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Frequency-dependent incidence in models of sexually
transmitted diseases: portrayal of pair-based
transmission and effects of illness on contact
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We explore the transmission process for sexually transmitted diseases (STDs). We derive the classical
frequency-dependent incidence mechanistically from a pair-formation model, using an approximation that
applies to populations with rapid pairing dynamics (such as core groups or non-pair-bonding animals).
This mechanistic derivation provides a framework to assess how accurately frequency-dependent incidence
portrays the pair-based transmission known to underlie STD dynamics. This accuracy depends strongly
on the disease being studied: frequency-dependent formulations are more suitable for chronic less-trans-
missible infections than for transient highly transmissible infections. Our results thus support earlier pro-
posals to divide STDs into these two functional classes, and we suggest guidelines to help assess under
what conditions each class can be appropriately modelled using frequency-dependent incidence. We then
extend the derivation to include situations where infected individuals exhibit altered pairing behaviour.
For four cases of increasing behavioural complexity, analytic expressions are presented for the generalized
frequency-dependent incidence rate, basic reproductive number (R0) and steady-state prevalence (i�) of
an epidemic. The expression for R0 is identical for all cases, giving refined insights into determinants of
invasibility of STDs. Potentially significant effects of infection-induced changes in contact behaviour are
illustrated by simulating epidemics of bacterial and viral STDs. We discuss the application of our results
to STDs (in humans and animals) and other infectious diseases.

Keywords: sexually transmitted disease; epidemic models; incidence rate; pair formation;
behavioural modification; HIV/AIDS

1. INTRODUCTION

Sexually transmitted diseases (STDs) are a significant and
growing problem in public health worldwide (Piot et al.
2001; CDC 2002), and mathematical models have
become an integral part of STD epidemiology
(Hethcote & Yorke 1984; Castillo-Chavez 1989; Ander-
son & May 1991; Anderson & Garnett 2000; Garnett
2002b). The core of every infectious-disease model is its
representation of the transmission process, and the funda-
mental question of how to formulate the transmission rate
is the subject of active research (Antonovics et al. 1995;
De Jong et al. 1995; McCallum et al. 2001, 2002; Fenton
et al. 2002). Increasingly complex models have yielded
important insights into STD dynamics, by incorporating
details of heterogeneity in sexual behaviour (Hethcote &
Yorke 1984; Anderson & May 1991), partnership dynam-
ics (Dietz & Hadeler 1988; Waldstatter 1989; Diekmann
et al. 1991; Kretzschmar & Dietz 1998; Kretzschmar
2000) and sexual-network structure (Kretzschmar & Mor-
ris 1996; Bauch & Rand 2000; Ferguson & Garnett 2000;
Kretzschmar 2000; Eames & Keeling 2002). These gains
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come at the expense of increasing mathematical and com-
putational demands, however, so simple analytic formu-
lations continue to play an important role. STD models
based on frequency-dependent transmission—the classical
analytic formulation—are published often and promi-
nently, typically nested in models addressing larger topics
such as drug resistance or competition between strains
(e.g. Thrall & Antonovics 1997; Blower et al. 1998, 2000;
Bowden & Garnett 2000; Sullivan et al. 2001; Boots &
Knell 2002). In their review of STD modelling, Ander-
son & Garnett (2000) point out that simpler models are
complementary to complex simulations and help to
extract general principles and reach robust conclusions,
which aid in policy development (though see Garnett et
al. (1999) for a discussion of potential shortcomings).
McCallum et al. (2002) observe that simple treatments of
transmission will continue to be necessary, and that corre-
spondence with more complex models is an important
area for investigation.

In this spirit, we undertake to explore the transmission
process for STDs and to relate complex dynamics to sim-
ple analytic expressions for the transmission rate. Using
an approximation that applies to populations with rapid
pairing dynamics (such as core groups or non-pair-bond-
ing animals), we derive the classical frequency-dependent
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incidence mechanistically from a pair-formation model.
We thus demonstrate a formal correspondence between
the standard model of STD incidence and the pair-based
contact process that is known to underlie STD dynamics.
This mechanistic derivation clarifies the conditions
required for the frequency-dependent model to represent
pair-based transmission accurately, and provides a natural
framework in which we assess the classical model’s proper
scope of application. We then extend the derivation to
obtain generalized frequency-dependent transmission
rates for situations where the pairing behaviour of individ-
uals is influenced by their infection status.

Frequency-dependent transmission (also called the
standard incidence or density-independent transmission)
is the standard approach to modelling STD transmission
in compartmental disease models (Getz & Pickering 1983;
Antonovics et al. 1995; De Jong et al. 1995; Hethcote
2000; McCallum et al. 2001). In this formulation, the rate
at which susceptible individuals become infected is pro-
portional to the prevalence (or ‘frequency’) of the disease
in the population. Let S and I represent the densities of
susceptible and infectious individuals, respectively, and
N = S � I the total density; the prevalence is thus I /N .
Also, let cFD represent the average per capita rate of acquir-
ing new sexual partners (assumed to be independent of
population density) and pFD represent the probability that
transmission will occur over the course of an SI partner-
ship (a partnership between a susceptible individual and
an infectious individual). Then the frequency-dependent
incidence rate, i.e. the rate at which new infections arise
in the population, is (Anderson & May 1991; Hethcote
2000):

�FD = cFD pFD� I
N�S. (1.1)

The frequency-dependent formulation does not explicitly
model sexual partnerships: contacts have no temporal
extent and the probability of transmission during a part-
nership is ill defined (Antonovics et al. 1995). Partnership
dynamics have been recognized as a critical element of
STD models since the seminal work of Dietz & Hadeler
(1988) and are the basis for subsequent network models
(Ferguson & Garnett 2000; Kretzschmar 2000). Pair-for-
mation models account for the essential structure of STD
epidemics, in that sexual contacts take place within part-
nerships (however short lived) and individuals in monog-
amous pairs are removed from mixing with the rest of the
population. Modelling the finite duration of partnerships
can have significant effects on both the transient and the
steady-state properties of STD epidemics (Waldstatter
1989; Kretzschmar & Dietz 1998), and the resulting pre-
dictions for disease invasion or persistence can differ
qualitatively from those of non-partnership models
(Diekmann et al. 1991; Kretzschmar & Dietz 1998).

We seek to clarify the relationship of frequency-depen-
dent incidence to the pairing processes underlying STD
transmission. To do so, we construct a full model of part-
nership, disease and demographic dynamics and consider
its behaviour in situations where pairing processes occur
much faster than epidemic processes. In such situations
we can separate the fast pair dynamics from the slower
disease and demographic dynamics, and approximate that
pair dynamics reach a quasi-steady state on epidemic
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time-scales (i.e. that the pairing process constantly re-
equilibrates as the epidemic progresses). We demonstrate
numerically that solutions of the approximate system con-
verge to those of the full system as the ratio of fast to
slow time-scales tends to infinity. This approach follows
Heesterbeek & Metz (1993; see also Diekmann & Hees-
terbeek 2000), who broke new ground by deriving a satu-
rating transmission function from a pair-formation model.
The mass-action formulation of their pairing process,
however, may be suitable for non-STDs but is inappropri-
ate for STDs (particularly among humans) for which rates
of pair entry are generally thought to be density-
independent (Dietz & Hadeler 1988; Waldstatter 1989;
Diekmann et al. 1991). In this study, we derive analytic
results from partnership models under the time-scale
approximation, and use comparisons with a full pair-
formation–epidemic model to test the approximation. We
find that the accuracy of the approximation—and hence
the accuracy with which frequency dependence portrays
pair-based transmission—depends strongly on the natural
history of the STD in question, as well as on the rates of
partnership formation and break-up.

Finally, for situations where the time-scale approxi-
mation holds, we build on the foundation of pair-forma-
tion models to consider infection-induced changes in
pairing behaviour. Previous work on behavioural change
in STD epidemics has focused on population-level effects
in humans, wherein education campaigns or community
awareness of disease prevalence leads to reductions in
risky behaviour or changes in partner selection (e.g. Had-
eler & Castillo-Chavez 1995; Hyman & Li 1997; Hsieh &
Sheu 2001). We consider a different class of behavioural
change, applicable to humans and animals, in which indi-
vidual contact behaviour is influenced by individual infec-
tion status (i.e. sick individuals behave differently from
healthy ones). There is strong evidence for this phenom-
enon in the biological and behavioural literature, but it
has not yet been incorporated into epidemiological theory.

The infection status of individuals (both human and
animal) has been shown to affect their contact behaviour
in STDs and other diseases (Kennedy et al. 1987; Loehle
1995; Able 1996; Beckage 1997; Garnett et al. 1999; Kie-
secker et al. 1999; Webster et al. 2003), and evolutionary
biologists have long speculated that parasites play a role in
mating behaviour (Hamilton & Zuk 1982; Boots & Knell
2002). Proposed or observed mechanisms for lowered
contact rates include debilitation and reduced vigour (e.g.
Newshan et al. 1998; Schiltz & Sandfort 2000), social fac-
tors (Gold & Skinner 1996; Donovan 2000), scent cues
(Penn & Potts 1998; Kavaliers et al. 1999) and secondary
sexual characteristics (Hamilton & Zuk 1982; Loehle
1995; Able 1996). Pathogens can also modify host behav-
iour to increase the opportunity for transmission, as is
commonly seen in macroparasitic infections (Beckage
1997); in sexual behaviour, such effects have been
observed in mice (Kavaliers et al. 1999) and milkwood leaf
beetles (Abbot & Dill 2001), and postulated in humans
(Starks et al. 2000). In summary, ample evidence exists
that the infection status of individuals may influence their
partnering behaviour. In § 4, we generalize the theory of
frequency-dependent transmission to incorporate this
phenomenon in populations with rapid pairing dynamics.
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Figure 1. STD epidemic model. The fast pairing dynamics and slow epidemic dynamics are linked by a time-scale
approximation, as described in § 2. Fast pairing dynamics: XS and XI are the densities of susceptible and infectious single
individuals, respectively, while PSS, PSI and PII represent partnerships between individuals of the disease states shown in the
subscripts. Single individuals in the XS and XI pools enter partnerships at per capita rates kS and kI, respectively, independent
of population density. Pairings of type Pyz break up at rate lyz (for y , z = S or I), and hence have lifetimes that are distributed
exponentially with a mean of 1/lyz. For the simple case described in § 2, we set kS = kI = k and lSS = lSI = lI I = l. When
individuals of type y form partnerships, a proportion myz will be with individuals of type z (hence we always have Σzmyz = 1).
Slow epidemic dynamics: transmission occurs within SI pairs (at quasi-steady-state density P∗

SI) at rate �pair, which is the product
of the within-partnership rate of sex acts and the probability of transmission per sex act. Infected individuals recover at rate �.
There is a constant influx � into the population, and individuals leave the population (by death, emigration or entering long-
term relationships) at rate �. We assume that the population density has reached an equilibrium value N = S � I , and hence
� = �N .

2. DERIVATION OF FREQUENCY-DEPENDENT
TRANSMISSION FROM A PAIR-FORMATION
MODEL

We consider a model for STD spread in a population
of individuals engaging in short-lived sexual partnerships,
such as a core group within an HIV/AIDS epidemic.
Long-term relationships are outside the scope of this
study, but have been examined elsewhere (Diekmann et
al. 1991; Kretzschmar et al. 1994). In the model presented
here, the defining characteristics of a partnership are that:
(i) both individuals are removed from the mixing popu-
lation for the duration of the pairing; and (ii) sexual con-
tacts are occurring at some rate. We assume that sexual
contacts do not occur outside partnerships and that con-
currency is insignificant for these brief pairings. Hence,
disease transmission takes place only in partnerships
between infected and susceptible individuals. We describe
pairing dynamics using the standard formulation of recent
STD models (e.g. Dietz & Hadeler 1988; Waldstatter
1989; Diekmann et al. 1991; Kretzschmar et al. 1994;
Kretzschmar & Dietz 1998; Bauch & Rand 2000),
assuming that individuals enter partnerships at a constant
per capita rate and choose partners according to a defined
mixing pattern.

The model is explained in figure 1, and model equations
are given in electronic Appendix A (available on The
Royal Society’s Publications Web site). The basic assump-
tion is that pairing processes occur on a time-scale suf-
ficiently faster than epidemic processes that the two
systems can be separated, and pairing processes can be
considered to be at quasi-steady state relative to the epi-
demic. (By contrast, the epidemic variables are assumed to
be constant at the pairing time-scale.) This is the approach
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taken by Heesterbeek & Metz (1993; also Diekmann &
Heesterbeek 2000), who use a singular perturbation
method to separate time-scales that differ significantly. It
is a quasi-steady state because the partnership equilibria
will be responding continuously as the epidemic pro-
gresses.

When we consider the fast pairing dynamics, we divide
the population into five groups according to relationship
and disease status. When we consider the slower epidemic
dynamics, we divide the population into just two groups,
susceptible and infected individuals, with densities S and
I, respectively. Each of these groups includes both single
and partnered individuals, but on the epidemic time-scale
we are concerned only with overall densities by disease
state. The fast and slow dynamics are linked because new
infections arise only in SI partnerships (at a constant rate
�pair), so the incidence rate derived from the rapid pairing
model is

�rapid pairing = �pair P∗
SI, (2.1)

where P∗
SI is the steady-state density of SI partnerships.

Our goal is to express P∗
SI in terms of the basic quantities

S and I, and thus to translate our complex model of part-
nership dynamics into the standard framework of com-
partmental epidemic models (SIS, SIR, SEIR, etc.)
(Anderson & May 1991; Hethcote 2000). The time-scale
approximation makes this possible—in electronic Appen-
dix A we derive exact solutions for P∗

SI in terms of S, I
and the pair formation and dissolution rate constants. In
the simplest behavioural case, where single individuals of
all types enter partnerships at rate k and partnerships of
all types break up at rate l, we obtain:
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P∗
SI = � k

k � l�SI
N

. (2.2)

This result can be understood intuitively. When the dis-
ease does not affect pairing behaviour the total steady-
state density of partnerships is (k/(k � l))N /2, and the
proportion of those that are SI pairs is 2SI /N 2. (The for-
mer expression is derived in electronic Appendix A. The
latter follows from the second term in the binomial expan-
sion, (S/N � I /N)2 = S2/N2 � 2SI /N2 � I2/N2, which
gives the relative proportions of SS, SI and II pairs
assuming random mixing.) Equation (2.2) is simply the
product of these two expressions.

Substituting our solution for P∗
SI into equation (2.1), we

obtain a total incidence rate of �pair (k/(k � l))SI /N . This
expression is equivalent to equation (1.1), the classical
frequency-dependent transmission function, if
cFD pFD = �pair (k/(k � l)). We seek to understand this
equality by viewing cFD and pFD from the perspective of
our pair-formation model. The mean duration of a part-
nership is 1/l, and the mean period between partnerships
is 1/k. Assuming sequential monogamy, on average each
individual will have one new sexual partner every (1/l �
1/k) units of time. The mean number of partners per unit
time is thus cFD = 1/(1/l � 1/k) = kl/(k � l). Also, the sus-
ceptible individual in an SI partnership has a constant risk
of infection per unit time (or hazard rate) of �pair. For a
relationship of average duration (1/l), the probability that
transmission occurs is then pFD = 1 � exp(��pair/l ) �
�pair/l (the latter follows because we have assumed that
disease dynamics are much slower than pair dynamics,
implying �pair� l). Expressing cFD and pFD in terms of our
model parameters, therefore, we find that cFD pFD �
(kl/(k � l)) × (�pair/l ) = �pair (k/(k � l)). This is precisely
the equality obtained above by setting �ra pid pairing = �FD.
In summary, we have derived both the functional form of
the classical frequency-dependent incidence (� 	 SI /N)
and its conventional coefficient (cFDpFD) from a mechan-
istic model of partnership dynamics.

3. VALIDITY OF FREQUENCY-DEPENDENT
MODELS OF SEXUALLY TRANSMITTED
DISEASE INCIDENCE

The assumption that pairing processes reach a steady
state on epidemic time-scales allows us to link frequency-
dependent incidence to pair-based transmission. To assess
when our separation of fast and slow time-scales is valid,
we compare epidemics simulated with classical frequency-
dependent transmission (i.e. using the time-scale
approximation) with those generated from a full pair-
formation–epidemic system (i.e. without the
approximation). The latter model closely matches those
used in previous studies of pair formation and STDs (e.g.
Dietz & Hadeler 1988) and includes processes that are
missed under the time-scale approximation (namely the
loss of SI partnerships owing to recovery of the infected
individual, the gain of SI partnerships owing to recovery
of one individual in an II pair, and partnerships ending
owing to the death of one partner). Thus, we can assess
the accuracy with which frequency-dependent models rep-
resent pair-based transmission, for given sets of para-
meters, by the similarity of the simulated epidemics. To
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reach general conclusions, we compare epidemics of dif-
ferent types of STD in populations with pair dynamics
occurring at a range of rates.

STDs have been divided into two groups according to
their natural history: those with high transmission prob-
ability and short duration (chiefly bacterial pathogens) and
those with low transmission probability and long duration
(chiefly viruses) (Blanchard 2002; Garnett 2002a). We
simulated epidemics for these two main classes of STD.
To represent bacterial STDs, we drew parameter values
from the literature on gonorrhoea, chlamydia and tricho-
moniasis (Kretzschmar et al. 1996; Garnett et al. 1999;
Bowden & Garnett 2000): transmission rates are high, and
infected individuals recover without immunity in roughly
one month. To represent viral STDs, we chose parameters
in the range appropriate for HIV and HSV-2 (Anderson
et al. 1989; Castillo-Chavez 1989; Mertz et al. 1992;
Blower et al. 1998, 2000): transmission is relatively slower,
but there is no recovery. Parameter values for the two
model diseases are specified in the legend to figure 2, as
are basic reproductive numbers R0 (calculated as
described in § 4). In both cases, individuals are assumed
to remain in the population for 10 years. Pairing para-
meters were chosen such that healthy individuals divide
their time approximately equally between single and part-
nered states, and we follow Kretzschmar et al. (1996) in
assuming a mean of one sex act per day in casual partner-
ships. Asymptomatic cases and variable infectivity are not
treated explicitly, but can be considered to be averaged
into the relevant rate constants. Admittedly, these are cari-
catures of the actual diseases, but they serve to illustrate
the behaviour of two important classes of STDs (and of
diseases acting on two different time-scales).

For bacterial and viral STDs, we assessed the accuracy
with which frequency-dependent incidence represents
pairing at different time-scales (figure 2), in the simplest
case when all pairing and unpairing rates have the same
value k = l = 1/D. We describe the time-scale of pair
dynamics in terms of the mean partnership duration D,
which in this case is also the mean time between partner-
ships. In all cases, recall that durations are exponentially
distributed with mean D, so that many partnerships would
last considerably more (or less) than D time-units. For
both classes of STD the full-system simulation approaches
the time-scale-approximated solution as pairing and
unpairing rates (1/D) increase to infinity. Thus, exact
correspondence with frequency-dependent transmission is
obtained only for instantaneous contact. For finite part-
nership (and between-partnership) durations, the epi-
demic always proceeds more slowly, since opportunities to
transmit infection are more limited (Kretzschmar 2000).

The results are radically different for the two disease
classes, owing to their distinct intrinsic time-scales. For
the faster bacterial STDs, the epidemics predicted by the
full-system simulation and by frequency-dependent trans-
mission diverge rapidly as D increases (figure 2a). For
mean durations of 1 day or less (extremely fast partner
change) the epidemics are roughly equivalent—differing
by less than 10% in final prevalence and 25% in time to
half-maximum prevalence. When D increases to just one
week the full-system curve is hardly recognizable. The
viral STD (figure 2b), with its slower disease processes
and higher reproductive number, is more forgiving of
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Figure 2. Accuracy of time-scale approximation pair
dynamics on different time-scales. (a) Epidemic of bacterial
STD. The heavy line shows the time-course predicted using
the frequency-dependent incidence rate derived with the
time-scale approximation (equations (2.2) and (A 4)); the
lighter lines show the results of simulating the full system
(equation (A 1)). Pairing time-scales are described by D
(dotted line, D = 0.5 days; dashed line, D = 1 day; solid line,
D = 3 days; dot–dashed line, D = 1 week), which represents
the mean duration of partnerships and between-partnership
periods. Disease parameters: �pair = 0.15 day�1, � = 0.03
day�1. R0 = 2.48 under the time-scale approximation. (b)
Epidemic of viral STD. As in (a), except � pai r = 0.005 day�1

and � = 0, and therefore R0 = 8.33. (Thick line, frequency
dependent; dotted line, D = 1 week; dashed line, D = 1
month; solid line, D = 3 months; dot–dashed line, D = 1year.)
Results were obtained using a second-order modified
Rosenbrock method for stiff ordinary differential equations
(algorithm ode23s in Matlab v. 6.1 (Mathworks, Natick,
MA, USA)). In (a) and (b) � = 0.0003 day�1, and at
t = 0, S0 = 0.99 and I 0 = 0.01.

slower pair dynamics. For mean partnership durations of
up to one month the full-system epidemic is roughly equi-
valent (as defined above) to the frequency-dependent
approximation, and even with D = 3 months the epidemics
are qualitatively similar (though their rates of growth differ
considerably). As a general rule, we have found that the
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agreement between the full-system and frequency-depen-
dent models depends both on the relative time-scales of
disease and pairing dynamics and on the reproductive
number of the disease: slower disease dynamics and higher
values of R0 permit longer-term partnerships to be mod-
elled accurately by frequency dependence.

4. INFECTION-INDUCED CHANGES IN PAIRING
BEHAVIOUR

For scenarios where the time-scale approximation is
reasonable (discussed in § 5), we now extend our analysis
in keeping with strong evidence that the infection status
of individuals influences their contact behaviour. We
introduce different rates, kS and kI, at which susceptible
and infected individuals enter partnerships, and different
rates, lSS, lSI and lII, at which the three types of partner-
ships dissolve (see equation (A 2) in electronic Appendix
A for implementation details). In electronic Appendix A,
we derive analytic solutions for the steady-state SI pair
density, P∗

SI, from the resulting equations. As in § 2 we
can use these in conjunction with equation (2.1) to
express the total incidence rate in closed-form expressions.
By defining the dimensionless proportions s = S/N
and i = I /N and representing our contact parameters by
the vector 
 = (kS, kI, lSS, lSI, lII), we find that all resulting
incidence rates share a generalized frequency-dependent
form:

�rapid pairing = �pair�
(s,i)
SI
N

, (4.1)

where �
(s,i) is a function of time-varying values of s and
i (though note that s � i = 1 for all time) and the pair
formation and dissolution rates 
. The �
(s,i) for four
different behavioural scenarios are shown in table 1,
encompassing situations where individual infection status
influences either pair-formation rates or partnership dur-
ations or both, as well as the baseline case of no behav-
ioural shifts.

The �
(s,i) are independent of total density N, as
expected since the pairing process can be described
entirely in terms of frequencies (by dividing both sides of
equation (A 2) by N). Hence, as for the simple case in
§ 2, we find that �rapid pairing 	 SI /N 	 N , i.e. that the total
incidence increases linearly with N. Therefore the per cap-
ita disease risk (the force of infection) is not influenced by
N, so even these behaviourally complex models exhibit the
density-independence characteristic of the frequency-
dependent formulation.

Incorporating infection-induced changes in pairing
behaviour leads to nonlinearities in the dependence of the
incidence rate on the relative proportions of susceptible
and infectious individuals (s and i, respectively). The inci-
dence rate will thus vary from the standard frequency-
dependent pattern (�FD 	 siN) during the course of an
epidemic. As an example consider case 2 in table 1: if
infected individuals have reduced pairing rates (i.e. kI �
kS, and hence I � S), the value of �
(s,i) increases as i
gets larger. The incidence rate will accelerate as the epi-
demic progresses, relative to that expected based on
homogeneous pairing behaviour (case 1). This somewhat
counterintuitive finding arises because the less numerous
type limits the rate of SI pair formation, so kS has increasing
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Table 1. Results for epidemics with infection-induced changes in behaviour.
(Here, s = S/N, i = I/N, S = kS/(kS � lSI) and I = kI/(kI � lSI), and a = (lSI/kI)(1 � (lSI/lSS)) � (lSI/kS)(1 � (lSI/lII)) � (1 � (l2

SI/lSSlII)).
If kS = kI, then S = I � . R0 is given by equation (4.2).)

case pairing rates (
) �
(s,i) i�

1 kS = kI = k; lSS = lSI = lII = l k
k � l

1 �
1
R0

2 kS � kI; lSS = lSI = lII = l SI

Ss � Ii
1 �

1

R0

S

I
� �1 �

S

I
�

3 kS = kI = k; lSS � lSI � lII 
1
2 � 1

2�1 � 4a 2si
1 �

1 � a 2/R0

R0 � a 2/R0

4 kS � kI; lSS � lSI � lII
SI

1
2�Ss � Ii � �(Ss � Ii )2 � 4a(SI)2si� 1 �

1 � aSI/R0

R0

S

I
� �1 �

S

I
� � aSI/R0

influence as i approaches 1. Such dynamics could be sig-
nificant for the current discussion of the effect of epidemic
phase on epidemiological studies of STDs (Blanchard
2002; Garnett 2002a). Note that this effect is the opposite
of that usually considered in models of behavioural change
at the population level, in which higher prevalence is
assumed to lower transmission rates via reduced contacts
or greater precautions (Hadeler & Castillo-Chavez 1995;
Hyman & Li 1997; Hsieh & Sheu 2001).

To understand the effects of pairing behaviour being
influenced by illness, we derive the fundamental epidemi-
ological quantities for the SIS model with constant recruit-
ment shown in figure 1 (see also equation (A 4) in
electronic Appendix A). The basic reproductive number,
R0, is the expected number of secondary cases caused by
an infectious individual in a wholly susceptible population
(Diekmann & Heesterbeek 2000). The threshold con-
dition for disease invasion is R0 � 1, since the first infec-
tion must more than replace itself for the disease to
become established. The calculation of R0 is described in
electronic Appendix A—remarkably, for all four behav-
ioural cases, we obtain the same result:

R0 =
�pair

� � �� kI

kI � lSI
�, (4.2)

provided that kS � 0 (and kI and lSI are replaced by k and
l in the appropriate cases). Recall that � and � are,
respectively, the per capita rates of recovery and of leaving
the rapidly pairing population, so 1/(� � �) is the mean
period that an infectious individual spends in the popu-
lation. The factor kI/(kI � lSI) is the proportion of this
period that an infectious individual spends in SI pairs,
when the population is wholly susceptible.

This outcome is surprising for several reasons. First, we
note that equation (4.2) is identical to the standard result
for frequency-dependent transmission, R0 = cFD pFD/(� �
�), if we equate cFD pFD = �pair(kI/(kI � lSI)) (Hethcote
2000). From the arguments in § 2, this equivalence requires
that cFD be interpreted as the rate at which infected individ-
uals acquire new sexual partners. Some authors use this
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convention (e.g. McCallum et al. 2001) but many do not
(e.g. Anderson et al. 1989; Hethcote 2000).

Second, R0 is independent of several key parameters of
the model. The rate at which susceptible individuals enter
contact partnerships, kS, does not affect the ability of the
disease to invade a population (provided that kS � 0).
While not obvious, this can be understood by noting that
the early rate of formation of SI pairs will be limited by
the supply of infectious individuals. R0 is also independent
of lSS and lII, and hence of the durations of SS and II
partnerships. Again, this is unexpected, since individuals
in SS (or II) partnerships are effectively vaccinated (or
case isolated) owing to their removal from the mixing
population, and the existence of such partnerships is
expected to counter the spread of an STD (Dietz & Had-
eler 1988; Kretzschmar 2000). The number of II pairs
at the time of invasion is negligibly small, however, and
furthermore the time-scale approximation precludes the
existence of long-lived SS (or II) pairs, and hence elimin-
ates their potential vaccinating (or isolating) effect.

When R0 � 1, the disease is able to invade, and we are
interested in its equilibrium properties. The calculation of
i�, the steady-state endemic prevalence, is described in
electronic Appendix A. Results are shown in table 1,
where we see that even the heterogeneous-behaviour cases
are modifications of the classical solution i � = 1 � 1/R0

(Anderson & May 1991). The dependence of i� on the
pair formation and dissolution rates is shown in figure 3a,
and, in contrast to the R0 result, these trends immediately
match our expectations. As kS or kI is increased (and
hence susceptible or infectious individuals enter partner-
ships more quickly) the steady-state prevalence rises. The
infected proportion drops as lSI is raised, since SI pairs
break up more quickly and the window for transmission
grows shorter. As lSS or lII is increased, i� increases owing
to the briefer protection offered by the effective vaccine
or isolation of SS or II partnerships, respectively. We see
i� go to zero—failure of the disease to persist—only as kI

and lSI change, because these are the only pairing para-
meters that influence R0.
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To demonstrate the potential dynamic effects of contact
behaviour varying with infection status, we simulated epi-
demics of bacterial and viral STDs for varying values of
kI (figure 3b,c). (Note that to apply the time-scale approxi-
mation for a bacterial STD, we model an extremely pro-
miscuous population with a mean partnership duration of
1 day.) The solid curves show the base case where disease
does not influence behaviour, while the broken lines show
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Figure 3. Effect of infection-induced changes in behaviour.
(a) Dependence of the steady-state endemic prevalence, i�,
on pairing-rate parameters, calculated using the expressions
shown in table 1. The parameters were varied one at a time,
while the non-varying parameter values were as for (b,c),
below. Dotted line, kS; dashed line, kI; dot–dashed line, lSI;
solid line, lSS or lII. (b,c) Epidemic time-courses for (b) a
bacterial STD and (c) a viral STD. In the base case (solid
line) kS = kI = 1 day�1, while in other cases (dashed lines) the
pairing rate for infectious individuals (kI) is reduced or
increased by the proportion shown. Disease parameters and
initial conditions as in figure 2, and lSS = lSI = lII = 1 day�1.

the outcomes when infection causes individuals to
decrease (or increase) their pair-formation rate by the pro-
portions shown. For the bacterial STD (figure 3b), dimin-
ished values of kI lead to drastically altered epidemics,
since they bring R0 close to, and even below, the threshold
value of one. In the base case, R0 = 2.48. When kI is
diminished by 50% (yielding R0 = 1.65) the epidemic
increases roughly half as fast (as measured by the time
to half-maximum prevalence), but a 70% decrease
(R0 = 1.14) slows it by more than 10-fold. A 90%
reduction causes the disease to die out, since R0 � 1. For
the viral STD (figure 3c), R0 = 8.33 in the base case
(considerably further from the threshold range), so
reductions in kI have much weaker effects than for the
bacterial disease. Even when the pairing activity of
infected individuals is reduced by 70%, R0 is still nearly
4 and the epidemic progresses at almost half its speed in
the base case. Only when kI is reduced 10-fold, yielding
R0 ~ 1.5, do dramatically slower dynamics result. For both
diseases increases in kI cause only incremental changes,
since R0 is already significantly greater than one.

5. DISCUSSION

We have analysed the dynamics of pair-based disease
transmission for populations with rapid partner exchange.
Beginning with a pair-formation model, we presented a
mechanistic derivation of the classical frequency-depen-
dent incidence. We used this derivation in two ways: first
as a formal framework to assess how accurately frequency-
dependent incidence portrays the pair-based transmission
known to underlie STD dynamics, and second as a plat-
form from which to derive extensions of classical epidemi-
ological theory that include the effects of illness on
contact behaviour.

Many assumptions were required in our derivation.
Unless another mechanistic link between frequency-
dependent incidence and pair-based transmission can be
found, it seems that all of these assumptions are made
implicitly whenever STD dynamics are modelled using
frequency-dependent transmission. Some of these
assumptions are widely recognized: partnerships form by
random mixing, with no memory of past contacts or con-
sideration of social clustering. Individuals are sequentially
monogamous, and mixing is proportionate with respect
to disease status. For mathematical simplicity, we did not
subdivide the population by sex, age or sexual-activity
class, but such structure is often included in frequency-
dependent STD models.
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The most challenging assumption, however, is the time-
scale approximation, wherein we assert that pairing pro-
cesses are sufficiently faster than epidemic dynamics that
we can assume that they are at equilibrium. From our
simulation results (figure 2), we see that predictions
obtained using this approximation equal those from a full
pair-dynamic–epidemic model only in the limit of instan-
taneous partnerships. When partnerships have a finite dur-
ation, the approximated (frequency-dependent) epidemic
always grows faster and reaches a higher final prevalence
than the full system. The range of pairing time-scales for
which the two epidemics are similar, though, depends
strongly on the disease in question, and our findings sup-
port Garnett’s division of STDs into two functional
groups according to their natural history (Garnett 2002a).
Suppose we say that the time-scale approximation is satis-
fied when the solutions differ by less than 10% in final
prevalence and 25% in time to half-maximum prevalence.
For relatively fast transient STDs such as chlamydia
(figure 2a), only very promiscuous populations change
partners rapidly enough for the approximation to be satis-
fied—D = 1 day implies roughly 180 sexual partners per
year. (Note that a model specific to gonorrhoea would
have a value of �pair approximately twice as high as that
used in figure 2a, and thus even faster partner change
would be required.) For slower-moving chronic STDs
such as HIV, the approximation is satisfied for partner-
ships with a mean duration of a month or more.

Results derived from the time-scale approximation—
including the classical frequency-dependent incidence and
our results for infection-induced behavioural changes—
must therefore be used advisedly. For fast-moving bac-
terial STDs, the results will be accurate for only a small
subset of human populations. Failure to recognize this can
lead to catastrophically poor predictions, as shown in fig-
ure 2a where partnerships more than a few days long gen-
erate a simulated epidemic that differs drastically from
that predicted by the classical model. For chronic viral
STDs, expressions derived from the time-scale approxi-
mation are more widely applicable (see relationship data
in Anderson et al. 1989), but great caution is required in
extending models beyond core groups to general human
populations. Note that concurrent sexual relationships,
not considered here, effectively increase the rate of partner
change and would soften these restrictions somewhat.
Also, our simulations assumed a mean of one sex act per
day within partnerships—a lower contact rate would allow
proportionately longer partnership durations to be mod-
elled accurately. Clearly, the frequency-dependent models
could also be applied to STDs in animal populations
(Lockhart et al. 1996) and are particularly suitable for
species whose mating systems feature short-lived monog-
amous pairings.

For situations where the time-scale approximation is
reasonable, we extend our mechanistic derivation to
develop new tools for disease modelling. There is rich evi-
dence in humans and animals that sickness influences con-
tact behaviour, yet this phenomenon is largely overlooked
in the theory of disease spread. We provide expressions
for the incidence rate, basic reproductive number (R0) and
endemic prevalence (i�) for four cases in which pairing
behaviour is influenced increasingly by infection. These
expressions can be incorporated directly into SI or SIS
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epidemic models, and can be generalized readily to any
SEIR-type model when only infectious (I) individuals dis-
play altered behaviour.

We found a common expression for R0 in all of the cases
we considered, revealing that the invasion ability of a dis-
ease depends on the rate at which infectious individuals
enter partnerships (kI) and the duration of SI pairs (1/lSI),
but not on other pairing parameters. Concordant SS and
II partnerships do not influence the disease’s threshold
properties—despite their expected roles as effective vac-
cine and case isolation, respectively—though they do
influence i� as expected. Our general expression for R0

is identical to the classical result for frequency-dependent
epidemics, subject to careful interpretation of the contact
rate (cFD) as the rate at which infected individuals acquire
sexual partners. This finding corresponds with those of
the one previous study (that we are aware of) that
explicitly linked pair formation and break-up to the infec-
tion status of the individuals involved. Dietz & Hadeler
(1988) presented a threshold analysis of a pair-formation
model with parameters that differ according to infection
status, and found (as we did) that the classical result
appears in the limit of fast pair dynamics.

It is important to distinguish our findings from those of
previous models of ‘behaviour change’ in STD epidemics
(Hadeler & Castillo-Chavez 1995; Hyman & Li 1997;
Hsieh & Sheu 2001). In these studies, susceptible individ-
uals may choose to change their rate of acquiring new sex-
ual partners (cFD) or the probability of transmission per
partnership (pFD), typically as a result of public-education
campaigns or community awareness of disease risk. This
is certainly an important topic in current STD epidemi-
ology, but it is fundamentally different from the infection-
induced behavioural effects addressed here. Our treatment
considers the direct effects of individual infection status
on individual contact behaviour: we allow per capita pair-
entry rates to differ between susceptible and infected indi-
viduals, and break-up rates to differ among SS, SI and
II pairs. This approach hinges on considering the distinct
contributions of each individual in forming a pair, and
leads to nonlinear dependence of the transmission rate on
the proportions of S and I individuals (beyond the usual
bilinear SI form). A recent study found such nonlinearity
to be a common feature of incidence data (Fenton et al.
2002); disease effects on contact behaviour are an unex-
plored mechanism for this trend. Simulations in which
individual pairing rates were reduced (or increased) by
infection demonstrated that these behavioural effects
could have striking impacts on epidemic progression
(figure 3b,c).

These results may also be applicable to diseases trans-
mitted by non-sexual contact (the results of Heester-
beek & Metz (1993) also apply to this problem). Diseases
of casual contact are increasingly being modelled using
frequency-dependent incidence, and it is reasonable to
speculate on the effect of disease symptoms on casual-
contact behaviour. The time-scale approximation (of
rapid contact dynamics) is likely to be valid for such dis-
eases, but the assumption that partnerships are exclusive
breaks down—higher-order groupings and simultaneous
contacts may play a significant role. This question merits
additional investigation, which would also be relevant to
concurrent partnerships in STD models.
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Links between analytic theory and complex simulation
models are of vital importance, serving to distil insights
and unify rapidly growing fields of research. This point
has been emphasized in the context of epidemiology
(Anderson & Garnett 2000; McCallum et al. 2002), and
a similar goal is being pursued using correlation tech-
niques for network models of disease (Bauch & Rand
2000; Ferguson & Garnett 2000; Eames & Keeling 2002).
In exploring the relation between partnership dynamics
and the classical frequency-dependent treatment of trans-
mission, we have understood more clearly both the mean-
ing of the classical model and the proper limits of its
application. We have also extended the theoretical results
to include changes in contact behaviour caused by illness,
so that this well-recognized effect can be incorporated into
simple analytic models when biological evidence requires
it.
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Derivation of SI pair density, *
SIP  

Here we present a general derivation of the steady-state SI pair density , including the results 
shown in sections 2 and 4.  We begin with the standard one-sex formulation of a pair-
formation/epidemic model, extended such that pair-entry rates k

*
SIP

y and break-up rates lyz (where 
y,z=S or I) can vary as a function of infection status (c.f. Dietz & Hadeler 1988):  
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Parameters and variables are defined in the caption to figure 1.  The factors of ½ reflect that it 
takes two individuals to make a partnership (i.e. one unit of Pyz is equivalent to two units of XS or 
XI), and the factors of 2 in µ and σ terms reflect events that arise from transitions undergone by 
either member of a pair.  Note that mixed partnerships (PSI) are formed both by XS individuals 
“choosing” XI individuals and vice versa; the two separate terms are essential to maintaining 
constant population size.  We assume that population density has reached equilibrium, and set 
λ=µN.   
 
This derivation pertains to populations where pair formation and dissolution occur on faster 
timescales than disease and demographic processes (i.e. pairing rate parameters ky and lyz are 
significantly greater than epidemic rates βpair, σ and µ).  We therefore approximate that disease 
states are constant on the timescale of pairing processes, and separate the fast pairing dynamics 
from the slow epidemic dynamics as described in the main text and shown in figure 1.  The 
pairing dynamics are then described by: 
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We consider the slower dynamics of disease transmission and demographic processes at the 
whole-population scale.  First we collect the total densities (in and out of partnerships) of 
susceptible and infectious individuals into variables S and I: 
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The epidemic can now be represented with a standard SEIR-type compartmental model; as an 
example we treat an SIS epidemic with constant recruitment rate λ.  The total incidence rate is 
βpair

*
SIP  (equation 2.1), the mortality rate µ is independent of disease status, and the recovery rate 

is σ.  Thus: 
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As described in section 2, our goal is to find an expression for the steady-state density of mixed 
SI partnerships, , in terms of the population densities S and I.  The first step is to specify the 
mixing matrix for pair formation.  The matrix element m

*
SIP

yz is the proportion of partnerships 
formed by y-type individuals which will be with individuals of type z.  In this study we assume 
proportionate mixing, hence the myz are simply the fractional contributions of each group to the 
total pair formation rate: 
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Note that kS mSI XS=kI mIS XI under this assumption. 
 
Substituting equations (A3) and (A5) into system (A2) , we get: 
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We let the pairing dynamics go to steady-state by setting the right-hand sides of (A6) equal to 
zero.  This leads to a system of three quadratic equations in the three unknowns   , 
which we wish to solve for .  This system was simplified using Mathematica (Wolfram 
Research, Champaign IL), yielding the following quadratic equation in : 
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and 
SIS

S
S lk

k
+

=π  and 
SII

I
I lk

k
+

=π .   

We consider four cases, in which infection status has varying influence on pairing behaviour (i.e. 
different sets of the pair formation and dissolution rates kS, kI, lSS, lSI and lII have distinct values).  
When pair dissolution rates are equal (lSS=lSI=lII=l), a=0 in equation (A7) and bcP −=*

SI .  
Otherwise the quadratic formula was used to find .  For a<0 there is only one positive *

SIP



solution, ( )acbbP a 42
2
1*

SI −−−= .  When 0<a< b2/4c both solutions are real and positive, but 

only ( )acbba 42
2
1 −−−=

*
SIP

P*
SI  remains bounded on the (0,N/2) interval (for all numerical tests 

we have conducted).  By reorganising terms in b2−4ac into a difference-of-terms squared plus 
some positive terms, it can be shown that b2−4ac>0 always (for kS,kI,lSS,lSI,lII>0) so solutions are 
always real.  Exact solutions for  in all four cases lead to incidence rates as shown in equation 
(4.1), with full expressions shown in table 1.  All solutions have been checked numerically to 
ensure their validity. 
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Calculation of R0 and i∞ 

The basic reproductive number, R0, is the expected number of secondary cases caused by a 
typical infectious individual in a wholly susceptible population.  As such, it can be calculated as 
the product of the total rate of transmission per I individual times the expected duration of 
infectiousness, in the limit S→N (Anderson & May 1991).  From equation (A4), with 

P*
SI  as in equation (4.1), we find for our model: 
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From the expressions φκ(s,i) in table 1, it is readily shown that [ ]
SII

I
I),(lim

lk
kis

NS +
==

→
πφκ  for all 

cases.  Therefore R0 takes the same form for all four levels of infection-induced behavioural 
shifts, as shown in equation (4.2). 
 

We can also calculate the equilibrium density of infectives, I∞, by finding the non-zero solution 

to  .  From this we can calculate the steady-state endemic prevalence, 
 N

I∞
∞ =i .  

Results are shown in table 1. 
 

Calculation of steady-state density of partnerships 

When disease does not influence pair-formation dynamics, we can simply model the density of 
unpartnered individuals, X, and of partnerships, P:  
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Since the total population density (N) is constant, one of these equations is redundant.  The 
steady-state is found by setting the right-hand side equal to zero and substituting X=N−2P.  We 
can then solve for the steady-state density of partnerships: 

2
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