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University of California

Berkeley, California 94720

July 1969

ABSTRACT

General expressions are given for the field and its expansion

coefficients produced by a two dimensional conductor structure surrounded

by iron with a circular inside boundary. Saturation effects are described

in terms of the tangential field at that boundary. The effects of the

following types of perturbations are discussed: displacement, rotation

and error excitation of a conductor, change of conductor shape, and

modification of the inside contour of the iron. A design criterion is

given to minimize the error fields associated with a displacement of the

iron shell relative to the conductor structure. Expressions for the

force and torque acting on a conductor are derived both for the unperturbed

and perturbed magnet. Formulae are presented that allow convenient and fast

evaluation of pertinent quantities with a computer when the structure is too

complicated for hand computations.
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1. Introduction

With the maturing of superconductors as a practical material for the

construction of magnets, a considerable amount of work has been done over the

last few years on magnets whose fields are dominated not by the iron con-

figuration, as in conventional iron magnets, but by the conductor configuration.

A number of theoretical papers have been published, for instance those by

Beth,l) Blewett,2) Asner,3) Meuser,4) that deal with two dimensional conductor-

dominated magnets that are surrounded by a circular iron shell. These papers

discuss special design considerations for specific types of magnets. The topic

of this paper is in a sense the opposite: it will be attempted to give as

general a description of conductor-dominated two-dimensional magnets as

possible, and to discuss in particular the effects resulting from deviations

of the actual magnet from the ideal design.

A good understanding of these perturbation effects is not only

important for establishing reasonable manufacturing tolerances, but is also

important for the design of a magnet. It will be shown, for instance, that

it is advantageous to satisfy a certain design criterion to make the magnet

insensitive to a particular very common kind of perturbation. Besides causing

unwanted fields or harmonics, perturbations can also produce substantial

forces between the conductor structure and the iron shell, and these forces

can lead to disastrous results if not anticipated and properly taken into

account. In contrast to the discussion of perturbation effects in iron-

dominated magnets,5) perturbation effects are fairly easily expressed to

higher th~~ first order of the perturbation parameters; however, this was

not done here since the first order perturbation theory will be of

sufficient accuracy in the majority of practical magnets.
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In developing the general description, an attempt has been made to

introduce as few restrictions as possible. Although symmetrical multipole

magnets are emphasized, the theory has been kept general enough to also allow

its application to other types of magnets. The only essential limitations

are the restriction to two-dimensional magnets and the assumption that the

boundary between the iron shell and the inside of the magnet is a circular

cylinder. Although the latter restriction can in principle be dropped

through application of the appropriate conformal transformation, in view of

the resulting complications this does not seem be to justifiable at the

present time. The exact analysis extends only to the boundary between the

iron and the inside of the magnet, and the iron saturation effects are

expressed in terms of the azimuthal field component that is produced by

saturation effects at that boundary. The information necessary to obtain

that field, or to design the outside contour of the shield, is supplied.

This approach was preferred over the one including the iron shield and

assuming constant permeability of the iron: If the permeability is small

enough to be noticeable, the B(H) curve is usually so nonlinear that the

latter approach will usually give meaningless results. A drawback of the

approach chosen here is that in calculating the effect of perturbations of

effects should be fairly small unless the iron is driven extremely hard,

ffi1Qseem to be difficult to describe properly no matter what basic

approach is chosen. The description of iron-free magnets is obtained by

the conductor structure, the effect of the change of saturation in the iron

as a consequence of the perturbation is not taken into account, although

this could be done with an iterative procedure. However, these secondary
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dropping the terms associated with the iron shell, or by letting R (see

fig. 1) go to infinity.

Although it is the main purpose of the general description to give

a better understanding of various effects, the formulae are simple enough

to be easily evaluated by hand for simple structures. To make quantitative

evaluation possible when the structures are more complicated, sect. 7 gives

explicit formulae that are easily evaluated by a computer. The guiding

thought is to convert all surface integrals into contour integrals to make

both the logic of the program simpler and to minimize execution time. In most

parts of sect. 7 it has been assumed that the current density in the conductor

structure is not a continuous f~ction of the space coordinates, but is

constant over finite cross sections of the conductors. Although this restric~

tion could be lifted, it seems not worthwhile to do so at the present time.

In order to limit the length of this paper, the author had to leave

out many formulae that might be of interest under some circumstances. It is

hoped that the presentation is clear enough to allow the reader to derive

expressions needed for specific applications, and in some instances it is

briefly indicated how to obtain them.
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2. Basic formulae, notation) normalization and units

The coordinate system is chosen such that the fields are in the ~,

n - plane of a Cartesian coordinate system, with the center of the iron shell

at ~ = n = O. MKS units are used throughout. All distances are normalized

with the normalization length p, which is most conveniently chosen to be the

useful aperture radius of the magnet. The actual quantities used to describe

the geometry are the dimensionless quantities

. iq,
z = x + lY = re .

x = ~/p, y = nip and

This does not preclude dimensional checks on formulae,

since at any stage a dimensional check can be performed by assuming that p

is dimensionless and equals one.

The field components H
x and H

Y
can be derived in the conductor-

and iron-free region from a scalar potential V, and everywhere from a vector

potential which needs to have only a component A in the direction perpendicular

to the x-y plane. The field components are obtained from the potentials

through

pH = dA/dY = - dV/dXx (la)

pH = - dA/dX = - dV/dY
Y'

(lb)

The eqs. involving v are of course valid only in conductor- and iron-free

regions. Introducing the complex quantities F(z) = A + iV, and H = H + iH ,
x y

and indicating the complex conjugate of a quantity by an asterisk, the

field components can, because of eqs. (1), be obtained in a conductor- and

iron-free region from the complex potential F through
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*
pH = idF(z)/dz (2)

If the complex potential can be expanded into a Taylor series in z,

00

F(z) = L cnzn
n=O

(3)

the coefficients C
n are usually called the multipole coefficients. From

eqs. (2) and (3) follows for the Taylor series of
*

H :

00

*
L

inC
H = n n-l-z

p (4a)

n=l

Introducing i.n.C jp = c , the series forn n
*
H becomes

00

*
L n-l

H = c z
n

n=l
(4b)

In this paper the coefficients c
n will be called the multipole coefficients.

The physical significance of c
n and the usefulness of setting p equal to

the usable aperture radius of the magnet follows from eq. (4b):

n-l
c z
n

The absolute

value of the contribution of the term to the total field at

Izi = 1 equals
I cnI.

c
n and the expansion coefficients that will be intro-

duced below may sometimes be used to describe only the effects resulting

from one part of the total. structure. Whenever it is essential for the

correctness of a formula that these coefficients describe the whole structure,
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the coefficient symbol will be underlined. Since this paper contains a

large number of equations, the numbers of those equations that are either

very important definitions or can be considered as an end result will be

underlined. Throughout this paper, n, m, N, M represent integers. The

difference between quantities describing the perturbed and unperturbed system

will be indicated by 6.
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3. Fields for infinite permeability

3.1. BASIC FORMULAE

To describe the fields generated by the conductor structure, it is

convenient to consider first the fields produced by a current filament.

If the region of interest is enclosed by an infinite permeability iron shell

with normalized inside radius R (fig. 1), the boundary condition at the inside

surface is that the tangential field component is zero there. An equivalent

condition is the requirement that the scalar potential is constant on that

surface. This can obviously only be satisfied if the current return for the

filament is also in the region enclosed by the iron. If the current filament

with current I in the
+ +
X X Y direction is located at z and the current

return at the coordinate origin~ then it is easy to verify that the complex

potential at z
0 is given by

I 2 *
F(z ) = - --2 .~n ((z -z)(z -R /z )/z )0 TI 000

(5a)

and that this complex potential satisfies the above stated boundary condition.

If every current filament ih the whole aperature is represented in this

manner, the singularity at z = 0
0 disappears since the sum of all currents

of the whole system must vanish. One can therefore consider the contribution

of the current I at z to the total complex potential to be given by

12*
F(z ) = - --. ~n (z -z)(z -R /z )

0 2TI 0 0
(5b)
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This potential can also be interpreted as the potential at Iz I < R0 produced

by I at z if the return current is uniformly distributed over the inside

boundary of the iron shell. From eqs. (5b) and (2) follows for
*

H :

* iI

(
~+ 1*

)H (Zo) = 2TIp z-zo R2/z -zn

(6a)

Introducing the normalized area element
2

dcr = d~dn/p = dxdy) and the current

density j) the fields produced by distributed currents become

H* = ip J j

(
. ~ + ;

)
dcr

2IT z-zo R2/z-z 0

(6b)

When calculating
*

H inside a conductor) an infinitesimally small circular

disc around z
0

has to be excluded from the integration of the first part of

the integrand. Although the contribution to the field from that circle is

infinitesimally small) eliminating that circle from the integration has the
*

H is no longer an analytical function of z .
0

This expectedeffect that

result becomes even more apparent in eq. (53).

Expanding
*

H into a Taylor series in z ) with a convergence radius0

equal to the distance from the origin to its closest conductor, gives for

the multipole coefficients c
n from eqs. (4b) and (6b)

(7a)

(7b)

(7c)

!Q f -n
a = j z dcrn 2IT

b =!Q f jz *ndO/R2nn 2'1T

c = a + b
n n n
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The coefficients c , a , bn n n are intentionally not underlined since

eqs. (7) describe obviously the contribution of any part of the structure.

If a part of the structure is described by eqs. (7), and if that part is

rotated about the coordinate origin by et in the positive sense, the

coefficients produced by the rotated part are obtained from eqs. (7) by

zeiet, and one obtainsreplacing z by

(8a)

(8b)

(§E.)

If one is dealing with a symmetrical 2N pole magnet whose conductor structure

is invariant under rotation by n/N, with alternating sign of excitation of

the individual sectors, and if the reference sector of angular extent 'fT/N

is described by a , b , c , it then follows from eqs. (8) that the wholen n n

structure is described by

2N-l 2N-l
. L -irunn/N

( l)
m

L -imn(l+n/N)c = c e - = C' e
~ n n

m=O m=O

If every term of this sum equals one, the sum equals 2N. Otherwise,

application of the summation formula for the geometric series shows that the

sum vanishes, leading to the following result:

a (a) = a (0). -inan n e

bn(a) = b (0) . e-inetn

cn(a) = c (0) . e-inan
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Since the odd multiples of N are thus the only harmonics that are possible

in a symmetrical 2N-pole magnet, they are called "allowed harmonics". If the

reference sector has a symmetry plane and if this sector has such an orientation

that it is symmetrical with respect to the x-axis, as is shown in fig. 1 for

a dipole magnet, it follows from eqs. (7) that the expansion coefficients

for that sector are imaginary. Because of eq. (9) the same is then also true

for the expansion coefficients of the whole magnet.

3.2. EFFECT OF BASIC PERTURBATIONS ON THE FIELD

When one is dealing with a symmetrical 2N pole magnet, and the

reference section is perturbed in some way, resulting in an effect described

by ~c , and if all other sections have the same perturbation when rotatedn

into the same position as the reference section, it is clear that the eqs.

(9) are valid also if all a, b, c in eq. (9) are replaced by ~a, ~b,

~c. For this reason the emphasis in the fOllowing is on describing the effects

of perturbations of parts of the system. In general the effects of perturbations

are more damaging when they are not identical in all sections than when they

are.

If a particular section of the system has for some reason an incorrect

excitation, its effect is of course directly described by the coefficients

a b
n' n

that describe the contribution of that section to the field.

c = 2Nc . a = 2Na . b = 2Nb for n = N(2m+l)-n n' -n n' -n n

(9)
c = a = b = 0 for n =1=N( 2m+l)
-n -n -n
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If a particular section, described by a , b , is rotated by then n

small angle a, it follows directly from eqs. (8) that the effect of that

rotation is to first order in a given by

~a = - inaa ; ~b = - inabn n n n (10)

For the discussion of the effect of a perturbation of the outside contour

of a conductor, it is assumed for simplicity that in the conductor block

under consideration, the current density j is constant. One then has to

distinguish between two cases, namely when the total current is unchanged,

and when j is not affected by the contour change. In the latter case,

it follows from eqs. (7) that

fian = ;~ jfi( fz -nda)
. ~b =iQ. . --L J

f
z*ndO

), n 27f R2n"

(11)

When the net current I is fixed, which will be the more frequent occurence,

one can replace j in eqs. (7) by I/fda and obtains:

in .

(f
-n

)

~a ip;

(f
*n

)

~o
~a =~ J~ z do - a . - . ~b = - .~!J z da - b -
n 21T nO' n 27f R2n n 0

(12)

If, as it will mostly be, the contour modification consists of the addition

of a narrow strip of not necessarily constant thickness t, it is of course

sufficient to calculate
*

~ (fz ndO) by evaluating
*n

fz t(s)ds, where ds is

the line element. The same procedure is applic~ble for the calculation of

~(fz-ndO).
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Probably the most important type of perturbation to know is the

displacement of a conductor by !:.z. Replacing
-n
z in eq. (7a) by (z+!:.z)-n

and expanding in !:.Z to first order gives

!:.a = - n!:.z . ip .

J
-(n+l)

n 2TI z dO

Expressing the integral by an+l' and applying the same procedure to
b
n

gives

* 2
!:.a = - n!:.za

+l ;!:.b = n!:.zb llRn n n n- (13)

3.3. EFFECTS OF DISPLACEMENT OF THE WHOLE CONDUCTOR STRUCTURE OF A SYMMETRICAL

2N POLE RELATIVE TO THE SHELL

From eqs. (7c), (9) and (13) follows that for displacement of the

conductor structure of a 2N pole the only nonvanishing harmonics are

described by

!:.~(2m+l)-l = - !:.z(N(2m+l)-l) ~(2m+l)
(14a)

!:.c *
(~(2m+l)+l =!:.z N(2m+l)+l)

b I
2

-=-N ( 2m+ 1) R
(14b)

If the coordinate origin of a symmetrical 2N pole is displaced by !:.Z

without perturbing the magnet, it follows from eqs. (4b) and (9) that the

effect on c
-n is described by

!:.~(2m+l)-l = !:.z(N(2m+l)-l) ~(2m+l)
(15)
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If one displaces the coordinate origin together with the conductor structure

by ~z, corresponding to moving the shell by -~z relative to the conductors

with the coordinate origin remaining at the center of the conductor structure,

it follows from addition of eqs. (14a) and (15):

~~(2m+l)-l = ~z(N(2m+l)-l) ~(2m+l)
(16a)

* 2
~~(2m+l)+1 = ~z (N(2m+l)+l) ~(2m+l)/R

(16b)

Eqs. (14) and (16) can be of importance for the design of magnets: It is

clearly impossible to avoid generation of ~~II by a dislocation of the

shell relative to the conductor structure. But this kind of perturbation

will also cause harmonics directly adjacent to the allowed harmonics unless

the conductor structure is so designed that not only the usual design

objective ~ ( 2m+ I) = 0
is satisfied for m > 0, but that also

~(2m+I) = ~(2m+I) = 0
for m > 0 (17)

is fulfilled. When eq. (17) is satisfied, the generation of ~:tl by

dislocation of the shell can, at least in principle, be turned into an

advantage. If the usually quite damaging component ~+l is generated by

some other asymmetry of the system, it can be compensated by dislocating

the shell relative to the conductors. The associated production of ~-l

can then be eliminated by an appropriate new choice of the coordinate origin.

Whether this procedure is practically feasible depends of course on the

magnitude of ~+l and ~, but is certainly worth considering when the

magnet is in the design stage.
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To satisfy eq. (17) one needs twice as many free parameterscompared

to satisfying only
~(2m+l) = o.

However the design process is greatly
~

simplified if one restricts oneself to conductor structures with radius-

independent current densities in the range r ~ r ~ r , and1 2 j = 0 outside

that range. It follows then from eqs. (7) that ~(2m+l)
and

~(2m+l)

depend in the same manner on the azimuthal current distribution, and

consequently vanish together when one of them does. Fig. 1 gives a simple

example of such a design: if
al = 43.18°, a2= 52.15°, a3 = 67.27°, and I j I

const. and identical in all current blocks, eq. (17) is satisfied for

2m+l = 3, 5, 7. The above mentioned angles have to be divided by N for

a 2N-pole.
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4. Detailed shell related effects

4.1. SATURATION EFFECTS

Until this point it has been assumed that the iron has infinite

permeability, leading to the boundary condition that at the inside iron surface

the azimuthal field is zero, requiring that the scalar potential is constant

there. Because of the relation between B and H in the iron, there will

actually be an azimuthal field component, and associated with it a varying

scalar potential. The correct solution :Cor the fields is therefore obtained

by adding to the fields that have been described above fields that result

from the solution to the field equations that satisfy the boundary conditions

established by the iron and have no singularities for Izl < R. The solution

to this Dirichlet problem in a circular disc is given by Schwarz's integral,6)

and if the scalar potential is used to express the boundary condition one

obtains:

1T

F(z ) = i

t.
~V(cp) . dcp + F(O)' z = R' eicp0 1T z-z '

-'IT 0

(18)

Dropping the unimpor~ant quantity F(O) and expanding in z
0

gives

00 1T

F( z ) = \' zn

f
i z -I1v( cp)dcp

0 ~ 0 1T

n=l -1T

(19)

From this one obtains with eq. (2) for
*

H
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(20)

Integrating by parts and introducing H~(~) = - V'(~)/Rp yields

7T

d =- - i -

J
-in<PH ( ~ ) ~

-n _n-l e <P ~ d~
-7T

(21)

As one expects, the expansion coefficient-s d are essentially the Fourier
. -n

coefficients of the azimuthal field component at the inside surface of the

iron shell. For a symmetrical 2N pole, i.e., when H<p(<P+TI/N) = - H<p(~)

is valid, one obtains of course nonva~ishing coefficients only for n = N(2m+l)

~nd eq. (21) reduces to

71/2N

<1-- - 2Ni J -iN(2m+l) cJ>

~(2m+l) - - _~N(2m+l)-l. e H<p(~)d<P
-7T/2N

(22)

and if the structure is symmetrical with respect to the x-axis as sho1-Tnin

fig. 1. i.e., if H<p(-<P) = Hcp(<P), eq. (22) becomes

4Ni

~N(2m+l) = ~ 7TRN(2m+l)-l

1T/2N .

J cos(N(2m+l)</» . H</>(</»d</>
0

(23)

00

H* (z ) = L d.. zn-l0 -n 0
n=l

7T

=-1f L z-nV( </»d</>-7T



-17- UCRL-18947

It is clear that in order to avoid generation o~ undesired harmonics,

H~(~) should be proportional to cosN~, unless the maximum value o~
H~

is so small and R so large that the undesired harmonics are not harmful.

To know
H~ requires the solution to Laplace's equation in nonlinear

iron, which is clearly not obtainable analytically. Although one can use

one o~ the many computer programs developed for that purpose, the following

procedure should give a reasonable design of the iron shell for operation

at a specified field level: From the equations given in sect. 5 for the field

in the region adjacent to the iron shell, the flux entering the iron that

results ~rom the infinite permeability solution is known. Specifying H~(~)

allows calculation of the associated ~lux through the equations given in this

section. Although with a specified
H~(R,~)

there will in general be no

question that the convergence radius of the power series (eqs. (19) and (20))

is larger than R, one might have to solve problems where there is doubt about

convergence. Starting from eq. (18) one can derive expressions that give the

vector potential without use of a power series. Since these expressions

are not likely to be used frequently, they are given without proof:

n

A(R'~2) - A(R'~l)= ~. ,. H~(R,~) . tn
J-n

~-~

sin(~)
~-~

sin(~)

. d~ (24)

If for a 2N-pole
H~(R,~+TI/N)= - H~(R,~) is valid, one obtains

A(R'~2) - A(R,~ ) = BQ .1 TI

nr2 H~(R,~) . tn
-TI/2N

~-~

tan(N~)
~-~

tan(N~)

d~ (25)

- -- ----------
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The singularities of the integrand are of course integrable and the

integration is easily carried out numerically.

With A(R,~) thus completely known one is in a position to design

the outside contour of the iron shell such that one obtains the specified

H~ on the inside. The graphical method given by Meuser,4) if modified as

stated above, should result in a resonably good design.

4.2. SHIMMING OF THE INSIDE IRON SURFACE

Although small deviations of the inside iron surface from a circle

are not very likely to occur, effects of such perturbations are of some

interest. One might for instance intentionally introduce additional iron at

that surface to modify the fields of a magnet that does not produce quite the

desired fields. If one adds locally at R,~ an iron sheet of normalized

thickness h, its effect can be described to first order in h by changing

the scalar potential at the unperturbed iron surface by

v(~) = - ph(~) . H (~)r (26)

Using this expression in eqs. (18) and (19), and expressing the resulting

field change by 6c , f1c
--n --n

resulting from an extended sheet is given by

1T

~c =---
.

n

i
e-in~h(~)H (~)d~

--n 1TRn r
-1T

(27)

H (~)r can again be obtained from sect. 5. The simplified expressions for

a s~'1rillletrical 2N pole with symmetrical perturbations are again easily
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obtained and will not be given here. While eq. (27) would be only a rough

approximation if the additional iron has to be applied in a region where H
r

is very strong, even this rough approximation would allow a reasonable estimate

of the effect of a shim.



-20- UCRL-189)+7

5. Field in the region adjacent to the iron

Referring to eg. (6b) it is clear that an expansion of the first

part of the parenthesis in Z
0 is not possible when IZol is larger than

the distance from the coordinate origin to the closest conductor. If IZol

is larger than the distance from the origin to the farthest conductor, an

expansion in l/z
0 is possible, giving togetherwith the contributionfrom

the second part of the integrand in eg. (6b) the Laurent expa~sion for

*
H .

Carrying this through and defining b
-n

for n~O through

b =_~. J
.n

-n 2~ JZ dO, (n ~ 0) (28)

*
H (z )a is given in the above specified region by

(29)

Since, according to eq. (28), b = 0, one can also set in this context--()

b = 0
0 for any part of the system. Comparison of eq. (28) with eq. (7b)

yields

2n.. *
b = R b (n > 0)-n n ' (30)

*
Using eqs. (30) and (29), H can be expressed by

00

H* = z-1 ~ Rn (b (z /R) n + b * (R / z )n)0 ~ non 0
(31)

n=l

00

* L .n-lH = b . z
n 0

n=_OO
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From this f'ollows for the field at the iron surface:

00

H (R,<p) = 2Re \' Rn-~ ein<pr ~ n
n=l

The expression for the vector potential at the iron surface is

00

A(R,<1» = 2pIm L R~nein<P/n
n=l

UCRL-18947

(32)

(33)
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6. Force and torque between.conductor.structure and iron shell

One can obtain an expression for the force acting on a system by

starting from Maxwell's stress tensor) representing the force by a surface

integral)7) and then specializing the result for the two-dimensional case.

A more c9mpact derivation of eqs. (34) and (41) is given in Appendix 2.

With f
x

and f
Y

describing the x and y component of force 'per meter

length of magnet) and introducing
*

f = f + if ) f is given byx y

illP

i
*2* 0 H dz

f = - ~ 0
(34)

This equation gives the force acting on all parts enclosed by the integration

path. It should be noted that for the validity of eq. (34) it is not required

that
*
H is an analytical function of z .

0
To obtain the force acting on the

whole conductor structure, the contour has to be somewhere between the con-

*
Hductors and the iron shell. can there be expressed by the Laurent

series. To include also saturation effects, it is convenient to introduce

the expansion coefficient
~) which is defined as follows:

g =b + d
""'1l ~ ~

n > 0

~n = R2~ *~ n > 0 (35)

~ = 0

*
In the above specified region) H is given by
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(36)

00

* ilJoP

:p Lf - -- - 2
n+m-2

g g z dz--n""'1Il 0 0

n,m=_OO

All integrals in the sum disappear unless the exponent of z
0 equals -1,

giving

00 00

r* = 21T11oP . L Zn+ll>...n = 21T11oPL rb +d )b*R2n~+l -n+l -n (37)

n=l n=l

For a perturbation of the ideal structure, described by ~£, one obtains to

first order for the perturbation of the force

00

*
L

2n * *
~f = 2TIlJ P. R (~b g l

+~b
Ib)0 -n-n+ -n+-n

n=l

(38)

Eq. (37) confirms the ~ priori known fact that the net force on the conductor

structure of an unperturbed 2N-pole magnet is zero. Using eq. (38) to

evaluate the effect of the displacement by ~z of the whole conductor

structure, one obtains with eq. (13)=

00

* . \' 2n-2 (
*

( ) I 1

2 *
)~f = 2'1TlJop.L R tlz n+1 En +~zn~-l~+ 1

n=l

(39)

00

*
L

n-lH =
zo

n=_OO

and using this in eq. (34) yields:
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Since
*

l1z is multiplied by a real and positive number, that term

represents a ~orce that has the same direction as the displacement of the

conductor structure. Applying eq. (39) to a symmetrical 2N-pole, it

follows from eq. (9) (d-n satisfies the same equations) that the term

proportional to l1z vanishes, unless N = 1. Although the term proportional

to f:.z will in general be very small even for N = 1, it is at least of

academic interest to note that the dipole magnet is the only multipole magnet

where a displacement of the conductor structure does not necessarily lead to

a force that is parallel to the displacement. Neglecting the term ~z

for N = 1, one obtains for the ~orce resulting from a displacement of the con-

ductors in a 2N-pole magnet:

00

f = 2~oPf:.z . 2:
m=O

2N(2m+l)-2
I 12(N(2m+l)+l)R . ~(2m+l) (40a)

To obtain a more practical form of eq. (40a)for a multipolemagnet, it is

now assumed that only the first term in the sum of eq. (40a) contributes

significantly to f. Assuming also that only the term proportional to ~
is significant in eq. (32), ~ can be expressed through the maximum radial

field H
r,max at the iron surface for in~inite permeability, and ~ becomes

1 2
f = ~2 (N+l)H . pf:.z

0 r ,max

Using more practical units by expressing f in metric tons per meter

magnet length, B
r,max in Tesla, and the displacement pf:.z in rom, one

obtains
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2
f = .127 . (N+1) . B . pl1z

r ,max
(40b)

Since the forces can be substantial, and in particular since they are in

the same direction as the causing displacement, they have to be taken into

account in the design of the support structure. It is also noteworthy that

these forces could be used as a diagnostic tool by installing strain gauges

at appropriate locations.

The torque, or moment of the force with respect to the axis of the

system, has only a component in the
+ +
X x y direction, and its magnitude T

per meter magnet length is obtained in a manner similar to the derivation of

the force. One obtains from

1 2

f
*2

T = ~2 P Re H z dz000
(41)

00

2 [ 2n *
T = - 2TI~ P 1m R d b

0 -n-n
n=l

(42)

As expected, a torque can appear only as a consequence of saturation of

the iron. T is zero for a symmetrical 2N-pole, even if the whole conductor

structure is displaced. However perturbations like rotational error of a

part of the conductor structure can result in torques and are easily evaluated

wi th eq. (42).
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7. Numerical evaluation formulae

It is the purpose of this section to provide expressions that are

easily evaluated by a computer for the most important quantities of interest.

With the exception of parts of sects. 7.3 and 7.4, it is assumed in this

section that j is constant over conductor cross sections of finite size.

Despite this fact j is sometimes written after the integral sign to indicate

summation of j times the integral over all conductors of the region specified

by the subject of the discussion. It is assumed in sections 7.1 and 7.2 that

the iron has infinite permeability, since saturation effects are easily taken

into account through the expansion coefficients d .-n

7.1. EVALUATION OF EXPANSION COEFFICIENTS

The expansion coefficients b , characterizing a conductor, are givenn

byeq. (7b), and application of eq. (A3a) yields

. -2n

ib =£ . 1L- . *n+1
n 4TI n+l z dz (43)

Applying eq. (A3b) to eq. (7a) gives for n > 1:

a =.J£.. 1 J; I-n *
n 4TI n-l. Jr z dz

n > 1 (44a)

Application of eq. (A3a) to eq. (7a) gives for n = 1:

a = j£ . J: z* dz
1 4TI 'f Z (44b)
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As was stated at the end of sect. 3.1, the coefficients are imaginary if the

conductor is symmetrical with respect to the x-axis. If that is the case,

the integrals above are most easily obtained by integrating only Over the

upper half of the conductor, dropping the real part and multiplying by 2.

A minor reduction in computer time can be obtained for most integrals appear-

ing in sect. 7 by applying the following argument, demonstrated in its

application to eq. (44b): writing
*

Z = 2x - Z = Z - 2iy, it becomes clear

that
*

z in eq. (44b) can be replaced by 2x or - 2iy.

To evaluate the contour integrals in sect. 7, various techniques can

be applied. A simple method consists of specifying the contour by a

sufficient number of points and then applying the trapezoid formula or

Romberg integration.8) If substantial parts of the contour are straight lines,

integration over these straight lines can often be performed explicitly

in the following manner: If starting and end point of the straight line

are
Zl

and
Z2' and ~Z = z2 - zl' one can use temporarily the following

parameter representation of the straight line (p = real, 0 ~ p ~ 1):

z = z + ~z . p1

From this follows

(45a)

(45b)

*
* * * * z

Z = Z + z p = Z + (z-z )1 1 Z 1

* *
dz /6z = dZ/6z
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Applying this to the integral in eq. (43) gives for a straight line:

~

I
Z2 *

l

Z2 *n+2 *

z n+ldz = ~z* z*n+ldz* = ~ z2 - zln+2

zl 6z Z A * n + 21 LlZ

(46)

One obtains similarly

Z2

J
2-n 2-n* Z - Z

l-n * - ~z 2 1
Z dz - ~ 2 - n

n > 2 (47a)

Zl

Z2

J
*

-1 * ~z
Z dz = ~z ~n(z2/zl)

zl

(47b)

z2

f
* *
z * * ~z
z- dz = ~z + (zl-zl . ~z) . ~n(z2/zl)

(48)

zl

It should be noted that the right side of eq. (48) equals
*

~z when the

extension of the straight line goes through z = o.

For a circular arc with its center at the origin, one obtains by application

* 2
z.z = r :of

z2

J
*n+1 2

(

*n *n
)z dz = - r z2 -zl In (49)

zl
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Z2

J -n+l * -2(n-l)
(

*n *n
)/z dz = r z-z n

2 1 (50a)

zl

z2

J :* dz
zl

* *
= z - z1 2 ( 50b)

Expressions for circular arcs with the center not coinciding with the origin

can also be derived. However they are somewhat more complicated and will not

be given here since they do not seem to appear very frequently.

If the contour of a conductor is bounded by two circular arcs with

radius
rl and

r2 and with their centers at the origin, and by two radial

lines at a
1 and

a2' the integrals in eqs. (7a) and (7b) are of course

most easily evaluated directly and are given by

f
* +2 +2 -ina2 -inal
z ndO= i(r~ -r~ )(e -e )In(n+2) (51)

f
2 2 -ina2 -inal

z-ndO = i(r2-n-rl-n) (e -e )In(2-n);
n=l=2 (52a)

f
-2 -ina2 -inal
z dO = i . ~n(r2/rl) . (e -e )/2 ( 52b )
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7.2. EVALUATIONOF
*

H

Although the expansion coefficients are usually of primary interest,

for a variety of reasons it can be of interest to have a direct method for

calculation of
*
H :

*
H can be of interest in the aperture to find the

difference between the actual fields and the contributions of the major multi-

*
pole coefficients. H is of interest in the coil regions to find IHI .max
*

H can also be of interest for the evaluation of f and T with eqs. (34)

and (41), unless one wants to use the equations given in sect. 7.3.

Applying eqs. (A3a), (A4), (A5) to the first part of the integrand

in eq. (6b), and eq. (A3b) to the second part of the integrand in eq. (6b)

gives:

* .

( ~
z * -z *

1
* *

)
H =~ z-zo dz - 2zZ * dz

0 R -z Z
f'\

(2].)

As mentioned in Appendix 1, eq. (53) is correct whether or not z
0

is inside

the contour. The absolute value of the integrand of the first integral is

one and has furthermore the convenient property that when z
0

is on the

contour, the integrand does not change when one goes "through" z
0

unless

z
0

is located at a corner. As in sect. 7.1, integrations over straight lines

or circular arcs can be performed explicitly but will not be given here.

The field perturbation
*

llH resulting from a displacement of a

conductor by llz is obtained from eq. (53) by differentiation and one obtains

.-

(

*

~ )

* . z * dz 2 * z *
MI =~ -l1z. td: 2 dz + I1z ;=-z - R I1z'£ 2 * 2 dz)r (z-z ) 0 Jr (R -z z )~ ~

(~)
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The second integral contributes obviously only when z
0

is inside the conductor

and is therefore not of great interest. For the effect of rotation by a

small angle a one obtains similarly

*
lili

(1
*

~
' *

)

. JQ zz 2 zz *--la . 4TI 2 dz - R 2 * 2 dz
(z-z ) (R -z z )n - n

(.2.L)

Eq. (53) represents the contribution of one conductor to the total

field. When one is dealing with a symmetrical 2N-pole magnet~ the contribution

from the conductor rotated by m . TI/Nwith respect to the reference conductor

is obtained by replacing in eq. (53) z by z . eimTI/N and multiplying the

whole expression by (-l)m. Doing this and summing up gives in eq. (53)

instead of the first integral

i [1
m=O

* iN'mTI/Nz e * i(N+l) .m1T/Nz e
0

dz

(
imTI/N

/ )z e - z z
0

Applying eq. (A18) to both parts of this integrand and following the same

procedure for evaluation of the second integral in eq. (53) gives

H* = jQ N N-l

(

J:
2TI z0 J

N 1 * *
)

f
*N-l *

)
z - (zz -z z .

. 2N z zz dz~ dz - R 4N 2N *2N
2N R -z zz - z 00

(56)
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7.3. FORCE AND r:COHQUEON INDIVIDUAL CONDUCTORS

In order to reduce computer time, the use of transcendental functions has

been avoided so far whenever possible. To calculate force and torque on individual

conductors,eq. (34) and (41) ca~ be used together with the expressions for
*

H given in sect. 7.2. Hmfever, when the stored energy has to be computed,

extensi ve use of logarithms seems uJlavoidable, and if they are I available from

the energy computation, the follm'Ting procedure is preferable.: In the tvTO-

dimensional case, the force f and torQue T per meter are given by eqs.

(A9) and (AlO):

f = i~ p2

J
jHCZ ,z*)da000 0

3

f
-+ -+ 3

f
* *

T = ~ P j' (r'H)da = ~ p Re jH(z,z)z da0000000

(57)

(58)

~he total field is a linear superposition of the following three

fields: 1) The vaCUl~ field, i.e., the field produced by the conductor

structure without any iron present. TIlisfield is derivable from eq. (5b)

if the second factor of the argument of the logarithm is set equal to one.

2) The field produced by the image currents, described by the second factor

of the argQment of the 10garitrJfiof eq. (5b). 3) The fields caused by the

from the yacuum fields, the following procedure is simpler and quite adequate.

saturation effects, described by the expansion coefficients d (eo.(21)).-

AlthOUgh the forces and torques resulting from the last two sources can be

obtained in a manner similar to the one used to obtain the effects stemming
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Using eq. (36) to describe th€ total fields caused by image currents

and saturation, one obtains

f
oo

2 * *n-l
f = illoP L ~jzo dO'0

n=l

(59)

Expressing the integrals through the coefficients b (eq. (Tb)),describingn

the part of the conductor structure under consideration for the calculation

of f and T, one obtains

00

\ * 2n-2
f = 2TIlloP ~ ~bn-1R

n=l

(60)

Using the same procedure to calculate T, one obtains

00

2 \ * 2n
T = 2TIlloP1m ~ ~bnR

n=l

(61)

It should be noted that contrary to what was said in sect. 5, b0
is not

necessarily zero in this context.

Although general explicit formulae for b
n are given in sect. 7.1.

only for conductors with constant current density over finite areas of conductors,

eqs. (60) and (61) are valid even for nonuniform current distributions.

To obtain the contribution of the vacuum field to force and torque,

it is convenient to transform eqs. (57) and (58) first into contour integrals.

To do so, H is expressed by spatial derivatives of A (eq. (1)). Considering



-34- UCRL-18947

A as a function of z
0

and
*
z
0 and using eqs. (A2), one obtains

*
H = (-2i/p) . 3A/3z 0 (62)

Using this in eq. (57) and applying eq. (A3a) yields

f = - i~ pj ~ A(z ,Z*)dZ
0 ~ 000

(63)

Proceeding similarly to obtain

* * * *
z 3A/dZ = 3(z A)/3z - A
0 0 0 0

T from eq. (58), and utilizing

and the fact that A is real yields

2

1
* *

T = - ~ p jRe
.

A(z,z)z dz
0 0 0 0 0 (64)

It should be noted that in eq. (64), any integral over a circular arc with its

center at z = 0 does not contribute to T.

To evaluate eqs. (63) and (64), A has to be known on the contour of

the conductor under consideration. Since one would also consider a part of

i a conductor block to obtain the internal stresses, part of the contour will

in this general case be inside a conductor. From eq. (5b) follows for the

contribution of a current filament at z to the vector potential A at z :
0

I * *A = - --4 (£n(z-z) + £n(z -z ))TI 0 0
(65)

The logarithms are declared real for real positive arguments and are made

single-valued with a branch cut so that the imaginary part of each logarithm

is bet\\reen -TI and TI.
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From this follows for the contribution from all conductors

2

J
* *

A = - P4 j(tn(z-z) + tn(z -z ))dcr
TI 0 0

(66)

Converting this into a contour integral gives with eq. (A8)

.2

1
* * * *

)A = ~ j(z -z )(tn(z-z ) + tn(z -z )-1 dz8n 0 0 0 (67)

Since 1 z: dz = 0, f z*dz = 2ia, and the totalcurrent equals zero, the

term -1 in the parenthesis of eq. (67) does not contribute to A so that

A can be written as follows:

* .2

#
* * 2A(z ,z ) = ~8 j(z -z )tnlz-z I . dz0 0 TI 0 0

(68)

Eq. (68), togetherwith eqs. (63) and (64) allowsthus the evaluationof

f and T. The fact that A is known to be real allows a simple check of at

least some parts of the program to evaluate A. To obtain the order of

magnitude of computer time needed to evaluate f and T, the following

numbers seem reasonable for a quadrupole: if the conductor contours in each

sector are specified by 100 points, calculation of A requires computation

of 400 logarithms. If the contour of the conductor under consideration is

also specified by 100 points, evaluation of f and T requires computation

of 4.104 logarithms. 35 l1secexecution time per logarithm on the CDC 6600

under the Chippewa operating system thus leads to a total time of a few

seconds.
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. 7.4. TOTAL STORED ENERGY

Since the vector potential represents the flux in a two dimensional

magnet~ the power E per meter magnet length delivered from the power supply

to the magnet is given by

2

f
. *

E = ~ p jA(z,z )da000 0

Starting at t = 0 with E = O~ j = O~ and integrating by parts over time

yields

E = lJoP2 .f (Aj -1 AU )dj)
da

0
(69)

It has been assumed here that the current density has the same time dependence

everywhere, and the time dependence of A is expressed through its

dependence on j.
The contributions to A from the vacuum field and the image

currents are linear in j and therefore contribute j A/2 to the integrand

in eq. ( 69 ) . The contribution to A from saturation of the iron requires

integration over the past as indicated in eq. (69). Thi s means that for the

contribution of saturation to the energy, fA t jdcrsa 0
has to be known for all

past excitation levels. Of course not all contributions to E resulting

from saturation are recoverable, so that the term "stored energy" for E is

really a misnomer.

To get the contributions to fAjda , and ultimately
0 E, that are

caused by saturation effects and the image currents, the procedure is similar
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to the evaluation of their contribution to f and T:

00

\""' n-l

H* = iF'/p = ~ ~zo
n=l

00

F = A + iV = - ip L Enz~/n
n=l

Using this in eq. (69) then gives for the contribution of the image currents

and saturation effects to E:

E = l1o1fp2 t R2n ( l:~t/+2Re(~~{j) - ~ J ~(j)dj)\ / n

n=l 0 ~
(71)

It is interesting to note that the energy given by eq. (71) is smaller

than the vacuum field energy given below if d = 0, and will be still-n

smaller if saturation effects are present. This is most easily seen as

follows: if the infinite permeability shell is replaced by a superconducting

shell, one obtains the complex potential from a current filament by dividing

the first factor of the argument of the logarithm in eq. (5b) by the second

factor instead of multiplying by it. The energy resulting from the image

currents is then again given by eq. (71), except the right side is multiplied

00

fjdCJo = Re L -f iPjZdCJo£l,/nn=l

00

fAjdCJ = 21f . Re L R2'1, * (b +d )/n
0 -n-n-n

n=l
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by -1. Since the total energy must be positive, the energy given by eq (71)

for d = 0 must be smaller than the vacuum field energy.-n
This statement is

of course correct only if the conductor structure is surrounded by a circular

shell.

The procedure to obtain the contribution to E that results from the

first factor of the argument of the logarithm on the right side of eq. (5b)

follows the same pattern as the calculation of the contribution of that term

to f ~d T.

For the contribution of one current filament at z to E one

obtains

I 2f -I * *E = _
2 ~ P j. --4 (~n(z -z) + ~n(z -z ))d00 TI 0 0 0

Applying eqs. (A3a) and (A8), and taking into account that fjda = 0
0

one

obtains

1 2

~
*

E = _
2 ~ p jG l (Z ,z )dz

000 0
(72)

with

* i1 * * * *Gr( Z , Z ) =_8 . (z -Z ) (~n (z - z) + ~n(z - Z ))0 0 TI 0 0 0

The effect of all currents is described by
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* . 2

J
* * * *

G (z ,z ) = ~8 . j(z -z ) (1n(z -z) + tn(z -z ))dcr1 0 0 TI 0 0 0
(73)

Applying eq. (A3b) to this expression gives in the same manner as the

derivation of eq. (A8):

* p2
1

* * * * *
G

l (Z ~z ) = 16 . j(z -z )(z -z)(tn(z -z) + tn(z -z )-l)dz0 0 TI o. 0 0 0

It is again easy to see that the term -1 in the parenthesis of this equation

does not contribute to E~ so that E can be calculated from

4
~op

1
*

E = ~ . j. G(z z )dz32 TI 0' 0 0
(74)

* i 2 2 *
G(z ,z ) = j I z-z I . tn I z-z I . dz0 0 0 0

(75)

For a symmetrical 2N-pole, the integral in eq. (74) has to be

evaluated for only one sector since each sector contributes equally to E;

for evaluation of G, the integration has to be carried out over all con-

ductors of the system.
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Appendix I

Although eqs. (A3) can be found in the literature,9) they are briefly

derived because they are applied here in a not quite trivial manner, which
1

also needs some explanation.

+ + ~+ +

From Stoke'stheorem (!curlV . dcr = Jr V . ds), appliedto a vector in the

x - y plane, follows

1'Fdy
(Ala)

P Fdx
(AI b )

Expressing x and y by Z and
*

Z and considering F now as a function

of Z and
*

Z , the operators d/dX, d/dY become

*
d/dX = d/dZ + d/dZ (A2a)

*
d/dY = i(d/dZ - d/dZ ) (A2b )

Using this in eqs. (AI), multiplying eq. (Ala) by i, and first subtracting

and then adding eq. (Alb) gives

(A3a)
. :a

(A3b)

J of 1 PdZ* dcr = 2i Fdz

J of dO
= - 2 1>

*
dZ Fdz
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It has been assumed in this derivation that F and its first derivatives are

in the integration area single-valued and have no singularities there.

Considering from now on only eq. (A3a) with the understanding that the

equivalent considerations apply to eq. (A3b), the case is now discussed where

*
3F/3z has a singularity of the type l/(z-z )

0
at z

0 inside the integration

area. Considering an infinitesimal circular disc around

*
3F/3z

z , and carrying out
0

the integration of over that disc, it is clear that that integral is

infinitesimally small. After removing that disc from the integration area,

eg. (A3a) can be applied. However, the boundary of the integration area

z , as indicated in fig. 2a.0

consists then of two parts, namely the outer contour and the circle around

*
3F/3zWhen calculating F from one can

clearly add as "integration constant" any function of z that is analytic

in the integration area and can use this to make the contour integral over

the circle around z
0

vanish. This is most easily seen with the fOllowing

example: Assuming

* * *
3F(z,z )/3z = Fl(z) . F2(z )

(A4)

and
FI(z)

to be proportional to
*

l/(z-z ), F(z,z )0
can be chosen to be

* * *
)F(z,z ) = Fl(Z) (F2(z ) - F2(zo) (AS)

With this choice of F, the contour integral over the infinitesimal circle

around z
0 vanishes so that the contour integration has to be carried out

only over the outer boundary of the integration area.
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*
If dF/dZ is given by eq. (A4) and Fl (z) has single poles at

several locations z , the following choice ofn

*
F(z,z ) eliminates the need

for contour integration around each individual pole:

p (z) = (IT(z-z ))/(z-z ); Q (z) = p (z)/p (z )n m m n n n n n (A6a)

* * \ *
F( z , z ) = FI (z ) (F2(z ) - G F2( zn ) . Qn( z ))

n
(A6b)

It should be noted that although all poles that are in the integration area

have to be treated as indicated, it does of course make no difference when a

pole that lies outside is treated in eqs. (A6) as if it were inside.

To transform

f
* *

J = (~n(z-z) + ~n(z -z ))d00 . 0 (A7)

into a contour integral, it is indicated to make each logarithm with a branch

cut single-valued, with the convention that the logarithm of a positive number

is real. Because of the singularity at z , which is assumed to be inside the
0

integration area, a circular disc is again removed around z
0 without changing

the value of J. The complete contour for the integration is indicated in

fig. 2b. The strip to the left of z
0

has zero thickness and therefore does

not change J either. Using eq. (A3a) and choosing

. ~

* * * *
F = (z -z )(~n(z-z ) + ~n(z -z )-1)000

gives



-43- UCRL-18947

f
** 1

1
** **.

(tn(z-z ) + tn(z -z ))da = --2 . (z -z )(~n(z-z ) + tn(z -z )-l)dz. (A8)0 0 ~ 000

Since the integral around the small circle vanishes, and the integrals along

the branch cut cancel each other, the contour for evaluation of the integral on

the right side of eg. (A8) can be simply the outer boundary of the integration

region. It is easy to see that this would not have been the case if F would

have been chosen as

* * * * *
F = (z -z )(~n(z -z )-1) + z ~n(z-z )000

It is of course not necessary for the validity of eq. (A8) that z
0

is

inside the integration area. It is noteworthy that choosing F such that one

has to integrate only over the outer boundary of the integration region is

more than a convenience: it makes it for instance possible to perform in the

normal manner operations like differentiation under the integral sign, which

is not possible when one has to integrate along branch cuts or when singularities

are excluded in the manner described above. Finally it should be noted that

the freedom to choose either eg. (A3a) or (A3b) for the transformation of the

integral, as well as some freedom in selecting the "integration constant",

can lead to very dissimilar looking contour integrals, and one should select

that form of the contour integral that is most easily evaluated.
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Appendix 2

From the general expression for the force density
-+ -+

11 j x Hand
0

torque density
-+ -+ -+

11 r x (j x H) .acting on a conductor, it follows immediately0
,.

in the two-dimensional case for the force f and torque T per meter

magnet l~ngth

f = iVop2JjHda

3

J
*

T = 110P Re jH zdcr .

(A9)

(AIO)

To convert these integrals into contour integrals, it is indicated to

consider H as a function of z and
*
z .

-+

With eqs. (A2), div H = 0 and

-+ -+

curl H = j reduce to

* *
dH/dZ + dH /dZ = 0 (All)

* *
pj = 2i8H /8z = - 2i8H/8z (AI2)

Eliminating j in eq. (A9) and (AIO) with eq. (AI2), and then applying eqs.

(A3) gives for f and T:

J
8H 110P

f
2 *

f = 11p' 2H -- dcr = - ~ H dz
0 8z 21 (AI3)

f
*

2 * dH I 2 *2

T = VoP Re i. 2H dz * . zda = 2" VoP Re f H zdz
(AI4)
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It should be noted that eqs. (A13) and (Al4) are valid even when iron is

enclosed by the contour or when part of the contour goes through iron, since

one can consider the permeability to be caused by Amp~rean currents. For this

reason, H has been used exclusively. Over those parts of the contour

that go through iron, one has to consider the iron removed over a strip

of infinitesimal thickness so that the contour goes in principle through

vacuum. The field components parallel and perpendicular to the contour

then follow from the boundary conditions for B and H.
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Appendix 3

Consider

1 .

S = 27Ti i
n-l
Z dz

(z-a)( zM -1)

(A15)

with a representing some complex number, M an integer, n an integer

satisfying

l~n~M (A16)

and the contour chosen to be a circle that encloses both z = a and z = 1.

By either introducing l/z as new integration variable, or by letting the

radius of the integration circle go to infinity, it is easily seen that

S = o. Since the integrand has singularities at z - .
a - a, z = elm2TI/Mm

m = 0,1, ... , M - 1, application of the residue theorem gives

M-l n-lzn-l

L m = 0~ + M-lM
( z -a)Mza -1 m=O m m

(A17)

Since one could also have chosen
zm = e -im2IT /M from eq. (A17) follows that

M-l

L
:tin.m..2TI/M n-le a
:tim2TI/M = M M

m=O e - a 1 - a

(A18)

It should be noted that eq. (A16) does not really represent a restriction of

the value of n since on the left side of eq. (A18) any multiple of M can

be added to or subtracted from n without changing the value of the sum.
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It is also noteworthy that by differentiating eg. (A18) with respect to

a, one can obtain an expression for a sum of the same type as the left

side of eg. (Al8), but with the denominator raised to some integer power.
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Figure captions

Fig. 1.

Fig. 2.

Conductor and iron configuration for dipole magnet.

Integration contours.
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Fig. 1




