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ABSTRACT OF THE DISSERTATION

Diffusive Growth and Noisy Replication: Models at the Interface of Statistical
Physics and Biological Evolution

by

Christopher Scott Wylie

Doctor of Philosophy in Physics

University of California, San Diego, 2009

Professor Herbert Levine, Chair

The bulk of this dissertation consists of three separate research projects. Each of

them involves models of multi-locus evolution in the context of finite population size,

genetic linkage, and both beneficial and deleterious mutations. Each project employs

stochastic computer simulations and numerical solutions to equations which approxi-

mate a full stochastic model.

The first project, presented in chapter two, was conceived asa problem in the

field of non-equilibrium statistical physics known as “front propagation” and was pub-

lished inPhysical Review E. The connection to biological evolution is due to my advisor,

Herbert Levine, and his colleagues who pointed out an analogy between diffusive fronts

propagating through physical space and a mutating population evolving through fitness

space.

The second project, presented in chapter three and published inGenetics, is more

biologically oriented than the first project. It concerns the evolutionary pressures acting

on the rate at which organisms produce spontaneous mutation. Our results agree with

experimental data and also make testable predictions. The mathematical methods used
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are familiar from non-equilibrium statistical physics, but are quite distinct from those

used in the first project.

The third project, presented in chapter four, is currently being prepared for pub-

lication. It concerns the evolutionary advantage of “competence” for genetic transfor-

mation in bacteria, which is conceptually similar to sex. Thus, issues related to the

evolution of sex have bearing on this project, and vice versa. A puzzling feature of com-

petence in many species is that normal, vegetatively growing cells stochastically switch

in and out of the competence phenotype. We believe that this project provides a novel

explanation for this puzzling “mixed strategy.”

A common theme in this dissertation is the drastic effect of having a finite popu-

lation sizeN. In each project, the system behavesqualitativelydifferently in theN→ ∞

limit than for any finiteN. Thus, although “mean field theory” provides helpful approx-

imations in many areas of physics and stochastic processes,it should be used cautiously

in evolutionary problems or those with a similar mathematical structure.
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1 Introduction

1.1 General features of evolutionary models

From the outset, it may be unclear how one could quantitatively model evolu-

tion. The term “evolution” might conjure thoughts of one species transforming into

another or of organisms’ beautiful physiological and behavioral adaptations to their en-

vironment. The worthwhile and fascinating study of evolution on that scale is called

“macroevolution.” This dissertation has, at most, only a vague conceptual bearing on

macroevolution.

By contrast, “microevolution” focuses on the frequency trajectories of genetic

variants in a population. These trajectories are governed by the (stochastic) processes

of birth, death, mutation, and, in most species, recombination. Abstract mathematical

models of these processes were pioneered in the 1930’s by R.A. Fisher, J.B.S. Haldane,

and S.G. Wright, thus spawning the field called “population genetics.” Population ge-

netic models have the following core features:

• Representation of the genome– The model genome often consists of of many

“sites.” In some studies these are interpreted as base pairsor codon triplets, in

which case the model sequences can be directly compared to real sequences. In

many other studies, including those in this dissertation, each site is interpreted ab-

stractly, as a more or less fit variant. In chapter three, the whole of each organism

is reduced to its genome, thus neglecting the specific features of its physiology or

behavior. In chapter four, cells also express one of two epigenetically determined

phenotypes.

• Fitness function– Each genome is assigned a fitness which is manifested in its

1
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birth and/or death rate. A time dependent fitness function could be used to model

a changing environment, although this is not done in this dissertation.

• Mutation model– Genomes may change due to mutation. In real systems, these

include point mutations, small and large insertions/deletions, translocations, in-

versions, etc. As is common in population genetics, only point mutations are

explicitly modeled in this dissertation.

• Recombination model– Genomes may also change due to “recombination,” where

genomic fragments are somehow exchanged between differentmembers of the

population. Chapters two and three concern strictly asexual evolution, in which

there is no recombination. Chapter four concerns bacterialtransformation, which

is a form of recombination. Details of the model can be found in 4.3.4.

• Birth death process– Cells replicate themselves and can also be removed from the

population by death. Chapter three of this dissertation employs Moran’s overlap-

ping generations model, whereas chapter four, for reasons discussed there, uses

a density dependent “logistic” model. Birth-death models are described in more

detail below.

Many population genetics models also include migration, but this effect is not investi-

gated in this dissertation.

Once these choices are made, the “cells” in the population are allowed to repli-

cate, mutate, die, etc. Often, the mean fitness of the cells will increase and the cells

become better adapted insofar as they increase the chosen fitness function. However,

it is also possible for the mean fitness todecrease. In particular, if the population is

sufficiently small and fitness increasing mutations (i.e. “beneficial mutations”) are suffi-

ciently rare compared to fitness decreasing mutations (i.e.“deleterious mutations”), then

mean fitness will actually decrease. This phenomenon is called “Muller’s ratchet.” As is

common (although not universal) in population genetics, I will refer to both the fitness

increasing and fitness decreasing cases as “evolution” since they each emerge from the

same mechanistic process. The example of Muller’s ratchet emphasizes the crucial point

thatevolution is distinct from, and sometimes even opposed to, adaptation.Adaptation

(i.e. fitness maximization) is merely one very important consequence of evolution.
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1.2 Genome, mutation, and fitness model

Throughout this dissertation, genomes are represented by astring ofL bits{σi}.
In chapters two and three, each bit should be interpreted as anon-conserved nucleotide

that (ignoring transversions) can be in either a favored (one) or disfavored (zero) con-

figuration. 1→ 0 and 0→ 1 mutations each occur with rateµo per cell replication. The

fraction of mutations that are beneficial (deleterious) is thus determined entirely by how

many zeros (ones) are in the genome.

In the setting of chapter four, it is more appropriate to interpret each bitσi as

a fairly long (∼ 104, see 4.3.4), contiguous set of nucleotides. In this case, mutation

is more likely to damage the fragment than to improve it. Thisfact is incorporated by

setting the transition rate from 0→ 1 much lower than that from 1→ 0 in chapter four.

In general, fitness is determined by both birth and death rates. For the bulk of

this dissertation, we assume a simple additive form for the fitness function:f itness=
1
L ∑L

i=1σi . There are several implicit assumptions in this fitness function, including:

• Each bit contributes independently to fitness. In biological parlance, we assume

that there is no epistasis. In real cells, many genes obviously interact with one

another (e.g. in the same metabolic pathway) and thus probably have non-additive

fitness effects. These interactions are often incorporatedin a simplistic way by

introducing curvature into the fitness function: Deleterious fitness effects of pairs

of mutants can be either greater than (“synergistic epistasis”) or less than (“antag-

onistic epistasis”) their individual effects. Experimental data suggests that these

cases occur more or less equally often [Ric02]. In a more realistic but intractable

model, fitness would depend on theentiregenomic configuration{σi} rather than

simply on the number of ones.

• The fitness of a genome is independent of its frequency in the population. For

complex ecological situations (e.g. mimicry, division of labor, etc.), this approxi-

mation is certainly not true. However, it may be true more often in simple micro-

bial populations, although there are exceptions, e.g. [Kas02].
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1.3 Birth-death models

Without birth and death, the genetic composition of populations would be de-

termined mainly by the random processes of mutation and recombination. Differential

birth and death decrease the genetic diversity and increases the genetic order in popula-

tions. The stochastic fluctuations in these processes give rise to “random genetic drift,”

which is perhaps unfortunate nomenclature since it is adiffusionterm in the correspond-

ing Fokker-Planck equation. This section discusses the simple birth-death models used

throughout this dissertation.

1.3.1 Moran’s model

Each cell carries a birth rater i determined by its genome. Birth and death are

strictly coupled. The following sequence of actions occursevery discrete timestep:

1. A randomly selected cell is chosen as a potential parent.

2. The selected cell gives birth with probability proportional to r i . All selection

occurs here, and thusr i reflects the fitness of the cell. If it does not give birth, the

simulation advances to the next timestep.

3. A randomly chosen cell, other than the baby, is killed. Since this step follows the

birth of another cell, it forms a sort of implicit interaction between cells.

4. The baby undergoes a deleterious (beneficial) mutation with probability equal to

its deleterious (beneficial) mutation rate.

1.3.2 Logistic model

Each cell carries both a raw birth rater i that is determined by the genome, as well

as a death rateδi . This setup allows these processes to be decoupled. Total population

size is controlled by scaling all birth rates by the density dependent logistic factorL =

1−N/κ . Since the replication of one cell decreasesL for all others, it represents

the implicit interaction between cells in this model.κ is called the “carrying capacity”

which is imagined to be set by the availability of space and/or nutrients.



5

1. A random waiting time is chosen according to an exponential distribution with rate

parameterR equal to the total sum of all birth (B = L ∑ r i) and death (∆ = ∑δi)

rates throughout the population.

2. A second random number is generated, this time uniformly distributed between

zero andR. If this number is less thanB, birth occurs. Otherwise death occurs.

3. If birth was chosen in step two, a particular cell is now chosen with probabilityr i

in a procedure similar to step two of Moran’s model.

4. Upon birth, mutation may occur, exactly as in Moran’s model.

5. If death was chosen in step two, a particular cell is now picked with probabilityδi

and removed from the population.

Since each cell carries both a birth and death rate, the concept of fitness is more subtle

here than in Moran’s model. As discussed in chapter four, thecoexistence condition for

two cell types isr i/δi = r j/δ j . In this sense, fitness is captured by the ratior/δ . On the

other hand, if we imagine the overall growth of the population as it expands to fill the

carrying capacity, each of two types will grow exponentially. In that caser−δ captures

fitness. These and many other issues relating to this model are discussed in references

[PQ07a, PQ07b, PQP08].

1.4 Mean-field theory

A full description of the population entails the number of cells with each possible

sequence:n{σ}(t). The deterministic description (mean-field theory) ofn{σ}(t) is called

“quasispecies theory,” pioneered by Eigen[Eig71]. In the context of the Moran birth-

death model, the quasispecies equation simply keeps track of birth, death, and mutations

d
dt

n{σ} = (r{σ}− r̄)n{σ}+ ∑
{σ ′}

M{σ ′},{σ}r{σ ′}n{σ ′} (1.1)

M{σ ′},{σ} is the mutation rate from sequence{σ ′} to{σ}, which depends on the number

of mutations separating them. ¯r is the average birth rate which always equals the average

death rate in Moran’s model. Although useful in some contexts, a limitation of Eq.1.1 is



6

that it neglects fluctuations. This might not be essential ifthe number of sequencesn{σ}

is large compared to its fluctuations∼ √n{σ}, i.e.√n{σ}≫ 1. However, there are 2L

possible sequences and onlyN cells to occupy them. Therefore, unlessN ∼ 2L, Eq.1.1

will not apply in sparsely populated regions of sequence space.

One way to improve the situation is to bin sequences according to their fitness.

This increases the density of states and decreases the dimensionality at the expense of

losing the ability to resolve between different sequences in the same fitness class. Using

a very simple fitness functionr = 1
L ∑σi , we obtain

d
dt

nr = nr(r− r̄)+ µ
[

r(r +
1
L
)nr+1/L− rnr +(1− r)(r− 1

L
)nr−1/L

]

(1.2)

If
√

nr ∼ 1 for somer > r̄, as is the case for a population evolving up a fitness function,

then Eq.1.2 will not apply to the most fit individuals at the leading edge. Because those

individuals grow exponentially faster than everyone else,this turns out to be a serious

error. The fundamental problem is underscored by analyzingan approximation of Eq.1.2

in which ther dependent terms in brackets are treated as constants andL→ ∞. In this

case, ¯r diverges in finite time [BLT91]. The conclusion is that ther− r̄ term is deeply

flawed because it neglects large fluctuations in the most important part of the evolving

fitness pulse.

It thus seems that a full stochastic treatment is extremely difficult and that mean-

field approximations are qualitatively incorrect. Recent work [RWC03, DF07] has

demonstrated the possibility of treating populated fitnessclasses deterministically, treat-

ing the sparsely populated regions stochastically, and somehow matching together the

separate answers. A related, though more heuristic approach, is to simply impose a

growth cutoff in the leading edge until the number of cells inthat region isO(1). This

is accomplished by replacingr− r̄ with (r− r̄)θ(n−nc), whereθ is the Heaviside step

function [BD97, TLK96a].

In chapter two, I employ this cutoff approach in the context of front propagation

in two dimensions. In chapter four the approach is used againin the context of evolution.

The methods in chapter three are in some sense complementaryto the cutoff

mean-field approach described above. The cutoff approach accurately describes the

dynamics in populated regions and heuristically treats thehighly stochastic region. By
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contrast, the strategy in chapter three involves a detailed, stochastic analysis of certain

rare cells (the mutators). Once they become more common, themutator dynamics are

treated stereotypically.



2 Two dimensional front propagation

2.1 Introduction

Several well known processes in spatially extended systemsexhibit fronts that

propagate through space. Most of these processes that have been considered to date

occur in media in which the governing dynamics are spatiallyuniform. Recently, how-

ever, some interesting findings have been made concerning fronts propagating in sys-

tems with spatially heterogeneous dynamics. In particular, the simple infection model

A+B→ 2A on a lattice with equal hopping rates and a linear reaction rate gradient has

been studied[CKL05a, CKL05b]. Two versions of this system have been examined in

some detail: one in which the gradient is defined with respectto the medium itself (the

"absolute gradient"), and another in which the gradient is defined relative to the front’s

interface and travels along with the front (the "quasi-static gradient"). One can imagine

numerous systems that can be described by the absolute gradient, e.g. a chemical reac-

tion occurring in a temperature gradient. The quasi-staticgradient is more analytically

tractable and also arises naturally in models of biologicalevolution[TLK96b, RWC03].

The usual way to analytically study a system with a propagating front, such as the

infection model mentioned above, is within a mean field, reaction-diffusion framework.

The simplest MF analog to our infection model is the usual Fisher equation [Fis30], with

a spatially varying reaction rate:

∂φ
∂ t

= D∇2φ + r(x)φ(1−φ) (2.1)

For our simple infection model, Eq.2.1 (the "naive MFE") fails to capture many

of the qualitative aspects of the stochastic problem with either absolute or quasi-static

8
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gradients. These failures, as well as many other issues involving the MF description of

similar front propagation problems, are largely remedied [CKL05a, CKL05b, CKL05c,

CK06, CKL06] by introducing a cutoff factor in the reaction term [TLK96a, BD97,

KL98a]:

∂φ
∂ t

= D∇2φ + r(x)φ(1−φ)θ(φ −φc) (2.2)

This added factor causes the reaction rate to abruptly drop to zero in regions far

into the front’s leading edge whereφ drops below a critical levelφc, and is meant to

roughly mimic the effect of finite number fluctuations in the stochastic process. In other

words, the discrete nature of individual particles impliesthat a sufficiently small value

of the density fieldφ < φc ∼ 1/N corresponds, in an average sense, to zero particles

present and thus zero reaction rate. In previous work, we showed how this modified

MF treatment gives a quantitatively accurate prediction ofthe stochastic model in one

dimension.

The purpose of this paper is to extend these investigations to the two-dimensional

system. We will work in a channel geometry, with no-flux conditions on the sidewalls,

such that the front propagates down the channel. In particular, we are interested in the

patterns generated by the system, due to an instability to transverse fluctuations.

As mentioned previously, this system can be viewed as being analogous to cer-

tain problems in biological evolution. In this context, therelevant equation is similar to

Eq. 2.2, but with a simpler rate term:

∂φ
∂ t

= D∇2φ +(x− x̄)φ ·θ(φ −φc) (2.3)

Here,φ represents the fraction of individuals in a population witha given fitnessx. If

the size of the population is fixed, the growth rate of individuals with a particular fitness

is proportional tox− x̄, where ¯x is the mean fitness in the population. The diffusion term

represents the effect of mutation, and the dynamics of the system corresponds to the

population evolving towards greater mean fitness. The transversey coordinate, being

orthogonal to the fitnessx, represents the frequency of some selectively neutral trait.

Instability of a planar pulse would then correspond to evolution toward a non-uniform

frequency distribution of this neutral trait. Due to the difference in the structure of
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the rate term, Eq. 2.3 describes an evolvingpulsewhereas Eq. 2.2 describes afront.

However, this difference should not alter the stability properties of the system since, as

we shall see, these properties are determined by the leadingedge where the front and

the pulse are identical. The cutoff term is appropriate in this context because members

of a population, like particles, are quantized.

In this study, we turn our attention to the quasi-static gradient in two dimensions

and ask how finite number fluctuations and the related cutoff approach affect the stability

of planar fronts propagating in a rectangular channel. In what follows we will see that

in contrast to the predictions of the naive MFE, the results of stochastic simulations

point to unstable planar fronts. Furthermore, once again the cutoff term will rescue the

effectiveness of the mean field description of the stochastic process. We first study the

cutoff mean-field equations, both numerically and analytically, showing the instability.

We then turn to the stochastic model, demonstrating the instability there as well. An

appendix contains details about the numerics.

2.2 Mean-field stability calculation

The full equation of motion governing the quasi-static gradient in the MF cutoff

framework is Eq. 2.2 with

φ(x,y, t)≡NA/N

r(x)≡max(rmin, ro+α(x− x̄))

x̄(t)≡ 1
b

∫

φ(x,y, t)dxdy

φc = k/N

∂yφ(x,0, t) = ∂yφ(x,b, t) = 0

Herex is the direction parallel to the channel’s long axis.NA is the number of

A’s at a given site andN is the equilibrium number ofA particles per lattice site.k is

someO(1) fitting parameter. ¯x serves to define the interface position of the front by

essentially comparing the front’s profile to a step function, andb is the cross-channel

width. rmin merely serves to keep the reaction rate from going negative far behind the

front and plays no role in the front dynamics.
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To investigate numerically the stability of the planar front, we start with a front

which is a slightly perturbed planar front, with

φ(x,y,0) = θ
(

0.01cos
(πy

b

)

−x
)

(2.4)

with θ(x) again the Heaviside step function. Direct numerical integration of a spatially

discretized version (with lattice spacing unity) of the time dependent Eq. 2.2 shows

that planar fronts are in fact unstable to transverse fluctuations. For a sufficiently wide

channel, perturbed planar fronts develop into long, thoughfinite, fingers whose length

increases with increasing channel width. An example of sucha finger is shown in Fig.

2.1. We see that there is a deep narrow “notch” on the trailingside of the finger, so that

the width of the interface is much greater here than for the rest of the finger. Defining the

finger length by
∫

[φ(x,0)−φ(x,b)]dx, the data for finger length versus channel width

is presented in Fig. 2.2. We now turn toward an analytic understanding of this result.

Due to the translational invariance of the system, it is natural to investigate first

steady-state propagating planar front solutions. Plugging into Eq. 2.2 the traveling wave

form, φ0(x,y, t) = φ0(x−vt), with velocityv, we obtain

Dφ ′′0 +vφ ′0 + r(z)φ0(1−φ0)θ
(

φ0−
k
N

)

= 0 (2.5)

in terms of the comoving coordinatez≡ x− vt. A quick analysis of the linearized

version of Eq. 2.5 provides insight into the role of the cutoff. As z→ −∞, φ0→ 1.

Linearizing aroundφ0 = 1, we find two exponential solutions, but one must be discarded

since it decreases with increasingz. Similarly, asz→ ∞, φ0→ 0. Linearizing around

φ0 = 0, in the region past the cutoff, once again we find only one acceptable, decaying

solution. This leaves our solution with a total of two undetermined constants. Fixing

translational invariance reduces this number to one. Requiring continuity ofφ0 at the

cutoff determines the remaining coefficient, and continuity of φ ′0 determines the velocity.

Thus, mathematically, the cutoff fixes the velocity by overdetermining the boundary

conditions, i.e. converting Eq. 2.5 into an eigenvalue problem. An analysis for largeN

yields the leading order result [CKL05a]:

v =
[

24D2α ln(N/k)
]1/3

(2.6)
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Figure 2.1: Snapshots of the growing finger for the cutoff MFEcompared to that for the
stochastic model. The parameters areD = 1, r0 = 6, α = 0.3. Lengths are expressed in
units of the lattice spacingl = 1. Left: The cutoff MFE withk/N = 8.7×10−5. Center:
The stochastic model withN = 90801. Right: The stochastic model withN = 2881.
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Figure 2.2: Finger length (as defined in the text) versus channel width for the cutoff
MFE. The parameters are:D = 1, r0 = 6, α = 0.3, k/N = 8.7×10−5, l = 1.
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In the limit k/N→ 0 we regain the naive MF approach, in whichv→ ∞. Thus the naive

MF and the cutoff MF predict qualitatively different results with respect to velocity. Not

surprisingly, stochastic fronts in fact approach a (finite)steady-state velocity that agrees

well with that given by the cutoff MF.

Turning now to 2D fronts, we wish to study the linear stability of the planar

solution to transverse perturbations. We writeφ(x,y, t) = φ0(z)+ φ̃(z,y, t) and linearize

Eq. 2.2 with respect tõφ . The invariance of the system with respect to translations in

time and the transverse spatial directiony impliesφ̃(z,y, t)= eωteiqyη(z). The governing

equation forη(z) is then:

Dη ′′+vη ′+ηr(z) [(1−2φo)θ(φ0−k/N)+φ0(1−φ0)δ (φ0−k/N)] = Ωη (2.7)

with

Ω≡ Dq2+ω (2.8)

The delta function arises from differentiating the step function and is due to the shift in

zcut caused by the perturbatioñφ . We have assumed here thatq 6= 0 so that
∫

φ̃(z,y, t)dy=

0. The caseq = 0 has to be treated separately, but in any case the least stable mode

should be the translation mode withΩ = 0. Notice that Eq. 2.8 implies a simple stabi-

lizing quadratic dependence of the growth rateω onq. Thus the least stable mode is that

with the smallest non-zeroq, which, assuming a zero-flux sidewall boundary condition,

is qmin = π/b. This implies a minimum channel widthb∗ below which even the longest

wavelength mode has too much curvature for any instability to exist:

b∗ = π
√

D
Ωmax

(2.9)

whereΩmax is the largest (positive) eigenvalue of the stability operator, Eq. 2.7.

Like the steady-state problem, insight can be gained into Eq. 2.7 by considering

the boundary conditions atz→ ±∞. We require thatη → 0 asz→ −∞. As φ0 ∼ 1

in this region, we find two exponential solutions forη: one growing with increasing

z and the other decaying. The latter must of course be excluded. If we perform the

same procedure past the cutoff, asz→ ∞, we find two decaying modes. However, one

of the modes decays more slowly than the steady-state solution and thus dominates it

for sufficiently largez. This is unacceptable behavior for a perturbation and therefore
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this solution is discarded. Thus, our solution has two arbitrary constants, one of which

may be chosen arbitrarily since Eq. 2.7 is linear inη. The remaining constant is fixed

by requiring continuity ofη at the cutoff. Matchingη ′ at the cutoff determines the

eigenvaluesΩ. Thus, once again the cutoff has played a central role in determining the

problem’s interesting quantities.

As with the steady-state problem, we can make analytic progress in the limit

of large N. In this case, the cutoff is at largez, in the region whereφ0 is small. If

we consider Eq. 2.7 in the region whereφ0≪ 1 andz < zcut, and fix the translation

invariance by setting ¯z= 0 for the unperturbed state, we obtain

Dη ′′+vη ′+η(r0+αz) = Ωη (2.10)

Up to a similarity transformation, this is the Airy equation, with the general

solution

η = e−
vz
2D

[

AAi

(

Γ−z
δ

)

+BBi

(

Γ−z
δ

)]

(2.11)

with

Γ≡ v2/4D−r0+Ω
α

δ ≡
(D

α
)1/3

We argue that the Bi term must vanish by considering the largev limit of Eq. 2.7

and matching onto Eq. 2.11. As shown in [CKL05b], in the largev limit, the diffusion

term in Eq. 2.5 can be ignored, and the solution in the region whereφ0≪ 1 is

η ∼ e−
1
v [(r0−Ω)z+ 1

2αz2] (2.12)

Expansions ofAi andBi for large argument show that the diffusionless result

Eq. 2.12 matches onto Eq. 2.11 only if theBi term is absent. The constantA may be

arbitrarily set to unity since the problem is linear. Thus wehave forz. zcut

η = e−
vz
2D Ai

(Γ−z
δ

)

We have to match this result to the simple exponential solution forz> zcut. Thus,

e−
vzcut
2D Ai

(

Γ−zcut

δ

)

= Ce

[

− vzcut
2D

(

1+
√

1+
4Ω0D

v2

)]

(2.13)
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The derivative ofη must also match properly at the cutoff. Looking back to Eq. 2.7, we

see that the delta function term causes a discontinuity inη ′ at zcut:

η ′right −η ′le f t =
r(zcut)

D

k
N(1−k/N)

φ ′0(zcut)
=−r(zcut)

v
(1−k/N) (2.14)

Computing the derivatives in (12) and dividing by (11), we obtain

v
2D

√

1+4DΩ/v2− 1
v
(r0+αzcut)(1−k/N) =

1
δ

Ai′(Γ(Ω)−zcut
δ )

Ai(Γ(Ω)−zcut
δ )

(2.15)

This equation determinesΩ if the quantitiesv andzcut are known. Now, for largev the

LHS of (12) is also large. For the RHS to balance it, the Airy function in the denominator

must be small. Thus,Γ−zcut
δ ≈ ξ0, whereξ0 ≈ −2.3381 is the first zero of the Airy

function. For the position of the cutoff, we quote another result from [CKL05a] obtained

by matching the linearized steady-state equation at the cutoff:

zcut ≈
v2/4D− r0

α
−ξ0δ − 2D

v
(2.16)

Plugging this expression into Eq. 2.15, expanding aroundξ0, and dropping higher order

terms, we obtain the leading order result valid for largev:

Ω =
2Dα

v
(2.17)

This result is tested in Fig. 2.3, where we plot the eigenvalue Ω versus velocity deter-

mined by an exact numerical solution of Eq. 2.7, together with the numerical solution

of the matching condition, Eq. 2.15, and the leading order result, Eq. 2.17. We see that

indeed the leading order result approaches the exact results asv increases.

Our leading-order result, Eq. 2.17, yields the interestingconclusion that planar

fronts become stable in the limit asv→ ∞, i.e. N→ ∞, i.e. the cutoff disappears. Eq.

2.17 can be interpreted as saying the thatΩ is proportional to the ratio of the diffusive

length scale (D/v) to the length scale over which the rate changes appreciably(1/α).

Thus, heuristically incorporating the effects of finite number fluctuations qualitatively

changes the system’s stability properties by limiting the front’s velocity, which in turn

makes the diffusive length scale finite. In practice, however, without a cutoff, an initial

front which is compact (or decays sufficiently rapidly) willact as a time-dependent cut-

off [KNS98], so that at least initially transverse fluctuations will grow. The fluctuation
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Figure 2.3: The circles represent the exact numeric solution of Eq. 2.7. The solid line
is the exact numeric solution of Eq. 2.15 which is itself a largev approximation. Exact
numerically generated values ofN andzcut were used to generate this approximation.
The dashed curve is the analytic approximation Eq. 2.17. Theparameters areD = r0 = 1,
α = 0.3.

induced instability in this system is similar to that in [KL98a], where it was found that

that a coupled reaction diffusion system with no reaction gradient, but with unequal dif-

fusion coefficients, is unstable with a cutoff but stable without one. Furthermore, Eq.

2.17 shows that the fronts become stable asα→ 0, for any value ofN. This is consistent

with the stability shown in [KL98a] in the case of equal diffusion coefficients.

Thus, once again, the presence of the cutoff qualitatively changes the simple

mean field predictions. If the cutoff approach indeed captures the effect of finite number

particle fluctuations, we should expect to see some analog ofthis front instability in the

stochastic, discrete infection model discussed earlier, to which we now return.
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2.3 Stochastic system

We ran simulations in which the lower rectangular portion ofthe channel was

initially populated withN type A particles per lattice site and the upper rectangular

portion of the channel was populated byN type B particles per lattice site. During

each time step, a binomially distributed random number of particles hops to adjacent

sites. Furthermore,A particles probabilistically cause someB particles to change intoA

particles . The reaction probability and hopping rates werechosen so that the discretized,

stochastic equation for∆NA reduces to Eq. (2.1) (with the quasi-static form forr(x))

when the expectation value is taken in the small time, small lattice spacing limit. In

particular, for the hopping probability we tookPhop∼ Ddt
l2

, wheredt is the simulation

time step andl is the lattice spacing. The number of particles reacting during each

time step was chosen as a binomially distributed random variable characterized byNA

repetitions of a Bernoulli process with individual event probability 1− (1− r(x)dt
N )NB.

The simulation results are easiest to interpret when the channel widthb and the

average number of particles per lattice site,N, are large. For fixed largeN, there is some

b beyond which there is a pronounced finger which survives for very long times. An

example of such a finger is seen in the middle frame of Fig. 2.1,whereN was chosen to

correspond to the cutoff chosen for the MF simulation seen inthe leftmost frame. The

overall similarity of the patterns is clear. AsN is reduced for the sameb, the statisti-

cal fluctuations become larger, as expected, and give the finger a clearly finite lifetime

before it succumbs to the noise. The pattern eventually regenerates, sometimes with

opposite parity, and the cycle of destruction and regeneration starts anew. Such a noise-

roughened finger in seen in the rightmost frame of the Figure.The very visible effect

of the noise is striking given the still quite large value ofN employed, underscoring the

extreme sensitivity to fluctuations of our system.

For very narrow channels, on the other hand, the interface appears to be essen-

tially planar, with random short-lived fluctuations. All this is in accord with our expec-

tations based on our study of the cutoff MF dynamics. What is more subtle, however,

is a quantitative measurement of the critical value ofb for the onset of the pattern. On

the smallb side of the transition, the pattern is not exactly planar dueto noise. On the

largeb side, the pattern is smeared out due to noise. This problem isexacerbated by
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the supercritical nature of the transition, such that the pattern has very small amplitude

near the transition. In order to compare the stochastic system to the MF prediction, we

need a way to distinguish this random roughening of the interface from the genuine pat-

tern forming mechanism discussed in the previous section. We present below two tests

whose results we believe demonstrate the existence of a sharp transition in the stochastic

system.

2 2.2 2.4 2.6

ln
1/3

(Nb)

6

6.5

7

7.5

v

N = 2881
N = 13596
N = 90801
N = 2648500

Figure 2.4: Evidence of the transition to instability. The linear envelope of the different
curves demonstrates theN renormalizationNe f f∼Nbrequired by widening the channel.
The dotted lines show theb∗ resulting from the corresponding deterministic, MF cutoff
simulation (k=.25). Each data point represents an ensemble average of three long trials
(100 time units each). The parameters areD = 1, r0 = 6, α = 0.3, l = 1

Both of these tests exploit the predicted transition between stable and unsta-

ble states that occurs when the channel width exceeds a critical valueb∗, as stated in

Eq.(2.9). First, we measured the ensemble averaged velocity of the mean interface
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z̄≡ ∑i, j
A(i, j)

Nb as a function ofb (Fig. 2.4). The increasing trend along the envelope

of the different curves can be understood as a result of widerinterfaces presenting an ef-

fectively larger number of particlesNe f f. In fact, since in the steady-state,v∼ (lnN)1/3,

we see from the figure the remarkably simple resultNe f f ∼Nb. This simple dependence

continues untilb approachesb∗ (dotted vertical lines), where the velocity suddenly in-

creases. This increase can be understood as a result of the system spending much of its

time in a configuration in which one side of the interface significantly leads in front of

the other. The lagging side then effectively stalls while the leading side is in a region

of large reaction rate, and thus propagates quickly. The overall effect is an increase in

the velocity averaged over the width of the channel. The factthat the change occurs so

near theb∗ calculated earlier suggests that the cutoff approach is effectively capturing

the stochastic dynamics.

As a second test, we plot the mean roughness of the interfaceW vs b (Fig. 2.5).

W is defined in the standard way

W2≡ 〈
[(

∑ j A(i, j)/N
)

− z̄
]2〉

where 〈〉 denotes ensemble average and the bar denotes average over the transverse

direction. Forb< b∗ we see power law scaling reminiscent of that discovered by Kardar,

Parisi, and Zhang [KPZ86] for a growing interface. However,the data shows no sign of

a universal exponent. It may be that the very weak stability of the interface nearb∗ is

responsible for a long crossover. This issue clearly requires more extensive study. For

a fixedb, W decreases with increasingN, consistent with the hypothesis that interface

roughness is noise driven in this regime. However, forb & b∗ this simple dependence

is lost. The curves converge nearb∗, showing that particle number and its associated

noise are no longer the relevant factor in determining interface roughness. Past this

intersection, there is no apparent correlation between W and N. We interpret this as a

crossover from noise driven interface roughness to gradient driven pattern formation

occurring very near theb∗ predicted from the cutoff MF approach.

Thus, the cutoff MF approach is quantitatively successful in predicting the tran-

sition of the width and velocity observed in ensemble averaged stochastic fronts when

the channel is widened. In contrast, the naive MF approach predicts no such transition

and an infinite steady-state velocity, in stark qualitativedisagreement with the simula-
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Figure 2.5: Noise driven roughness scaling forb< b∗, gradient driven scaling thereafter.
Each data point represents an ensemble average of three longtrials (100 time units each).
Parameters areD = 1, r0 = 6, α = 0.3, l = 1.

tion results. The cutoff MF approach also predicts the velocity of the average interface

for b < b∗, provided we takeN→ Nb.

Another aspect of the stochastic system which one would liketo predict is the

ensemble-averaged shape. We find that qualitatively this behaves as expected; namely,

for small channel width the average shape is flat, and above the critical width, a nontriv-

ial shape is apparent. The amplitude of the averaged patterncontinues to increase with

increasing width. However, we do not know how to quantitatively relate the average pat-

tern to the results of the cutoff MF equations. One obvious impediment is the fact that

the stochastic system switches parity at random, with the right and left sides alternating

as the leading edge. Thus, a naive ensemble average producesa shape which is highest

in the center, clearly at odds with the deterministic calculation. Another aspect of the

problem that we would like to correlate with the deterministic calculation is the growth

rate of the pattern near onset. This problem is also difficultbecause the width, measured

in the usual way, consists of a contribution from noise driven roughening and one from

pattern formation. Clearly, the usual MF approach can only make predictions about

the contribution from patterning and thus the stochastic results and MF predictions are
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intrinsically difficult to compare. Even though the noise decreases with increasingN,

the dominance of the dynamics by the leading edge where fluctuations are unavoidably

present makes this a nontrivial task, even at largeN. These questions remain challenges

for the future.
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3 Mutation rate evolution

3.1 Introduction

The most evolutionarily important characteristic that an individual inherits from

its parents is the average number of offspring that it will leave in the next generation, i.e.

its fitness. But, is fitness theonly evolutionarily relevant heritable trait? The ultimate

fate of an individual depends not only on its immediate properties, but on those of its

entire lineage of descendants. Therefore, the genetic system that shapes the statistical

properties of this lineage is also an evolutionarily relevant, selectable trait.

In this article we study one such property, namely a globallyelevated mutation

rate. In practice this property is inherited via a mutated copy of a gene, called a mutator

allele, involved in DNA copy or repair. We ask the following basic question:What

is the fixation probability of an initially rare mutator?This is a generalization of the

classic population genetic calculation for the fixation probability of a static mutant with

selection coefficients [Fis30]. If the fixation probability of a mutator allele differs from

that of a neutral one (i.e. 1/N), then the average mutation rate of the population will be

under selective pressure.

The selective forces acting on mutators is not purely a theoretical issue. Natural

populations quite often contain a mixture of wild-type and mutator strains [LLPC96,

LCB+00, GMT+01, MRT+97, dCMdlP+04, BSF+04, OCC+00, PML+03, RYPS02,

WBS04]. Furthermore, the somatic tissues of multicellularsexual organisms com-

prise populations of asexually reproducing cells possessing opportunities for an in-

creased growth rate. Correspondingly, tumoregenesis has been associated with mu-

tator alleles [Loe91]. Even more strikingly, laboratory-scale evolution experiments

[SGL97, MLLM97, TSB54, Miy60] have resulted in examples of spontaneous mutator

23
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fixation. Several experimental studies [GMT+01, CC83, LPG+05, SDS+02, MLLM97]

indicate that mutators achieve fixation because of the adaptive mutations they generate

and not because of any intrinsic fitness advantage. Thus, selection on mutator alleles

occurs via an indirect mechanism. One of the goals of our workis to make semi-

quantitative contact between our model of indirect selection and the existing data of

mutator fixation in laboratory experiments.

The evolution of mutation rate is a problem that dates back tothe 1930’s. The

general issue was articulated by Sturtevant [Stu37], and important theoretical contribu-

tions date back to Kimura [Kim67] and Leigh [LJ70]. Theoretical studies proliferated

during the last decade, and the field is reviewed in [SGJS00] and also in [DM06]. Given

the abundance of existing theoretical articles, it is critical to understand how our work

relates to and improves upon this body of literature. We address this issue in detail in

the Discussion section. For now, we merely provide a brief sketch. First, we neglect the

complicating influences of recombination and environmental fluctuations. This allows

for a direct and comparatively precise treatment of the simplest situation: a strictly asex-

ual population adapting in a constant environment. Even this simplest scenario has rich

and often counterintuitive behavior. Secondly, our methods naturally treat both strong

(e.g. 100 fold) mutators and weak modifiers of mutation rate.Thirdly, unlike most pre-

vious work, we combine fully stochastic simulations with ananalytic approach. Our

analytic results for weak modifiers are a generalization of previous work by Andre and

Godelle [AG06], but we find that both approaches often fail tomatch simulations. How-

ever, our work for strong mutatorsdoesmatch simulations over the expected parameter

range. The simulations thus provide vital checks and guidance for the analytic approach.

Conversely, the analytic approach deepens our understanding of mutator fixation and

makes predictions in parameter regimes that are computationally inaccessible via sim-

ulation. Finally, unlike previous work, our diffusion based analytic approach captures

the effects of random genetic drift. This not only allows forexploration of regimes

where random drift is important, but also a quantitative understanding of when it can be

neglected.

The outline of this article is as follows. We begin with a heuristic discussion

of mutator dynamics. Next, we construct and simulate a stochastic model of asexual
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Table 3.1: Notation used in chapter 3.

Symbol Usage

N Total population size
µ− Wild-type mutation rate per genome
µ+ Mutator mutation rate per genome
U Mutation rate into mutator state
L Length of genome
b Number of 1’s in genome
δ Fraction of mutations that are lethal
x Mutator frequency
µ̄ ≡ (1−x)µ−+xµ+ Average mutation rate per genome
R≡ µ+/µ− Mutator strength
r ≡ b/L Growth rate per individual per simulation time-step
s= 1/b Selection coefficient of non-lethal mutation
α ≡ 1−b/L Fraction of 0’s in the genome
αe≡ α(1−δ ) Fraction of mutations that are beneficial

populations that include mutator alleles. We do not explicitly allow for the formation

of mutators, merely the competition between mutators and wild-type strains once muta-

tors arise. Afterward, steered by the outcome of simulations, we develop a quantitative

understanding of the results of the stochastic simulations. Although a full mathematical

treatment turns out to be intractable, we are able to devise an approximation scheme

that captures many features of the simulation results. We then solve our approximation

scheme, both numerically and analytically. The resulting expressions allow a compari-

son to theE. coli experiments of Lenski and co-workers [SGL97].

3.2 Heuristic analysis

In this section, we briefly explain the conceptual factors underlying mutator fix-

ation. The equations in this section should be considered merely as heuristic guides and

not formal results.

Since mutator alleles do not directly affect fitness, their dynamics must be guided

by association with other genes which do have a direct fitnesseffect. In asexuals, all

loci sharing the same genome with a sweeping beneficial mutation will also become
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fixed via “hitchhiking” [MSH74]. Whereas most alleles hitchhike completely passively,

the mutator allele plays a somewhat active role in facilitating its own hitchhiking by

increasing the probability of a beneficial mutation elsewhere in the genome. This well

known mechanism occurs in our simulations and is evident in Fig.3.1.

At the same time, the wild-type subpopulation also generates advantageous mu-

tations. When this occurs, mutators become extinct due to fixation of their counterpart

wild-type alleles. Although the wild-type generates mutations more slowly on a per

capita basis, if it vastly outnumbers the mutator subpopulation, then thetotal mutation

rate in the wild-type background may be larger. Along these lines, it is tempting to

think of the number of mutators as initially constant, and that the mutator will achieve

fixation if and only if it generates a sweeping beneficial mutation before the wild-type

background does. This means that

Pf ix = xo
µ+

µ̄
=

xoµ+

xoµ+ +(1−xo)µ−
(3.1)

wherexo is the initial frequency of mutators andµ+ (µ−) is the genome-wide mutator

(wild-type) mutation rate. This equation has striking qualities. First, it is independent of

the followingprima facieimportant parameters: population sizeN, selection coefficient

of mutationss, and the fraction of mutations which are beneficial versus deleterious.

Secondly, and more subtly, the equation isexplicitly frequency dependent. It will turn

out that Eq.3.1 arises as a limiting form of our analytic expression, but doesnot typically

match the results of simulations.

In contrast to the frequency dependent Eq.3.1, a classic result from population

genetics [Fis30] is the fixation probability of a mutant witha simple selective advantage:

Pf ix =
1−e−NxoS

1−e−NS (3.2)

This result holds for haploid populations using Moran process dynamics, and merely

requires factors of two in the exponents to handle diploids or Wright-Fisher dynamics.

In Eq.3.2,Pf ix depends on the frequency of mutants only via the productNxo, i.e. the

initial numberof mutants. Thus, Eqs.3.1,3.2 scale differently with population size. The

form of Eq.3.2 implies that (whenNS≫ 1), Pf ix ≈ 1−e−NxoS≈ 1− (1−S)Nxo and we

can think of each mutant as an independent “trial” with fixation probabilityS. In other
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words, if the fractionxo is kept constant andN is increased, Eq.3.1 says thatPf ix should

remain unchanged whereas Eq.3.2 says thatPf ix should increase. On the other hand, if

Nxo is held constant asN is increased, Eq.3.1 predicts a decrease inPf ix whereas Eq.3.2

predicts thatPf ix remains unchanged. Since mutators achieve fixation by hitchhiking

with mutations which are themselves governed by Eq.3.2, perhaps we shoulda priori

view Eq.3.1 with suspicion. Indeed, our simulation data andanalytic methods will show

that mutator fixation is often governed by an equation with the form of Eq.3.2.

While Eq.3.1 completely neglects deleterious mutations, they are the basis for

another heuristic line of thought. In any realistic biological population, regardless of

how maladapted, deleterious mutations vastly outnumber advantageous ones. Because

of this, upon first thought, one might think that the mutator allele will do more harm than

good and therefore be selected against. Although it is true that an elevated mutation rate

will quite likely cause an immediate decrease in the population’s mean fitness, evolution

does not always act to maximize this quantity. The situationis understood more clearly

in the following game theoretical context. A beneficial mutation often greatly increases

the probability that a lineage will achieve complete evolutionary success by sweeping

through the entire population, whereas a deleterious mutation only slightly decreases the

low probability of a neutral sweep. More quantitatively, wecan think of the “payoff” for

a sweeping advantageous mutant as the entire population size N. For this to occur, the

mutator must generate a beneficial mutation which must then survive in spite of random

drift. In contrast, the payoff for a deleterious mutant is merely a single individual who

is destined to die out with near certainty. The mutation strategy is favored when its

expected payoff is greater than zero, i.e.

N ·π(s) ·µben−1 ·µdel > 0 (3.3)

whereπ(s) is the fixation probability of a simple mutant, given by Eq.3.2 andµben(µdel)

are the beneficial and deleterious mutation rates, respectively. Note that this expression

weights beneficial mutationsN ·π(s) times more heavily than deleterious ones, under-

scoring their asymmetric effects. Later in this article, weshow that Eq.3.3 also follows

from a rigorous mathematical analysis.

Thus far we have argued that the fate of mutators is in principle limited both by

competition with wild-type and by their increased load of deleterious mutants. Addi-
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tionally, random genetic drift is commonly a potent force acting on rare subpopulations.

Each mutator begins its existence selectively neutral. It can be shown that random drift

eliminates neutral alleles from the population with a high probability = 1−1/N, and

that the average time taken to do so is merely∼ ln(N) generations [Cro70b]. Although

we cannot write down a “back of the envelope” estimate of thiseffect, we will later de-

rive a formula that fully incorporates random drift and specifies the parameter regimes

in which it dominates mutator fixation.

Our analytic work results in a formula for the mutator fixation probability in

terms of simple parameters. Examining this expression yields a quantitative sense of

the relative importance of random drift, deleterious mutations, and beneficial mutations.

This allows us to define “strong-effect” and “weak-effect” mutator regimes in terms of

the model parameters. In the strong-effect regime, mutations in the wild-type back-

ground do not affect mutator success and our analytic approach works well. In the

weak-effect regime, mutations in wild-type backgrounds are predicted to be the dom-

inant influence on mutator fixation. However, in the case of weak-effect mutators, we

will show that our analytic approach, like existing work by Andre and Godelle [AG06],

typically overestimates the competitive effects of mutations in wild-type backgrounds.

When this is true, Eq.3.1 provides a poor description of mutator fixation. We now turn

toward a discussion of our stochastic simulations, that provide an invaluable reference

to which we compare our analytic work.

3.3 Description of stochastic simulations

We model haploid asexual populations of fixed sizeN undergoing stochastic pro-

cesses of birth, death, and mutation. Initially, a fractionxo≪ 1 of the population are

mutators and all individuals have the same fitness. The birth-death-mutation process is

iterated until the population consists entirely of either mutators or wild-type. Transitions

between the mutator and wild-type states are not allowed. Wedo not model environmen-

tal changes explicitly, thereby assuming that the process of mutator fixation occurs on a

time-scale much shorter than that associated with environmental changes.

Our stochastic simulations are based on the well known “Moran Process” [Mor92].
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The following sequence of actions occurs every discrete timestep:

1. A randomly selected individual is chosen as a potential parent.

2. The chosen individual gives birth with probability proportional to its fitness. If it

does not give birth, the simulation advances to the next timestep.

3. A randomly chosen individual, other than the baby, is killed.

4. The baby undergoes a deleterious (beneficial) mutation with probability equal to

its deleterious (beneficial) mutation rate. This mutation rate of course depends

on whether the baby is a mutator or a wild-type. Mutations between mutator and

wild-type alleles are not allowed. In effect, this assumes that mutators are gener-

ated on a time-scale much longer than that of the entire “competition experiment”.

We model the genome of each individual as a string ofL bits [Cro70a, WH96,

TLK96b]. A fraction δ of these bits correspond to critical sites in the genome that,

when mutated, cause a lethal phenotype. In this case, the baby is never born, and the

simulation simply advances to the next time-step. Changingthe value ofδ in effect

allows for some adjustment of the distribution of deleterious mutational effects. The

birth probability per unit time, which we denoter, is proportional to the log-fitness of

the chosen individual and equals the fraction of 1’s in the genome, denoted byb/L. Key

parameters areα ≡ 1−b/L andαe≡ (1−δ )α, i.e. the fraction of sites that would be

beneficial if mutated. Thus, all non-lethal mutations have the same strength and genes

do not interact. This scheme for assigning fitness to genotypes is known as a “mul-

tiplicative Fujiyama” fitness landscape, and is theK = 0 version of Kaufman’s “NK”

model [Kau93]. This toy landscape is obviously a useful mathematical simplification.

Additionally, recent experimental work [HSHK06, DFM07] shows that some dynamics

of real bacteria and yeast populations can be captured by considering mutations of only

a single strength.

Mutation is implemented by “flipping” bits with a probability µ±
L per bit per

birth event, depending on whether the baby is a mutator (+) or a wild-type (−). The

total number of flips is determined by drawing a binomially distributed random number

with success probabilityµ±L and number of trialsL. Each mutation has a probabilityδ
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Figure 3.1: Some sample runs from simulations where the wild-type mutation rate is
zero. The top panels depict the number of mutators in the population vs. rt

N , wherer is
the birth probability per time step which is proportional tothe (initial) mean population
fitness. The bottom panels show the average number of beneficial mutations in the
mutator subpopulation. The dark lines resulted in fixation of the mutator allele, whereas
the lighter lines resulted in its loss. When the mutation rate of the mutators (µ+) is
not too large, the mutator hitchhikes to fixation with a single beneficial mutation (left
panels). Whenµ+ is larger, many beneficial mutations occur during the fixation process
(center and right panels). Our analytic approximation scheme assumes that the fixation
process istriggeredby merely the first beneficial mutation to survive drift. Notethat
in each case the population is always far from the fitness maximum when the mutator
achieves fixation since there are 80 possible beneficial mutations. Parameters areN =
105,xo = .005,δ = 0, wild-type mutation rateµ− = 0, andµ+ = 10−5 (left), µ+ = 10−3

(center),µ+ = 1 (right). α = .4,s= 1/120 (initial values).
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Figure 3.2: Averaged results of simulations, and the utility of Sµ as the measure of
mutator success. WhenPf ix≪ 1, Pf ix increases linearly withxo (data not shown). The
left panels show the (least squares) slope of said linear increase when the population
is well adapted (bottom) and poorly adapted (top) to its environment. The data on the
bottom row are quite noisy because of the small number of trials resulting in fixation.
The panels on the right express the same data, but in terms of the effective selection
coefficientSµ of the mutator allele obtained by inverting Eq.3.2. Whereasthe values
from the left obviously depend onN, the values on the right panels areindependent of
N whenNSµ ≫ 1. This suggests thatSµ , which exposes an underlying simplicity to the
simulation results, is a more natural measure of mutator success thanPf ix. Notice that
when the mutator is favored,Sµ is always less than the selective advantages of a single
beneficial mutation; this is due both to deleterious mutations and loss due to random
drift. Parameters ares = 1/120,µ− = 0,δ = 0,α = .4 (top) and.008 (bottom). See
Supplementary Information for details concerning averaging.
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Figure 3.3: Dependence on the underlying selective advantages. The data correspond-
ing to two values ofs, i.e. two values ofL, approximately collapse onto a single curve
when Sµ and µ+ are each scaled bys. The scaling of the independent variable un-
derscores the fact that mutator success for fixedα is largely controlled by the ratio of
timescales for mutation (1/µ+) and selection (1/s). In particular, the sharp decrease in
Sµ at largeµ+ occurs when these timescales become comparable, i.e. when deleterious
mutations accumulate in an expanding lineage before it has sufficient time to achieve
fixation. Parameters areN = 5000,µ− = 0, α = .4, δ = 0.

of being lethal. If no mutations are lethal, the number that are beneficial is determined

by drawing another binomially distributed random number with success probabilityα

and number of trials equal to the number of flips. Unlessµ± is O(1), the probability of

more than one mutation occurring during a single birth eventis negligible and we will

refer to the genome-wide mutation rate asµ±.

Another useful parameter iss= 1
L/(1−α) which, likeα andαe, changes through-

out the simulation as the population evolves. We emphasize that this fitness dependent

value ofsdoes not represent an epistatic effect. Rather, it is a consequence of mutations

which result in a fixed, additive increment in “log-fitness.”

A consequence of our genomic model is that both the beneficialand deleterious

mutation rates will be larger than values encountered in biological populations unlessL

is extremely large. While this may seem like an unnecessary and undesirable restriction,

it will turn out that our analytic results, which readily handle arbitrary values of the

mutation rates, are insensitive to these details of our bit string simulation model.
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3.4 Simulation results

To simplify matters, we first investigate the case where the wild-type mutation

rate is zero; results for the more general case will be given later. Fig.3.1 shows typical

runs for this case. These graphs make it clear that if the mutator mutation rate,µ+,

is sufficiently small, the mutator allele hitchhikes to fixation with a single beneficial

mutation. This simple observation reminds us that mutator fixation or loss is not the

result of winning the race up the fitness landscape, but rather hitchhiking with beneficial

mutations. Thus, mutator alleles are better thought of asconsequencesof asexual evo-

lution thancausesof more rapid evolution [SGJS00]. Whenµ+ is larger, the dynamics

are more complex. Despite this complexity, we will later show, via the success of our

analytic approximation scheme, that the fixation process istriggered mostly by the first

beneficial mutation to escape random drift.

3.4.1 Dependence onµ+:

Fig.3.2 presents simulation results for three different population sizes and two

different degrees of adaptation. The fundamental measuredquantity is the fixation prob-

ability Pf ix of an initially rare mutator. WhenPf ix ≪ 1, the mutators are completely

independent of one another andPf ix increases linearly withxo (data not shown). To nor-

malize against the effect ofxo, we consider the slope of said linear increase,dPf ix/dxo,

which equals the mean number of mutator descendants left by each mutator, as our pre-

liminary measure of mutator success. Fig.3.2 (left panel) shows howdPf ix/dxo depends

on µ+. The small and largeµ+ limits make qualitative sense: asµ+ → 0, the muta-

tor phenotype is “turned off” and therefore neutral, resulting in dPf ix/dxo→ 1. On the

other hand whenµ+ & 1, a mutation occurs nearly every birth event and the fitness of

an evolutionary line of individuals takes a biased random walk toward the much lower

fitness of a completely random genome. Thus, although it is computationally prohibitive

to measure a negligible fixation probability, it is clear that the mutator allele is nearly

lethal at sufficiently largeµ+.
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3.4.2 Dependence onN, and mutator effective selection coefficient:

Fig.3.2 also shows thatdPf ix/dxo increases with increasingN. This behavior is

incompatible with Eq.3.1, which is independent ofN, but is fully consistent with Eq.3.2:

Pf ix =
1−e−NxoS

1−e−NS

We now quantitatively consider whether Eq.3.2, which applies to mutants with adirect

fitness advantage, also describes mutators withindirect fitness effects. For this to be the

case, the fixation probability measured from simulations with differing values ofN and

xo would all correspond to a single value ofSµ(α,s,µ+,µ−,δ ). Using the values ofPf ix

measured from simulations, we used a computer to invert Eq.3.2, thereby obtaining cor-

responding values ofSµ . Fig.3.2(right) shows that, whenNSµ ≫ 1, there indeed exists

an underlying quantitySµ , which we call the “effective mutator selection coefficient,”

that remains invariant asN, xo, andPf ix change.

There are several advantages to usingSµ as the measure of mutator success.

First, it allows Eq.3.2 to determine in advance howPf ix depends onN andxo, thereby

reducing our number of parameters by two. Secondly, it allows us to apply aspects of

our conceptual understanding of direct mutants to the fixation of indirect mutators. For

example, whenNSµ ≫ 1, Pf ix for a single mutator becomes independent ofN, i.e. the

notion of a frequency independent per capita fixation probability makes sense. Thirdly,

the existence ofSµ , in the sense of Eq.3.2, invites future questions. For example, one

may wonder whetherSµ , in addition to determiningPf ix, also describes the average

dynamicalbehavior of the mutator subpopoulation, e.g. whether〈x(t)〉 ∼ eSµ t when

rare. In this article we do not apply such an interpretation on Sµ . Rather, we merely

interpret it as a succinct descriptor of mutator success.

3.4.3 Dependence on strength of mutations:

Fig.3.3 shows howSµ depends on the strength of the mutations on our fitness

landscape, as measured bys. Fig.3.3 (left) shows that ass is increased,Sµ also increases,

and reaches its maximum value at a faster mutation rate. Fig.3.3(right) demonstrates

that the curves in the left panel are not as different as they appear: whenSµ and µ+

are each scaled bys, the curves become nearly identical. This means thatSµ is directly
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proportional tos, and thatSµ is governed by the single composite parameterµ+/s rather

thanµ+ andsseparately. Thus, an examination of the simulation data hasallowed us to

reduce our number of parameters by three.

3.5 Instantaneous single locus approximation (ISLA)

Stochastic simulations provide valuable signposts along the way to understand-

ing mutator fixation. However, a deeper understanding, as well as the ability to probe

computationally prohibitive regions of parameter space, requires an analytic approach

as well. At a given time, the state of the population is fully specified by (i) the number of

mutators, (ii) the fitness distribution of the wild-type subpopulation, and (iii) the fitness

distribution of the mutator subpopulation. A complete solution to the stochastic process

requires an enumeration of the transition probabilities between each of these states at

each point in time. The problem with such an approach is the extremely large number of

possible fitness distributions and the correspondingly high dimensionality of the result-

ing governing differential equations. In order to make progress, we note the heuristic

rule that deleterious mutations are rapidly removed from the population, whereas ben-

eficial mutations, and all loci linked to them, become rapidly fixed. This observation

motivates the following approximations that handle mutations, which are the ultimate

source of the aforementioned daunting multiplicity of fitness distributions.

Approximation 1 (A1): We assume that when a beneficial mutation arises, it instantly

becomes fixed with a probability given by the classical fixation probabilityπ of a bene-

ficial mutation in a static, homogeneous environment. For our Moran process dynamics,

this probability is simplys if s≪ 1 andNs≫ 1. All loci in the genome in which the

beneficial mutation arose also achieve fixation via hitchhiking. This represents the most

common process by which the mutator allele achieves fixationor loss.

Approximation 2 (A2): The remaining fraction 1− s of beneficial mutations are sim-

ply ignored and treated as if no mutation occurred. This approximation is necessarily

somewhat awkward. On the one hand, A2 is unnatural in that it allows lineages which

are destined to be extinguished by random drift to remain in the population and poten-

tially generate their own beneficial mutants. An alternative, which we call A2∗, is to
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immediately kill the beneficial mutants which do not sweep, which is clearly too harsh.

These two alternatives lead to a trivial difference in our formulas, and are discussed in

Supplementary Material.

Approximation 3 (A3): Deleterious mutations are treated as effectively lethal,since their

descendants are quickly removed from the population. This results in an effective re-

duction in the birthrate of the mutator strain.

3.5.1 Derivation of diffusion equations

Since the approximations (A1-A3) preclude fitness polymorphism over finite

time intervals, they allow us to describe the dynamics of theentire population by the

frequency of the mutator allelex∈ {0, 1
N , 2

N , ...,1}. Let T↑(x) denote the probability that

the system makes a transition from the state with a fractionx of mutators to the state

with a fractionx+ 1
N of mutators. This may occur in one of the following two ways:

1. A mutator is selected for birth, a wild-type is selected for death, and no mutation

occurs.

2. A mutator is selected for birth, a wild-type is selected for death, a beneficial mu-

tation occurs, and this mutation is part of the fraction 1−s that is destined for loss

by random drift .

Computing these probabilities in the order listed, we arrive at the following expression

for T↑(x)

T↑(x)
r

= x(1−x)(1−µ+)+x(1−x)µ+αe(1−s)

= x(1−x) [1−µ+ (1−αe(1−s))] (3.4)

The factor ofr on the LHS is just the birth probability per time-step which,according

to A1-A3 is common to all members of the population and will soon be scaled out. In a

similar way we calculateT↓(x), the probability that the system makes a transition from

the state with a fractionx mutators to the state with a fractionx− 1
N mutators. In fact,

we may simply interchangex↔ 1−x andµ+↔ µ− in Eq.3.4 which results in

T↓(x)
r

= x(1−x) [1−µ− (1−αe(1−s))] (3.5)
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Within the framework of A1-A3, the population may also make large, non-local transi-

tions to the “absorbing”x= 0 andx= 1 states if the mutator or wild-type strains produce

an advantageous mutant which is marked for fixation. This gives rise to

Tfix

r
= xµ+αes (3.6)

Tloss

r
= (1−x)µ−αes (3.7)

The probability that the population undergoes no change during a timestep is simply

what remains
To

r
= 1−T↓(x)−T↑(x)−Tfix−Tloss (3.8)

These transition probabilities allow us to write down the socalled forward and backward

Kolmogorov diffusion equations which describe the time dependent probability density

P(x, t) that the mutator frequency isx at timet. The forward equation reads:

∆P(x, t)
∆t

= −
[

T↓(x)+T↑(x)
]

P(x, t)

+ T↓(x+
1
N

)P(x+
1
N

, t)+T↑(x−
1
N

)P(x− 1
N

, t)

−
[

Tf ix(x)+Tloss(x)
]

P(x, t) (3.9)

A pictorial representation of this equation can be seen in Fig.3.4. Taking the continuum

limit and plugging in the specific expressions for transition probabilities, we obtain for

the forward equation

∂P
∂ t

=
1
N

∂ 2

∂x2 [x(1−x)P]

+ (µ+−µ−) [1−αe(1−s)]
∂
∂x

[x(1−x)P]

− Nαes[xµ+ +(1−x)µ−]P (3.10)

wheret has been rescaled byN/r so that the units are now “generations.”

Each of the three lines in Eq.3.10 has a straightforward physical interpretation.

The first line represents “random genetic drift.” The secondline represents the muta-

tional load of the mutator. The final line represents the “decay” of probability from the

open intervalx∈ (0,1) due to beneficial mutations that instantaneously sweep.

An approximation to a limited version of Eq.3.10 is solved inappendix D. How-

ever, we can write an equivalent “backward Kolmogorov” equation which is often more



38

Figure 3.4: Diagrammatic representation of ISLA. The blackarrows correspond to local
transitions representing random genetic drift. Although these transitions are locally
symmetric they are smaller near then = 0,N, leading to the accumulation of probability
at these endpoints. The blue arrows represent the fixation process of mutators, which
ISLA caricatures as an instantaneous, nonlocal jump to the staten = N. Likewise, the
red arrows correspond to the instantaneous fixation of a beneficial mutation in the the
non-mutator (wild-type) background, which drives the mutator extinct.
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mathematically convenient than Eq. 3.10. DefiningG(xo, t) as the probability that the

mutator has beenlost by timet, given thatx = xo at t = 0, we find

G(xo, t +∆t) = T↓G(xo−
1
N

, t)+T↑G(xo+
1
N

, t)+ToG(xo, t)+Tloss(xo) (3.11)

The backward equation is especially useful in its steady state form. DefiningG(xo, t→
∞)≡G∞(xo) and taking the continuum limit, we obtain the ODE

0 =
1
N

d2

dx2
o
G∞

− (µ+−µ−) [1−αe(1−s)]
d

dxo
G∞

− Nµ+αes
G∞

1−xo
+Nµ−αes

1−G∞
xo

(3.12)

3.5.2 Solution and analysis without wild-type mutations

We return for now to the simpler caseµ− = 0, deferring until later the more gen-

eral situation. Eq.3.12 can be solved exactly in terms of theWhittakerM function[AS65].

This exact solution is however not immediately instructive(and in any case cannot be

generalized to the case of finite wild-type mutation rate). It is simpler in practice to solve

Eq.3.12 numerically (see Supplementary Information). It is also possible to extract some

useful information directly from the differential equation.

First, we note that a simple analysis reveals when the mutator allele will be

favored. For notational convenience we define the constants

B ≡ µ+ [1−αe(1−s)]

C ≡ µ+αes

According to ISLA, the mutator is neutralfor all µ+ whenG∞(xo) = 1−xo. Plugging

this into Eq.3.12, we find that this requiresB = NC, or

αcrit
e =

1
1+(N−1)s

≈ 1
1+Ns

(3.13)

First note that Eq.3.13 is equivalent to our heuristic guess, Eq.3.3, ifNs≫ 1. Exam-

ining Eq.3.13, we see that conditions which favor the emergence of mutators (at least
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Figure 3.5: Behavior near the transition from favored to disfavored mutators. Whenαe is
greater than a critical valueαcrit

e , the mutator allele is favored (Sµ > 0) for small enough
µ+. Our analytic approach (ISLA) predicts that the transitionoccurs at(Ns+1)αcrit

e =
1, which agrees extremely well with simulation data. Parameters areN = 5000,s =
1/120,µ− = 0,δ = 0. The number of available beneficial mutations are, in orderof
decreasing mutator success: 10, 5, 3, and 1.
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Figure 3.6: Comparison of simulation, numerical solution of Eq.3.12, and the analytic
approximation Eq.3.16. The exact numeric solutions to our ISLA Eq.3.12 for different
N converge to the analytic approximation Eq.3.16 whenNSµ ≫ 1 (left). Solutions to
Eq.3.12 show, in agreement with simulation, thatSµ/sdepends onµ+/s rather thanµ+

andsseperately (right). Parameters are those used in Figs. 3.2,3.3.

when the resident mutation rateµ− is negligibly small) are large population size, potent

mutations, and a relatively large fractionαe of sites that would be beneficial if mutated,

perhaps due to an environment to which the organism is not well adapted. The fact

that largeαe favors mutators is obvious. The dependence onN is simply a result of the

fact that as population size increases, the neutral fixationprobability 1/N becomes an

easier benchmark to exceed. The qualitative dependence ons is also straightforward in

hindsight, given A1-A3: increasings increases the fraction of beneficial mutations that

achieve fixation, but does not affect the fate of deleteriousmutations, all of which are

treated as lethal. Also notice that for sufficiently largeN the mutator is always favored,

although its fixation probability may be very small: it is favored only in the sense that it

fares better than a neutral allele whose fixation probability is 1/N. Fig.3.5 demonstrates

the success of Eq.3.13 whenµ+/s≪ 1. The failure of ISLA for largerµ+/s will be

discussed later. We next develop approximate solutions to Eq.3.12, withµ− = 0.

Strongly Favored Mutators (NSµ ≫ 1)

In this regime, we expectPf ix to increase rapidly withxo. Therefore, we expect

the loss probabilityG∞(xo) to decrease rapidly, and 1/(1− xo) to differ significantly
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from 1 only whenG∞ ≈ 0. Then, forxo≪ 1, we can approximately take 1− xo→ 1,

and the solution to Eq.3.12 withµ− = 0 is simply

G∞(xo) = e−Nzxo (3.14)

z ≡
√

B2+4C−B
2

Our approximation is self consistent if indeedG∞ decays rapidly, i.e.Nz≫ 1. This

solution does not satisfy the boundary condition atxo = 1 since our solution is only

valid for xo≪ 1. Beyond this region the structure of the solution is more complicated,

which need not concern us here since fixation is essentially total in this regime. We then

have for the fixation probability of the mutator

Pf ix(xo) = 1−e−Nzxo (Nz≫ 1) (3.15)

A comparison with Eq.3.2 shows that, according to A1-A3 and in the limit Nz≫ 1,

the mutator effectively behaves like a simple advantageousmutant with a well defined

selection coefficientSµ = z:

Sµ = z=

√
B2+4C−B

2
≈ µ+

2

[

√

(1−αe)2+4αes/µ+− (1−αe)

]

NSµ ≫ 1

(3.16)

A comparison of the stochastic simulation data with both a numerical solution of Eq.3.12

and this approximate analytic expression (Eq.3.16) is given in Fig.3.6. We see that our

approximateSµ/s only depends onµ+/s rather thanµ ands separately, as we noted in

the Simulation Results section.

For smallµ+≪ αes, C≫ B2 andSµ ≈
√

C =
√µ+αes, and thus only advanta-

geous mutations are relevant to mutator success. This result (which is directly supported

by Fig.3.10 to be discussed later), shows that in this regime, random drift, and not dele-

terious mutations, is the only check on mutator success.

In the complementary regime whereµ+ ≫ αes, |Sµ | approaches its maximum

valueS∗µ with respect toµ+. Here, the solution is the same as if the second derivative

term, which represents random drift, were dropped from Eq.3.12 (see below). Therefore,

random drift is irrelevant in this regime and deleterious mutations alone limit mutator

success, giving

S∗µ =
C
B
≈ αe

1−αe
s (3.17)
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The factor in Eq.3.17 multiplyings is the ratio of beneficial mutations to deleterious and

lethal mutations. In real biological populations, this ratio is certainly less than one, and

henceS∗µ ≪ s.

Marginal Mutators ( NSµ . 1)

We can readily make progress in this regime ifNµ+≫ 1 andN2µ+αes≫ 1. In

this case, theB andC terms dominate Eq.3.12 and the solution forG∞ is simply

G∞(xo)≈ (1−xo)
NS∗µ (3.18)

with a fixation probabilityPf ix(xo) ≈ NxoS∗µ . In obtaining this solution, we dropped

the second derivative term in Eq.3.12, which could in principle introduce large errors

nearxo = 1, whereG′′(xo) from Eq.3.18 is in fact large. Nonetheless, it turns out that

Eq.3.18 satisfies the boundary condition atxo = 1 and thus remains a valid leading

order approximation for allxo. SincePf ix is comparable to 1/N in the present marginal

case, we cannot interpretS∗µ as a mutator selection coefficient here. Rather, we have

Pf ix = xo(1+ NSµ/2), from which we obtainNSµ = 2αe(Ns+1)−1
1−αe

, independent ofµ+.

The numerator of this expression makes clear the agreement with our previous estimate

for the critical value ofαe given by Eq.3.13.

The case whereNµ+ . 1 andNSµ . 1 requires a more lengthy analysis, and is

presented in appendix B.

3.6 Effect of wild-type mutations

We now turn our attention to the more complicated case when mutations in wild-

type backgrounds are allowed, i.e.µ− > 0. We begin by solving Eq.3.12 forµ− > 0

in the largeNµ± limit, where the second derivative term can be neglected. Working

in this limit simplifies the mathematics, and is sufficient for illustrating the points that

we intend to make. An approximation that incorporates the second derivative term and
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Figure 3.7: Small effect of mutations arising in wild-type backgrounds. ISLA predicts
that these mutations will become important in the weak-effect mutator regime defined
by R(1−αe)

Nαes . 1, whereR≡ µ+/µ−. However, the simulation data show that mutations
in wild-type backgrounds sometimes have a negligible impact even in the weak-effect
mutator regime. In the panel on the right,R(1−αe)

Nαes has the values 18, 3.6, and .18,
respectively, asN is increased. Accordingly, ISLA predicts a decrease inSµ , but Sµ
did not change in simulations. The panel on the left shows that beneficial mutations in
wild-type backgrounds eventually decreaseSµ for large enoughR, though the decrease
here is smaller than what ISLA predicts. Parameters areα = .4,s= 1/120,δ = 0, and
µ+/µ− = 100 (right).
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Figure 3.8: The distributions of fixation and loss times for cases wherePf ix ≈ 1%. The
left (right) column shows the distribution of fixation (loss) times. The top row corre-
sponds toµ− = 0 and the bottom row toµ+/µ− = 100. Notice the logarithmic scale
and the extremely long tails on thetlossdistributions. The twotlossdistributions have the
same mean̄tloss≈ 40 generations, which is of the same order ast̄dri f t = Nxo ln(1/xo)≈
92 generations. Thet f ix distributions have means̄t f ix ≈ 1300 generations (µ− = 0) and

t̄ f ix ≈ 1400 generations (µ+/µ− = 100). Sincetsweep∼ ln(Ns)
s ≈ 800 generations are

required for an advantageous mutant to sweep the population, we see that 500− 600
generations passed before a beneficial mutant destined for fixation was generated. Thus,
when mutator fixation occurs, such beneficial mutations are typically generated early
compared tōtmut ≡ (αsµ+Nxo)

−1 = 3× 104 but late compared tōtdri f t . Sµ is deter-
mined mostly by the probability that the mutator survives the long drift period and
this is barely affected by wild-type beneficial mutant fixation events. Parameters are
N = 105,s= 1/120,α = .4,xo = 10−4,δ = 0,µ+ = 10−3. Note that the initialoverall
mutation rate in the wild-type population is 100× that in the mutator subpopulation.



46

random drift is included in appendix E. In the largeNµ± limit,

0 = − (µ+−µ−) [1−αe(1−s)]
d

dxo
G∞

− Nµ+αes
G∞

1−xo

+ Nµ−αes
1−G∞

xo

This first order, linear ODE can be solved by standard methods. DefiningR≡ µ+/µ−,

we obtain

Pf ix ≈Nxos
αe

1−αe

(

1+
αe(Ns+1)−1

R(1−αe)

)−1

+O(x2
o) (3.19)

The prefactor in Eq.3.19 is identical to our previous expression for theµ− = 0

case (Eqs.3.17,3.18) whenxo≪ 1. Recall that the sign of the quantityαe(Ns+1)−1≈
Nαes−1 determines whether mutators are favored (Eq.3.13). Therefore, mutations in

wild-type backgrounds decreasePf ix when mutators are favored andincrease Pf ix when

they are disfavored. This latter effect occurs because mutating is generally a losing

strategy whenαe(Ns+1)−1 < 0 (see Eq.3.3): the small persistent cost of deleterious

mutations exceeds the huge occasional benefit of a selectivesweep. Thus, in this regime

the wild-type aids the mutator by participating in this losing strategy.

Eq.3.19 also determines whenR is sufficiently large to ignore mutations in wild-

type backgrounds. In other words, Eq.3.19 allows us to definenatural “strong-effect”

and “weak-effect” mutator regimes. For weak-effect mutators, αe(Ns+1)−1
(1−αe)

≈Nαes≫R,

and Eq.3.19 reduces toPf ix = xoR, which isindependent of N. This is the same as Eq.3.1

for xo≪ 1. Thus, in this regime, ISLA predicts that mutational competition with the

wild-type is the dominant factor limiting mutator fixation,and we recover the explicitly

frequency dependent heuristic picture. In the opposite extreme of strong-effect mutators,

regardless of the sign ofαe(Ns+1)−1, we recover ourµ− = 0 result (Eqs.3.17,3.18)

where deleterious mutations are the dominant factor limiting mutator fixation.

These are pleasing mathematical results that seem to reconcile opposing heuris-

tic viewpoints. However, they do not always match simulations in the weak-effect mu-

tator regime. Fig.3.7 (right) shows numerically generatedsolutions to Eq.3.12 (Eq.3.19

gives the largeµ limit of these curves) as compared to the outcome of simulations.
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The disagreement is obvious: ISLA drastically overestimates the effect of the mutations

in wild-type backgrounds. Fig.3.7 shows that beneficial mutations in wild-type back-

grounds eventually decreaseSµ for large enoughR, though the decrease here is smaller

than what ISLA predicts. The small effect of these mutationspersisted even when we

used parameters such that the wild-type subpopulation generated mutations at a rate

N(1−xo)µ− that was equal to or even greater than the corresponding rateNxoµ+ in the

mutator subpopulation. Although we do not fully understandthis discrepancy, we can

point to its source: There is a subtle error involving the final term of both Eqs.3.10,3.12

which states that during a single time-step, the mutator hasa probability(1−x)µ−αes

of becominginstantlylost. This is incorrect. The correct statement is that(1−x)µ−αes

is the probability that during one time-step, the wild-typegenerates a beneficial mu-

tation that willeventuallyescape loss to random drift. Such mutations sweep through

the population during a mean time intervaltsweep∼ ln(Ns)
s generations which is typically

much longer than the time to extinction of a mutator due to random drift t̄dri f t ≈ ln(N)

[Cro70b]. A more detailed picture is gained by examining thedistribution of fixation

and loss times of the mutator allele. Fig.3.7 shows that these distributions are barely

affected byµ−, suggesting that these mutations play a very small role in the mutator

fixation process.

Despite these complications, for sufficiently larges, tsweepis small, A1 becomes

a better approximation, and ISLA more closely matches simulations. An example of

this agreement is presented in Fig.3.9, wheres= 1/3,N = 1000,αe = .4,R= 10. Thus,

ISLA provides accurate results except in the weak-effect mutator regime with suffi-

ciently smalls. Unfortunately, we do not have a quantitative sense as to howlarges

must be in order to achieve accuracy. We plan to address this issue in future work.

3.7 Comparison of ISLA to simulation

We now return to the caseµ− = 0, where the results of ISLA agree with sim-

ulations whenR≡ µ+/µ− is sufficiently large. Figs.3.5,3.6 illustrate the agreement

between ISLA Eq.3.12 and simulations, wheneverµ+/s is not too large. However, for

largerµ+/s, we see the emergence of two qualitatively distinct discrepancies between
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Figure 3.9: Simulation data for very larges. Whens= 1/21, ISLA greatly overestimates
the the effect of mutations in wild-type backgrounds, whereas the agreement is much
better whens= 1/3. Parameters areN = 1000,µ+/µ− = 10,αe = .4,δ = 0
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Figure 3.10: The role of non-lethal deleterious mutations.We “turned off” deleterious
mutations, both in simulations and in ISLA, by setting the deleterious mutation rate to
zero and leaving the beneficial mutation rate unchanged (left). The difference between
these results and the corresponding oneswith deleterious mutations is plotted on the
vertical axis on the left. Forµ+/s . 1, deleterious mutations have the same effects
in ISLA Eq.3.12 as in simulations (left). ISLA essentially treats deleterious mutations
as lethal (A3), instead of merely having a selective disadvantage−s. We tested this
approximation directly in simulations by varying the parametersα andδ while holding
the productα(1−δ )≡αe constant (right). Parameters ares= 1/120,N = 5000,µ−= 0
andα = .4,δ = 0 (left only).
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ISLA and simulations. Forµ+/s. 1, a relatively small difference accumulates, whereas

whenµ+/s reaches values ofO(1), a drastic difference emerges. In this section, we an-

alyze the sources of these discrepancies.

The broad reason that ISLA and simulation do not agree for allµ+ is simply

that A1-A3 and the resulting transition probabilities are only an approximation of the

complex stochastic process executed by the simulations. Indeed, strictly speaking, the

simulation does not even undergo a Markov process with respect to the variablesx, t:

one must also consider the fitness distributions of the subpopulations in order to write

down the exact transition probabilities. When viewed this way, it is perhaps surprising

that A1-A3 work as well as they do. We now specifically point out the errors introduced

as a result of A1-A3, all of which are associated with mutational processes.

A3 is accurate whenµ+/s. 1

We first analyze the way that ISLA treats deleterious mutations, which includes

both A3 (which treats all deleterious mutations as lethal) and A1 (which does not allow

deleterious mutations to arise in the course of fixation of an“evolved” clone). Fig.3.10

(right) compares simulation results from two sets of parameters with identical beneficial

mutation rates (αeµ+) but different allocations of lethal and deleterious mutations via a

difference in the parameterδ . The results are essentially identical as long asµ+/s. 1.

This shows that as far as mutator fixation is concerned, mutations of effect−s can be

considered lethal, i.e. A3 is accurate in this regime.

A1 is accurate whenµ+/s. 1

Furthermore, we can test all the effects of deleterious mutations by removing

them from both the simulations and ISLA: the deleterious mutation rate is set to zero

whereas the advantageous mutation rate is left unchanged. The results of this case

are presented in Fig.3.10 (left). Predictably,Sµ increases monotonically withµ+ in

this case (data not shown). To compare the effect of deleterious mutations in simu-

lations against those same effects according to ISLA, Eq.3.12, we plot the difference

∆Sµ ≡ Sµ,no−deleterious−Sµ,deleteriousbetween results with deleterious mutations “off”

and those with deleterious mutations “on” in the two cases. We see in Fig.3.10 (left) that
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∆Sµ from ISLA matches that from simulation untilµ+/s→ 1. Also note that∆Sµ ≈ 0

for µ+/s≪ .1, illustrating the negligible effect of deleterious mutations in this regime.

Thus, both A1 and A3 are accurate whenµ+/s. 1.

A2 fails when µ+/s. 1

Since A1 and A3 remain valid in this regime, the mild discrepancy between sim-

ulations and ISLA must originate in A2, which handles beneficial mutations. Specif-

ically, the fraction(1− s) of advantageous mutants that are lost to random drift are

treated as neutral mutators which can later give rise to beneficial mutants that may sweep

through the population. In some sense, this overstates the potential of these mutants be-

cause, in fact, they are typically lost to random drift within a few generations [Cro70b].

There is no simple remedy for this deficiency in A2, but an alternative, which we denote

A2∗, is to immediately kill these advantageous mutants, thereby treating them equiva-

lently to deleterious and lethal mutants. Whereas A2 overestimatesSµ in this regime,

A2∗ underestimates it. Thus, the simulation data is bounded by the predictions of A2

and A2∗ whenµ+/s≪ 1. See Supplementary Information for a graphical comparison

and further discussion of A2∗.

A1 fails when µ+/s∼ 1

We now turn to the large discrepancy between ISLA and simulations whenµ+/s

is O(1), as seen in Fig.3.10. Roughly speaking, this occurs when thetime-scales of

(deleterious) mutation and selection become comparable. In this regime, members of an

expanding “evolved” clone are “lost” due to deleterious mutations faster than they are

“added” due to selection. Consequently, the fixation probability of an advantageous mu-

tant in a homogeneous genetic backgroundπ(s) < s and A1 fails. Semi-quantitatively,

we expect this effect to set in when(1−αe)µ+/s∼ 1. Theαe dependence can be seen

by comparing Figs.3.5,3.6.
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Table 3.2: Values of relevant parameters for non-mutators in E. coli, as reported in
various references. We assume that all mutation rates are 100× greater in mutators.
Mutation rates are per genome per replication. “Selection coefficient” refers to that of
advantageous mutations only.

Reference µben µdel U s̃
[HSHK06] 2.0×10−7 0.054
[LRST91] 2.8×10−10 0.10
[PFMG07] 2×10−8 0.023
[IS01] 4×10−9 0.02
[RdVG02] 5.9×10−8 0.0235
[KL96] 1.9×10−4

[KEW99] 1.6×10−3

[TMGR97] 5×10−7

[BDK+00] 5×10−6

3.8 Comparison to experiment

As mentioned previously, the spontaneous emergence of mutator alleles has been

documented in laboratory evolution experiments withE.coli [SGL97, SDS+02]. In this

experiment, mutator alleles withR≈ 100 became fixed in 3 out of 12 independently

evolving E.coli populations within 10,000 generations. The total number ofmutators

generated among 12 lines during 10,000 generations is approximatelyNe×U × (104×
12), whereU is the mutation rate into the mutator state andNe is the effective pop-

ulation size [WG01, WGSV02].U has been measured between 5×10−7 [TMGR97]

and 5×10−6 [BDK+00], and we findNe = 6.3×107 (see Appendix C). Since three

of these mutators achieved fixation, the experimental fixation probabilityPf ix,expt is ap-

proximately given by 3/(Ne×U×104×12) and bounded by

7.9×10−8 < Pf ix,expt< 7.9×10−7 (3.20)

This value is 5-50 times that of a neutral allele (1/Ne).

In order to compare this value to the predictions of ISLA, we need experimental

values for the parametersµ+,αe, ands. It turns out that the equivalent set of param-

eterss, the beneficial mutation rateµben,+ = αeµ+, and the deleterious mutation rate

µdel,+ = (1−αe)µ+ are more readily available in the literature. A survey of these pa-

rameter values is presented in table 4.1. Presently, we use the beneficial mutation rate
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µben = 2.8×10−8 and selection coefficients= .1 obtained by Lenski and co-workers

[LRST91]. Following reference [KEW99], we takeµdel = 1.6× 10−1. These muta-

tion rates are based on the measured wild-type values and assume R = 100. Since

Neµdel,+ ≫ 1, N2
eµben,+s≫ 1, andNeαes≪ R, these populations are in the drift-less,

strong-effect mutator regime. Therefore, the appropriateformula is either Eq.3.18 or

Eq.3.19, which give the same results. Plugging our parameter values into ISLA, we

obtain

Pf ix,isla = 1.8×10−8 (3.21)

in reasonable agreement with the rough experimental value (Eq.3.20). Other choices for

parameter values, particularlyµben,+, would result in less impressive agreement with

experiment.

The interpretation of “beneficial mutation rate” deserves careful attention. In bi-

ological populations, mutants with a spectrum of beneficialeffects are generated at spe-

cific ratesµbpρ(s)ds, whereρ(s) is likely a decreasing function ofs [Orr03, EWK07].

The weakest mutants are generated frequently, but are unlikely to achieve fixation be-

cause (i) their intrinsic fixation probabilityπ ∼ s is small, and, (ii) in reasonably large

populations, several of these mutations exist simultaneously and thus compete with one

another. Conversely, stronger mutants are seldom generated, but likely achieve fixa-

tion. These conflicting influences result in beneficial mutations of some intermediate

sizes̃[ρ(s),N,µbp] typically achieving fixation [GL98, DFM07, HSHK06]. These mu-

tants are generated at a per capita rateµben≈ µbp
∫ ∞

s̃ ρ(s)ds. The dependence ofµben

and s̃ on N has been theoretically predicted [GL98, DF07] and directlyobserved ex-

perimentally [PFMG07]. Thus, whenever the population sizeis large enough for the

aforementioned effects to play a strong role, the microscopic parametersµbp andρ(s)

result in themacroscopic parameters̃s andµben. These are the parameters that we list

in table 4.1 and plug into our model.

It is also interesting to note that, according to these experimental parameters,

Nαes≈ 1.1, indicating that theseE. coli populations only very marginally favored mu-

tators. This could explain why no mutators fixed during the next 25,000 generations:

Nαeshad decreased below the threshold value of one as fewer, and less potent, beneficial

mutations became available.
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Due to the relatively large population sizeNe = 6.3× 107 and the anticipated

small fixation probability, we cannot obtain an accurate measurement ofPf ix using

our simulation method. However, for these experimental parameters,µ+(1−αe)/s=

µdel,+/s is O(1) and therefore we expect the data to lie in the decreasing portion of

curves such as Fig.3.6. Thus, our ISLA estimate ofPf ix is possibly much larger than

what simulations would yield. We briefly return to this issuein the Discussion.

3.9 Discussion

3.9.1 Relation to Previous Theoretical Work

As mentioned in the introduction, there are many existing theoretical models of

mutator evolution. In this section we briefly review the existing body of knowledge and

place our present work in this larger context. Studies are discussed roughly in order of

increasing similarity to our present work.

Models with explicit environmental change

Leigh [LJ70] endeavored to calculate the mutation rate thatmaximizes the growth

rate of its corresponding modifier locus. An infinite population with this wild-type (“res-

ident”) mutation rate is evolutionarily stable in the sensethat it cannot be invaded and

swept by any modifier of mutation rate. Such an evolutionarily stable strategy (ESS)

is referred to as the ESS mutation rate. Leigh developed a simple two locus, two al-

lele model of mutator dynamics in an environment that regularly alternates between two

states. One locus is under selection, and its two alleles arealternately favored in the

two different environments. The second locus is not under direct selection and merely

modifies the mutation rate at the selective locus. The dynamics of the mutator allele

are deterministically governed by two effects. First, immediately after the environment

changes, the mutator increases its frequency because the small population of mutants,

which is favored in the new environment, is over-represented in the mutator background.

This favors the higher mutation rate. Secondly, after the mutant sweeps through the pop-

ulation, the frequency of the mutator decreases due to association with the deleterious
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Figure 3.11: The scaling behavior of Eq.3.1 and ISLA arequalitativelydifferent. If
the initial number of mutatorsNxo is kept constant whileN is increased, then ISLA
predicts thatPf ix remains invariant, whereas the frequency dependent Eq.3.1predicts
a large change. Simulations are in better accord with ISLA than Eq.3.1. These scaling
predictions could be experimentally tested by observing whether the “threshold” number
of initial mutators changes withN. Here, we have defined the threshold as the number
of mutators for whichPf ix = 1/2, and depicted these values with vertical dotted lines.
Parameters areα = .4,δ = 0,µ+ = s= 1/120.
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mutants that it generates at its new fitness peak. This favorslower mutation rate. The

cycle repeats itself many times, and Leigh finds that the longterm ESS mutation rate

is equal to the rate of environmental change. Over the years,this basic model was im-

proved by incorporating the effects of timing of environmental changes, varying selec-

tive coefficients [IMIS89], intermediate genotypes [TT02], and multiple mutable sites

[PL06].

While these models doubtless provide valuable insight intocertain biological

scenarios, they are rather orthogonal to our work. Three differences seem especially im-

portant. First, most obviously, mutator success requires repeated environmental changes

in these models. In contrast, our model shows that environmental change is onlynec-

essaryfor mutator fixation insofar that it provides a rationale forhaving a population

displaced from its fitness peak. Secondly, they endeavor to find the global ESS mutation

rate whereas we focus on quantifying, via fixation probability, the probabilistic result of

a single competition experiment. While full knowledge ofPf ix(N,s,α,µ+,µ−,δ ) im-

plies the value of the ESS, the converse is not true. Thirdly,their mechanism of mutator

success is very different from ours. Whereas they rely upon the alternating selective

effects of existing mutants to boost mutator frequency, ourmodel analyzes the dynamic,

stochastic interplay between random drift, deleterious mutations, and advantageous mu-

tations in a constant environment. We propose that, on the whole, our model contains

fewer special assumptions than models with explicit environmental change. Regardless

of whether fluctuating or constant environments are more biologically informative, our

results constitute an important null model of mutator fixation.

Constant environment models

Work by Tanaka and co-workers [TBL03] also involves a changing environment.

However, unlike the models described in the previous section, theirs contains no alter-

nating selective effects: when the environment changes, the mutations acquired during

the previous environmental cycle simply become neutral. Thus, as in our work, all bene-

ficial mutants are generatedde novo. In further similarity with our work, they pursue, via

quasi-stochastic simulations and analytic approximations, an understanding of the long

term mutator behavior by concentrating on a single environmental cycle, i.e. by exam-
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ining populations in a constant environment. These authorswere interested primarily

in the case whenNxoµ+ ≪ N(1− xo)µ−, where the fixation of mutators is in some

sense unlikely. With this in mind, instead ofPf ix, they measure and calculate the (much

larger) probabilityPgain that the initially rare mutator increases its frequency by the end

of a “time cycle.” These cycles are defined to end when an expanding clone in a wild-

type background reaches a size ofO(N), at which point the simulation is halted. Their

most interesting result is thatPgain is substantial even whenNxoµ+≪ N(1−xo)µ−. In

other words, mutators can still “break even” if the wild-type background generates the

first beneficial mutation, which is important if the environment changes. Nonetheless,

without environmental change in their model, mutators willalways be doomed unless

they are the first to generate a beneficial mutation. Furthermore, they model birth and

death processes deterministically, in a way that precludesextinction. For these reasons,

our Pf ix and theirPgain are truly distinct quantities, and no direct comparison canbe

made with our work.

We next discuss a simple calculation by Lenski [Len04] basedon indirect mutation-

selection equilibrium of the mutator subpopulation. If thedominant processes occurring

in the population are mutation into the mutator state and creation of deleterious muta-

tions by mutators, then the frequency of mutators approaches an equilibrium value. This

frequency is easily calculated if, as in A3 of ISLA, deleterious mutations are treated as

immediately lethal:

xeq =
U

(1−αe)(µ+−µ−)
≈ U

µ+(1−αe)

The time taken for the population to reach this equilibrium state, as well as a much

more careful calculation ofxeq, was investigated in reference [Joh99b], but presently

we assume that this simple estimate is sufficient. In equilibrium, beneficial mutations

therefore arise at a rateNxeqµ+αe from the mutators, and rateN(1−xeq)µ−αe from the

wild-type. If all beneficial mutants of equal effect have thesame probability of achieving

fixation, regardless of whether they originate in a mutator or wild-type background, then

thefraction of substitutionslinked to a mutator is approximately

U
µ+(1−αe)

µ+

µ̄
=

U
µ̄(1−αe)

(3.22)

Plugging in reasonable values, Lenski [Len04] finds that≈ 1% of substitutions should
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be linked to mutators. Furthermore, given that each line ofE. coli in experiments from

reference [SGL97] generated 10-20 substitutions, this calculation is impressively con-

sistent with the observation that 3/12 lines became mutators.

In order to relate this approach to our own, we must reintroduce dynamics into

the picture. We can interpret the quantityxµ+
µ̄ as the conditional probability that a muta-

tor achieves fixation, given that a selective sweep occurs during its lifetime. Our quantity

Pf ix is this conditional probability multiplied by the probability that a selective sweep

occurs during the lifetime of a mutator. Assuming that selective sweeps and death each

occur as Poisson processes with ratesNµ̄αes and (µ+− µ−)(1−αe), respectively, it

is straightforward to show that the probability that at least one selective sweep occurs

before death is given by

Nµ̄αes
(1−αe)(µ+−µ−)

(

1+
Nµ̄αes

(1−αe)(µ+−µ−)

)−1

Multiplying this expression by the conditional probability xµ+
µ̄ ≈ xR, we obtain Eq.3.19.

Thus, the approach suggested by Lenski [Len04] is the equilibrium version of ISLA, in

the limit where mutational processes occur frequently enough to overwhelm random ge-

netic drift. Thus, remarkably, even though this approach frames the problem of mutator

fixation in terms of competition with beneficial mutations inwild-type backgrounds,R

cancels out of the solution in the strong-effect mutator regime: R≫ Nαes/(1−αe).

It is also worthwhile to examine the conditions under which we expect the equi-

librium assumption to hold. Let us imagine that an evolutionexperiment is conducted

for T generations, during whichH substitutions occur. ISLA predicts that the expected

number of mutator fixations isNPf ixUT, whereas according to Eq.3.22, the equilibrium

approach yields a value equal toH U
µ̄ . Setting these two values equal to one another, and

plugging in (from Eq.3.17)Pf ix(xo = 1/N) = s αe
1−αe

, we obtain

H = Nsµ̄T
αe

1−αe
≈ Nµ̄αesT

This expression merely states that the (mostly wild-type) population is in the “successive

mutations regime”, i.e. only a single beneficial mutation spreads at a time. Alternatively,

one could imagine turning this argument around and asking what Pf ix must equal given

that the equilibrium approach is valid and that the population accumulates substitutions
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“one by one”. In that case, one would, remarkably, arrive atPf ix(xo = 1/N) = αes, which

(for smallαe andNSµ ≫ 1) is what we obtained earlier (Eq.3.17) by more sophisticated

methods.

Turning to another study, Tenaillon and co-workers [TTLN+99] investigated,

via stochastic simulations and very brief analytic arguments, multi-locus mutator evo-

lution in a constant environment. These extensive simulations are a generalization of

earlier work [TRMS+97] and are partly amenable to comparison with our work. Some

noteworthy differences with our simulations are that they scan a larger range ofN, they

have a more realistic implementation of mutation, and, mostimportantly, they allow

flux into and out of the mutator state. Thus, mutators are never absolutely fixed during

their trials, which necessitates a different termination condition than ours: They declare

a trial “over” when the population reaches its maximum fitness, whereas we declare it

“over” when the mutator is completely and permanently fixed or lost. Upon termination

of the trial, they consider the mutator “fixed” if its frequency is > 95%. They measure

the fraction of trials that terminate with mutator frequency > 95% and denote this quan-

tity the “frequency of mutator fixation,” which differs fromour Pf ix because of reasons

discussed below.

One important consequence of their method is that the total number of mutators

generatedduring a trial varies with the choice of parameters. This is because each

replication event presents a chance for the creation of a newmutator, and the number

of replication events that occur before termination clearly depends onN, s, µ+,µ−, and

the number of mutational steps required to reach the peak. Thus, a change in the value

of any of these parameters may alter the “frequency of mutator fixation” simply because

it changes the number of mutators that are typically createdduring the trial. OurPf ix,

on the other hand, remains invariant under such changes and allows us to filter out this

background effect. Their system is doubtless a more literally accurate representation of

biological reality, which has its virtues but also major costs, which we discuss below in

the context of two important examples.

First, they measure that the “frequency of mutator fixation”increases withN.

This is an interesting and potentially practical result, but their method makes it very dif-

ficult to determine the extent to which the increase is simplydue the background effect
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that more mutators were created in the larger populations. ISLA, on the other hand, un-

ambiguously states that whenNSµ ≫ 1,Pf ix for a single mutator becomes independent

of N. Therefore, ISLA predicts that the dependence of mutator fixation frequency on

population size observed by those authors is entirely driven by the simple background

effect.

A second example has even more dramatic conceptual consequences. These

authors ask whetherPf ix is determined by the number of potentially advantageous muta-

tions (steps away from the peak) or merely by theratethat such mutations are generated.

In order to investigate this question, they devised two setsof simulations. In one set,

there were 12 available advantageous mutations, accessible at a rate of 10−8 each. In the

other set, there was a single mutation of the same effect, accessible at a rate of 12×10−8.

The explicit difference between these sets of simulations is the number of steps to the

fitness peak, but an additional, implicit difference is thatthe set with 12 beneficial mu-

tations runs for more generations. Therefore, more mutators are created in that set of

simulations. Now, ISLA predicts thatPf ix depends only on the advantageous mutation

rate, and that therefore the two simulations should result in thesamePf ix. In seeming

contrast, they found the “frequency of mutator fixation” to equal approximately.5 for

the first situation and approximately zero for the second. This observation led them to

conclude that mutators succeed because of their advantage in rapidly creating genomes

which carry multiple beneficial mutations, which is fundamentally different from our

conceptual picture. We propose that this simulation findingmight be explained by the

simple background effect that far more mutators are createden route to acquiring 12

beneficial mutations than to acquiring a single beneficial mutation. ISLA completely

neglects multiple beneficial mutations, and its success, both near the peak (Fig.3.5) and

far from it (Fig.3.6), suggests that the multiple mutationseffect proposed by those au-

thors in fact plays a very minor role in mutator fixation. However, it should be noted that

we did not investigate cases where the mutator isfavoredand only a single beneficial

mutant is available. It could be the case that multiple beneficial mutations in the same

genome are implicitly important in that they are what allowsthe mutator to overcome

competition with wild-type beneficial mutations. This hypothesis should be explored in

future work.
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Whereas reference [TTLN+99] focused almost exclusively on stochastic simu-

lations, work by Andre and Godelle [AG06] relies almost exclusively on analytic meth-

ods. In work that bears many similarities to ours, those authors studied, mostly via an

analytic approach, the long term trajectory of mutation rate evolution. A key insight

of theirs is that, in a finite asexual population, the frequency of a mutator undergoes

strong fluctuations, with values covering the entire range from zero initially to one upon

a selective sweep by a linked locus. Thus, they point out thatstudies which assume that

mutators are rare during all generations, either because ofinfinite population size [LJ70]

or sexual recombination [Joh99a], are qualitatively different than finite asexual popula-

tions. Andre and Godelle remedy this problem by calculatingthefixation probabilityof

an initially rare mutator. We now briefly summarize their method of solution and show

that, with minor modification, it corresponds to theNµ→∞ limit of our results. In what

follows, we take some liberty in changing their notation andusing continuous time.

Their initial condition is identical to ours: a clonal population is seeded with a

small number of otherwise identical mutators. They then temporarily ignore beneficial

mutations and analyze how theexpectednumber of mutators changes with time. In

agreement with reference [Joh99b], they find that after a waiting time 1/s, the mutator

subpopulation declines exponentially, i.e.E[x(t)] = xoe−(µ+−µ−)(1−αe)(t−1/s). They then

construct their key equations (their Eq. 19)

d
dt

Pf ix(t) = (1−Pf ix(t)−Ploss(t)) ·Nµ̄αes·
µ+

µ̄
·E[x(t)]

d
dt

Ploss(t) = (1−Pf ix(t)−Ploss(t)) ·Nµ̄αes·
µ−
µ̄
· (1−E[x(t)])

We have written these equations in a somewhat peculiar way, and replaced their sym-

bol K with Nµ̄αes in order to facilitate translating between our notation andtheirs.

These equations are very similar to ISLA in that they represent the instantaneous fix-

ation of beneficial mutations which originate from a time dependent mutator subpop-

ulation. However, there are two disturbing features about these equations. First, they

assume that the only cause of mutator extinction is beneficial mutations in the wild-type

background. In fact, mutators also become extinct due to (i)their mutational load and

(ii) random drift. In their equations,E[x(t)] declines exponentially, but this decline er-

roneously does not contribute toPloss. Both (i) and (ii) cause an overestimate ofPf ix.
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The second disturbing feature of these equations is the appearance of expectation val-

ues on the RHS. With this move, those authors replaced the random variablex(t) with

its mean value, which is a very substantive approximation. The distribution ofx(t) is

in fact diffusing, i.e. random drift is in fact occurring. Nevertheless, we expect that

their representation ofx(t) as a deterministic quantity to be approximately valid when

the timescale of this diffusion is slower than the timescales due to mutation and selec-

tion. Unlike our approach, theirs cannot quantify when it issafe to neglect random drift.

Looking back to Eq.3.12, we see that the diffusive process, i.e. random drift, can be

neglected whenNµ+(1−αe)s≫ 1 andN2µ+αes≫ 1. It just so happens that these

criteria will often be met in microbial populations.

We now explicitly demonstrate some important parallels between our work and

that of Andre and Godelle in the largeNµ limit. Since, in our model, deleterious muta-

tions are as strong as advantageous ones, the best comparison is made with their “ruby

in the rubbish” hypothesis. The relevant solution is their Eq.A5

Pf ix = xo
Nµ̄αes

1− (1−Nµ̄αes) ·e−(µ+−µ−)(1−αe)
· µ+

µ̄
(3.23)

Simplifying the denominator by taking exp[−(µ+−µ−)(1−αe)]≈ 1−(µ+−µ−)(1−
αe) and neglecting the term−Nµ̄αesµ+, we recover our largeNµ result from ISLA

(Eq.3.19). The neglected term inflates the value ofPf ix, and is a result of these authors

not treating extinction of the mutator due to its mutationalload. This has important

consequences for the next topic.

3.9.2 Long term mutation rate evolution:

Although our work primarily addresses the plain issue of calculatingPf ix, we

briefly contemplate implications for the more grand question of long term mutation rate

evolution.

µconv is proportional to the rate of sweeps

Thus far we have considered selective sweeps to be initiatedby de novobenefi-

cial mutations. Let us now briefly apply our results to the case where sweeps are instead

triggered by an environment that changes at rateK. This merely requires transcribing



63

Nµ̄αes↔ K. Following those authors we expand the fixation probability(Eq.3.23) in

powers ofµ+−µ− and denote the first order coefficient in this series bySel(µ−). The

roots ofSel(µ−) give the “convergence stable resident mutation rate.” Using Eq.3.19,

we find µconv = K/(1−αe) ≈ K, which is the classical result [LJ70]. Using Eq.3.23,

they find a qualitatively different result:µconv= K
(1−αe)(1−K) , which diverges asK→ 1.

The reason for this discrepancy is that those authors did notallow for extinction due

to mutational load. ISLA naturally averts the need for this assumption and leads to

the classical result. However, ISLA approximates deleterious mutations as being lethal,

whereas these authors also treated the more realistic non-lethal case. It may be possible

to demonstrate, via further analysis, the claim that non-lethal deleterious mutants cause

µconv to diverge for some parameter values.

Equilibrium mutation rate

We find thatSel(µ−) = 1
µ−

αe(Ns+1)−1
Nαes , whereas Andre and Godelle findSel(µ−) =

1
µ−

αe(Ns+1)−1
Nαes +1−αe. Our expression indicates that there are no equilibrium mutation

rates: for allµ−, weak mutators are favored whenαe(Ns+1)≈Nαes> 1 and disfavored

in the opposite case. This threshold is clearly in agreementwith our Eq.3.13. Thus, as

far as ISLA is concerned, populations withNαes< 1 should continually evolve toward

the minimum attainable mutation rate. On the other hand, populations withNαes> 1

should evolve an ever higher mutation rate. Our expression for Sel(µ−) is clearly inac-

curate for very smallµ− (because random drift dominates in that regime) and also for

very largeµ− (since our simulations show that there is a maximum mutationrate that

can achieve fixation).

3.9.3 Limitations of present work:

Real biological populations possess many features that this article either neglects

or severely constrains. We now briefly discuss the most striking limitations.
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Initial Conditions

Both ISLA and our simulations suppose that “initially” all members of the pop-

ulation have the same fitness. If this assumption is false andmutators arise randomly

in a population with pre-existing fitness variation, this might act to decrease mutator

success: unless the mutator happens to emerge from the fittest subclass of the popula-

tion, the advantageous mutations it generates will alreadybe present in more abundant

subclasses which could out-compete the rare mutator. This point is especially relevant

since, in comparing ISLA to experiment, we essentially assumed that each mutator that

arose during the course of the experiments did so in a population consisting of a single

fitness value.

Strict Asexuality

Our simulations and ISLA do not allow any mechanisms of horizontal gene

transfer or recombination. These events would decouple mutator alleles from the ad-

vantageous mutations that they generated, and thereby result in significantly decreased

mutator success. This effect is especially important sincesome genes associated with a

mutator phenotype also exhibit hyper-recombination [DM06].

Simple Fitness Landscape

Our simulations assume that mutations all fall into one of three classes: lethal,

beneficial with effect+s, or deleterious with effect−s. As mentioned previously, and

discussed in Supplementary Information, it may be true that, in large populations, ben-

eficial mutations of a fixed size ˜sare the ones that typically reach appreciable frequency

[GL98, DFM07, HSHK06]. However, this simplification is certainly not possible when

considering deleterious mutants, whose distribution is likely complicated and bimodal,

with many mutations being nearly neutral and many being lethal [EWK07]. Fig.3.10

suggests that increasing the strength of deleterious mutations has effects only at large

µ+/s, where it increases both the peak value ofSµ and the valueµ+/sat which the peak

occurs. Along these lines, a simulation model that includeda class of weakly deleterious

mutations would likely continue this trend. This would delay the large discrepancy be-



65

tween the simulations and ISLA until even largerµ+/s. This issue could help to explain

the previously mentioned fact thatµ+ in experiments of reference [SGL97] seem very

close to the maximum allowable value. Including mildly deleterious mutations would

also prolong the lifetime of genomes which carry them. In this case, it might be neces-

sary to incorporate a time delay before these deleterious mutations are “enforced,” along

the lines explored in reference [Joh99b].

3.9.4 Suggestions for further research

This article leaves many questions unanswered, but also points to interesting

theoretical and experimental opportunities.

Theoretical directions

A satisfactory analytic description of our stochastic simulations remains incom-

plete. Two key issues remain unresolved. First, we do not understand the mechanism

by which mutators continue to succeed when faced with intense mutational competi-

tion from the wild-type background (Fig.3.7). Our work and that of Andre and Godelle

both imply that mutations in wild-type backgrounds should become important when

Nαes∼ µ+/µ−, but this is not borne out in the simulations unlesss is “sufficiently

large.” Secondly, it is clear that ISLA fails to match simulations when the mutation

rate is very large(1−αe)µ+ & s. Quantifying the success of mutators in this regime is

especially relevant to studies of long term mutation rate evolution.

Another issue that we did not address is the full dynamics of mutator fixation.

Our analytic results are mostly derived from Eq.3.12, whichis relevant to the even-

tual fate of mutators. An approximate solution to the time dependent forward diffusion

(Eq.3.10), withµ− = 0, is given in Supplementary Information. This solution provides

some dynamical information, but, like the entire ISLA approach, it assumes that selec-

tive sweeps occur instantaneously. In this sense, Eq.3.10 predicts incorrect dynamics.

Furthermore, we showed that mutator success is compactly represented by an effective

selection coefficientSµ . For simple advantageous mutants,S contains information not

only aboutPf ix but also about the average dynamics:〈x(t)〉 ∼ eSt when rare. Perhaps

that is the case with mutators as well.
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Experimental ideas

Our work shows that, in most regimes,Pf ix is not explicitly frequency dependent.

Rather,Pf ix depends on the initialnumberof mutantsNxo. This scaling behavior could

be tested experimentally. Suppose that competition experiments in a chemostat carrying

a population of sizeN1 showed that, when the initial frequency of mutators exceeded

a threshold value ofx1, mutator achieved fixation with a high probability. One could

decrease the population size toN2 and again inoculate with mutators at a frequency of

x1. Our results predict that mutators would not achieve fixation in this case because

N2x1 is less than the threshold numberN1x1. In fact, very similar experiments were

recently performed [LCFT06], which support the notion thatPf ix scales withNxo and

not with xo alone. However, these competition experiments were done under a lethal

selective pressure, which selected for pre-exiting resistant mutants. Here we propose

competitions between initially isogenic (aside from the mutator allele) mutator and wild-

type strains adapting to a new environment. In addition to this scaling behavior, ISLA

predicts a testable value for this threshold that differs significantly from the frequency

dependent picture represented by Eq.3.1. These ideas are presented in Fig.3.11.

It would also be interesting to experimentally investigatethe decline in mutator

success seen for very large mutation rates when(1−αe)µ+ ∼ s. As mentioned previ-

ously, during the first few thousand generations of experiments in reference [SGL97],

Nαes≈ 1.1. The reason why no mutators achieved fixation after the first10,000 gen-

erations could be that this parameter decreased below the threshold value of one during

the course of its evolution. A similar effect was previouslydiscussed by Kessler and

Levine [KL98b]. An alternative explanation is thatµ+ was near the theoretical maxi-

mum(1−αe)µ+ ∼ 1 suggested from our simulations. As noted in reference [GCPS07],

once could test these competing explanations by founding several new lineages with a

clone from of one of the mutator populations, and growing these mutator lineages in a

novel environment. The new environment should be one in which Nαes> 1. If no “dou-

ble mutators” arose, then the hypothesis of a maximum allowable mutation rate would

be supported.
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4 Evolution of competence in bacteria

4.1 Introduction to competence

Under certain stressful conditions, some bacterial species such asB. subtilisun-

dergo a differentiation process in which afinite subpopulation(∼ 10%) transiently and

stochastically expresses the “competence” phenotype, characterized by the following

properties:

1. Recombination: Competent cells import, chromosomally incorporate, and express

foreign DNA fragments in a process called “transformation.” This is the defining

feature of competence. If the foreign DNA originates from another species, the

process is called “horizontal gene transfer” and may resultin the dramatic acqui-

sition of a new (set of) gene(s). Comparative genomic studies demonstrate that

important evolutionary events have occurred as a result of HGT [GT05]. How-

ever, HGT is probably not the typical outcome of competence.The incorpora-

tion of DNA is accomplished by recombination that is facilitated by base pairing

between the donor fragment and acceptor genome [Red01]. Furthermore, most

extracellular DNA probably originates from members of the same species and

population. This suggests that a more likely process is the incorporation of dif-

ferent alleles originating from the same species. This chapter only addresses this

conspecific, homologous recombination and not HGT.

2. Reduced growth: The following observations of are based on movies made by

the Elowitz laboratory [SGOLE06]. While expressing competence, cells elongate

but do not divide. After≈ 20 hours in the competent state [SKD+07], the single

elongated cell fragments into∼ 10 vegetatively growing cells, thus completing

68
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the bout of competence. By contrast, a vegetatively growingcell doubles ap-

proximately every 3.3 hours [SGOLE06], giving rise to 220/3.3 ≈ 67 descendants

during a 20 hour interval [SGOLE06]. Thus, competent cells have a growth rate

disadvantage relative to vegetatively growing cells. The general phenomenon of

growth reduction/arrest in the competence state has also been reported in other

studies [NS63, HHHD01].

3. Decreased susceptibility to antibiotics: Perhaps as a consequence of reduced

growth, competent cells are refractory to penicillin [Nes64, JDL09] and possibly

other antibiotics.

4. The conditions that trigger competence often trigger thesporulation pathway as

well. Vegetative cells can sporulate but competent cells cannot [SHA00]. Spores

are completely dormant over timescales which are short compared to those of

drastic environmental change.

Properties 2,3 taken together are an example of the more general phenomenon called

“persistence,” in which slowly replicating cells are able to survive stress [Big44, BMC+04,

JDL09].

The elaborate competence system involves∼ 150 chromosomal genes [SPA06],

and is thus probably selected and maintained by evolution. Three well known, non-

exclusive hypotheses concerning the adaptive value of competence are [Dub99]:

• Imported DNA provides a nutrient source.

• Imported DNA serves as a template for DNA repair.

• Homologous, conspecific recombination is selected becauseof the pattern of ge-

netic diversity that it generates.

While it is intuitively clear that nutrients and DNA repair have value for bacteria, the

same is notprima facietrue of recombination. This chapter focuses on the interaction

between the four features of competence outlined above. Using stochastic simulations

and an semi-deterministic approximations we show that, even in a constant environment,
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Figure 4.1: The Fisher-Muller effect provides an advantageto recombination when the
time between originations of beneficial mutations is shorter than that required for a
selective sweep. (a) Recombination increases the speed of adaptive evolution by com-
bining beneficial mutations (a→ A andb→ B) that originate in different genetic back-
grounds. (b) By contrast, in a strictly asexual population,one of the simultaneously
spreading beneficial mutation is “wasted.” (figure taken from wikipedia.org)

there are evolutionary forces selecting for a mixed population of competent and vegeta-

tive cells. We do not address arguments surrounding the nutrition or repair hypotheses.

These can be found in the literature [Dub99, Red01].

4.2 Heuristic effects of recombination

The essential effect of recombination is to reduce the correlations between alleles

at different loci. These correlations are known as “linkagedisequilibrium” (LD). To see

what this means, consider two locii, j each holding an allelea∈ {0,1}. LD between the

alleles at locii and j (Dai ,a j ) is determined by their joint and marginal frequencies in the
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population:Dai ,a j ≡ f req(ai,a j)− f req(ai) · f req(a j). For example, LD between two

alleles is negative if they are found on the same chromosome less often than they would

be if placed independently in random members of the population. In this case, the effect

of recombination is to drive LD closer to zero by joining together the two alleles from

different chromosomes. In the absence of LD, recombinationcan have no average effect

on the population’s genetic structure.

There are three relevant situations that can give rise to LD.The first is the effect

of gene interaction on fitness, known as epistasis. Epistasis is classified according to

the interactions between deleterious mutations. If the combined effect of two deleteri-

ous mutations is greater than expected based on their individual effects, the epistasis is

known as “synergistic.” In the opposite case it is known as “antagonistic.” These cases

are illustrated in Fig.4.2. Of course, these two concepts only capture the simplest kind

of epistasis– in reality, many genes may interact jointly, and the interaction between a

given pair may be antagonistic or synergistic depending on the state of the rest of the

genome. Experimental evidence shows that both forms of epistasis are widespread but

that neither predominates [Ric02].

When epistasis is synergistic, the population is deficient in both very fit and very

unfit genomes. Recombination removes this deficiency, thereby increasing the variance

in fitness which, by “Fisher’s fundamental theorem,” increases the rate of adaptation.

Several studies [Kon84, Cha90, Bar95, OF97] show that, withsome caveats, this effect

favors recombination in infinite populations. By contrast,recombination decreases the

variance in fitness under antagonistic epistasis, and thesestudies find that recombination

is disfavored in this situation.

As a second situation leading to LD, consider a large asexualpopulation acquir-

ing multiple beneficial mutations (Fig.4.1). If the second beneficial mutation does not

occur in the same background as the first, which is likely, then the frequency of the

double mutant is zero. Thus, the double mutant is clearly underrepresented and negative

LD prevails between the single mutations. This is known as the “Fisher-Muller effect”

[Fis30, Mul32]. In this situation, recombination dramatically increases the speed of evo-

lution and decreases linkage equilibrium (LD=0) by combining the beneficial mutations

into a common chromosome [Fel74, CKL05c]. Note that the assumptions underlying
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the Fisher-Muller effect do not hold in a truly infinite population, in which all possible

genomes are always finitely populated.

A third source of LD is inescapable in finite populations. Asexual reproduc-

tion results in parent and daughter cells which are genetically identical, apart from a

small number of mutations (∼ 1/300) [DCCC98]. This induces correlations between

the genomes of different cells, which manifests as LD that isqualitatively similar to that

generated by synergistic epistasis [BO05]. In very small populations, LD due to finite

N has strong effects related to Muller’s ratchet [Mul32]. Additionally, recent studies

show that this effect is strong enough to favor recombination in large, finite populations.

Perhaps surprisingly, this remained true with none or even mildly antagonistic epistasis

[KO06, GC08].

This chapter corroborates and extends these recent developments in several ways.

First, somewhat superficially, our model reflects an interest in bacterial transformation

as opposed to meiotic recombination. Secondly, we investigate both populations un-

dergoing adaptive evolution (sometimes called “positive selection”) as well as those at

mutation-selection equilibrium. Thirdly, we find that whenthe four properties of compe-

tence (discussed in the introduction) are combined, an optimal mixed strategy emerges.

Finally, we formulate an approximation scheme that semi-quantitatively agrees with

simulation data and sharpens our understanding of important dynamical issues.

4.3 Model

4.3.1 A single phenotype

We stochastically model logistic birth and death in the presence of mutation,

recombination, and phenotypic switching. The deterministic birth and death dynamics

of a single phenotype, neglecting mutation and recombination, are given by

dN
dt

= Nr(1−N/κ)−Nδ . (4.1)

κ is the carrying capacity of the environment, which reflects the availability of nutrients

and/or space. As the number of cellsN approachesκ , thelogistic factorL ≡ (1−N/κ)

depresses the birth rate from its intrinsic valuer. Cell death occurs at a constant per
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Table 4.1: Commonly used notation in chapter four.

Symbol Usage

ai “Value” of allele at locusi
λ Number of genomic fragments (bits) in genome
b≡ ∑i ai/λ Fraction of 1’s in a genome
Gb Number of vegetative (growing) cells in classb
Cb Number of competent cells in classb
κ Population carrying capacity
No Total number of cells at beginning of competition experiment
L 1− 1

κ ∑b(Gb+Cc) (Logistic factor)
r Birth rate of vegetative cells (whenL = 1)
δ Death rate of vegetative cells
γ Factor by which birth and death are slower in the competent state
µ→ Probability per locus per replication of 0→ 1 transition
µ← Probability per locus per replication of 1→ 0 transition
σin(σout) Switching rate into (out of) the competent state

capita rateδ . At steady state, the number of cells in the population isNeq = κ(1−
δ/r). Instead of density dependent birth and constant death, some logistic models do

the reverse, leading todN
dt = Nr−N(1+ N/κ)δ . Some stochastic population genetic

quantities (e.g. fixation times) have been shown to be identical in either formulation of

the density dependence [PQP08]. There are both obvious differences and reassuring

similarities between our logistic model and Moran’s process (used in chapter three):

• Unlike Moran’s process, birth and death are decoupled in thelogistic model. This

allows for stochastic fluctuations inN.

• In the logistic model,Neq depends on the ratioδ/r, whereas it is a fixed parameter

in Moran’s process. During adaptive evolutionδ/r clearly decreases which causes

Neq to increase.

• In Moran’s process, during adaptive evolution the average birth rate and death

rate each increase through time. By contrast, both these quantities remain near

the constantδ .
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• The fixation probability of a rare mutant with a growth rate advantage is approxi-

mately the same in either model, whenN≈Neq [PQ07a].

We believe that the three differences listed above do not qualitatively affect any of the

main results in this chapter. Nevertheless, we expect that,to the extent that bacteria

in the wild are ever in a steady ecological state, the logistic model is more appropriate

than Moran’s model. Moran’s model is likely better suited tolaboratory experiments,

particularly in a chemostat.

4.3.2 Two phenotypes

For our purposes, the real utility of the logistic model is that it decouples birth

and death. If the total number of cells is nearNeq, this scheme allows for two coexisting

phenotypes with different birth (rcomp, rveg) and death (δcomp,δveg) rates. Up to a deter-

ministic approximation, the two phenotypes are competitively neutral if they separately

lead to the same value ofNeq, i.e. rveg/δveg = rcomp/δcomp [PQ07b]. We enforce this

condition by requiring that both the birth and death rates ofcompetent cells be lower

than those of vegetative cells by a factorγ < 1. It should be emphasized that each of

the above statements applies only to the birth and death process, neglecting mutation,

recombination, and phenotypic switching.

These choices are motivated by experiment. As mentioned in the introduction,

competent cells in Elowitz’s movies elongate for≈ 6 doubling periods, then fragment

into ∼ 10 daughters upon return to the vegetative state. For simplicity, we model this

unusual process as simple replication at a reduced rate compared to vegetative cells.

On its own, this would impose an enormous fitness cost to competence. This is com-

pensated by requiring that competent cells also die more slowly than vegetative ones.

The experimental rationale for this is twofold. First, the natural environments that trig-

ger competence may plausibly contain antibiotics. In this case, the persister effect of

competence results in slow death for these cells. Secondly,some vegetative cells may

sporulate under the same conditions that stimulate competence. On time scales that are

short compared to drastic environmental changes, spores are effectively dead, thereby

imposing a relatively large death rate to vegetative cells.



75

4.3.3 Simulation proceses

The simulations consist of model genomes (see subsection 4.3.4) undergoing the

following dynamical changes in continuous time:

1. Phenotypic transition: There are two allowed phenotypes: competent and vegeta-

tive. Competence is defined by a nonzero probability of recombination (ρ > 0),

as well as birth and death rates that are each lowered by a factor γ < 1. Competent

(vegetative) cells switch to the other phenotype with probability σoutdt (σindt).

2. Replication: A vegetative cell replicates with probabilityr(1−N/K)dt, whereN

is the total number of bacteria in the population. Competentcells replicate in the

same way, but with reduced rateγr(1−N/K)dt.

3. Mutation: Upon replication, mutations may occur. Beneficial and deleterious mu-

tations are represented as 0→ 1 and 1→ 0 transitions that occur with probabilities

µ→ andµ← per locus per replication.

4. Death: A vegetative (competent) cell is annihilated with probability δ dt (γδ dt).

5. Recombination: A competent cell undergoes a transformation-like event with

probability ρ dt. See Fig.4.3.5 and subsection 4.3.4 for a description of there-

combination process.

4.3.4 Genome and recombination model

We model the bacterial chromosome asλ loci {ai}, each of which has either a

more fit (one) or less fit (zero) allele (Fig.4.3). Each locus represents the same num-

ber of nucleotides as is typically incorporated during transformation. ForB. subtilis,

this is∼ 104 base pairs [Dub99]. Recombination by transformation occurs with rateρ

between a living cell (the acceptor) and a pool of extracellular DNA (the donor) that

represents the contents of recently lysed conspecific cells. In reality, these lysates could

be derived mainly from less fit cells. However, for simplicity the allele frequencies in

the extracellular pool are assumed to be identical to those in the population of living

cells.
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4.3.5 Birth rate functions

For simplicity we assume that only the birth rate (r), and not the death rate (δ ),

depends on the genome. Because the effects of recombinationare known to depend

crucially on epistasis, we used three different birth rate functions corresponding to syn-

ergistic, antagonistic, and no epistasis:

rsyn = max

(

0,1+
1
2

ln(2b−1)

)

(4.2)

rant =
1
2

[1+exp(−2(1−b))] (4.3)

r lin = b, (4.4)

whereb is the fraction of ones in the genome. These functions are plotted in Fig.4.2.

They have identical slopes nearb = 1, which means that the first deleterious mutation

has the same effect on birth rate in each of the three functions. In Eq.4.4, mutations

makeindependentcontributions to fitness in the sense that no linkage disequilibrium is

generated in an infinite population [Smi68].

At this stage it is helpful to clarify a confusing point concerning birth rate func-

tions. In the population genetics literature, non-epistatic birth rate functions often have

the multiplicative formrmult = (1− 1
λ )λ (1−b). How is this consistent with the claim that

Eq.4.4 corresponds to non-interacting mutations? The answer is related to the fact that

most population genetic studies employ a discrete time, non-overlapping generations

(“Wright-Fisher”) process, whereas we employ a continuoustime process. A simple

calculation presented in appendix I reveals that, once thisdifference is taken into ac-

count, Eq.4.4 is essentially equivalent to a multiplicative function. This point is crucial

in comparing this work to existing literature.

4.4 Results

In order to explore the evolutionary forces acting on the four properties of com-

petence (see introduction), we first constructed several “strains” of in silico cells that

isolate these properties:
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Figure 4.2: Fitness functions. Deleterious mutations interact either “synergistically”
(red), “antagonistically” (green), or not at all (black). The first deleterious mutation
decreases the birth rate by≈ 1% in each case.
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Figure 4.3: Representation of bacterial genome and recombination model. The genome
consists ofL loci, represented by different colors. Either a more fit (one) or less fit
(zero) allele resides at each locus. Upon recombination, the acceptor allele is replaced
by a homologous (same color) donor allele drawn randomly from the extracellular DNA
pool. The allele frequencies in the extracellular pool are assumed to be identical to those
among the population of living cells. The genetic change is non-reciprocal: the acceptor
allele is presumed degraded and not placed in the extracellular pool.
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Figure 4.4: Approach to equilibrium. Dotted lines represent C strain residents, whereas
solid lines represent G strain residents. Relaxed selection on antagonistically interact-
ing deleterious mutations causes their continual accumulation (Muller’s ratchet) in the
absence of recombination (solid green). FiniteN effects also reduce the equilibrium
birth rate in G strains below the deterministic predictionr(N→ ∞) ≈ 0.95 when syn-
ergistic (solid red) or linear (solid black) fitness functions are used. Parameters are
λ = 100,µ→ = 10−5.3,µ← = 10−3.3,κ = 105,δ = 0.2,γ = 0.5,ρ = 1,σin = σout = 0.1.
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Figure 4.5: Competitions near the fitness peak. Recombination is favored since all
recombining strains (R,M,C) can invade the asexual vegetative strain (G). M strains are
approximately twofold more effective than C strains at invading G strains, indicating
that a mixed strategy is superior to a purely competent one. Parameters are the same as
in Fig.4.4. Error bars represent one standard error.
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Figure 4.6: Competitions during adaptive evolution. Clonal populations were initialized
at b = 0.5 and allowed to evolve tob = 0.7 before the invader was introduced. Re-
combination is generally favored, especially with synergistic epistasis. M is 50−100%
more successful than C at invading G. Parameters are the sameas in Fig.4.4. Error bars
represent one standard error.
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• Vegetative (growing) (G): grows and dies quickly, and cannot perform recombina-

tion (ρ = 0).

• Slow (S): grows and dies slowly, and cannot perform recombination (ρ = 0).

• Recombining (R): grows and dies quickly, and performs recombination (ρ > 0).

• Competent (C): grows and dies slowly, and performs recombination (ρ > 0).

• Mixed (M): stochastically switches between competent and vegetative phenotypes.

The switching ratesσin = σout, resulting in 50-50 mixed strategy.

To avoid confusion between the concepts of strains and phenotypes, strains will be de-

noted by their capital letter abbreviation. One can abstractly imagine the different strains

being coded by a pair of modifier loci that code for recombination ability and the per-

sister effect of competence (decreased birth and death rate). However, in order to keep

the situation as simple as possible, we forbid members of onestrain from transitioning

to another strain. Thus, these modifier loci cannot be mutated or transferred by recom-

bination.

4.4.1 Competition experiments

We first simulated competition experiments between strainsin which a single

“invader” cell was placed amongNeq−1 “residents.” Since transitions between strains

are forbidden, after a long time the only possible outcomes are the fixation or loss of the

invader. The probability of fixationPf ix of the invader in the context of of the resident

was estimated by performing many independent competitions. The invader’s success

is quantified byW ≡ Pf ix ·N(tinit ) which equals the expected number of progeny left

by the invader. Because the effect of recombination dependson the degree of genomic

diversity, populations were prepared in a natural state prior to competition. This was

done in two regimes:

Resident population near the fitness peak

Resident populations were founded by a clone having the maximum possible

birth rate (b = 1) and allowed to evolve for∼ 104 generations (Fig.4.4). With none or
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synergistic epistasis, mean birth rate decreased until mutation selection equilibrium was

reached. However, with antagonistic epistasis the mean birth rate continually decreased

under the influence of Muller’s ratchet. The effects of finiteN are less drastic, but

still apparent, with synergistic or no epistasis. C strain populations had a much larger

equilibrium fitness near the predicted value forN→ ∞. See Fig.4.4 caption for further

discussion.

In each case, after∼ 104 generations a randomly chosen cell was manually

switched to be of the invading strain, and competition commenced. Competitions with

G strain resident are shown in Fig.4.5. R,M, and C strains were all able to successfully

invade (W > 35), indicating a significant advantage to recombination, irrespective of the

form of epistasis. R and M strains performed comparably to one another, indicating that

there is little cost to the reduced level of recombination that results from cells switching

into the vegetativephenotype. Slow (S) strains were unable to invade in≈ 105 trials, im-

plying that they are either disfavored or nearly neutral. Most interestingly, the M strain

was approximately twice as likely as the C strain to succeed at invasion.

However, M strains were unable to invade C strains in∼ 105 trials. Thus, the

only definitive conclusion that can presently be drawn aboutthis competition is that

strain M is not clearly favored over strain C in the competition. In order to resolve the

difference between a nearly neutral and a disfavored strainin populations of this size,

severalκ trials must be run (perhaps 107 to achieve the same resolution as the data

plotted in Fig.4.5).

Resident population far from fitness peak

When a population’s environment changes (e.g. by significantly reducing the

glucose concentration available toE. coli), the fitness peak “moves” elsewhere in se-

quence space. The population may then adaptively evolve up the new peak. From

Fig.4.4 it is clear that adaptive evolution not possible on our antagonistic birth rate func-

tion, so we limit our attention to the synergistic and no epistasis cases.

Resident populations were founded by a clone withb= 0.5 and allowed to evolve

to b = 0.7, at which point the invader was placed in the population as before. Fig.4.6

shows a similar qualitative picture as we obtained when the population was near the fit-



84

0.45 0.5 0.55 0.6 0.65 0.7
fraction of 1's in genome (b)

-0.005

0

0.005

0.01

0.015

0.02

v 
(p

er
 r

ea
lti

m
e)

G
C
M
R
S

0.45 0.5 0.55 0.6 0.65 0.7
fraction of 1's in genome (b)

-0.02

0

0.02

0.04

0.06

0.08

0.1

v 
(p

er
 g

en
er

at
io

n)

G
C
M
R
S

Figure 4.7: Strains that perform recombination (R,C,M) evolve faster than asexual
strains (G,S). The horizontal axisb serves to parameterize the population’s placement
on the fitness function. When velocity is measured in dimensions realtime−1 (left), M
evolves faster than C, which is consistent with the outcome of competition experiments.
Insight into the advantage of M over C is gained by considering v measured in dimen-
sions of generation−1 (right). By this measure, the R,C, and M strategies are equally
successful. Once this fact is understood, the real time velocity ordering follows natu-
rally. Parameters are the same as in Fig.4.4. The linear fitness function was used here.

ness peak. Values ofW are larger in Fig.4.6 than in Fig.4.5, showing that recombination

is more strongly favored when populations are acquiring beneficial mutations and not

merely purging themselves of deleterious mutations. Synergistic epistasis provides an

especially strong advantage, probably because of the (additional) LD generated by the

fitness function. M strains are 50−100% more successful than C strains at invading G

strains.

If M invades C during adaptive evolution, the invader is either quickly lost or

else persists for a long time without sweeping to fixation. Since M and C can both

perform recombination, their gene pools are shared. Consequently a beneficial mutation

acquired by one strain is soon picked up by its competitor in arecombination event. We

were unable to complete enough trials to conclude whetherW > 1 for M invading C.

These slow dynamics also likely describe the evolutionary adjustment of recombination

rates.
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4.4.2 Speed of evolution

Simulation data

The previous section concerned the fixation probability of arare invader, which

is the most direct way to quantify the evolutionary pressureacting on a strain. Unfortu-

nately, we are unaware of any method to approximatePf ix for the recombining strains.

By contrast, the mathematical techniques developed for front propagation can help to

approximate the speed of evolutionv.

We first examine the speed of evolution achieved by pure populations of each

strain. Whenv is measured in dimensions of realtime−1, the ranking of strains accord-

ing to v agrees with the ranking according toPf ix (Fig.4.7, left). This is consistent with

the idea that successful invaders win by increasing their fitness before their opponents.

This rapid fitness increase, in turn, is the result of two distinct factors: (i) rapid execution

of events (birth, death, mutation, recombination) and (ii)the efficient genetic structuring

of the population. The C,S, and M strains all suffer a penaltywith respect to effect (i)

because (some) members of their population undergo birth, death, and mutation slowly

(by a factorγ). On the other hand C, R, and M strains evolve faster because recombina-

tion increases the efficiency of their genetic structure by,for example, bringing different

beneficial mutations into the same genome (Fig.4.1).

To a large extent factor (ii) can be isolated by examiningv measured in dimen-

sions of generations−1, i.e. (birth events)−1. Fig.4.7 (right) shows that once this is done,

the strains that undergo recombination (R,C,M) perform equally well, and are far supe-

rior to the asexual strains (G,S, which perform equally to one another). The fact that

there is sufficient recombination in the M population to fully reap the rewards of recom-

bination is not at all obvious. However, once this fact is accepted, it is clear that M will

evolve faster than C in real time since half (=σin
σin+σout

) of the M population “acts” 1/γ

(two) times faster than cells in C.

Semi-deterministic equations

We would like to derive equations that describe the number ofcells having a

certain value ofb (i.e. fraction of ones in their genomes). Presently, we willonly treat the
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linear birth rate function (Eq.4.4). Adapting this method to the other fitness functions is

straightforward. For the vegetative strain (G), the basic approach is discussed in section

1.4. Once the replication and death terms are modified so as torepresent the logistic

scheme used here,

d
dt

Gb = (L b−δ )Gb ·θ(Gb−1)+λL M [Gb] (4.5)

whereM is the mutation operator:

M [Gb] = µ←
(

b+
1
λ

)(

b+
1
λ

)

Gb+ 1
λ

+ µ→
(

b− 1
λ

)(

1− (b− 1
λ

)

)

Gb− 1
λ

− (µ→+ µ←)bGb (4.6)

Here we have used a value of unity inside the cutoff. There is no loss of generality since

Gb is scaled byκ via L .

Much of the simplicity of Eq.4.5 stems from the fact that genomes were binned

according to their value ofb. This act precludes a full treatment of recombination, which

sees the diversity within a bin. However, recombination canbe introduced in a tractable

way by making the strong assumption that, within a bin, all genomes compatible with

that birth rate are uniformly populated [CKL05c]. This overstates the genetic diversity

in the population and the effect of recombination. Nevertheless, it yields reasonable

results, especially at largeN. In particular, we assume that the incoming foreign allele is

a one with probabilitȳb, irrespective of the value of its homologue in the receptor cell.

Given this assumption, one can introduce the recombinationoperator:

R[Cb] = − ρCb
(

(1− b̄)b+ b̄(1−b)
)

+ ρCb− 1
λ
b̄

[

1− (b− 1
λ

)

]

+ ρCb+ 1
λ
(1− b̄)

(

b+
1
λ

)

(4.7)

where we have chosen forR to operate on the competent populationC. If we include

phenotypic switching between theC andG population, we arrive at the following set of
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coupled equations:

d
dt

Gb = (L b−δ )Gb ·θ(Gb−1)+λL M [Gb]

+ σoutCb−σinGb (4.8)
d
dt

Cb = γ(L b−δ )Cb ·θ(Cb−1)+ γλL M [Cb]+R[Cb]

− σoutCb+σinGb (4.9)

These equations are easily integrated numerically. Their results are compared to sim-

ulations in Fig.4.8. The agreement is rather poor when the simulated populations are

founded with a clone. This is because it takes a long time to build up the level of di-

versity that the semi-deterministic equations assume to exist. The agreement improves

through time as this diversity builds. On the other hand, if simulations are founded

with randomized genomes of a given fitness, the agreement is excellent. When the en-

vironment of wild bacteria also predict that there is an optimum fraction of competent

cells in a mixed population (Fig.4.9). For reasonable values of κ , this optimal fraction

is ∼ 40%, somewhat larger than the∼ 10% witnessed in the laboratory. The optimal

fraction is found to decrease withκ and vanish in the limitκ → ∞.

4.5 Discussion

Recent work by Elowitz and colleagues [SGOLE06, SKD+07] vividly shows

that cells ofB. subtilisstochastically enter and exit the competent state. This leads to a

dynamic, mixed population of competent and vegetatively growing (i.e. normal) cells.

If recombination has adaptive value, why does only a finite fraction of cells become

competent? This work reports a novel population genetic effect that rationalizes the

experimental observation.

Recently, there has been much interest in the possibility that stochastic phenotype-

switching mechanisms may function to cope with uncertain environments [KL05],

[AMvO08]. In these studies, there are several phenotypes, each of which is adapted to

one of several possible environments. One elegant strategy(stochastic switching) for

coping with uncertainty exploits phenotypic noise to produce a distribution of pheno-

types that hedge against the various environments that may be encountered. Members
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Figure 4.8: Comparison of semi-determinstic equations to simulation data. Agreement
is good only if there is ample genetic diversity in the founding populations. Parameters
are the same as those in Fig.4.4.
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of the population in the inappropriate phenotype representthe fitness cost to stochastic

switching. The experimentally observed subpopulation of persister cells inE. coli is

thought to arise by stochastic switching [BMC+04, KKBL05]. An alternative strategy

(responsive switching) is to measure the environment and respond with the appropriate

phenotype, but this comes with the cost of maintaing the sensor and the switch.

Competence inB. subtilisemploys a puzzling combination of these two switch-

ing strategies. On the one hand, the competence system employs responsive switching

since it is regulated by a quorum sensing module that is activated in early stationary

phase as population density increases [SHA00]. On the otherhand, competence seems

to employ stochastic switching because it commits only a finite fraction to each pheno-

type.

This suggests the intriguing hypothesis that competence switching inB. Subtilis

is in fact responsive switching and that the noisy phenotypeis best. This chapter argues

for this viewpoint and suggests a population genetic function for phenotypic noise with

respect to competence.
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A Numerical integration in chapter 2

In order to determine the spectrumΩ0(v) we numerically integrated Eq. 2.7, and

this required numerically integrating Eq. 2.5. Integration of Eq. 2.5 was initialized in the

bulk state, from the left, where we definedz≡ 0. We setv arbitrarily, tookφ0(0) = .99,

and calculatedφ ′0(0) from the solution to the version of Eq. 2.5 linearized aroundφ0≈ 1

φ ′0(0) =− .01v
2D

(

−1+
√

1+ 4Dr init
v2

)

r init , which we set to one, differs from the previously definedr0 in that it fixed the rate at

a definite location in the bulk state rather than the locationwhereφ0 = 1/2. Integration

terminated in the neighborhood of the cutoff, half way between timesteps whereφ ′0/φ0

crosses−v/D. N was then read off from the relationN = − vk
Dφ0(zcut)

and the value of

the cutoff was recorded for subsequent numerics. This valueis measured relative to the

bulk position whereφ0 = .99, not relative to ¯z, whereφ0 = 1/2. All of this was done

using ode45 from MATLAB, with a maximum stepsize of .001.

The solution forφ0 appears as a coefficient in Eq. 2.7, and was incorporated into

the ODE integration scheme with a cubic spline. Numerical integration of Eq. 2.7 was

initialized atz= 0 with some trialΩ0, η(0) = 1 and

η ′(0) = v
2D

(

−1+
√

1+
4D(r init +Ω0)

v2

)

which follows from Eq. 2.7 if we plug inφ0 ≈ 1. Integration terminated at thezcut

obtained from integration of Eq. 2.5, where we checked if Eq.2.14 was satisfied with

the trialΩ. This procedure was iterated with a root solver while varying Ω until Eq. 2.14

was satisfied. Each integration of Eq. 2.7 was done over 1000 timesteps with a fourth

order Runge-Kutta ODE solver with fixed step size, meant to facilitate incorporation of

the spline.

91



92

This yielded the exact numeric solution presented in Fig. 2.3. Our “exact ana-

lytic approximation" presented in Fig. 2.3 is just the solution to Eq. 2.15 obtained with a

root solver. The required values forN andzcut were obtained from the previous integra-

tion of Eq. 2.5, and we tookr0 = 1. Since we dropped the term involvingφ0 in Eq. 2.10,

this equation is insensitive to the precise definition of ¯z, e.g. it could be defined naturally

as the coordinate whereφ0 = 1/2 or it could be defined out of numerical convenience as

the coordinate whereφ0 = .99. This insensitivity explains why the results agree so well

despite the fact thatr0 andr init are not defined in the same way.



B Asymptotic solutions to Eq.3.12,

when µ− = 0

As in the main text, we defineB≡ µ+ [1−αe(1−s)] andC≡ µ+αes. If Nαes≫
1 butµ+ is sufficiently small,NSµ is no longer much larger than 1, and the approxima-

tions in the main text are not valid. This occurs whenµ+ ∼ O(1/N2αes). In this case,

theB term, and hence deleterious mutations, in Eq.3.12 is irrelevant, andG∞(xo) can be

expressed in terms of a modified Bessel function:

G∞(xo) =

√
1−xoI1(2N

√

C(1−xo))

I1(2N
√

C)
(B.1)

WhenN
√

C is not large, this does not have the exponential dependence on Nxo required

to interpret the fixation probability as resulting from a true effective selection coefficient.

We can nevertheless calculate the fixation probability for small xo:

Pf ix(xo)≈N
√

Cxo
I0(2N

√
C)

I1(2N
√

C)
= N
√

µ+αesxo
I0(2N

√µ+αes)

I1(2N
√µ+αes)

(B.2)

For µ+≫ 1/(N2αes), the argument of the Bessel function is large, and we recoverour

previous result:Pf ix≈Nxo
√µ+αes. For small argument, we getPf ix≈ xo(1+N2C/2)=

x0(1+ N2µ+αes/2). Thus the fixation probability approaches the neutral result xo as

µ+ → 0 and starts out rising linearly inµ+. If we wanted to translate this into an

effective selection coefficient, since for smallNs, Pf ix(xo)≈ xo(1+Ns/2), the effective

selection coefficient would beSµ = Nµ+αes, whose explicitN dependence again points

to the inability to define an effective selection coefficientin this regime.

WhenNµ+ ∼ O(1) andN2µ+αes∼ O(1), all the terms in the equation are of

the same order, and no approximation can be made. However, for smallerµ+, one can
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use perturbation theory to find an approximate solution by writing G∞ = 1−xo+η(xo),

whereη(xo)≪ 1−xo. After dropping terms∼ NBη ′ and∼ N2Cη, we obtain

G∞(xo)≈ 1−xo−
CN−B

2
Nxo(1−xo) (B.3)

with a fixation probabilityPf ix(xo)≈ xo(1+N(CN−B)/2) = xo[1+µ+N(αe(Ns+1)−
1)], which linearly approaches the neutral valuexo asµ+→ 0. As above, in this very

small µ+ regime, no mapping to anN-independent effective selection coefficient can

be made. Note that we again recover our threshold criterion for mutators to be favored

(Eq.3.13).



C Ne for a population of periodically

changing size

Whereas our model describes a population of constant size, experiments by

[SGL97] were done according to a serial dilution protocol inwhich a population of

size No ≈ 5× 106 was grown to sizeNf ≈ 5× 108, diluted 100 fold, then repeated.

Under these dynamics, all lineages grow essentially deterministically from No to Nf ,

at which point binomial sampling abruptly reduces the population size back toNo. In

this case, the fixation probabilityπ of an advantageous mutant depends not only on

s, but also onwhen it is generated during the dilution cycle. Mutants that are gener-

ated during the early part of the cycle are allowed more time to grow exponentially

faster than the wild-type and thus have an advantage over late occurring mutants. It

can be shown [WG01, WGSV02] that the stochastic effects of these population bot-

tlenecks are in many ways equivalent to those of a populationwith constant sizeNe.

More precisely, if we letm≡ the number of newly generated mutants that will achieve

fixation, then we require that the average value ofdm
dt to be the same in the two popu-

lations. In the bottleneck population, the total number of newly generated individuals

≡ ν(t) = No(et ln2−1), anddm= µπ(s, t)dν = Noµπ(s, t) ln(2)et ln2dt. In the constant

size population,dm
dt = Neµs. Equating these two expressions fordm

dt and averaging over

one dilution cycle, we obtain

Nes=
No ln2

g

∫ g

0
et ln2π(s, t)dt (C.1)

whereg = 1
ln2 ln(

Nf
No

) ≈ 6.6 is the number of growth generations separatingNo andNf .

For gsln2≪ 1 it can be shown [WG01] thatπ(s, t) ≈ 2sln(2)ge−t ln2, and therefore

Eq.C.1 implies thatNe = 2Nogln22≈ 6.3×107.
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D Approximate solution to equation

3.10 whenµ− = 0

Eq.3.10 can be approximately solved if we takeµ− = 0. As in the main text, we

defineB≡ µ+ [1−αe(1−s)] andC≡ µ+αes. The equation then reads

∂P
∂ t

=
1
N

∂ 2

∂x2 [x(1−x)P]+B
∂
∂x

[x(1−x)P]−NCxµ+P (D.1)

The biological problem we are interested in solving is the fixation probability for a

small initial fraction of mutators. This corresponds to solving for
∫ 1+ε

1−ε P(x, t→ ∞)dxas

ε → 0, subject to the initial conditionP(x,0) = δ (x−xo), wherexo≪ 1 andδ (x−xo)

is a Dirac delta function. Furthermore analytic progress can be made if we note thatx is

in some sense small. The idea is that the probability cloudP(x, t) is initially localized

aroundxo≪ 1, and that the only process that moves probability solidly into the interior

of x ∈ (0,1) is random genetic drift. We anticipate this effect to be small when the

mutator is significantly favored, i.e.NSµ ≫ 1, and henceP(x, t) ≈ 0 for x not≪ 1.

Thus, we can approximately neglect theO(x2) terms in Eq.D.1 and obtain

∂P
∂ t

=
1
N

∂ 2

∂x2 [xP]+B
∂
∂x

[xP]−NCxµ+P (D.2)

This second order PDE in(x, t) can be converted to a first order PDE in(k, t) by taking

the spatial Fourier transform, which yields

N
∂ P̃
∂ t

= −i(k2− iBk+C)
∂ P̃
∂k

(D.3)

P̃(k, t = 0) = exp(−ikxo)

This equation can be solved by the “method of characteristics”, in which we seek curves

in thekt plane along which̃P(k, t) is constant. We finddP̃
dt = ∂ P̃

∂ t + ∂ P̃
∂k

dk
dt = 0 along the
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family of curves defined by

t
N

+
i

z+−z−

[

ln
k−z+

k−z−
− ln

κ−z+

κ−z−

]

= 0 (D.4)

z± ≡ iNB
2

[

1±
√

1+
4C
B2

]

κ serves to label different characteristic curves and is chosen to appear in this manner

so thatκ = k when t = 0. Then,P̃(k, t) = P̃(k,0) = P̃(κ,0) = exp(−iκxo) along the

characteristic curves, and we obtain the formal solution

P(x, t) =
1

2π

∫ ∞

−∞
e−iκ(k,t)xoeikxdk (D.5)

whereκ(k, t) is obtained from Eq.D.4.

This formidable inversion integral gives the full solutionfor all x andt, but for-

tunately we do not need to evaluate the integral in order to obtain the fixation probability

of the mutator. A moment’s reflection convinces us that thet→∞ behavior of Eq.D.2 is

the build-up of a delta function at the absorbing statex= 0 and a “decay” of the remain-

ing probability to the fixation state. We note that the probability which corresponds to

the delta function is thek→ ∞ component ofP̃(k, t). Taking thek→ ∞ limit of Eq.D.4,

we obtain

P(x = 0, t) = e−iκ∞xo

κ∞ = z−

z+
z−
−e−i(z+−z−)t/N

1−e−i(z+−z−)t/N

Finally, taking thet→ ∞ limit and settingP(1, t→ ∞) = 1−P(0, t→ ∞), we obtain the

familiar expression

P(1, t→ ∞) = 1−exo|z−| ≡ 1−e−Nxoz (D.6)

Sµ = z=

√
B2+4C−B

2
≈ µ+

2

[

√

(1−αe)2+4αes/µ+− (1−αe)

]

NSµ ≫ 1

(D.7)

which is the same as Eq. 3.16 obtained from the backward equation (3.12).



E Perturbative correction to Eq.3.12

for finite µ−

The small effect of mutations in wild-type backgrounds observed in simulations

motivates a perturbative solution to Eq.3.12. In terms of the parametersB± ≡ µ±[1−
αe(1−s)] andC± ≡ µ±αes,

d2

dx2
o
G∞−N(B+−B−)

d
dxo

G∞−N2C+
G∞

1−xo
=−N2C−

1−G∞
xo

In order to make analytic progress, we make the following assumptions. (i) The mutator

is strongly favored, and thereforeG∞
1−xo
→G∞. (ii) G∞ ≈Go+G1, whereGo is given by

the solution to the caseµ− = 0 andGo≫G1. Then we have

G′′1(xo)−NB+G′1(xo)−N2C+G1(xo) =−N2C−
1−eN(B+−

√
B2

++4C+)xo/2

xo
(E.1)

where we have also dropped the small termB−G1(xo). This equation can be solved

using the theory of non-homogeneous linear differential equations. A convenient way

to write the two independent solutions to the homogeneous version of Eq.E.1 is

g<(xo) = eB+Nxo/2sinh

(

N
2

√

B2
+ +4C+xo

)

g>(xo) = eB+Nxo/2sinh

(

N
2

√

B2
+ +4C+(1−xo)

)

If we denote the inhomogeneitym(xo), our solution forG1(xo) can be written in terms

of the integrals

G1(xo) =

∫ xo

0
m(x)

g<(x)g>(xo)

Wr(x)
dx+

∫ 1

xo

m(x)
g>(x)g<(xo)

Wr(x)
dx
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where the WronskianWr(x)= g′>(x)g<(x)−g>(x)g′<(x). The first-order contribution

to the fixation probability for smallxo is then

F1(xo)≈−xo
d

dxo
G1(xo)

∣

∣

∣

∣

xo=0
=−xo

∫ 1

0
m(x)

g>(x)g′<(0)

Wr(x)
dx

The Wronskian is evaluated as

Wr(x) =−1
2

eB+NxN
2

√

B2
+ +4C+ sinh

(

N
2

√

B2
+ +4C+

)

Thus, f>(x)/Wr(x) decays rapidly for largex ase−N(B+
√

B2
++4C+)x/2. This allows us to

simplify the integral by extending the range of integrationto infinity, which yields

F1(xo)≈−µ−αesN2xo

∫ ∞

0
dx

1−eN(B+−
√

B2
++4C+)x/2

x
e−N(B++

√
B2

++4C+)x/2

Using the identity

∫ ∞

0
dx

e−ax−e−bx

x
= ln(b/a)

we finally arrive at

F1(xo)≈−µ−αesN2x0 ln





2
√

1+4 αes
µ+(1−αe)

1+
√

1+4 αes
µ+(1+αe)



 (E.2)

The logarithmic factor varies between zero in the limitµ+ ≫ 4αes and ln(2) in the

opposite limit. This method breaks down whenF1 & Fo. Now,Fo is bounded from above

by NxoS∗µ < Nxoαes, as given in Eq(11, main text). Therefore, Eq.E.2 will typically fail

whenµ−αesN2∼Nαes, or,Nµ− ∼ 1, which is, unfortunately, usually the case.



F Alternative formulation is ISLA in

section 3.5

As mentioned in the main text, A2 is somewhat awkward. An alternative, which

we call A2∗, it immediately kill advantageous mutations which are destined to eventu-

ally succumb to drift. This approximation merely modifies a coefficient in Eq.3.12. The

effect is simply the transpositionαe
1−αe

→ αe. In fact, we occasionally made this sub-

stitution in the text, when we anticipated thatαe≪ 1. Typical behavior of A2 relative

to A2∗ is illustrated in Fig.F.1. Even though A2∗ yields results that are arguably more

accurate than those of A2, we preferred A2 in the main text because it nicely serves as

an upper bound on mutator success.
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Figure F.1: The effect of using A2∗ instead of A2. Whenµ+/s. 1, ISLA overestimates
the results of simulations when it uses A2. The opposite effect is observed if we instead
make the assumption A2∗, which immediately kills the fraction (1-s) of advantageous
mutants that are eventually lost to random drift. This suggests that the error accumulated
for µ+/s. 1 is due to the approximate manner in which ISLA treats these advantageous
mutants. Parameters areN = 5000,µ− = 0, α = .4, s= 1/120,δ = 0.



G Ensemble averaging in chapter 3

The point-like symbols in the figures in the main text result from values of

Pf ix(N,xo,s,α,µ±) obtained by simulating numerous competition experiments.The

averaging procedure varied somewhat, depending on parameters used, though this had

no effect on our results. Here, we explicitly report the averaging details for each case.

• All data from populations of sizeN = 5000 result from 10,000 trials run for each

xo ∈ {.003, .009, .015, .021}. ThePf ix obtained from each value ofxo was then

translated into a value forSµ via Eq.(2, main text). These four values were aver-

aged to obtain the values presented in the figures.

• For data from populations of sizeN = 1000, the procedure was identical to the

case whereN = 5000, but with 100,000 trials for eachxo.

• For data from populations of sizeN = 100,000, the procedure varied slightly be-

tween different parameter choices. In Fig(2, main text) (left) and Fig(5, main text)

we used 20,000 trials each fromxo ∈ {10−4,5×10−4}. In Fig(6, main text), we

used 20,000 trials fromxo = 2×10−4. In Fig(2, main text)(right) we used 10,000

trials fromxo ∈ {10−4,10−3}
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H Numerical integration in chapter 3

In order to produce the solid curves in Figs.(4, 5, 7, 8) from the main text, we

first had to numerically integrate Eq.3.12, subject to the boundary conditionsG∞(0) = 1

andG∞(1) = 0. The procedure for the caseµ− = 0 is relatively simple. We initiate

integration near the singular point atxo = 1, takingG′∞(1− ε) = −1 andG∞(1− ε) =

ε. Here,ε is a very small positive number and the initial slope−1 is arbitrary. The

integration is then performed fromxo = 1−ε to xo = 0 using a fourth order Runge-Kutta

algorithm. The resulting trial solution to Eq.3.12 does notobey the boundary condition

at xo = 0. However, because the equation is linear, the correct solution is obtained

simply by re-scaling the trial solution so that the boundarycondition is satisfied. We

then evaluateG∞(.001) using a cubic spline and obtainSµ by inverting Eq(2, main text)

using a root solver.

For µ− > 0, the procedure is slightly more involved. Eq.3.12 now has singular

points at bothxo = 0 andxo = 1. Therefore, we must integrate from both the right and

the left, then match these two solutions and their derivatives in the middle. Specifically,

we first integrate Eq.3.12 from the right, as before, but now stopping atxo = .5. Call this

un-scaled solution solutionGr(xo). We then generate a trial solutionGl(xo) initialized

nearxo = 0, takingG′l (ε) =−NSo andGl(xo) = 1−NSoε. Here,So is given by Eq(10,

main text) and merely serves as an initial guess as to the behavior of the solution near

xo = 0. We can ensure thatGr(.5) = Gl(.5) simply by re-scalingGr(xo). However, the

slopes will, in general, not match atxo = .5. In order to accomplish this matching, we

link the above procedure to a root solver which repeatedly adjustsG′l(ε) and generates

trial solutions until one is found for whichG′l(.5) = G′r(.5). We then proceed to calculate

Sµ as before, using the correct solutionGl (xo).
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I Multiplicative vs. additive fitness

function

Let k equal the number of deleterious mutations (0’s) carried by agenome of

lengthλ and let time be measure in generations. Then, using our linear birth rate func-

tion (Eq.4.4) and setting the death rate equal to the mean birth rate≡ 1− r̄,

〈nk(t +1)〉 = nk(t)e
(1−k/λ )−(1−k̄/λ )

= nk(t)e
−(k−k̄)/λ , (I.1)

where the bar refers to the population average (as opposed tothe ensemble average).

The canonical multiplicative fitness function used in discrete Wright-Fisher models is

(see, for example, [Ewe04])Wk = (1− s)k, whereWk denotes the expected number of

offspring left in a generation. The corresponding equationfor a typical discrete model

is

〈nk(t +1)〉 = nk(t)
(1−s)k

(1−s)k

≈ nk(t)
e−sk

e−sk
. (I.2)

Eqs.I.1,I.2 are approximately the same ifs = 1/λ ande−sk≈ e−sk̄. Therefore, up to

a deterministic approximation, the continuous model in which the exponential growth

rate decreaseslinearly with k corresponds to a discrete model in which the “fitness”

decreasesmultiplicativelywith k.
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