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GENETICS | INVESTIGATION
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Biostatistics, and **Cardiovascular Research Institute, University of California, San Francisco, California 94158, ‡Affymetrix Inc.,

Santa Clara, California 95051, and §Kaiser Permanente Northern California Division of Research, Oakland, California 94612

ABSTRACT The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of
California—San Francisco, undertook genome-wide genotyping of .100,000 subjects that constitute the Genetic Epidemiology Research on
Adult Health and Aging (GERA) cohort. The project, which generated .70 billion genotypes, represents the first large-scale use of the
Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline
for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different
ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To
improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with
similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with
a range of 92.1–95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four
arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality
and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health
records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions.

KEYWORDS genome-wide genotyping; GERA cohort; Affymetrix Axiom; saliva DNA; quality control

THE Genetic Epidemiology Research on Adult Health and
Aging (GERA) resource is a cohort of .100,000 subjects

who are participants in the Kaiser Permanente Medical Care
Plan, Northern California Region (KPNC), Research Program
on Genes, Environment and Health (RPGEH) (detailed de-
scription of the cohort and study design can be found in
dbGaP, Study Accession: phs000674.v1.p1). Genome-wide
genotyping was targeted for this cohort to enable large-scale
genome-wide association studies by linkage to comprehensive
longitudinal clinical data derived from extensive KPNC elec-
tronic health record databases. The cohort is multi-ethnic,
with �20% minority representation (African American, East
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Asian, and Latino or mixed), and the remaining 80% non-
Hispanic white. For this project, four ethnic-specific arrays
were designed based on the Affymetrix Axiom Genotyping
System (Hoffmann et al. 2011a,b).

The genotyping assay experiment took place over a 14-
month period and to our knowledge, is the single largest
genotyping experiment to date, producing .70 billion geno-
types. The magnitude of the experiment, in conjunction with
the long duration and simultaneous high throughput, re-
quired new protocols for assuring quality control (QC) dur-
ing the assays and new genotyping strategies in postassay
data analysis.

Samples were assayed at an average rate of .1600 per
week over the course of the experiment. The sustained high
throughput meant that it was critical to rapidly identify
problems such as systematic handling errors, equipment fail-
ures, or deficiencies in consumables that can vary over time.
It was thus crucial to create a mechanism to assess assay
quality in as near real time as possible. It was also important
to assess trends in performance over weekly and monthly
intervals to detect deterioration in performance over time.
One of the advantages of this study is that all samples were
extracted and normalized in a single lab at KPNC and
all samples were assayed in a single lab at University of
California—San Francisco (UCSF). Robotic processing was
used where possible to increase the consistency of the assay
and to prevent mistakes.

Here we provide details of the DNA extraction process,
the genotyping process, and the QC steps taken during the
experiment. We also describe the postassay processing
created to optimize genotype reproducibility across the cohort
and the final result of genotyping in terms of numbers of
samples and SNPs passing strict quality control criteria for
each of the four arrays.

Materials and Methods

Study population

Participants in the project were all adult ($18 years old)
members of the KPNC, who had consented to participate in
the KPNC RPGEH. Participants provided a saliva sample
and broadly consented to the use of their DNA, mailed
survey response data, and linked electronic health records
in health research. Over a 32-month period beginning in
July 2008, the RPGEH collected �140,000 saliva samples
prior to the conclusion of DNA extraction for the study,
with the bulk collected between October of 2008 and No-
vember of 2009 (Supporting Information, Figure S1). The
GERA cohort of 110,266 participants was formed by in-
cluding samples from all racial and ethnic minority par-
ticipants in the RPGEH enrolled through February 2011
(the conclusion of DNA extraction for the project), with
the remainder of the cohort composed of samples from
non-Hispanic white participants. The resulting cohort in-
cluded 19.2% individuals who identified themselves as

having African American, Asian, Hispanic/Latino, Native
American, or Pacific Island race/ethnicity, with the remain-
der (80.8%) reporting themselves as non-Hispanic white.
The cohort included 110,266 subjects to ensure that at
least 100,000 individuals were successfully genotyped by
the end of the project. The institutional review boards for
human subjects research of both KPNC and UCSF ap-
proved the project.

Saliva sample collection, DNA extraction, and transfer
of samples/data

Following completion of a mailed health survey and return
by mail of a signed consent form, the RPGEH collected
a saliva sample by mail from consented participants using an
Oragene OG-250 disc format saliva kit, which is designed to
be sent through the mail in a padded envelope. Each kit was
identified with a unique barcode that was linked to the
participant’s unique study identification number. Along with
the kit, participants received written instructions on provid-
ing a saliva specimen, following the protocol provided for
completion of Oragene kits. A telephone number was pro-
vided for participants to call with questions. Participants
were instructed to refrain from eating for 30 min prior to
spitting in the kit and to rinse their mouths with water prior
to providing the saliva sample. Each kit holds about 4 ml of
saliva; a preservative in the cap of the kit is released when
the participant screws on the lid of the kit after providing
a saliva sample. According to documentation provided by
the kit’s manufacturer, the sealed kits would maintain
DNA quality when stored at ambient temperature for a pe-
riod of 5 years. Returned kits were logged in, weighed (to
detect empty or low volume samples), and stored unopened
in a single layer in boxes in a storage room maintained at
ambient room temperature.

DNA was extracted and normalized in a single laboratory
of the KPNC Division of Research, beginning in November
2009 and concluding in March 2011, in a fully automated
system with integrated tracking and data capture of all
samples and aliquots. The average length of time a sample
was stored prior to DNA extraction was 483.64 days (SD
123.90), ranging from a minimum of 10 days to a maximum
of 916 days, with the majority stored for 11–16 months
(Figure S2). Saliva samples from a total of 124,185 partic-
ipants were used for the project. Weighing and visual in-
spection of opened saliva kits resulted in exclusion of
2435 (2%) from further processing due to low volume or
particulate matter in the saliva. A sample of 0.5 ml of saliva
was drawn and placed in two deep well blocks for DNA
extraction, with the remaining saliva placed in cryovials
and stored at 280�. Following incubation of saliva samples,
Agencourt-DNAdvance SPRI paramagnetic bead technology
kits were used to extract DNA from �121,750 samples.
Extracted samples were quantified by PicoGreen (Invitrogen,
Quant-iT dsDNA assay kits) with a fluorescence intensity-top
read via the DTX880 Multimode Detector (Beckman Coulter,
Brea, CA). For most of the project, samples that were within
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an initial concentration range of 30–470 ng/ml were hit-
picked and then normalized via a Span-8 Biomek FXP (Beck-
man Coulter) in 10 mM Tris, 0.1 mM EDTA, pH 8.0, to
a concentration of 10 ng/ml for genotyping. To accommo-
date the timing of the design of the ancestry-specific micro-
arrays used for genotyping (Hoffmann et al. 2011a,b),
samples from self-reported non-Hispanic white participants
were extracted first, normalized, and sent to the UCSF
Genomics Core Facility for genotyping prior to the extraction
and plating of DNA samples from self-reported minority par-
ticipants. To maximize the inclusion of ethnic minority par-
ticipants in the project, we reduced the lower end of the
eligible initial concentration range to 15 from 30 ng/ml.
Overall, 10.4% of extracted samples were excluded because
the concentration fell outside the specified range. A subset
of DNA samples was also checked for purity using a NanoDrop
Technologies ND-1000 spectrophotometer. The A260/280

ratios of these samples were in the range 1.5–1.9 with most
samples between 1.7 and 1.8. The average yield of DNA
from each 0.5 ml of saliva used was 4.86 mg. A total of
110,266 samples of DNA were normalized into 96-well
plates. The plates of normalized DNA linked a unique sam-
ple identification number to the well position and plate
number of the DNA sample. The plates of DNA were trans-
ferred to the UCSF Genomics Core Facility along with a com-
puter file that provided the link between the sample
identification number and the sample well position and
plate number. The laboratory results were linked to the
same identification number, genotyping calls were also
linked to the same identifier, and the file was returned to
Kaiser Permanente for linkage to survey data and electronic
medical records, using a key that linked the original identi-
fiers with the samples.

Axiom platform design

The genotyping experiment used custom designed arrays
based on the Affymetrix Axiom Genotyping Solution
(Affymetrix White Paper). It is a two-color ligation-based
assay utilizing on average 30-mer oligonucleotide probes
synthesized in situ on a microarray substrate with auto-
mated parallel processing of 96 samples per plate, with a to-
tal of �1.38 million features available for experimental
content. The design of the four ethnic-specific arrays has
been described previously (Hoffmann et al. 2011a,b). The
original design of the Axiom arrays required probe sets for
each SNP to be included at least twice for QC reasons. How-
ever, after initial experience with our first array for non-
Hispanic whites (Hoffmann et al. 2011a), we expanded
the number of SNPs on subsequent arrays by including some
SNP probe sets only once, based on high-performance char-
acteristics (Hoffmann et al. 2011b). The four arrays were
designed to maximize coverage in non-Hispanic whites
(EUR), East Asians (EAS), African Americans (AFR), and
Latinos (LAT). The number of autosomal, X-linked, Y-linked,
and mitochondrial SNPs on each of the four arrays is pro-
vided in Table 1. As detailed below, the presence of a higher

proportion of probe sets tiled once on the AFR and LAT
arrays affected their QC characteristics.

Assay protocol

At UCSF, a small set of successfully run plates was
designated as a source of duplicate samples for later plates.
On each plate, one of the wells was filled with a previously run
sample (i.e., as a duplicate) to evaluate assay reproducibility as
a QC measure going forward. The remaining 95 wells were
occupied by new samples. These duplicate samples were the
only ones run more than one time in the study. Most duplicate
samples were run on the same ethnic array as the original
sample. However, because all duplicates were from success-
fully previously run samples, for the first few plates for each
array this was not possible. Hence for the first few EAS, AFR,
and LAT plates, the duplicate sample came from a sample pre-
viously run on the EUR array. For the first few EUR plates, the
duplicate samples were from prior Affymetrix reference
samples.

The samples were then processed using the standard
Affymetrix Axiom sample prep protocol (Affymetrix Geno-
typing Protocol). A major change in protocol that occurred
during the experiment after all EUR and EAS plates were
processed was the implementation of a novel reagent kit
from Affymetrix. The original reagent kit, designated Axiom
1.0, was primarily used for assaying the EUR and EAS
arrays, while the updated reagent kit, referred to as Axiom
2.0, was used for assaying AFR, LAT, and later EUR and EAS
arrays. The differences between Axiom 1.0 and Axiom 2.0
are at the level of specific reagents in module 1 such as
cosolvents used in the isothermal whole genome amplifica-
tion. The shift to Axiom 2.0 enabled the validation of more
SNPs overall and increased genome-wide coverage with
a modest loss of previously validated SNPs on Axiom arrays.
The reagent kit affected intensity cluster centers in the
genotype clustering process and hence needed to be
controlled for during genotyping as described below.

Samples were generally randomized across Axiom
plates within array type, but some nonrandom structure
was necessary from pragmatic considerations. First, sub-
jects on each array type were genotyped together in-
dependently of the other array types. Second, the first
plates assayed with the EUR arrays contained many of the
oldest subjects (ages 85 and older), whose samples had
been collected first to maximize their participation in the
research. The first samples were then prioritized for DNA
extraction and genotyping, resulting in a higher percentage
of samples from elderly subjects in the first group of plates
of non-Hispanic whites to be genotyped. Most plates
contained a random distribution of females vs. males
(according to the overall 58:42 ratio of females to males
in the cohort). However, because the GERA cohort also
included a subset of male subjects from the California
Men’s Health Study (Enger et al. 2006) who were pro-
cessed during a distinct time period, some plates contained
a majority of male subjects.

Genome-Wide Genotyping of GERA Cohort 1053



Once samples were prepared and embedded into Axiom
assay plates, they were assayed on Axiom Gene Titans. The
standard Affymetrix protocol was generally followed, with
the exception of the hybridization time. The experiment
began with the standard 24-hr hybridization interval, but it
was soon found to be advantageous to hybridize for longer
periods of 48–72 hr to maximize the signal-to-noise ratio.
Both 48- and 72-hr hybridization times gave similar perfor-
mance and both were used to facilitate lab scheduling.

Genotype calling protocol

To rapidly identify system problems affecting genotype
quality, a short-term automated quality control feedback
cycle was created for the earliest possible detection and
repair of major problems in the assay. The feedback cycle
was based on a data-driven automatic analysis pipeline
using Affymetrix Power Tools (APT). As soon as a Gene
Titan completed its scanning phase, CEL files were trans-
ferred to a Linux cluster for analysis. There, all successfully
assayed samples from a single plate were genotyped
together and the results sent via E-mail to the project staff.

The genotype calling was based on the standard three-
step process as described in the Affymetrix analysis guide
(Figure 1) (Affymetrix Axiom Analysis Guides 2015). For
a sample to pass quality control, it required a DishQC
(DQC) score $0.82 and a first pass sample call rate (CR1)
$97%. DishQC is a measure of the contrast between the AT
and GC signals assayed in nonpolymorphic test sequences
(Affymetrix White Paper). It provides a type of signal-to-
noise figure of merit that is well correlated with sample call
rate, allowing for prediction of successful samples.

It was found advantageous to create custom Bayesian
priors for genotyping intensity cluster centers and covariances,
rather than using the standard Affymetrix supplied priors.
To create custom Bayesian custom priors, samples from 8–
12 high-performing plates, distributed across time and assay
conditions, were genotyped together using weak generic
priors. The resulting posterior distribution statistical param-
eters became the new custom priors. Custom priors proved
superior for two reasons: saliva-based DNA tended to pro-
duce different cluster centers than the Affymetrix blood-
based priors and increasing the hybridization time also
tended to shift cluster centers.

In addition to the genotyping results, montages of array
digital images were used to visually identify errors in
processing and sources of unexpected noise (Figure S3).
These montages proved especially valuable in diagnosing
problems in a prompt fashion.

While short-term monitoring of the genotype assay
allowed discovery and correction of acute problems, it
did not address changes over time. Therefore, to track
gradually developing problems (such as with equipment
and consumables) we created raster plots of the DQC and
first-pass call rate (CR1) to monitor performance over
time. Figure 2 shows the distribution of DQC and CR1 for
each Axiom plate assayed in the experiment.

Reproducibility analysis

To detect changes in the assay over the course of the
experiment, we analyzed discordance of duplicate samples run
on different plates as described above. The gap in plate number
between the original and duplicate assay was varied to give
a range of intervals to examine. Figure S4 shows the distribution
of original vs. duplicate sample plate numbers. This distribution
allowed for detection of changes over a course of months.

Genotype discordance is defined for a pair of duplicate
samples as the proportion of genotype pairs called on both
samples that differ from each other relative to the number of
genotype pairs for which both genotypes are called. Discor-
dance can be categorized as a single allele difference (one
sample call being a homozygote and the other a heterozy-
gote) or as a two-allele difference (the two samples being
called opposite homozygotes). The large majority of dis-
cordances involve single-allele differences.

Discordant genotype pairs necessarily contain at least
one minor allele; hence a genotype discordance rate for
a SNP is limited by minor allele frequency (MAF). For rare SNPs
it is typically the minor allele genotypes that are important and
hence the discordance rate among the heterozygous and minor
allele homozygous genotypes becomes of interest, as opposed
to the majority of genotype pairs, which are major allele
homozygotes and concordant. To address discordance in these
cases, we define a minor allele pair (MAP) as a genotype pair,
both genotypes called, in which at least one genotype includes
a minor allele. Then a useful measure of discordance among
such pairs is the genotype discordance rate per MAP:

discordance per MAP ¼ discordant pairs=minor allele pairs:

Genotype-calling package design

At various points along the duplicate plate number axis,
reproducibility analysis showed sudden changes in genotype
concordance. By conducting a change-point analysis and
correlating the changes with known experimental events,
factors affecting the probe intensity cluster centers were

Table 1 Number and type of SNPs assayed and passing QC, by array

Array SNPs assayed SNPs tiled once Autosomal X-linked Y-chrom mtDNA Passing QC % of SNPs passing

EUR 674,518 0 660,990 13,123 289 116 670,572 99.42
EAS 712,950 65,473 699,324 13,385 158 83 708,373 99.36
AFR 893,631 429,451 867,035 26,264 234 98 878,176 98.27
LAT 817,810 282,901 792,056 25,397 234 123 802,186 98.09
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discovered. These factors, along with known prior factors, such
as array type, formed the categorical dimensions we used to
partition the samples for final genotype calling of the cohort.
The factors were chosen to maximize within-package homo-
geneity and hence optimize the empirical genotype concor-
dance across duplicate samples in different parts of the
partition. The factors driving this partition included array type,
hybridization time, reagent kit type, reagent lot, and initial
(low) DNA concentration. Low-concentration samples included
those with initial concentrations between 15 and 30 ng/ml;
those .30 ng/ml were considered to be in the normal range.

On the basis of these factors, the samples were parti-
tioned into “packages” consisting of samples from 2–26
plates to achieve homogeneity of conditions. Each package
then underwent genotype calling separately.

Genotype postprocessing

After the package-based genotypes were created, genotyp-
ing quality for each probe set was assessed. Genotypes for
poorly performing probe sets in each package were filtered
out of the final data set; this was called per-package
filtering. Probe set performance was also assessed across
all packages for a particular array type and poorly perform-
ing probe sets across packages were filtered out of all
packages for that array; this was termed per-array filtering.
In filtering genotypes and probe sets within and across
packages, we employed liberal call rate thresholds to retain
the maximum amount of potentially useful data. Therefore,
depending on the particular use, further genotype filtering
may be appropriate.

The filtering pipeline included five steps, as follows:

1. Per-package filtering of probe sets with a call rate ,90%.
2. Filtering of probe sets with large allele frequency varia-

tion across packages within an array. Specifically, if pi is
the allele frequency for package i and p9 is the average
allele frequency across packages, then

variance  ratio ¼ p9ð12 p9Þ=VarðpiÞ:

A large variance ratio indicates a stable allele frequency
across packages. Probe sets with variance ratio ,31
for a given array were filtered out.

3. Filtering of autosomal probe sets based on a large allele
frequency difference (.0.15) between males and
females.

4. Filtering of probe sets with poor overall performance.
Specifically, the per-array genotyping rate for each probe
set was calculated as the total number of genotypes
across all packages for that array that are called vs.
attempted and those with overall call rate ,0.60 were
filtered out.

5. Filtering of probe sets with poor genotype concordance
across duplicates. Specifically, for each probe set and ar-
ray type, the number of discordant genotypes across all
pairs of duplicate samples in which both samples were
assayed on the same array type was calculated. Then
probe sets for which the genotype discordance count
exceeded array-dependent thresholds (208 discordant
of 851 possible for EUR; 23 discordant of 61 possible
for EAS; 8 discordant of 12 possible for AFR; 26 discor-
dant of 71 possible for LAT) were filtered out.

The thresholds described in each step above are to some
degree arbitrary, but were chosen to be conservative in
terms of number of SNPs removed. The intention was to
remove only SNPs with a very high probability of inaccuracy;
this meant that poor performing SNPs are likely remaining,
but can be filtered out at later stages by end users.

The threshold of 90% for per-package filtering was
chosen through inspection of a statistical sample of SNP
intensity plots at various SNP call rates. Those SNPs with
a call rate ,90% invariably had problems with cluster
splits, highly overlapping clusters, or pathological cluster
structure (such as a large number of off-target variant
calls) that rendered the genotypes uncertain. Above
90%, SNPs with usable genotypes could be found, with
the percentage of usable SNPs increasing with increasing
call rate.

Figure 1 Standard Affymetrix Axiom Genotyping analysis workflow.

Figure 2 First-pass sample call rate (CR1) vs. DQC. Black points are sam-
ples assayed with Axiom 1.0 and red points are those with Axiom 2.0.
Threshold for a sample to pass is call rate $97%.

Genome-Wide Genotyping of GERA Cohort 1055



The threshold allele frequency variance ratio of 31 was
also chosen empirically. Figure S5 shows a scatterplot of the
natural log variance ratio vs. the minor allele frequency for
SNPs on the EUR array. One observes an approximate par-
tition of SNPs to regions above and below the 31 threshold
value. Inspection of intensity plots for SNPs ,31 threshold
value showed them to invariably have low signal intensity in
both the A and B channels, leading to a single cluster near
the A = B axis. The APT algorithm would sometimes call this
as an AA cluster, sometimes as BB. The resulting wide allele
frequency fluctuations produced a low variance ratio. Above
31, there were cases of SNPs with a large fraction of good
genotypes, with some packages showing cluster splits.

In terms of sex difference in allele frequency, if we
assume equal allele frequency in males and females and
a package size of 1000 individuals, the probability of
observing an allele frequency difference $0.15 is extremely
small, ,10210. Thus, even though we are examining on the
order of 107–108 SNP-package combinations, the expected
number of SNPs to exceed the threshold of 0.15 by chance is
close to 0, rendering SNPs falling beyond that threshold as
likely pathologic.

For the thresholds based on genotype discordance, we
chose to use a conservative cutoff of 10% or greater for the
genotyping error rate. In comparing two samples, a genotyp-
ing error rate of 10% would produce a discordance rate of
�20% since either duplicate sample can produce a genotyp-
ing error. Sample discordance is an estimate of true discor-
dance and the finite sample counts lead to two sigma
confidence bounds on the estimate.

Some important SNPs were interrogated with two probe
sets to improve the chance for reliable results: one whose
sequence was taken from the forward strand and one whose
sequence was taken from the reverse strand. For SNPs with
multiple probe sets that survived filtering, the best perform-
ing probe set, in terms of call rate, was chosen to represent
the SNP and the other was filtered out.

Results

DNA quality and call rates

We examined a number of factors that could influence DNA
quality and genotyping efficiency, including seasonality of
specimen collection (by month), duration of specimen storage
prior to DNA extraction, and age of the study participant. By
month, mean (SD) DNA concentration ranged from a low of
115.16 (SD 75.09) in the month of March to a mean of
147.04 (SD 87.66) in the month of July. DNA concentrations
were lower in the winter and spring months of December to
May and higher in the summer and fall months of June to
November (Figure S6). By ANOVA, the amount of variance in
DNA concentration accounted for by month of collection was
1.5% (F = 157.59, d.f. = 11, P , 0.0001). Genotyping call
rates (CR1) followed a parallel seasonal pattern (Figure S7),
with the lowest mean call rate occurring in the month of

December (99.34%; SD 0.50), and the highest in the month
of June (99.50%; SD 0.46). By ANOVA, the month of sample
collection explained 1.4% of the variance in CR1 (F= 136.62,
d.f. = 11, P , 0.0001).

There was a modest but statistically significant inverse
association of length of sample storage with DNA concen-
tration (F = 48.13, d.f. = 1, P , 0.0001), but it explained
only 0.04% of the variance in DNA concentration (Figure
S8). There was a stronger negative association between
length of storage and CR1 (F = 3890.9, d.f. = 1, P ,
0.0001) that accounted for 3.64% of the variance in call
rates (Figure S9). The relationship of both DNA concentra-
tion and CR1 appeared to be nonlinear, however, where the
shortest storage periods did not have the highest DNA con-
centrations or initial call rates.

We noted a positive correlation between age of study
subject and DNA concentration (r = 0.120, F = 1603.6,
d.f. = 1, P , 0.0001) that explained 1.4% of the variance
(Figure S10). There was a similarly positive but less signifi-
cant correlation between subject age and CR1 (r= 0.033, F=
112.36, d.f. = 1, P , 0.0001) that explained 0.1% of the
variance (Figure S11).

We also examined the relationship of DNA concentration
with CR1. Except at the extremes of DNA concentration,
sample call rate was fairly independent of DNA concentra-
tion (Figure S12), although there was a slight negative trend
overall that was statistically significant (P , 0.0001) and
explained 0.1% of the variance of CR1.

Relationship between DQC and CR1

We observed a moderate positive relationship between the
two QC criteria, DQC, and CR1 for both Axiom 1.0 and
Axiom 2.0 assays (Figure 2). The figure also illustrates the
continuous nature of both measures and the possibility of
relaxing the DQC threshold to rescue some Axiom 1.0 sam-
ples with passing CR1 values but failing DQC scores. Differ-
ences between Axiom 1.0 and Axiom 2.0 are also quite
apparent. While Axiom 2.0 produced higher DQC scores
overall than did Axiom 1.0, there is a stronger positive cor-
relation between DQC and CR1 (by linear regression, ad-
justed R2 = 0.468, P , 0.0001) with Axiom 2.0 than with
Axiom 1.0 (by linear regression, adjusted R2 = 0.160, P ,
0.0001). Comparing specifically the results for EUR arrays run
with the Axiom 1.0 assay vs. the Axiom 2.0 assay, the DQC
passing rate for Axiom 1.0 was 95.1% vs. 98.0% for Axiom
2.0. The CR1 passing rate for Axiom 1.0 was 98.6% vs. 97.8%
for Axiom 2.0. Overall, while the CR1 results for Axiom 1.0
are superior, they are outweighed by the higher performance
on DQC for Axiom 2.0, so that the total passing rate for Axiom
1.0 was 93.8% vs. 95.8% for Axiom 2.0. Note that this was
true even though the EUR array was designed for SNPs vali-
dated on the Axiom 1.0 assay.

The distribution of DQC and CR1 by plate over the entire
experiment also shows some trends (Figure 3, A and B, re-
spectively). The higher DQC scores with Axiom 2.0 vs. Ax-
iom 1.0 are apparent (mean for Axiom 2.0 = 0.962, mean
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for Axiom 1.0 = 0.929, t-test = 162.66, P , 0.0001), as is
a cyclical pattern during the processing of EUR with Axiom
1.0 (Figure 3A). By contrast, CR1 shows the opposite pat-
tern (Figure 3B)—namely lower CR1 scores with Axiom 2.0
compared to Axiom 1.0 (mean for Axiom 2.0 = 98.75, mean
for Axiom 1.0 = 99.43, t-test = 273.74, P, 0.0001). These
results are also consistent with the pattern observed in Fig-
ure 2. Figure 3 also shows a few episodes of badly perform-
ing plates, which were primarily due to a performance
problem with one of the Gene Titans. This behavior also
demonstrates why the real-time QC was critical to maintain
a high level of performance.

Package-based vs. plate-based genotype calling and
duplicate reproducibility

Initial plate-based genotype calling was performed in real
time and was used for QC assessment (CR1). However,
package-based genotyping was found to have several

advantages over single plate-based genotyping: (1) Use of
generic weak cluster location priors that were package specific
and eliminated the need for prespecified priors that might bias
results; (2) improved detection of rare clusters (genotypes) by
including larger numbers of individuals in a single analysis; (3)
improved genotype calls by grouping of plates assayed under
similar conditions; and (4) improved genotype concordance in
duplicate pairs of samples. Therefore, final genotypes were
derived from the package-based genotype calling.

To evaluate the improvement due to genotype calling in
packages by grouping plates assayed under similar conditions
(items 1 and 3 above), we first examined plate medians for
package-based genotype calling with custom priors vs. plate-
based genotype calling using standard Affymetrix priors (Fig-
ure 4). A sizeable improvement in overall call rates can be
observed, with an average increase of 1% in call rate that is
statistically significant (t-test = 10.62, P , 0.0001).

As a second evaluation, we calculated duplicate genotype
discordance (item 4 above) both for the original plate-based
genotype calling (CR1) and package-based genotype calling
for the 828 duplicate samples on the EUR array (Figure 5).
The partition of the cohort into packages based on experi-
mental factors and using custom priors significantly in-
creased the overall concordance. For example, median
discordance decreased from �0.6 to 0.3% with package-
based genotype calling, a difference that is statistically sig-
nificant (comparing plate- vs. package-based discordance by
paired t-test, t-test = 218.16, P , 0.0001).

To investigate the effect of MAF on SNP discordance in
duplicate samples, we evaluated the genotype discordance
rate per MAP as a function of MAF, comparing plate-
generated genotypes and package-generated genotypes
(Figure 6). For both plate and package genotypes, the dis-
cordance per MAP increases as SNP MAF decreases, with the
greatest discordance seen in SNPs with MAF ,0.01. This
reflects the difficulty of genotyping rare SNPs with dominant
major homozygous clusters.

Figure 3 Distribution of (A) DQC and (B) first-pass call rate (CR1) for each
(96 well) Axiom plate assayed in the experiment. Black bars indicate plate
median and red error bars are 61 median absolute deviation. Blue lines
indicate boundaries between array types. For example, EUR-1.0 indicates
array type EUR and Axiom 1.0 assay; EUR-2.0 indicates array EUR with
Axiom 2.0 assay.

Figure 4 Plate medians of sample call rates for package-based genotype
calling using custom priors vs. plate-based genotype calling using stan-
dard Affymetrix priors for a subset of LAT-2.0 plates
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It is also seen in Figure 6 that for each MAF class, the
discordance per MAP is higher for the plate-generated geno-
types than for the package-generated genotypes. The gap
between plate and package discordance increases with de-
creasing MAF. While package -based genotyping can de-
crease discordance and thus improve reproducibility of
genotypes of SNPs of all MAFs, it improves reproducibility
most dramatically for rare SNPs (item 2 above). All the dif-
ferences in discordance for plate- vs. package-generated geno-
types are highly statistically significant by Mann–Whitney
U-tests (for MAF . 0.10, plate mean = 0.0216, package
mean = 0.0070, P , 0.0001; for 0.05 ,MAF , 0.10, plate
mean = 0.0593, package mean = 0.0251, P , 0.0001; for
0.01 ,MAF , 0.05, plate mean = 0.113, package mean =
0.0477, P , 0.0001; for MAF , 0.01, plate mean = 0.445,
package mean = 0.167, P , 0.0001).

Overall sample and SNP success rates

The sample genotyping success rate was 93.84% overall,
with slightly higher rates for individuals run on the AFR
array (95.45%) and EAS array (95.08%) compared to those
run on the EUR (93.85%) and LAT (92.08%) arrays (Table
2). In terms of SNP results (Table 1), the arrays with a sub-
stantial proportion of single-tiled SNPs had slightly lower
overall SNP success rates (98.27% for AFR and 98.09% for
LAT) than those with most or all SNPs tiled twice (99.36%
for EAS and 99.42% for EUR).

SNP characteristics by array

The MAF cumulative distribution for all retained SNPs for
each of the four arrays is provided in Figure 7. All arrays
show an approximate uniform frequency for MAF .0.10,
but a clear excess of SNPs with MAF ,0.10. The AFR and
LAT have the highest proportion of low MAF SNPs and the

EUR array the lowest. The reason for this difference lies in
the design of the arrays (Hoffmann et al. 2011a,b). Because
individuals with mixed genetic ancestry were analyzed on
the LAT, AFR, and EAS arrays, coverage of low-frequency
variants in more than one ancestral group was attempted for
these arrays, as opposed to the EUR array, which was based
solely on European ancestry.

Discussion

Using standard QC criteria in this saliva-based DNA geno-
typing experiment, we achieved a high overall success rate
both for SNPs and samples (103,067 individuals successfully
genotyped of 109,837 assayed). Still, that left 6770 “failed”
samples that would not be usable for GWAS or other anal-
yses. When a sample fails the sample call rate criterion of
CR1 .97%, it does not mean that all genotypes in the sam-
ple are inherently unreliable. Typically, some probe sets clus-
ter poorly and others cluster well, even for substandard
samples. One strategy would be to kill the poorest perform-
ing probe sets to increase the number of passing samples.
However, this approach creates a tradeoff between eliminat-
ing poor SNPs and recovering previously failing samples. On
the one hand, more samples are accepted, but at the ex-
pense of accepting fewer SNPs.

While the DQC contrast measure is generally a good
predictor of CR1 and thus sample success, the correlation
between them is not perfect (Figure 2) and has been shown
to depend on factors such as the reagent, the DNA source,
and the hybridization time. By relaxing the DQC threshold
from 0.82 to 0.75, for example, nominally failing samples
may be recovered. However, at the same time, it is likely that
the recovered samples will have more genotyping errors
than those passing the original higher DQC threshold.

It is also possible to identify and remediate poorly perform-
ing probe sets. For example, a cluster split is a problem that

Figure 5 Cumulative distribution of genotype discordance across all 828
duplicate sample pairs assayed on the EUR array for package-based vs.
plate-based genotype calling. Genotype discordance is defined for a pair
of duplicate samples as the proportion of genotype pairs called on both
samples that differ from each other. Difference can include single allele
differences (more common) or two allele differences (less common).

Figure 6 Cumulative distributions of genotype discordance rate per
MAP, grouped by MAF for EUR duplicate sample pairs. The solid curves
show discordance for package-generated genotypes and the dashed
curves show discordance for plate-generated genotypes.
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occurs when an apparently continuous intensity cluster is split
by APT into two or three different genotype clusters. This
typically happens when the cluster is not well approximated by
a Gaussian probability distribution. This was the main source
of error found in the final genotype calling. Because cluster
splits often end up creating some type of aberrant pattern such
as large allele frequency variation between packages or poor
reproducibility, most cluster splits were filtered out by the post-
processing pipeline. But by altering the cluster separation
(CSep) parameters in the APT clustering algorithm, it is
possible to bias the likelihood function so that cluster splits
are less likely to occur. Figure S13 shows a probe set clustering
in which a cluster split has occurred and Figure S14 shows the
same probe set in which the CSep parameter has been in-
creased, preventing the cluster split. Altering the CSep param-
eters for all probe sets is not recommended, however, because
it also has the adverse effect of coalescing truly separate clus-
ters. Thus to effect this cure, it is necessary to distinguish probe
sets that have cluster splits from those that do not. One ap-
proach is to create a support vector machine (SVM) classifier
(Chang and Chih-Jen 2011) that can effectively discriminate
cluster split probe sets from those that have no cluster splits.

Another kind of problem that appears in genotyping is
the phenomenon of blemished SNPs. Blemished SNPs occur
when sample assays contain array artifacts. The APT
software automatically masks out these artifacts, generating
no-calls in the process. The masking algorithm can at times
be too aggressive, however, and can mask out too many
genotypes. This has the effect of creating no-calls that have
intensity profiles within otherwise called genotype clusters.

One solution to this problem is provided by recalling the
within-cluster no-called genotypes using an altered APT
algorithm. A simpler pragmatic alternative is to create the
convex hulls for each called cluster and to test if no-calls are
contained in any of the hulls; if they are, then they are
assigned the genotype of that convex hull. The convex hull is
a conservative estimate of the true extent of a cluster, so that
the converted no-calls would always be calls in the absence
of artifact processing.

As a consequence of our experience with the Axiom platform
during this experiment, Affymetrix was able to improve the
assay. For example, in response to observations provided by
routine monitoring of “montages” during this study, Affymetrix
developed and released new fluidics and imaging protocols for
the Axiom 2.0 assay in the GeneTitan MC instrument. The new
protocol greatly attenuates unexpected noise in the images, and
routine monitoring of plate montages may no longer be re-

quired, provided that plates are passing the “plate QC” tests
(Affymetrix Axiom Analysis Guides 2015). Regarding probe
performance variance due to the number of probe set replicates
on the array and other factors, Affymetrix now recommends
using a common core set of 150K probe sets for “sample QC”
purposes (Affymetrix Axiom Analysis Guides 2015).

In conclusion, performing a large-scale genotyping exper-
iment over an extended period of time required both real-
time quality assurance and quality control to detect and
correct problems and maintain consistent performance of the
assay. Such measures are effective in correcting short-term
problems, but over the longer term, gradual changes in the
assay must also be controlled. Use of duplicate pairs of
samples across the whole assay allowed for detection of
changes that affected genotype reproducibility. By partition-
ing the sample set into packages of samples assayed under
similar conditions, genotype reproducibility was improved
and sample success rate was increased. After genotype
calling, a conservative filtering pipeline was implemented to
remove data considered too poor to be of use to downstream
users. Continuing work on improving identification of poorly
performing SNPs may enable us to include more SNPs and
more samples for future downstream analyses.
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Figure 7 Cumulative distribution of SNP MAF across all passing samples
for each array.
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Figure S1.  Distribution of GERA saliva sample collection dates, by month and year 
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Figure S2.  Distribution of saliva sample storage times prior to processing, in months 
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Figure S3. A montage of digital array images for an early Axiom plate assay. Note the problem in 
the upper right, due to an assay problem.  Fast detection of such problems allowed us to fix them 
in a timely manner and avoid the problems in later plate assays. 
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Figure S4.  The distribution of Axiom plate numbers (up to plate 730)  of duplicate control 
sample versus original control sample. 
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Figure S5.  A scatterplot of the natural log of the variance ratio (VR) versus mean allele 
frequency for each SNP in the EUR dataset.  The chosen variance ratio threshold of 31 is shown 
in red.   
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Figure S6.  Mean DNA concentration by month of the year 
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Figure S7.  Mean initial call rate (CR1) by month of the year 
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Figure S8.  Mean DNA concentration by saliva sample storage time, in 100 day intervals 
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Figure S9. Mean initial call rate (CR1) by saliva sample storage time, in 100 day intervals 
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Figure S10. Mean DNA concentration by age of study subject 
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Figure S11.  Mean initial call rate (CR1) by age of study subject 
 
 
 
 
 
  

99.3	
  

99.35	
  

99.4	
  

99.45	
  

99.5	
  

99.55	
  
M
ea
n	
  
Ca

ll	
  
Ra

te
	
  

Age	
  



Si	
   M.	
  Kvale,	
  et.	
  al.	
   	
  13	
  

  
 
Figure S12.  Mean initial call rate (CR1) by DNA concentration.   
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Figure S13.  A normalized log intensity plot showing an example of a cluster split of a dominant 
AA cluster into incorrect AA and AB clusters. The cluster split also forces the miscall of the AB 
cluster as an incorrect BB cluster.   
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Figure S14.  The same probe set as in Figure S13 but with the APT CSepPen parameter set at 
0.15 instead of 0.10. The altered parameter avoids a cluster split and yields more accurate AA 
and AB clusters. 

 
	
  

 
 
 




