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Experiences of discrimination are associated with adverse health outcomes, including obesity. 

However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing 

multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of 

discrimination exposure on brain reactivity to food images and associated dysregulations in the 

brain–gut–microbiome system. We show that discrimination is associated with increased food-cue 

reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered 

glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference 

for unhealthy foods. Associations between discrimination-related brain and gut signatures were 

skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race 

and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue 

reactivity and brain–gut–microbiome disruptions that can promote unhealthy eating behaviors, 

leading to increased risk for obesity. Treatments that normalize these alterations may benefit 

individuals who experience discrimination-related stress.

Racial disparities in obesity persist in America, with minority subgroups experiencing 

disproportionally higher rates of obesity and obesity-related morbidities1–5. Multiple factors 

could contribute to such disparities, with the existing literature primarily focused on the 

role of genetics, diet, physical activity and psychological factors6. Despite its relevance 

to the etiology of obesity, few studies have directly examined the role of discrimination 

experiences in the pathways that may increase obesity risk.

Discrimination, a type of psychosocial stressor7,8, is an environmental risk factor for 

various adverse health outcomes9–15. Experiences of discrimination can stimulate ingestive 

behavior by increasing appetite, cravings and motivation to consume highly palatable foods, 

contributing to stress-related weight gain in obesity16. Neuroimaging studies indicate that 

stress can alter food-cue reactivity to highly palatable foods17,18. Accordingly, experiences 

of discrimination may lead to an increased obesity risk via altered food-cue reactivity to 

hypercaloric and hyperpalatable foods, which are ubiquitous in the Western diet19.

One potential mechanism linking discrimination and obesity involves alterations in the 

brain–gut–microbiome (BGM) system. Individuals who experience discrimination present 

heightened stress responses20–22. Stress in turn influences the bidirectional communication 

between the brain and gut via pathways involving the vagus nerve, immune-inflammatory 

mechanisms, altered microbial metabolites, neurotransmitters and the hypothalamic–

pituitary–adrenal axis23–27.

Brain pathways associated with discrimination-related stress responses include reward and 

cognitive control networks7,8,28–33. A recent study indicated that exposure to discrimination 

was associated with brain functional connectivity alterations in the central executive 

network33. Overlap in neurobiological pathways linked to stress and energy homeostasis 

may underlie the co-occurrence of dysregulated feeding behaviors and stress responses, both 

of which can contribute to obesity16,34. Chronic stress alters responses in prefrontal regions 

associated with executive control and emotion/impulse regulation as well as in limbic 

regions involved in reward processing and appetitive responses, providing a neural basis for 

the impact of chronic stress in modulating food-reward processing and cravings19,35–37. In 

response to food cues, stress could result in the deactivation of frontal executive modulation 
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and potentiate brain activity in limbic regions, eliciting a bias towards unhealthy energy-

dense foods17,18.

Discrimination can also alter the gut microbiome33. Stress facilitates gut dysbiosis and 

increases gut-barrier permeability, producing an inflammatory response and a leaky 

gut38. Stress-induced unhealthy dietary patterns could result in gut dysbiosis and prompt 

dysregulated eating behaviors catering to the needs of dominant bacterial species39. 

Dysregulation of glutamate metabolism plays an important role in inflammatory processes 

of the central nervous system (CNS) that are associated with stress-related disorders (for 

example, depression and anxiety) and obesity40–43. A recent study revealed that stress 

in early life was associated with altered gut metabolites within the glutamate pathway, 

potentially via glutamatergic excitotoxicity and oxidative stress mechanisms44–46. These 

stress-related gut metabolites were also associated with alterations in the brain functional 

connectivity involved in cognitive and emotional processes. Glutamate is also involved 

in executive control and reward processing, two functions that are highly relevant to the 

processing of food cues47,48. Together, these studies highlight the role of altered glutamate 

metabolites in the stress response and their relevance in brain and gut communication.

In this study we investigated the impact of discrimination exposure on neural reactivity to 

unhealthy and healthy food cues, relevant gut metabolites as well as brain–gut associations 

to elucidate potential mechanisms linking discrimination and obesity. We hypothesized that 

increased stress due to higher levels of discrimination exposure, would be associated with: 

(1) altered brain reactivity towards highly palatable unhealthy foods in brain regions that are 

associated with reward processing and executive control and (2) altered levels of glutamate 

metabolites that are implicated in inflammation and oxidative stress. In addition, given that 

discrimination may modulate the crosstalk between the brain and gut microbiome system49, 

we predicted that important interactions between discrimination-related neural reactivity 

to unhealthy sweet-tasting (sugar-rich) foods due to their unique rewarding and analgesic 

nature50–53 and metabolites from the glutamate pathway would be observed (Fig. 1).

Results

Participant characteristics

There were no significant differences in sex, age, body mass index (BMI), education, marital 

status, income or diet between the two discrimination exposure groups but socioeconomic 

status (SES) was significantly lower in individuals with high discrimination exposure (Table 

1). Discrimination and diet did not have interaction effects on BMI.

Discrimination-related whole-brain analysis

When using magnetic resonance imaging (MRI) to compare responses to unhealthy sweet 

foods and nonfoods, the group of individuals exposed to discrimination (high discrimination 

group) had greater food-cue reactivity towards unhealthy sweet foods than the low 

discrimination group in the insula, inferior frontal gyrus, lateral orbitofrontal cortex and 

frontal operculum cortex (Fig. 2a).
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In the comparison of unhealthy savory foods versus nonfoods, the high discrimination group 

had greater food-cue reactivity towards unhealthy savory food than the low discrimination 

group in the caudate, putamen, insula, frontal pole and lateral orbitofrontal cortex (Fig. 2b).

When healthy foods were compared with nonfoods, the high discrimination group had 

greater food-cue reactivity towards healthy food cues than the low discrimination group in 

the superior frontal gyrus and middle frontal gyrus (Fig. 2c).

The low discrimination group did not differ significantly from the high discrimination group 

on the aforementioned contrasts (Table 2).

When unhealthy sweet foods were compared with healthy sweet foods, the high 

discrimination group had lower food-cue reactivity towards unhealthy sweet foods than 

the low discrimination group in the ventromedial prefrontal cortex (vmPFC). No significant 

discrimination-related differences were found in the comparison of unhealthy savory foods 

versus healthy savory foods.

Discrimination-related food-cue brain analysis

The Everyday Discrimination Scale (EDS) score correlated positively with greater reactivity 

to unhealthy sweet food (β = 0.29, q = 0.03), unhealthy savory food (β = 0.32, q = 0.03) and 

healthy food (β = 0.72, q < 0.001) in the discrimination-related composite food-cue region 

of interest (ROI).

Discrimination-related gut-metabolite analysis

Two metabolites from the glutamate pathway, N-acetylglutamate (P = 0.04) and N-

acetylglutamine (P = 0.002), were present at significantly higher levels in the high 

discrimination group than in the low discrimination group (Table 3 and Fig. 3a). N-

acetylglutamine levels remained significantly different between the two groups after 

multiple correction (q = 0.025). Neither N-acetylglutamate nor N-acetylglutamine were 

significantly correlated with SES.

Willingness to eat unhealthy and healthy foods

The high discrimination group had significantly higher ratings of willingness to eat 

unhealthy foods (P = 0.048) relative to the low discrimination group but this difference 

did not exist for healthy foods (P = 0.174; Fig. 3b).

Structural equation modeling linking discrimination, brain and gut metabolites

In the unhealthy sweet food model (Fig. 4a), positive associations were observed 

between high discrimination exposure and brain reactivity (standardized coefficient = 

0.31, P = 0.009) as well as between discrimination and glutamate metabolism (that is, 

N-acetylglutamate and N-acetylglutamine levels; standardized coefficient = 0.42, P = 0.004). 

The bidirectional association between the brain and gut was significant (standardized 

coefficient = 0.34, P = 0.048). In terms of the structural equation model (SEM) fit, the 

root mean square error of approximation (RMSEA) was 0.0, comparative fit index (CFI) 
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was 1.0, goodness-of-fit index (GFI) was 0.955 and standardized root mean square residual 

(SRMR) was 0.071; all indices suggested a good fit.

For the unhealthy savory food model (Fig. 4b), discrimination correlated positively 

with brain reactivity (standardized coefficient = 0.249, P = 0.043) as well as between 

discrimination and glutamate metabolism (standardized coefficient = 0.462, P = 0.006). No 

significant correlations between the brain and gut were observed (standardized coefficient 

= −0.227, P = 0.216). The RMSEA was 0.0, CFI was 1.0, GFI was 0.964 and SRMR was 

0.058, suggesting a good model fit.

In the healthy food model (Fig. 4c), positive associations were observed between high 

discrimination exposure and brain reactivity (standardized coefficient = 0.454, P < 0.001) 

as well as between discrimination and glutamate metabolism (standardized coefficient = 

0.445, P = 0.004). However, the bidirectional association between the brain and gut was not 

significant (standardized coefficient = 0.155, P = 0.373). The RMSEA was 0.0, CFI was 1.0, 

GFI was 0.969 and SRMR was 0.058; thus, all indices suggested a good model fit.

Discussion

We investigated associations between self-reported discrimination exposure and alterations 

in the BGM system. Discrimination exposure was associated with increased food-cue 

reactivity in frontal-striatal regions involved in reward processing, motivation and 

executive control, especially towards unhealthy foods. The alterations in the brain 

were consistent with observed unhealthy food preference—as indicated by an increased 

willingness to eat—in individuals who reported higher levels of exposure to discrimination. 

Discrimination exposure was also associated with altered gut metabolites from the glutamate 

pathway involved in oxidative stress and inflammation. Complex relationships between 

discrimination exposure and bidirectional brain–gut alterations were observed, especially 

when evaluating brain reactivity to unhealthy sweet foods (but not unhealthy savory or 

healthy foods).

Discrimination-associated brain food-cue reactivity

Unhealthy food cues elicited greater activation in regions associated with reward processing 

and appetitive responses (insular cortex, orbitofrontal cortex, inferior frontal gyrus, striatum 

(caudate and putamen) and frontal operculum) in individuals reporting more discrimination 

experiences than in those with fewer experiences. These frontal-striatal regions have been 

linked to food-cue reactivity and play a key role in controlling feeding behavior in response 

to reward and hedonic aspects of food54–56. In contrast, healthy food cues were associated 

with brain reactivity in the frontal pole, middle frontal gyrus and superior frontal gyrus, 

which partially overlap with the dorsolateral prefrontal cortex (dlPFC). These regions have 

been implicated in cravings and executive control. These results suggest that stress may lead 

to exaggerated brain responses associated with reward processing and motivation as well 

as compromised frontal processes associated with self-regulation in response to unhealthy 

foods18,57–59.

Zhang et al. Page 5

Nat Ment Health. Author manuscript; available in PMC 2023 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Individuals with greater exposure to discrimination also had altered brain responses in the 

superior frontal gyrus, which partially belongs to the dlPFC, a brain region associated with 

executive control, reward appraisal and food-cue-induced craving modulation60–62. A recent 

study revealed a link between racial discrimination and maladaptive eating behaviors (for 

example, overeating and loss-of-control eating) in young Black women, potentially as a way 

to cope with stress63. Studies have also shown that those with higher levels of food addiction 

(that is, addiction-like loss-of-control eating behaviors) exhibited altered food-cue reactivity 

to unhealthy foods in the superior frontal gyrus64. The dlPFC has been implicated in food-

choice-related self-control over appetitive food cravings65,66 and is associated with more 

effortful exertion of self-control in response to food-cue-induced cravings in obesity67. The 

enhanced frontal alterations in the high discrimination group might indicate an ineffective 

(for example, more effortful) regulation of cue-induced cravings, suggesting compromised 

executive control, particularly for unhealthy foods and even healthy foods with moderate 

reward value.

The analyses using the composite mask also demonstrated heightened brain food-cue 

responses in frontal-striatal networks with greater discrimination exposure, suggesting 

heightened reward processing and compromised executive control in response to unhealthy 

foods.

Discrimination-related gut-metabolite alterations

Greater discrimination exposure was associated with higher levels of N-acetylglutamate 

and N-acetylglutamine, which are linked to glutamate metabolism. This pathway has 

been implicated in inflammatory processes and oxidative stress, as well as obesity patho-

physiology. Similarly, discrimination is associated with increased systemic inflammation 

and decreased levels of gut metabolites with anti-inflammatory and cardioprotective 

properties but only when the sample is stratified according to race/ethnicity33. The 

untargeted analyses conducted in this previous study did not reveal significant changes in 

the metabolome related to discrimination33, which could be attributed to not accounting for 

key confounding variables. The specific role of N-acetylglutamate and N-acetylglutamine is 

still an active area of research but their direct connection to glutamate metabolism suggests 

potential implications for glutamate levels. N-acetylglutamate is both a host- and microbial-

derived metabolite, and is altered in patients with chronic obstructive pulmonary disease 

and progressive inflammatory lung disease68. Glutamate metabolism is also implicated in 

obesity-associated mechanisms. The abundance of gut glutamate-fermenting microbiota 

(Bacteroides thetaiotaomicron) is decreased in individuals with obesity and inversely 

correlated with serum glutamate levels; weight loss through bariatric surgery can partially 

reverse such alterations69.

The existing literature demonstrates the key role of microbiota-derived metabolites and 

their derivatives in gut–brain communication70. Gastrointestinal metabolite signatures have 

demonstrated that alterations in the gut microbiota are closely correlated with alterations 

in gut and brain glutamate levels71,72, suggesting gut-modulated CNS glutamatergic 

neurotransmission. N-acetylglutamate may play a role in regulating N-acetyl-l-aspartyl-l-

glutamate and brain function73. N-acetyl-l-aspartyl-l-glutamate, a dipeptide that is most 
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abundant in the brain, acts as a neuromodulator at glutamatergic synapses, inhibiting 

excessive glutamate signaling74. N-acetylglutamate has also been implicated in the brain 

sleep–wake cycle75. Although the exact role of N-acetylglutamate and N-acetylglutamine 

is still under investigation, their direct relationship to glutamate metabolism suggests a 

potential impact on brain function.

Glutamate, the major excitatory neurotransmitter in the CNS, is a non-essential amino 

acid associated with numerous stress responses76. Inflammation influences the release, 

transmission and metabolism of glutamate, leading to accumulated extracellular glutamate 

in the CNS77. Prolonged presence of glutamate can induce excitotoxicity and oxidative 

stress, two of the major mechanisms responsible for neuronal damage78. Glutamate may 

also be involved in the biological mechanisms underlying depression, anxiety-related 

disorders and obesity risk42,79,80. Early life stress is associated with dysregulation of 

gut glutamate metabolites, potentially through glutamatergic excitotoxicity and increased 

oxidative stress44. Circulating glutamate is also associated with excess abdominal adipose 

tissue in obesity, which is potentially related to expression of the GLUL gene (encoding 

glutamate-ammonia ligase) and inflammatory genes in adipose tissue81,82.

We see evidence for a strong association between gut levels of glutamate metabolites with 

greater discrimination exposure—this relationship may certainly contribute to potentially 

excitotoxic sequelae of glutamate and its derivatives as well as a proinflammatory state in 

obesity.

Discrimination and communication in the BGM system

The results presented here suggest that unhealthy sweet foods may play a major role 

in the bidirectional communication between the brain and gut with higher discrimination 

exposure. The mechanisms underlying this association may involve inflammatory processes 

in the BGM system involved in stress-induced unhealthy eating behaviors and dysfunctional 

glutamatergic signaling. Stress could promote unhealthy food choices83, particularly for 

sweet foods84,85, which could adversely influence the systemic homeostasis within the 

BGM system, resulting in inflammation in the CNS and an increased risk of obesity and 

stress-related neuropsychiatric complications86–89. Sugar, delivered intestinally, can activate 

gut-to-brain pathways by activating vagal neurons in mice, underlying the highly appetitive 

effects of sugar53. Interestingly, racial and ethnic differences in sweet preference have also 

been observed90. Greater desire for sweet taste is associated with higher levels of stress to 

a greater extent among young Black adults than among similarly aged White adults91,92. 

Accordingly, discrimination, as a stressor, could promote more consumption of sweet food 

relative to that for highly savory food93,94.

Sweet-tasting foods present an analgesic effect; individuals consume more sweet foods 

after acute physical pain50. Furthermore, the consumption of sweet-tasting food increases 

pain tolerance via the endogenous opioid system in the brain51. Extensive research has 

highlighted variations in the opioidergic system in the context of racial discrimination stress 

and its effect on pain perception95,96. Stress can upregulate the amygdala κ-opioid receptor, 

inducing dysphoria, and modulate the μ-opioid receptor to regulate reward processes97,98. 

When stress activates the opioidergic system, it could affect the rewarding properties of food 
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and potentially lead to stress-related changes in food choices, eating behaviors and obesity. 

Hence, future studies should further examine the role of the opioidergic system in the 

context of the effects of discrimination on brain–gut communication, specifically focusing 

on its influence on unhealthy food preferences, particularly sugary foods. In addition, 

discrimination together with the disproportionate level of exposure to targeted marketing 

of unhealthy foods (especially high-fat high-sugar foods) in Black and Latino consumers 

may exacerbate the adverse health effects and worsen health disparities99,100.

We found that individuals who experienced more discrimination showed a decreased 

reactivity in the vmPFC when exposed to unhealthy sweet food but this was not observed 

with the unhealthy savory foods. It is probable that the observed difference is specific to the 

sweet feature. The vmPFC, along with the adjacent medial part of the orbitofrontal cortex, 

encodes the pleasantness or value of taste and flavor101,102, including the perception of 

carbohydrate content in food cues103. Exposure to stress is associated with attenuated sweet 

taste104. African Americans have shown heightened and sustained desire for intense sweet 

tastes, as well as greater perceived stress, relative to White Americans91. It is also possible 

that this attenuation of sweet perception is a result of increased consumption of sweet food, 

as higher dietary sugar intake has been found to decrease the perceived sweetness of sweet 

food105.

The observed discrimination-related BGM disruptions may be associated with an unhealthy 

diet. Perceived day-to-day racial discrimination is known to be linked to unhealthy eating 

habits106, which can trigger inflammation in the BGM system, as implicated in obesity 

pathogenesis86. A high-fat high-sugar diet could alter gut microbiome diversity and 

increase Gram-negative bacteria rich in endotoxin lipopolysaccharides as well as increase 

gut permeability, increasing the translocation of lipopolysaccharides across the intestinal 

epithelium and promoting local and CNS inflammation86. In addition to inflammation, 

oxidative stress and dyslipidemic processes, high-fat-diet-induced obesity is linked to 

altered brain neurotransmitter glutamate levels in rats43. Stress and stress-induced unhealthy 

eating have a detrimental effect on the glutamatergic system. Inflammatory cytokines can 

influence glutamate metabolism through effects on astrocytes and microglia80. Modulation 

of glutamatergic receptor activity along the BGM axis may influence gut and brain functions 

and participate in the pathogenesis of local and brain disorders, such as anxiety and 

depressive disorders107.

In this study glutamate metabolites were associated with greater neural response to 

food cues in the frontal-striatal network with higher discrimination exposure. The frontal-

striatum (limbic) network is driven by glutamatergic and dopaminergic neurotransmission 

in humans48. Frontal glutamate plays an important role in reward-guided decision-making 

in humans108 and modulates fronto-limbic connectivity109. In mice, a high-fat high-sugar 

diet alters glutamate transmission in the dorsal striatum, a core region implicated in food 

motivation and reward processing110. Given the limited literature on the exact role of 

specific glutamate metabolites, further research is warranted to elucidate the finer and more 

direct associations between these metabolites and their role in communicating with the 

brain.
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Limitations and future directions

Some of the limitations of this study, in which discrimination-related differences in neural 

responses to food cues and gut metabolites were examined, merit consideration. Although 

we controlled for sex in the analyses, we acknowledge that men were under-represented. 

Previous studies suggested that gut-induced alterations in CNS neurochemicals may be 

sex-specific111,112. Our study did not have sufficient samples of specific racial/ethnic 

groups to conduct stratified analyses by group. Therefore, future research with larger and 

more balanced samples should attempt to replicate these results and explore the potential 

moderating effects of sex and race/ethnicity and source of discrimination. Finally, this was a 

correlational study; accordingly, longitudinal studies are needed to explore the causal effects 

of discrimination exposure and altered BGM signatures.

Conclusions

In this study we have elucidated the impact of self-reported discrimination on brain food-

cue reactivity and gut microbiome interactions utilizing a systems-biology approach. We 

demonstrated that experiences of discrimination lead to disruptions in the BGM system, 

with altered neural response to food cues in regions associated with reward processing and 

executive control as well as gut glutamate metabolites implicated in stress and inflammation. 

These alterations may confer vulnerability to obesity and obesity-related comorbidities 

in individuals with more exposure to discrimination. Thus, brain-targeted treatments (for 

example, brain stimulation) that could dampen an overactive food-reward system or enhance 

frontal control could potentially be used as a neuromodulatory tool to normalize altered 

brain circuits associated with discrimination exposure113. It is also possible to target 

glutamatergic pathways, such as by a probiotic supplement or Mediterranean diet with 

anti-inflammatory benefits, as a therapeutic approach for the treatment of stress-related 

experiences such as discrimination114–116.

Methods

Study participants

The study group was comprised of 107 individuals (87 women) recruited from the Los 

Angeles community through advertisements and local clinics. Peri- and post-menopausal 

women were excluded, as determined by the self-reported last day of the previous cycle, 

and enrolled women were scanned during the follicular phase of the menstrual cycle. 

Participants were excluded if they had any major medical/neurological conditions, current 

or past psychiatric illnesses, comorbidities such as vascular disease or diabetes, weight 

loss/abdominal surgeries, substance-use disorders, tobacco dependence (half a pack or more 

daily) or metal implants and if they used medications that interfere with the CNS, regularly 

used analgesics, were pregnant or breastfeeding, or performed extreme strenuous exercise 

(>8 h of continuous exercise per week). Participants whose weight exceeded 181 kg (400 

pounds) were excluded due to weight constraints of the MRI scanner.
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All procedures complied with institutional guidelines and were approved by the Institutional 

Review Board at UCLA’s Office of Protection for Research Subjects. All participants 

provided written informed consent.

Participant data included BMI, race, age, sex, SES117 and diet (Supplementary Methods 

and Supplementary Table 1). Diet was categorized into standard or nonstandard American 

diet based on self-reported questionnaires where participants report which diet is consumed 

on a regular basis in our analyses as defined in previous studies (Supplementary Table 

1)33. Multimodal data, including functional MRI imaging (fMRI), fecal metabolomics and 

clinical and behavioral measures were also collected.

Clinical and behavioral assessments

Participants completed the validated and widely used EDS118, which measures chronic 

experiences of unfair treatment118–120. The EDS is a validated and widely used measure 

that captures chronic experiences of unfair treatment in various domains of life. The 

EDS does not specifically target discrimination based on race, gender, age or poverty but 

rather assesses overall experiences of discrimination in daily life. For example, one of 

the questions in the EDS asks participants ‘In your day-to-day life, how often do any of 

the following things happen to you? You are treated with less courtesy than other people 

are.’. This demonstrates that our measure of discrimination is not limited to any specific 

type but encompasses a broad range of unfair treatment experiences. Because there is no 

consensus on the cut-offs of the EDS, scores were dichotomized to categorize participants 

into two groups—high discrimination exposure (EDS > 10, n = 50) and low discrimination 

exposure (EDS ≤ 10, n = 57)—based on the median score of this sample, as used in previous 

studies33,120–122. Participants were excluded if their EDS score was zero due to their distinct 

nature in reporting discrimination (unwilling or unable to report)123.

Baseline characteristics

Baseline demographic and clinical characteristics were compared in the R software124 using 

a Student’s t-test for continuous variables and a χ2 test for categorical variables. A two-way 

analysis of variance was conducted to examine the interaction effect between discrimination 

groups (high versus low discrimination) and dietary style (American versus non-American) 

on BMI.

Food-cue task-MRI acquisition, processing and analyses

Brain data were acquired using a 3.0 T Prisma MRI scanner (Siemens); acquisition details 

are provided in Supplementary Methods. Participants were asked to fast for approximately 6 

h previous to scanning and this was confirmed by the study coordinator before scanning took 

place. Participants completed the food-cue task in the scanner to evaluate neural responses 

to different types of foods. Pictures were organized into five groups: unhealthy (high calorie) 

savory, unhealthy (high calorie) sweet, healthy (low calorie) savory, healthy (low calorie) 

sweet and nonfood, comprising pixelated images created from food pictures (as a control 

comparison). All food images were uploaded to the E-prime software125; half were copied 

and pixelated to control for color, brightness and contrast. Images were arranged into blocks 

of six, comprising either unaltered or pixelated images only, with a total of 18 blocks. Each 
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image was shown for 3 s. A black screen with a white crosshair was displayed for 12 s 

before the first block of images, between each block of images and after the final block of 

images. Two slideshows (order 1 and order 2) were created using the same 18 blocks of 

images arranged in different orders. Participants watched both sets of images in the scanner.

At the end of the scan, participants reported their willingness to eat the food items they 

saw in the scanner by answering the question ‘How much do you want to eat what you just 

saw?’. The response options ranged from zero (not at all) to ten (very much).

Neuroimaging data were processed using the fMRI Expert Analysis Tool (FEAT; version 

6.0) included in the FMRIB Software Library (FSL)126. Preprocessing included motion 

correction, brain extraction, 100-s high-pass filtering and spatial smoothing with a 5-mm 

full-width at half-maximum Gaussian kernel. Functional data were aligned to the structural 

image of each participant and then registered into Montreal Neurological Institute (MNI) 

standard space using affine transformation through FSL’s Linear Image Registration Tool 

(FLIRT).

Whole-brain analysis

To determine discrimination-related differences in food-cue reactivity towards specific food 

types, we specified the following contrasts: (1) unhealthy sweet food versus nonfood, (2) 

unhealthy savory food versus nonfood, (3) healthy food versus nonfood, (4) unhealthy sweet 

food versus healthy sweet food and (5) unhealthy savory food versus healthy savory food. 

The corresponding reversed contrasts were specified. For each participant, ten contrast maps 

were created in the first-level analysis, which were then imputed into random-effects group-

level analyses using FSL’s Local Analysis of Mixed Effects (FLAME1) in a whole-brain 

analysis with outlier de-weighting. Group-level (high versus low discrimination) unpaired 

Student’s t-tests were performed in FEAT using a mixed-effects model with BMI, age, sex, 

race, diet and SES as covariates. All statistical maps were family-wise error cluster-corrected 

for multiple comparisons (cluster height threshold, Z > 2.3; cluster significance, P < 0.05).

Discrimination-related food-cue ROI analysis

Significant clusters in the contrasts from the whole-brain analysis (high versus low 

discrimination) were combined to create a discrimination-related food-cue ROI mask. Brain 

signal changes (β values from the first-level statistical models) were extracted separately 

for each participant. Multiple linear regression analyses were conducted to test the effect 

of discrimination exposure on brain signal change in the composite food-cue ROI for 

each contrast, adjusting for BMI, age, sex, race, diet and SES, and correcting for multiple 

comparisons using the false discovery rate (FDR) according to the Benjamini–Hochberg 

procedure127. This step was used to confirm the robustness of discrimination-related food-

cue activity in a linear fashion, and the brain signal extracted from the composite food-cue 

ROI was further used in an SEM analysis.

Fecal metabolites collection, processing and analyses

Fecal collection and processing was conducted on a subsample of participants (n = 62) as 

previously described128 and detailed in Supplementary Methods. The fecal samples were 
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stored at −80 °C and shipped to Metabolon for processing and analysis as a single batch 

on their global metabolomics and bioinformatics platform using ultrahigh-performance 

liquid chromatography and tandem mass spectrometry129. Raw data were curated by mass 

spectrometry using specialized software as previously described129. The amount of missing 

data was low (<3%). However, missing values of raw data were filled using the median 

value and ineffective peaks were removed through the interquartile range denoising method. 

In addition, the internal standard normalization method was employed in the data analysis. 

A dataset for multiple classification analysis was compiled from the metabolite profiling 

results and a three-dimensional matrix involving metabolite numbers, sample names and 

normalized peak intensities was used as input to the MetaboAnalyst web software version 

3.0 (http://www.metaboanalyst.ca). Because of our a priori interest in the metabolites from 

the glutamate pathway associated with the processes of stress, only glutamate metabolites 

were included in our analyses.

Gut metabolites

Twelve metabolites from the glutamate pathway were compared between the high and low 

discrimination groups using generalized linear modeling, controlling for BMI, age, sex, 

race, diet and SES. Multiple comparisons were corrected for using the FDR method127. 

Pearson’s correlations were used to assess the associations between the gut metabolites and 

key psychosocial variables (for example, SES) that showed significant differences between 

the high and low discrimination groups.

Willingness to eat unhealthy and healthy foods

The willingness of participants to eat based on the ratings of unhealthy or healthy food 

was compared separately between the high and low discrimination groups using generalized 

linear modeling, controlling for BMI, sex, age, race, diet and SES.

SEM

The Lavaan package in R130 was used to perform SEM modeling. One latent variable 

was created for gut metabolites affected by discrimination exposure, as determined in 

the initial analyses. Three models were developed to illustrate the pathways that link 

EDS scores and discrimination-related brain and gut signatures. The unhealthy sweet food 

model included neural reactivity to unhealthy sweet food cues (versus nonfood) extracted 

from the composite food-cue ROI as the brain feature. The unhealthy savory food model 

included neural reactivity to unhealthy savory food cues (versus nonfood) extracted from 

the composite food-cue ROI as the brain feature. The healthy food model included neural 

reactivity to healthy food cues (versus nonfood) extracted from the composite food-cue ROI 

as the brain feature. Glutamate metabolites found to differ significantly between the high 

and low discrimination groups were included as the gut feature. We controlled for BMI, 

race, diet and SES as covariates. Model fit was assessed using the following indices and 

criteria: CFI > 0.9, RMSEA < 0.08, GFI > 0.9 and SRMR < 0.08 (ref. 131). The significance 

level was set at P < 0.05 for all SEM statistical significance testing.
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Fig. 1 |. Discrimination exposure increases risk for obesity by disrupting the brain gut system.
Discrimination exposure is associated with increased food-cue reactivity—especially 

towards unhealthy sweet foods—in the frontal-striatal regions involved in reward processing, 

motivation and executive control, as well as altered gut metabolites in the glutamate pathway 

associated with oxidative stress and inflammation.
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Fig. 2 |. Whole-brain comparisons of the high and low discrimination groups.
a–c, Schematics (top) and MRI images (bottom) of the brains of individuals to compare 

the food-cue reactivities of unhealthy sweet (a), unhealthy savory (b) and healthy (c) food 

with nonfood. Regions where greater reactivity was observed in the high discrimination 

group (n = 50) relative to the low discrimination group (n = 57) are highlighted (colored 

region); the color bar represents the Z score, with warmer colors indicating higher scores. 

Comparisons controlled for BMI, sex, age, race, diet and SES. All statistical maps were 

family-wise error cluster-corrected for multiple comparisons. Cluster level correction: Z > 

2.3, P < 0.05. Clusters are listed in Table 2. The numbers located at the top left of each MRI 

image represent the slices. L, left hemisphere; R, right hemisphere.
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Fig. 3 |. Comparison of the levels of metabolites and willingness to eat for individuals in the high 
and low discrimination groups.
a, N-acetylglutamate and N-acetylglutamine levels in high and low discrimination groups. 

Glutamate-pathway metabolites were compared between high and low discrimination groups 

using generalized linear modeling, controlling for BMI, sex, age, race, diet and SES. 

High discrimination, n = 30; low discrimination, n = 32. b, Willingness to eat ratings for 

unhealthy and healthy foods. Comparisons between the high and low discrimination groups 

were made using generalized linear modeling, controlling for BMI, sex, age, race, diet and 

SES. High discrimination, n = 50; low discrimination, n = 57. a,b, The violin plots represent 

the data distribution. Boxplots: the boxes indicate the 75th (upper horizontal line), median 

(middle horizontal line) and 25th (lower horizontal line) percentiles of the distribution; the 

whiskers indicate the range of data falling within a distance of 1.5× the interquartile range. P 
< 0.05 was considered significant (the Q value is the adjusted P value after FDR correction 

for multiple comparisons).
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Fig. 4 |. Relationships between discrimination, the discrimination-related brain food-cue 
responses to different foods and gut metabolites illustrated as SEM models.
a–c, SEM diagrams showing the relationships between brain, gut and discrimination 

(controlling for BMI, race, diet, and SES) for unhealthy sweet foods (a), unhealthy savory 

foods (b) and healthy foods (c). Single-headed arrows represent regression and double-

headed arrows represent correlation. The values on arrows between latent and observed 

variables and between latent and observed indicators represent standardized path coefficients 

and factor loadings (that is, standardized coefficients), respectively. For the arrows between 

brain, gut and discrimination, black arrows indicate significant correlation or regression 

coefficients and gray arrows indicate non-significant correlation or regression coefficients. 

Model fit was assessed using the following indices and criteria: CFI > 0.9, RMSEA < 0.08, 

GFI > 0.9 and SRMR < 0.08. High discrimination, n = 50; low discrimination, n = 57. *P < 

0.05; **P < 0.01; ***P < 0.001.
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Table 2 |

Significant clusters from whole-brain analysis of food-cue reactivity comparing high and low discrimination 

groups

Contrast high>low discrimination Cluster region(s) X (MNI) Y (MNI) Z (MNI) Maximum Z

Unhealthy sweet food versus nonfood

L insula −26 20 −6 3.70

L insula −24 26 10 3.67

L inferior frontal gyrus, pars 
opercularis

−42 18 10 3.63

L lateral orbitofrontal cortex −26 22 −2 3.51

L inferior frontal gyrus, pars 
opercularis

−32 16 24 3.35

Frontal operculum −34 14 16 3.35

Unhealthy savory food versus nonfood

R orbitofrontal cortex 20 34 −12 3.94

R orbitofrontal cortex 22 38 −12 3.93

R frontal pole 22 38 −18 3.75

R putamen 22 20 2 3.61

R caudate 14 22 −4 3.52

R insular 26 26 2 3.32

Healthy food versus nonfood

R middle frontal gyrus (dlPFC) 24 28 34 4.08

R superior frontal gyrus (vmPFC) 22 64 24 3.89

R middle frontal gyrus (dlPFC) 36 8 40 3.86

R superior frontal gyrus (dlPFC) 20 18 54 3.82

Frontal pole (dlPFC) 28 44 36 3.64

R middle frontal gyrus (dlPFC) 24 32 40 3.58

Unhealthy sweet food versus healthy sweet food vmPFC 24 56 28 3.65

Unhealthy savory food versus healthy savory food Not significant

Family-wise error cluster level correction: Z > 2.3, P < 0.05. Peak voxel coordinates are in MNI space. Results were controlled for BMI, sex, age, 
race, diet and SES. High discrimination, n = 50; low discrimination, n = 57. L, left hemisphere; R, right hemisphere.
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Table 3 |

Comparisons in glutamate metabolites between high and low discrimination groups

Glutamate-pathway metabolite T value P value FDR-adjusted P value

Carboxyethyl-GABA −0.3283 0.7437 0.8666

GABA −1.2034 0.2329 0.5575

Glutamate 0.4368 0.6636 0.8666

Glutamate, γ-methyl. ester 0.2616 0.7944 0.8666

Glutamine 0.1364 0.8919 0.8919

N-acetyl-L-aspartyl-L-glutamate −1.8042 0.0755 0.3020

N-acetylglutamate 2.0038 0.0490 0.2938

N-acetylglutamine 3.2011 0.0021 0.0247

N-methyl-GABA 1.1242 0.2648 0.5575

N-methylglutamate −0.7593 0.4502 0.7237

Pyroglutamine −0.7061 0.4824 0.7237

Succinylglutamine −1.0916 0.2788 0.5575

Generalized linear modeling was used to compare the levels of 12 metabolites from the glutamate pathway between the high and low 
discrimination groups. The Q value is the adjusted P value after FDR correction for multiple comparisons (shown in bold). High discrimination, n = 
30; low discrimination, n = 32. GABA, γ-aminobutyrate.
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