneficial mutations, and its succed$, thear the peak (Fig.3.5) and
far from it (Fig.3.6), suggests that the multiple mutatieffect proposed by those au-
thors in fact plays a very minor role in mutator fixation. Hewg it should be noted that
we did not investigate cases where the mutatdaveredand only a single beneficial
mutant is available. It could be the case that multiple berafmutations in the same
genome are implicitly important in that they are what alldtvs mutator to overcome
competition with wild-type beneficial mutations. This hypesis should be explored in
future work.
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Whereas reference [TTLND9] focused almost exclusively on stochastic simu-
lations, work by Andre and Godelle [AGO06] relies almost estvely on analytic meth-
ods. In work that bears many similarities to ours, those@wstbstudied, mostly via an
analytic approach, the long term trajectory of mutatior r@tolution. A key insight
of theirs is that, in a finite asexual population, the frequyeof a mutator undergoes
strong fluctuations, with values covering the entire ramgmfzero initially to one upon
a selective sweep by a linked locus. Thus, they point outstualies which assume that
mutators are rare during all generations, either becauséimte population size [LJ70]
or sexual recombination [Joh99a], are qualitatively défe than finite asexual popula-
tions. Andre and Godelle remedy this problem by calculativegixation probabilityof
an initially rare mutator. We now briefly summarize their hreed of solution and show
that, with minor modification, it corresponds to tRgt — oo limit of our results. In what
follows, we take some liberty in changing their notation asthg continuous time.

Their initial condition is identical to ours: a clonal poptibn is seeded with a
small number of otherwise identical mutators. They thenp@rarily ignore beneficial
mutations and analyze how tlexpectednumber of mutators changes with time. In
agreement with reference [Joh99b], they find that after dimgatime 1/s, the mutator
subpopulation declines exponentially, IEx(t)] = xoe~ (H+ ~H-)(1-0e)(t=1/) They then
construct their key equations (their Eq. 19)

%Pﬁx(t) = (1_Pfix(t>_Hoss(t)>'Nﬁaes‘%'E[x(t)]
%Hoss(w = (1—Prix(t) — Ross(t)) - Nudes- % (L-E[x(1)])

We have written these equations in a somewhat peculiar walyreplaced their sym-
bol K with Nuaes in order to facilitate translating between our notation dneirs.
These equations are very similar to ISLA in that they repreiee instantaneous fix-
ation of beneficial mutations which originate from a time eegent mutator subpop-
ulation. However, there are two disturbing features abbesé equations. First, they
assume that the only cause of mutator extinction is benkfizigations in the wild-type
background. In fact, mutators also become extinct due tin¢iy mutational load and
(if) random drift. In their equation€[x(t)] declines exponentially, but this decline er-
roneously does not contribute Ryss Both (i) and (ii) cause an overestimate Ryf.
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The second disturbing feature of these equations is theaagpee of expectation val-
ues on the RHS. With this move, those authors replaced tlimnawariablex(t) with

its mean value, which is a very substantive approximatiome distribution ofx(t) is

in fact diffusing, i.e. random drift is in fact occurring. Mertheless, we expect that
their representation of(t) as a deterministic quantity to be approximately valid when
the timescale of this diffusion is slower than the timessalee to mutation and selec-
tion. Unlike our approach, theirs cannot quantify when gage to neglect random drift.
Looking back to Eq.3.12, we see that the diffusive process, iandom drift, can be
neglected whemN i, (1 — de)s>> 1 andN?p, des > 1. It just so happens that these
criteria will often be met in microbial populations.

We now explicitly demonstrate some important parallelsvieen our work and
that of Andre and Godelle in the larddu limit. Since, in our model, deleterious muta-
tions are as strong as advantageous ones, the best comganmsade with their “ruby
in the rubbish” hypothesis. The relevant solution is thejrAS

Nuaes M+
1—(1—Npaes)-e (He—H-)(1-ae) 4

Prix = Xo (3.23)

Simplifying the denominator by taking ekp(u, — pu_)(1—de)] ~1— (uy —p_)(1—
ae) and neglecting the termNpaeSLL,, we recover our larg&lu result from ISLA
(EQ.3.19). The neglected term inflates the valu®wgf, and is a result of these authors
not treating extinction of the mutator due to its mutatiolwald. This has important
consequences for the next topic.

3.9.2 Long term mutation rate evolution:

Although our work primarily addresses the plain issue otglting Psix, we
briefly contemplate implications for the more grand questiblong term mutation rate
evolution.

HUconv IS proportional to the rate of sweeps

Thus far we have considered selective sweeps to be initiatele novobenefi-
cial mutations. Let us now briefly apply our results to theecabere sweeps are instead
triggered by an environment that changes at kKatel'his merely requires transcribing
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Nuaes +— K. Following those authors we expand the fixation probab{iig.3.23) in
powers ofu, — u_ and denote the first order coefficient in this serieSeyu_). The
roots of Sel u_) give the “convergence stable resident mutation rate.” ¢&q.3.19,
we find tconv= K/(1— ae) =~ K, which is the classical result [LJ70]. Using Eq.3.23,
they find a qualitatively different resulticony = m which diverges ak — 1.
The reason for this discrepancy is that those authors diglimt for extinction due
to mutational load. ISLA naturally averts the need for thsswamption and leads to
the classical result. However, ISLA approximates deleteximutations as being lethal,
whereas these authors also treated the more realisticetioal-tase. It may be possible
to demonstrate, via further analysis, the claim that ndmaledeleterious mutants cause

HUcony to diverge for some parameter values.

Equilibrium mutation rate

We find thatSel(u_) = i% whereas Andre and Godelle figel u_) =
%% + 1— de. Our expression indicates that there are no equilibriunmatian
rates: for allu_, weak mutators are favored whag(Ns+ 1) ~ Naes > 1 and disfavored
in the opposite case. This threshold is clearly in agreeméhtour Eq.3.13. Thus, as
far as ISLA is concerned, populations wittees < 1 should continually evolve toward
the minimum attainable mutation rate. On the other handuladipns withNaes > 1
should evolve an ever higher mutation rate. Our expressio8él ) is clearly inac-
curate for very smalli_ (because random drift dominates in that regime) and also for
very largepu_ (since our simulations show that there is a maximum mutatbs that

can achieve fixation).

3.9.3 Limitations of present work:

Real biological populations possess many features thaatticle either neglects
or severely constrains. We now briefly discuss the mostisgrikmitations.
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Initial Conditions

Both ISLA and our simulations suppose that “initially” allembers of the pop-
ulation have the same fitness. If this assumption is falsenau@tors arise randomly
in a population with pre-existing fitness variation, thisgimi act to decrease mutator
success: unless the mutator happens to emerge from thedittedass of the popula-
tion, the advantageous mutations it generates will alréedgresent in more abundant
subclasses which could out-compete the rare mutator. T {$ especially relevant
since, in comparing ISLA to experiment, we essentially assdithat each mutator that
arose during the course of the experiments did so in a papalebnsisting of a single
fitness value.

Strict Asexuality

Our simulations and ISLA do not allow any mechanisms of horial gene
transfer or recombination. These events would decoupletmualleles from the ad-
vantageous mutations that they generated, and thereby iresignificantly decreased
mutator success. This effect is especially important ssaree genes associated with a
mutator phenotype also exhibit hyper-recombination [DM06

Simple Fitness Landscape

Our simulations assume that mutations all fall into one oééiclasses: lethal,
beneficial with effectt+s, or deleterious with effects. As mentioned previously, and
discussed in Supplementary Information, it may be true thdarge populations, ben-
eficial mutations of a fixed sizedre the ones that typically reach appreciable frequency
[GL98, DFM07, HSHKO06]. However, this simplification is canily not possible when
considering deleterious mutants, whose distributiorkislyi complicated and bimodal,
with many mutations being nearly neutral and many beingalglBWKO07]. Fig.3.10
suggests that increasing the strength of deleterious rmngahas effects only at large
U4 /s, where it increases both the peak valu§gand the valugs, /sat which the peak
occurs. Along these lines, a simulation model that inclualeldss of weakly deleterious
mutations would likely continue this trend. This would dethe large discrepancy be-
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tween the simulations and ISLA until even larger/s. This issue could help to explain
the previously mentioned fact that. in experiments of reference [SGL97] seem very
close to the maximum allowable value. Including mildly defeous mutations would
also prolong the lifetime of genomes which carry them. Is tase, it might be neces-
sary to incorporate a time delay before these deleteriodations are “enforced,” along
the lines explored in reference [Joh99b].

3.9.4 Suggestions for further research

This article leaves many questions unanswered, but alsagpt interesting
theoretical and experimental opportunities.

Theoretical directions

A satisfactory analytic description of our stochastic damtions remains incom-
plete. Two key issues remain unresolved. First, we do noergtand the mechanism
by which mutators continue to succeed when faced with imtenstational competi-
tion from the wild-type background (Fig.3.7). Our work ahat of Andre and Godelle
both imply that mutations in wild-type backgrounds shouétdme important when
Naes ~ U4 /U—, but this is not borne out in the simulations unlesis “sufficiently
large.” Secondly, it is clear that ISLA fails to match sintidas when the mutation
rate is very largél — ae) - = s. Quantifying the success of mutators in this regime is
especially relevant to studies of long term mutation ratdudion.

Another issue that we did not address is the full dynamics atabor fixation.
Our analytic results are mostly derived from Eq.3.12, whichelevant to the even-
tual fate of mutators. An approximate solution to the timpatedent forward diffusion
(EQ.3.10), withu_ = 0, is given in Supplementary Information. This solution\pdes
some dynamical information, but, like the entire ISLA aparb, it assumes that selec-
tive sweeps occur instantaneously. In this sense, Eq.3edigbs incorrect dynamics.
Furthermore, we showed that mutator success is compaptiggented by an effective
selection coefficieng,. For simple advantageous mutarg;ontains information not
only aboutPyiy but also about the average dynamiés(t)) ~ e when rare. Perhaps
that is the case with mutators as well.



66

Experimental ideas

Our work shows that, in most regimé%, is not explicitly frequency dependent.
Rather,Psix depends on the initialumberof mutantsNx,. This scaling behavior could
be tested experimentally. Suppose that competition exyagtis in a chemostat carrying
a population of sizéN; showed that, when the initial frequency of mutators excdede
a threshold value o%;, mutator achieved fixation with a high probability. One abul
decrease the population sizeNg and again inoculate with mutators at a frequency of
x1. Our results predict that mutators would not achieve fixatiothis case because
Nox; is less than the threshold numbéyx;. In fact, very similar experiments were
recently performed [LCFTO6], which support the notion tRaf scales withNx, and
not with x, alone. However, these competition experiments were doderue lethal
selective pressure, which selected for pre-exiting raststnutants. Here we propose
competitions between initially isogenic (aside from thetator allele) mutator and wild-
type strains adapting to a new environment. In addition ®sbaling behavior, ISLA
predicts a testable value for this threshold that diffegsigicantly from the frequency
dependent picture represented by Eq.3.1. These ideasemenped in Fig.3.11.

It would also be interesting to experimentally investigiie decline in mutator
success seen for very large mutation rates wlien ae) i+ ~ s. As mentioned previ-
ously, during the first few thousand generations of expenise reference [SGL9I7],
Naes~ 1.1. The reason why no mutators achieved fixation after theX000 gen-
erations could be that this parameter decreased belowrehitid value of one during
the course of its evolution. A similar effect was previoudlgcussed by Kessler and
Levine [KL98b]. An alternative explanation is that. was near the theoretical maxi-
mum(1— de) U; ~ 1 suggested from our simulations. As noted in reference [&I0F,
once could test these competing explanations by foundiveraknew lineages with a
clone from of one of the mutator populations, and growing¢heutator lineages in a
novel environment. The new environment should be one infNiges > 1. If no “dou-
ble mutators” arose, then the hypothesis of a maximum ald®wautation rate would
be supported.
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4 Evolution of competence in bacteria

4.1 Introduction to competence

Under certain stressful conditions, some bacterial spestieh a$3. subtilisun-
dergo a differentiation process in whictiiaite subpopulatiorf~ 10%) transiently and
stochastically expresses the “competence” phenotypeactesized by the following
properties:

1. RecombinationCompetent cells import, chromosomally incorporate, aqutess
foreign DNA fragments in a process called “transformatidrhis is the defining
feature of competence. If the foreign DNA originates fronother species, the
process is called “horizontal gene transfer” and may resuhe dramatic acqui-
sition of a new (set of) gene(s). Comparative genomic studeamonstrate that
important evolutionary events have occurred as a result@&T HHGT05]. How-
ever, HGT is probably not the typical outcome of competenElee incorpora-
tion of DNA is accomplished by recombination that is faeiléd by base pairing
between the donor fragment and acceptor genome [RedO1{hdforore, most
extracellular DNA probably originates from members of tlagne species and
population. This suggests that a more likely process isrtherporation of dif-
ferent alleles originating from the same species. This &ramly addresses this
conspecific, homologous recombination and not HGT.

2. Reduced growthThe following observations of are based on movies made by
the Elowitz laboratory [SGOLEO6]. While expressing congmeie, cells elongate
but do not divide. Afters 20 hours in the competent state [SKO7], the single
elongated cell fragments inte 10 vegetatively growing cells, thus completing
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the bout of competence. By contrast, a vegetatively groveielyy doubles ap-

proximately every 3 hours [SGOLEO06], giving rise t0??33 ~ 67 descendants
during a 20 hour interval [SGOLEO06]. Thus, competent cedtgeha growth rate

disadvantage relative to vegetatively growing cells. Theagal phenomenon of
growth reduction/arrest in the competence state has akso teported in other
studies [NS63, HHHDO1].

3. Decreased susceptibility to antibioticd?erhaps as a consequence of reduced
growth, competent cells are refractory to penicillin [Nés8DL09] and possibly
other antibiotics.

4. The conditions that trigger competence often triggersip@rulation pathway as
well. Vegetative cells can sporulate but competent celtlsioa[SHAOQ]. Spores
are completely dormant over timescales which are short eoedpto those of
drastic environmental change.

Properties 2,3 taken together are an example of the moreajgtenomenon called
“persistence,” in which slowly replicating cells are alestirvive stress [Big44, BMQ04,
JDLO09].

The elaborate competence system involekb0 chromosomal genes [SPA06],
and is thus probably selected and maintained by evolutidmed well known, non-
exclusive hypotheses concerning the adaptive value of etenpe are [Dub99]:

e Imported DNA provides a nutrient source.
e Imported DNA serves as a template for DNA repair.

e Homologous, conspecific recombination is selected beaoaiube pattern of ge-
netic diversity that it generates.

While it is intuitively clear that nutrients and DNA repaiave value for bacteria, the
same is noprima facietrue of recombination. This chapter focuses on the intenact
between the four features of competence outlined abovengudochastic simulations
and an semi-deterministic approximations we show that) &va constant environment,
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(a)
ab

ab
Ab

Figure 4.1: The Fisher-Muller effect provides an advantagecombination when the
time between originations of beneficial mutations is shafh@n that required for a

selective sweep. (a) Recombination increases the speathpfiee evolution by com-

bining beneficial mutationsa(— A andb — B) that originate in different genetic back-
grounds. (b) By contrast, in a strictly asexual populatiome of the simultaneously
spreading beneficial mutation is “wasted.” (figure takemfroikipedia.org)

there are evolutionary forces selecting for a mixed popatatf competent and vegeta-
tive cells. We do not address arguments surrounding théioator repair hypotheses.
These can be found in the literature [Dub99, Red01].

4.2 Heuristic effects of recombination

The essential effect of recombination is to reduce the tadroms between alleles
at different loci. These correlations are known as “linkdgequilibrium” (LD). To see
what this means, consider two lacj each holding an allele< {0,1}. LD between the
alleles at loci andj (D 4;) is determined by their joint and marginal frequencies & th
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population:Dy o, = freq(a, a;) — freq(a) - freq(aj). For example, LD between two
alleles is negative if they are found on the same chromosessedften than they would
be if placed independently in random members of the pofuiatn this case, the effect
of recombination is to drive LD closer to zero by joining ttiger the two alleles from
different chromosomes. In the absence of LD, recombinai@nhave no average effect
on the population’s genetic structure.

There are three relevant situations that can give rise tollig.first is the effect
of gene interaction on fitness, known as epistasis. Epsstagilassified according to
the interactions between deleterious mutations. If thelioed effect of two deleteri-
ous mutations is greater than expected based on their dudiveffects, the epistasis is
known as “synergistic.” In the opposite case it is known agdgonistic.” These cases
are illustrated in Fig.4.2. Of course, these two conceplg capture the simplest kind
of epistasis— in reality, many genes may interact jointhg #ghe interaction between a
given pair may be antagonistic or synergistic dependinghenstate of the rest of the
genome. Experimental evidence shows that both forms ofaspssare widespread but
that neither predominates [Ric02].

When epistasis is synergistic, the population is deficiebboth very fit and very
unfit genomes. Recombination removes this deficiency, lyarereasing the variance
in fitness which, by “Fisher’'s fundamental theorem,” insesthe rate of adaptation.
Several studies [Kon84, Cha90, Bar95, OF97] show that, sathe caveats, this effect
favors recombination in infinite populations. By contrastombination decreases the
variance in fitness under antagonistic epistasis, and #tedes find that recombination
is disfavored in this situation.

As a second situation leading to LD, consider a large aseajallation acquir-
ing multiple beneficial mutations (Fig.4.1). If the secorehéficial mutation does not
occur in the same background as the first, which is likelynttiee frequency of the
double mutant is zero. Thus, the double mutant is clearletnegresented and negative
LD prevails between the single mutations. This is known as‘Hisher-Muller effect”
[Fis30, Mul32]. In this situation, recombination dramatlg increases the speed of evo-
lution and decreases linkage equilibrium (LD=0) by comignihe beneficial mutations
into a common chromosome [Fel74, CKLO5c]. Note that the mgsions underlying
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the Fisher-Muller effect do not hold in a truly infinite poptibn, in which all possible
genomes are always finitely populated.

A third source of LD is inescapable in finite populations. Ys& reproduc-
tion results in parent and daughter cells which are gerbtimientical, apart from a
small number of mutations~{(1/300) [DCCC98]. This induces correlations between
the genomes of different cells, which manifests as LD thqtiaitatively similar to that
generated by synergistic epistasis [BOO05]. In very smabiyations, LD due to finite
N has strong effects related to Muller’s ratchet [Mul32]. Aduhally, recent studies
show that this effect is strong enough to favor recombimatidarge, finite populations.
Perhaps surprisingly, this remained true with none or evidglyrantagonistic epistasis
[KO06, GCO08].

This chapter corroborates and extends these recent devetipin several ways.
First, somewhat superficially, our model reflects an intarebacterial transformation
as opposed to meiotic recombination. Secondly, we invagigoth populations un-
dergoing adaptive evolution (sometimes called “positelestion”) as well as those at
mutation-selection equilibrium. Thirdly, we find that whitye four properties of compe-
tence (discussed in the introduction) are combined, amabtinixed strategy emerges.
Finally, we formulate an approximation scheme that senairgjtatively agrees with
simulation data and sharpens our understanding of imptadtaramical issues.

4.3 Model

4.3.1 A single phenotype

We stochastically model logistic birth and death in the eneg of mutation,
recombination, and phenotypic switching. The determimisitth and death dynamics
of a single phenotype, neglecting mutation and recomhinatre given by

C(I:I—T:Nr(l—N/K)—Né. (4.1)
Kk is the carrying capacity of the environment, which reflebesavailability of nutrients
and/or space. As the number of céll@pproacheg, thelogistic factor.Z = (1-N/k)

depresses the birth rate from its intrinsic vatueCell death occurs at a constant per
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Table 4.1: Commonly used notation in chapter four.

Symbol Usage

a “Value” of allele at locus

A Number of genomic fragments (bits) in genome

b=Yia/A Fractionof 1'sin a genome

Gp Number of vegetative fowing) cells in clas$®

Cy Number of competent cells in clabs

K Population carrying capacity

No Total number of cells at beginning of competition experimen
< 1- 1 51(Gp+Ce) (Logistic factor)

r Birth rate of vegetative cells (whe#’ = 1)

o Death rate of vegetative cells

y Factor by which birth and death are slower in the competeaé st
[T Probability per locus per replication of-8 1 transition

U Probability per locus per replication of-% 0 transition
Oin(Oout) Switching rate into (out of) the competent state

capita rated. At steady state, the number of cells in the populatioNdg= k(1 —
0/r). Instead of density dependent birth and constant deathe $ogistic models do

the reverse, leading t%? =Nr—N(1+N/k)d. Some stochastic population genetic

guantities (e.qg. fixation times) have been shown to be idehin either formulation of

the density dependence [PQPO08]. There are both obviousehites and reassuring

similarities between our logistic model and Moran'’s prac@ssed in chapter three):

e Unlike Moran’s process, birth and death are decoupled itotistic model. This

allows for stochastic fluctuations .

e In the logistic modelNeq depends on the ratid/r, whereas it is a fixed parameter
in Moran’s process. During adaptive evolutidyr clearly decreases which causes

Neg to increase.

¢ In Moran’s process, during adaptive evolution the averagh bate and death

rate each increase through time. By contrast, both thesatitjga remain near

the constand.
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e The fixation probability of a rare mutant with a growth rateatage is approxi-
mately the same in either model, whire Neq [PQO7a].

We believe that the three differences listed above do nditgtieely affect any of the

main results in this chapter. Nevertheless, we expect thahe extent that bacteria
in the wild are ever in a steady ecological state, the lagisibdel is more appropriate
than Moran’s model. Moran’s model is likely better suiteddboratory experiments,

particularly in a chemostat.

4.3.2 Two phenotypes

For our purposes, the real utility of the logistic model iattit decouples birth
and death. If the total number of cells is né&g, this scheme allows for two coexisting
phenotypes with different birthr {omp rveg) and death omp dveg) rates. Up to a deter-
ministic approximation, the two phenotypes are competiyineutral if they separately
lead to the same value ®eq, i.€. rveg/dveg = 'comp/ Scomp [PQO7b]. We enforce this
condition by requiring that both the birth and death ratesarfipetent cells be lower
than those of vegetative cells by a facfox 1. It should be emphasized that each of
the above statements applies only to the birth and deatlegpspaeglecting mutation,
recombination, and phenotypic switching.

These choices are motivated by experiment. As mentiondukimntroduction,
competent cells in Elowitz’'s movies elongate fer6 doubling periods, then fragment
into ~ 10 daughters upon return to the vegetative state. For siitypive model this
unusual process as simple replication at a reduced ratearechpo vegetative cells.
On its own, this would impose an enormous fithess cost to ctenpe. This is com-
pensated by requiring that competent cells also die moel\slihan vegetative ones.
The experimental rationale for this is twofold. First, tretural environments that trig-
ger competence may plausibly contain antibiotics. In tlise¢ the persister effect of
competence results in slow death for these cells. Secosaltye vegetative cells may
sporulate under the same conditions that stimulate competén time scales that are
short compared to drastic environmental changes, spoeesfactively dead, thereby
imposing a relatively large death rate to vegetative cells.
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4.3.3 Simulation proceses

The simulations consist of model genomes (see subsec8af) 4andergoing the
following dynamical changes in continuous time:

1. Phenotypic transitionThere are two allowed phenotypes: competent and vegeta-
tive. Competence is defined by a nonzero probability of rdgoation ( > 0),
as well as birth and death rates that are each lowered bya faet1l. Competent
(vegetative) cells switch to the other phenotype with plolitgt g,tdt (oindt).

2. Replication A vegetative cell replicates with probabilityl — N/K)dt, whereN
is the total number of bacteria in the population. Competetis replicate in the
same way, but with reduced rage(1 — N/K)dt.

3. Mutationt Upon replication, mutations may occur. Beneficial and @eieus mu-
tations are represented as01 and 1— 0 transitions that occur with probabilities
U, andu._ per locus per replication.

4. Death A vegetative (competent) cell is annihilated with prothigpid dt (yd dt).

5. Recombination A competent cell undergoes a transformation-like everth wi
probability p dt. See Fig.4.3.5 and subsection 4.3.4 for a description ofdhe
combination process.

4.3.4 Genome and recombination model

We model the bacterial chromosome/atoci {a }, each of which has either a
more fit (one) or less fit (zero) allele (Fig.4.3). Each locegresents the same num-
ber of nucleotides as is typically incorporated during $farmation. ForB. subtilis
this is~ 10* base pairs [Dub99]. Recombination by transformation ccevith ratep
between a living cell (the acceptor) and a pool of extrat@lDNA (the donor) that
represents the contents of recently lysed conspecific. ¢eligality, these lysates could
be derived mainly from less fit cells. However, for simplcihe allele frequencies in
the extracellular pool are assumed to be identical to thoghd population of living
cells.
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4.3.5 Birth rate functions

For simplicity we assume that only the birth ratg @nd not the death raté),
depends on the genome. Because the effects of recombiraagoknown to depend
crucially on epistasis, we used three different birth ratecfions corresponding to syn-
ergistic, antagonistic, and no epistasis:

f'syn = max<0,l—|—%ln(2b—1)) 4.2)
fant = [1+exp(-2(1-b)] (4.3)
Nin = b, (4.4)

whereb is the fraction of ones in the genome. These functions argeplon Fig.4.2.
They have identical slopes ndar= 1, which means that the first deleterious mutation
has the same effect on birth rate in each of the three furstiom Eq.4.4, mutations
makeindependentontributions to fitness in the sense that no linkage disibguim is
generated in an infinite population [Smi68].

At this stage it is helpful to clarify a confusing point coneimg birth rate func-
tions. In the population genetics literature, non-epistairth rate functions often have
the multiplicative formrmy = (1— +)*@=?. How is this consistent with the claim that
Eq.4.4 corresponds to non-interacting mutations? The enswelated to the fact that
most population genetic studies employ a discrete time;avemlapping generations
(“Wright-Fisher”) process, whereas we employ a continutime process. A simple
calculation presented in appendix | reveals that, oncediffisrence is taken into ac-
count, Eq.4.4 is essentially equivalent to a multiplicatiunction. This point is crucial
in comparing this work to existing literature.

4.4 Results

In order to explore the evolutionary forces acting on the fmoperties of com-
petence (see introduction), we first constructed sevetddifs” of in silico cells that
isolate these properties:
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Figure 4.2: Fitness functions. Deleterious mutationsradeeither “synergistically”
(red), “antagonistically” (green), or not at all (black).hd first deleterious mutation
decreases the birth rate by1% in each case.



78

GCATGCTH

- ) Um
H H glol —> H gl
@. ] m. B
*\ g —
cell genome extracellular DNA
fragments

extracellular allele frequencies identical to those in living cells

Figure 4.3: Representation of bacterial genome and regatibn model. The genome
consists ofL loci, represented by different colors. Either a more fit jooeless fit
(zero) allele resides at each locus. Upon recombinati@aticeptor allele is replaced
by a homologous (same color) donor allele drawn randomiwnfifee extracellular DNA
pool. The allele frequencies in the extracellular pool asuaned to be identical to those
among the population of living cells. The genetic changers-reciprocal: the acceptor
allele is presumed degraded and not placed in the extréargtiool.
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Figure 4.4: Approach to equilibrium. Dotted lines repraseistrain residents, whereas
solid lines represent G strain residents. Relaxed sefectioantagonistically interact-
ing deleterious mutations causes their continual accuionl@Muller’s ratchet) in the
absence of recombination (solid green). Firiteeffects also reduce the equilibrium
birth rate in G strains below the deterministic predictigN — o) ~ 0.95 when syn-
ergistic (solid red) or linear (solid black) fithess functsoare used. Parameters are
A=100u, =1023 _=1033 k=10°,6 =0.2,y=0.5,p = 1, Ojn = Oyt = 0.1.
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Figure 4.5: Competitions near the fitness peak. Recombimasi favored since all
recombining strains (R,M,C) can invade the asexual vegetstrain (G). M strains are
approximately twofold more effective than C strains at ding G strains, indicating
that a mixed strategy is superior to a purely competent oamarkReters are the same as
in Fig.4.4. Error bars represent one standard error.
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Figure 4.6: Competitions during adaptive evolution. Clgrapulations were initialized
at b = 0.5 and allowed to evolve tb = 0.7 before the invader was introduced. Re-
combination is generally favored, especially with synstigiepistasis. M is 58 100%
more successful than C at invading G. Parameters are theasaimé-ig.4.4. Error bars
represent one standard error.
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Vegetative (growing) (Ggrows and dies quickly, and cannot perform recombina-
tion (p = 0).

Slow (S) grows and dies slowly, and cannot perform recombinatims: Q).

Recombining (R)grows and dies quickly, and performs recombinatijon-(0).

Competent (C)grows and dies slowly, and performs recombination(0).

Mixed (M} stochastically switches between competent and vegetatignotypes.
The switching ratesi, = ooy, resulting in 50-50 mixed strategy.

To avoid confusion between the concepts of strains and pyees strains will be de-
noted by their capital letter abbreviation. One can ab#yranagine the different strains
being coded by a pair of modifier loci that code for recomboratbility and the per-
sister effect of competence (decreased birth and death dwevever, in order to keep
the situation as simple as possible, we forbid members ostaée from transitioning
to another strain. Thus, these modifier loci cannot be mditatéransferred by recom-
bination.

4.4.1 Competition experiments

We first simulated competition experiments between streanghich a single
“invader” cell was placed amonlgeq— 1 “residents.” Since transitions between strains
are forbidden, after a long time the only possible outcomeshee fixation or loss of the
invader. The probability of fixatio®sjx of the invader in the context of of the resident
was estimated by performing many independent competitidine invader’s success
is quantified byW = Psix - N(tinit) Which equals the expected number of progeny left
by the invader. Because the effect of recombination dependie degree of genomic
diversity, populations were prepared in a natural staterpga competition. This was
done in two regimes:

Resident population near the fithess peak

Resident populations were founded by a clone having the rmami possible
birth rate p = 1) and allowed to evolve for 10* generations (Fig.4.4). With none or



83

synergistic epistasis, mean birth rate decreased untdtiouatselection equilibrium was
reached. However, with antagonistic epistasis the medémiaite continually decreased
under the influence of Muller’s ratchet. The effects of finieare less drastic, but
still apparent, with synergistic or no epistasis. C strapydations had a much larger
equilibrium fitness near the predicted value fbr— . See Fig.4.4 caption for further
discussion.

In each case, after 10* generations a randomly chosen cell was manually
switched to be of the invading strain, and competition comeed. Competitions with
G strain resident are shown in Fig.4.5. R,M, and C straingwa#lrable to successfully
invade WV > 35), indicating a significant advantage to recombinatioaspective of the
form of epistasis. R and M strains performed comparably toaother, indicating that
there is little cost to the reduced level of recombinaticat tiesults from cells switching
into the vegetativphenotypeSlow (S) strains were unable to invadesri(® trials, im-
plying that they are either disfavored or nearly neutral.sMaterestingly, the M strain
was approximately twice as likely as the C strain to succé@w/asion.

However, M strains were unable to invade C strains-ii0° trials. Thus, the
only definitive conclusion that can presently be drawn alibigt competition is that
strain M is not clearly favored over strain C in the competiti In order to resolve the
difference between a nearly neutral and a disfavored simgiopulations of this size,
severalk trials must be run (perhaps 1@ achieve the same resolution as the data
plotted in Fig.4.5).

Resident population far from fitness peak

When a population’s environment changes (e.g. by signifigaeducing the
glucose concentration available Eo coli), the fitness peak “moves” elsewhere in se-
guence space. The population may then adaptively evolvdneiméw peak. From
Fig.4.4 itis clear that adaptive evolution not possible anantagonistic birth rate func-
tion, so we limit our attention to the synergistic and no &3is cases.

Resident populations were founded by a clone Wwith0.5 and allowed to evolve
to b = 0.7, at which point the invader was placed in the populationedsre. Fig.4.6
shows a similar qualitative picture as we obtained when tdpfation was near the fit-
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Figure 4.7: Strains that perform recombination (R,C,M) leedaster than asexual
strains (G,S). The horizontal axisserves to parameterize the population’s placement
on the fitness function. When velocity is measured in dimamsiealtime?! (left), M
evolves faster than C, which is consistent with the outcohm@mpetition experiments.
Insight into the advantage of M over C is gained by considgvimeasured in dimen-
sions of generation® (right). By this measure, the R,C, and M strategies are ¢gual
successful. Once this fact is understood, the real timecitglordering follows natu-
rally. Parameters are the same as in Fig.4.4. The lineas§tiumction was used here.

ness peak. Values ¥ are larger in Fig.4.6 than in Fig.4.5, showing that recoratiom

is more strongly favored when populations are acquiringebelal mutations and not
merely purging themselves of deleterious mutations. Sysir epistasis provides an
especially strong advantage, probably because of theti@aal) LD generated by the
fithess function. M strains are 50100% more successful than C strains at invading G
strains.

If M invades C during adaptive evolution, the invader is ertquickly lost or
else persists for a long time without sweeping to fixationnc8iM and C can both
perform recombination, their gene pools are shared. Coesetly a beneficial mutation
acquired by one strain is soon picked up by its competitorgcambination event. We
were unable to complete enough trials to conclude whather 1 for M invading C.
These slow dynamics also likely describe the evolutiondjysiment of recombination
rates.
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4.4.2 Speed of evolution
Simulation data

The previous section concerned the fixation probability idra invader, which
is the most direct way to quantify the evolutionary pressating on a strain. Unfortu-
nately, we are unaware of any method to approxinfagefor the recombining strains.
By contrast, the mathematical techniques developed foit fpoopagation can help to
approximate the speed of evolution

We first examine the speed of evolution achieved by pure poipuls of each
strain. Wherv is measured in dimensions of realtimethe ranking of strains accord-
ing to v agrees with the ranking accordingRgy (Fig.4.7, left). This is consistent with
the idea that successful invaders win by increasing theiess before their opponents.
This rapid fitness increase, in turn, is the result of twaoikgsfactors: (i) rapid execution
of events (birth, death, mutation, recombination) andl{) efficient genetic structuring
of the population. The C,S, and M strains all suffer a penaiti respect to effect (i)
because (some) members of their population undergo betthgdand mutation slowly
(by a factory). On the other hand C, R, and M strains evolve faster becagsenbina-
tion increases the efficiency of their genetic structurddryexample, bringing different
beneficial mutations into the same genome (Fig.4.1).

To a large extent factor (ii) can be isolated by examinimgeasured in dimen-
sions of generations, i.e. (birth events)!. Fig.4.7 (right) shows that once this is done,
the strains that undergo recombination (R,C,M) performadguvell, and are far supe-
rior to the asexual strains (G,S, which perform equally te another). The fact that
there is sufficient recombination in the M population toyukap the rewards of recom-
bination is not at all obvious. However, once this fact isequted, it is clear that M will
evolve faster than C in real time since hal%) of the M population “acts” 1y
(two) times faster than cells in C.

Semi-deterministic equations

We would like to derive equations that describe the numberetif having a
certain value ob (i.e. fraction of ones in their genomes). Presently, weovilly treat the
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linear birth rate function (Eq.4.4). Adapting this methodte other fitness functions is
straightforward. For the vegetative strain (G), the bapfmraach is discussed in section
1.4. Once the replication and death terms are modified so eeptesent the logistic
scheme used here,

%Gb = (£b-8)Gy-6(Go—1) +A.L .Gy (4.5)

where.# is the mutation operator:
1 1

+ o (b—/\l) (1—(b—%)) Gy 3

— (MU + p)bGy (4.6)

Here we have used a value of unity inside the cutoff. There i®ss of generality since
Gy is scaled by via .Z.

Much of the simplicity of Eq.4.5 stems from the fact that gees were binned
according to their value ddf. This act precludes a full treatment of recombination, Wwhic
sees the diversity within a bin. However, recombinationlbaimtroduced in a tractable
way by making the strong assumption that, within a bin, alayaes compatible with
that birth rate are uniformly populated [CKLO5c]. This ostates the genetic diversity
in the population and the effect of recombination. Nevdebs it yields reasonable
results, especially at lardge. In particular, we assume that the incoming foreign allele i
a one with probabilit;E, irrespective of the value of its homologue in the recepédk. c
Given this assumption, one can introduce the recombinatpenator:

Z|Col= — pCy((1—b)b+b(1-b))
+ pCb%E[l—(b—%)}
+ pCbﬂl(l—t_)) (b+/\1) (4.7)

where we have chosen fof to operate on the competent populat©nlif we include
phenotypic switching between tkkeandG population, we arrive at the following set of
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coupled equations:

d

§:G = (Zb=08)Gy-6(Gy—1)+)\L .4 [Gy

+  0outCh — GinGp (4.8)
CCo = VLD 8)Cy 0(Co— 1)+ VAL 4G + (G

—  OoutCp + OinGp (4.9)

These equations are easily integrated numerically. Tlesults are compared to sim-
ulations in Fig.4.8. The agreement is rather poor when timeilsited populations are
founded with a clone. This is because it takes a long time til lyp the level of di-
versity that the semi-deterministic equations assumeii.ekhe agreement improves
through time as this diversity builds. On the other hand,riudations are founded
with randomized genomes of a given fitness, the agreemert&lent. When the en-
vironment of wild bacteria also predict that there is an mpitin fraction of competent
cells in a mixed population (Fig.4.9). For reasonable valie<, this optimal fraction

is ~ 40%, somewhat larger than the10% witnessed in the laboratory. The optimal
fraction is found to decrease withand vanish in the limik — co.

4.5 Discussion

Recent work by Elowitz and colleagues [SGOLEO06, SKIZ] vividly shows
that cells ofB. subtilisstochastically enter and exit the competent state. Thdsleaa
dynamic, mixed population of competent and vegetativebngng (i.e. normal) cells.
If recombination has adaptive value, why does only a finisetion of cells become
competent? This work reports a novel population genetiecefthat rationalizes the
experimental observation.

Recently, there has been much interest in the possibibtystochastic phenotype-
switching mechanisms may function to cope with uncertainrenments [KLO05],
[AMvOO0S8]. In these studies, there are several phenoty@as) ef which is adapted to
one of several possible environments. One elegant strésegghastic switching) for
coping with uncertainty exploits phenotypic noise to proela distribution of pheno-
types that hedge against the various environments that mayntountered. Members
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of the population in the inappropriate phenotype reprefenfitness cost to stochastic
switching. The experimentally observed subpopulationesister cells irE. coli is
thought to arise by stochastic switching [BM@4, KKBLO5]. An alternative strategy
(responsive switching) is to measure the environment asybred with the appropriate
phenotype, but this comes with the cost of maintaing themwearsd the switch.

Competence iB. subtilisemploys a puzzling combination of these two switch-
ing strategies. On the one hand, the competence systemysnpkponsive switching
since it is regulated by a quorum sensing module that is atetivin early stationary
phase as population density increases [SHAO0O]. On the btedt, competence seems
to employ stochastic switching because it commits only afifnaction to each pheno-
type.

This suggests the intriguing hypothesis that competendelsng in B. Subtilis
is in fact responsive switching and that the noisy phenotybest. This chapter argues
for this viewpoint and suggests a population genetic fumctor phenotypic noise with
respect to competence.
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A Numerical integration in chapter 2

In order to determine the spectrudg(v) we numerically integrated Eq. 2.7, and
this required numerically integrating Eq. 2.5. Integratod Eq. 2.5 was initialized in the
bulk state, from the left, where we defineet 0. We setv arbitrarily, took¢y(0) = .99,
and calculatedy(0) from the solution to the version of Eq. 2.5 linearized arogget 1

B =3 (- 1+ )

rinit, Which we set to one, differs from the previously defimgth that it fixed the rate at
a definite location in the bulk state rather than the locatvbere¢gy = 1/2. Integration

terminated in the neighborhood of the cutoff, half way betwé&mesteps wherg,/ @

vk
D(R)(Zcut)

the cutoff was recorded for subsequent numerics. This valoeasured relative to the

and the value of

crosses-v/D. N was then read off from the relatids =

bulk position whereg = .99, not relative taz, wheregy = 1/2. All of this was done
using ode45 from MATLAB, with a maximum stepsize of .001.

The solution forgy appears as a coefficient in Eq. 2.7, and was incorporated into
the ODE integration scheme with a cubic spline. Numericagration of Eq. 2.7 was
initialized atz= 0 with some triakp, n(0) = 1 and

n'(0) = 5% (—1+ 1+ 74'3(”3?%))

which follows from Eq. 2.7 if we plug inp ~ 1. Integration terminated at thg,
obtained from integration of Eq. 2.5, where we checked if E44 was satisfied with
the trialQ. This procedure was iterated with a root solver while vagyuntil Eq. 2.14
was satisfied. Each integration of Eq. 2.7 was done over li@t¥steps with a fourth
order Runge-Kutta ODE solver with fixed step size, meantddifate incorporation of
the spline.
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This yielded the exact numeric solution presented in Fi§. Rur “exact ana-
lytic approximation"” presented in Fig. 2.3 is just the swinoto Eq. 2.15 obtained with a
root solver. The required values fdrandz.; were obtained from the previous integra-
tion of Eq. 2.5, and we tooky = 1. Since we dropped the term involviggin Eq. 2.10,
this equation is insensitive to the precise definitio,@&.g. it could be defined naturally
as the coordinate wherg = 1/2 or it could be defined out of numerical convenience as
the coordinate whergy = .99. This insensitivity explains why the results agree sd wel
despite the fact tha andrj,i; are not defined in the same way.



B Asymptotic solutions to Eq.3.12,
whenpu_=0

As in the main text, we defilB= i, [1— ae(1—s)] andC = i, aes. If Naes>
1 buty is sufficiently smalINS;, is no longer much larger than 1, and the approxima-
tions in the main text are not valid. This occurs when~ O(1/N?des). In this case,
the B term, and hence deleterious mutations, in Eq.3.12 is iraele andG. (X,) can be
expressed in terms of a modified Bessel function:

~ V1I—%1(2N/C(1-X0))
Geo(X0) = L2NVO) (B.1)

WhenN+/C is not large, this does not have the exponential dependensegrequired
to interpret the fixation probability as resulting from agrffective selection coefficient.
We can nevertheless calculate the fixation probability foaléx:

Prix(Xo) ~ N\@%% — N\/ﬁasxo:jgm Vg%gj (B.2)

For i, > 1/(N2aes), the argument of the Bessel function is large, and we recawver
previous resultPix ~ Nxo/[+ 0eS. For small argument, we gBix ~ Xo(1+ NZC/Z) =
Xo(14 N2p, aes/2). Thus the fixation probability approaches the neutral teguas
U — 0 and starts out rising linearly ip,.. If we wanted to translate this into an
effective selection coefficient, since for smidl, Prix(Xo) ~ Xo(1+ Ns/2), the effective
selection coefficient would b8, = N1 aes, whose expliciN dependence again points
to the inability to define an effective selection coefficianthis regime.

WhenNp, ~ O(1) andN?p, aes ~ O(1), all the terms in the equation are of
the same order, and no approximation can be made. Howevemniallerp, , one can
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use perturbation theory to find an approximate solution B§ivg G = 1 — X, + N (Xo),
wheren (X,) < 1—Xo. After dropping terms~ NBn’ and~ NCn, we obtain

~ CN-B

Geo(Xo) = 1 —Xo NXo(1—Xo) (B.3)

with a fixation probabilityPsix(Xo) ~ Xo(1+N(CN—B)/2) = %o[1+ 4+ N(ae(Ns+1) —

1)], which linearly approaches the neutral valgeas i, — 0. As above, in this very
small . regime, no mapping to aN-independent effective selection coefficient can
be made. Note that we again recover our threshold criteaomitators to be favored
(Eq.3.13).



C N for a population of periodically
changing size

Whereas our model describes a population of constant sigerienents by
[SGL97] were done according to a serial dilution protocolwhich a population of
sizeN, ~ 5 x 10° was grown to sizéN; ~ 5 x 108, diluted 100 fold, then repeated.
Under these dynamics, all lineages grow essentially detéstically from Np to Ng,
at which point binomial sampling abruptly reduces the papah size back tdN,. In
this case, the fixation probabilityg of an advantageous mutant depends not only on
s, but also onwhenit is generated during the dilution cycle. Mutants that aeeey-
ated during the early part of the cycle are allowed more timgrow exponentially
faster than the wild-type and thus have an advantage oweolurring mutants. It
can be shown [WGO01, WGSV02] that the stochastic effects e$ahpopulation bot-
tlenecks are in many ways equivalent to those of a populatitim constant sizeNe.
More precisely, if we letn = the number of newly generated mutants that will achieve
fixation, then we require that the average valué’a’pfto be the same in the two popu-
lations. In the bottleneck population, the total number @ivly generated individuals
= v(t) = No(¢'"2 - 1), anddm= (s, t)dv = Nou11(s,t) In(2)&"2dt. In the constant
size population%—T = Neus. Equating these two expressions f’gi‘ and averaging over
one dilution cycle, we obtain

g
Nes = N"g‘z/ é"?7(s t)dt (C.1)
0

whereg = ﬁ In(,':‘l—;) ~ 6.6 is the number of growth generations separahig@ndNjs.
For gsin2 < 1 it can be shown [WGO01] that(s,t) ~ 2sIn(2)ge "2, and therefore
Eq.C.1 implies thaNe = 2NogIn?2 ~ 6.3 x 10'.

95



D Approximate solution to equation
3.10 whenu_ =0

Eq.3.10 can be approximately solved if we take= 0. As in the main text, we
defineB = py [1— ae(1—s)] andC = paes. The equation then reads

P 192 i,
The biological problem we are interested in solving is thatfon probability for a

small initial fraction of mutators. This corresponds tovsiod for fllff P(x,t — o)dxas

€ — 0, subject to the initial conditioR(x,0) = d(X— Xo), Wherex, < 1 andd (X — Xo)
is a Dirac delta function. Furthermore analytic progresstmamade if we note thatis
in some sense small. The idea is that the probability cQdt) is initially localized
aroundx, < 1, and that the only process that moves probability solidily the interior
of x € (0,1) is random genetic drift. We anticipate this effect to be $médilen the
mutator is significantly favored, i.eNS, > 1, and hencé(x,t) ~ 0 for x not < 1.
Thus, we can approximately neglect 8&?) terms in Eq.D.1 and obtain

% = %;—Xzz [XP] 4 B(;ix [XP] — NCxu,;P (D.2)
This second order PDE ifx,t) can be converted to a first order PDE(kgt) by taking
the spatial Fourier transform, which yields

o,
NE = —i(k*—iBk+C)

P(k,t=0) = exp(—ikxo)

oP

K (D.3)

This equation can be solved by the “method of charactesistiic which we seek curves

in thekt plane along whiclP(k;t) is constant. We finéﬂﬁ = ‘f,—f + g—ﬁ%{ = 0 along the
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family of curves defined by

t [ k—z, K—2zy|
N + Z+_L[Ink_L—InK_L}_O (D.4)

4C
]

K serves to label different characteristic curves and is@&hds appear in this manner
so thatk = k whent = 0. Then,P(k,t) = P(k,0) = P(k,0) = exp(—ikx,) along the
characteristic curves, and we obtain the formal solution

iNB
&=

P(x,t) = %T /_ _ e K kDogkxgi (D.5)

wherek (k,t) is obtained from Eq.D.4.

This formidable inversion integral gives the full solutifor all x andt, but for-
tunately we do not need to evaluate the integral in order taiolthe fixation probability
of the mutator. A moment’s reflection convinces us that theco behavior of Eq.D.2 is
the build-up of a delta function at the absorbing state0 and a “decay” of the remain-
ing probability to the fixation state. We note that the pralighbwhich corresponds to
the delta function is thie — « component oP(k,t). Taking thek — oo limit of Eq.D.4,
we obtain

P(x=0,t) = e k=%

Z @ i(zi—z)t/N
A
Koo =7_

1— e i(z4—z)t/N

Finally, taking thet — oo limit and setting®(1,t — o) =1—P(0,t — ), we obtain the
familiar expression

P(1,t — o) =1—¢golzl =1 g Nz (D.6)
VB21+4C—-B
S“:z:fz%{\/(1—ae)2+4aes/u+—(1—ae) NS, >1

(D.7)
which is the same as Eg. 3.16 obtained from the backward iequ@t 12).



E Perturbative correction to Eq.3.12
for finite pL_

The small effect of mutations in wild-type backgrounds afsed in simulations
motivates a perturbative solution to EQq.3.12. In terms efghrameter8. = p[1—
0e(1—s)] andCy = 1 aes,

d? d

—Go —N(By —B_)— = —N“C_

Go — N2C
T1-x %o

In order to make analytic progress, we make the followingaggions. (i) The mutator
is strongly favored, and therefog&% — Goo. (il) G = Go 4 G1, WhereG, is given by
the solution to the cage_ = 0 andGg > G;. Then we have

1 — N(B+—+/Bi+4C1)%0/2

GY (%) — NB; G} (%) — N°C; Gy (%) = —N°C_ v (E.1)

where we have also dropped the small tBmG1(X,). This equation can be solved
using the theory of non-homogeneous linear differentialagigns. A convenient way
to write the two independent solutions to the homogeneorsoreof Eq.E.1 is

. N
J<(X) = eB+N><o/25|nh<§,/B§r+4C+xo)
. N
0-(X) = eB+N>‘°/25|nh<§\/BZ++4C+(1—x0))

If we denote the inhomogeneity(X,), our solution forGs(x,) can be written in terms
of the integrals

1
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where the WronskialVr(x) = gL (X)g<(X) — g (X)g- (x). The first-order contribution
to the fixation probability for smal, is then

Filr) = o g G L_o o /01 m<X>%?lx<>(O)dx

The Wronskian is evaluated as

1 N . N
Wir(x) = —éeB“\'XE\/ B2 +4C, S'nh(f\/ B2 +4C+)

Thus, f-. () /Wr(x) decays rapidly for large ase"N(B+vVBI+4C)x/2 Thjs allows us to

simplify the integral by extending the range of integratiomnfinity, which yields

o 2
1— eNB VB G )x2 o N(B, +\/BT+4C, )x/2

X

F1(Xo) =~ —u_aesNzxo/o dx

Using the identity

o0 e—ax_e—bx
/def_ln(b/a)

we finally arrive at

e

i (1—ae)

Fl(xo)muaesNzxoln( - — ) (E.2)
1+ \V 1+4H+(1+ae)

The logarithmic factor varies between zero in the limit > 4aes and In(2) in the

opposite limit. This method breaks down wie> Fo. Now, F, is bounded from above
by N%S;; < Nxo0es, as givenin Eq(11, main text). Therefore, Eq.E.2 will tygig fail
whenp_aesN? ~ Ndes, or, Nu_ ~ 1, which is, unfortunately, usually the case.



F Alternative formulation is ISLA In
section 3.5

As mentioned in the main text, A2 is somewhat awkward. Arraéigve, which
we call AZ", it immediately kill advantageous mutations which are iest to eventu-
ally succumb to drift. This approximation merely modifiesoefficient in Eq.3.12. The
effect is simply the transpositio;,_ﬁf%e — de. In fact, we occasionally made this sub-
stitution in the text, when we anticipated that < 1. Typical behavior of A2 relative
to A2* is illustrated in Fig.F.1. Even though A%ields results that are arguably more
accurate than those of A2, we preferred A2 in the main texabse it nicely serves as

an upper bound on mutator success.
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Figure F.1: The effect of using A2nstead of A2. Whem,. /s < 1, ISLA overestimates
the results of simulations when it uses A2. The oppositetiffeobserved if we instead
make the assumption A2which immediately kills the fraction (1-s) of advantagsou
mutants that are eventually lost to random drift. This sstghat the error accumulated
for u, /s< 1is due to the approximate manner in which ISLA treats thdsarstageous
mutants. Parameters axe= 5000,u- =0,a = .4,s=1/120,0 = 0.



G Ensemble averaging in chapter 3

The point-like symbols in the figures in the main text resuiinf values of
Prix(N, %o, S, 0, ) obtained by simulating numerous competition experimerithe
averaging procedure varied somewhat, depending on paesneted, though this had
no effect on our results. Here, we explicitly report the agéng details for each case.

¢ All data from populations of sizb = 5000 result from 100 trials run for each
Xo € {.003.009 .015,.021}. The Psjx obtained from each value of was then
translated into a value fd$, via Eq.(2, main text). These four values were aver-
aged to obtain the values presented in the figures.

e For data from populations of si2¢ = 1000, the procedure was identical to the
case wherdl = 5000, but with 100000 trials for eackx,.

e For data from populations of sia¢ = 100 000, the procedure varied slightly be-
tween different parameter choices. In Fig(2, main texf))(end Fig(5, main text)
we used 20000 trials each fronx, € {1074,5 x 10~4}. In Fig(6, main text), we
used 20000 trials fromx, = 2 x 10~*. In Fig(2, main text)(right) we used 1000
trials fromx, € {104,103}
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H Numerical integration in chapter 3

In order to produce the solid curves in Figs.(4, 5, 7, 8) frbw inhain text, we
first had to numerically integrate Eq.3.12, subject to thenuiary condition&., (0) = 1
and G« (1) = 0. The procedure for the cage = 0 is relatively simple. We initiate
integration near the singular pointyat= 1, takingG,,(1—¢) = —1 andGw(1—¢) =
€. Here,¢ is a very small positive number and the initial slopé is arbitrary. The
integration is then performed frorg = 1 — € to X, = 0 using a fourth order Runge-Kutta
algorithm. The resulting trial solution to Eq.3.12 does olo¢y the boundary condition
at X, = 0. However, because the equation is linear, the correctisolis obtained
simply by re-scaling the trial solution so that the boundemyndition is satisfied. We
then evaluat&,(.001) using a cubic spline and obtafy by inverting Eq(2, main text)
using a root solver.

For u_ > 0, the procedure is slightly more involved. Eq.3.12 now hagidar
points at bothx, = 0 andx, = 1. Therefore, we must integrate from both the right and
the left, then match these two solutions and their derieatin the middle. Specifically,
we first integrate Eq.3.12 from the right, as before, but nlmpging atx, = .5. Call this
un-scaled solution solutioB, (X,). We then generate a trial soluti@j(X,) initialized
nearx, = 0, takingG|(¢) = —NS andG(x) = 1 - NS€. Here,S is given by Eq(10,
main text) and merely serves as an initial guess as to thevimehat the solution near
Xo = 0. We can ensure th&; (.5) = G,(.5) simply by re-scalinds;(x,). However, the
slopes will, in general, not match & = .5. In order to accomplish this matching, we
link the above procedure to a root solver which repeatediysasiG, (¢) and generates
trial solutions until one is found for whicB; (.5) = G;(.5). We then proceed to calculate
S, as before, using the correct solutiGn(xo).
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| Multiplicative vs. additive fithess
function

Let k equal the number of deleterious mutations (0’s) carried lggr@ome of
lengthA and let time be measure in generations. Then, using ourlmgh rate func-
tion (Eq.4.4) and setting the death rate equal to the meémraite= 1 —r,

(M(t+1)) = ny(t)ekA)-a-ka)
= ny(t)e"kHA (.1)

where the bar refers to the population average (as oppost tensemble average).
The canonical multiplicative fitness function used in déerWright-Fisher models is
(see, for example, [Ewe04k = (1 — s)k, whereW, denotes the expected number of
offspring left in a generation. The corresponding equatoora typical discrete model
is

—~
[
|
N
=~

((t+1)) = n(t)

Q

Ni(t) (1.2)

e—Sk.

Egs.l.1,1.2 are approximately the samesi 1/A andesk~ e, Therefore, up to

a deterministic approximation, the continuous model inchithe exponential growth
rate decreaseiearly with k corresponds to a discrete model in which the “fithess”
decreasemultiplicativelywith k.
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