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Abstract 33 

We present an analysis of methane (CH4) emissions using atmospheric observations from 34 

thirteen sites in California during June 2013 – May 2014. A hierarchical Bayesian inversion 35 

method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by 36 

comparing measured CH4 mixing ratios with transport model (WRF-STILT) predictions based 37 

on seasonally varying California-specific CH4 prior emission models. The transport model is 38 

assessed using a combination of meteorological and carbon monoxide (CO) measurements 39 

coupled with the gridded California Air Resources Board (CARB) carbon monoxide (CO) 40 

emission inventory. Hierarchical Bayesian inversion suggests that state annual anthropogenic 41 

CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence, including transport bias 42 

uncertainty), higher (1.2 - 1.8 times) than the CARB current inventory (1.64 Tg CH4/yr in 2013). 43 

We note that the estimated CH4 emissions drop to 1.0 - 1.6 times the CARB inventory if we 44 

correct for the 10% median CH4 emissions assuming the bias in CO analysis is applicable to 45 

CH4. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and 46 

South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, 47 

respectively. This study suggests that the livestock sector is likely the major contributor to the 48 

state total CH4 emissions, in agreement with CARB’s inventory. Attribution to source sectors for 49 

sub-regions of California using additional trace gas species would further improve the 50 

quantification of California’s CH4 emissions and mitigation efforts towards the California Global 51 

Warming Solutions Act of 2006 (AB-32). 52 

 53 

Keywords: methane, greenhouse gas, emission inventory, atmospheric transport, inverse model  54 

Index Terms: 0365, 0345, 0368 55 

 56 
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 57 

1. Introduction 58 

California has committed to an ambitious plan to reduce greenhouse gas (GHG) emissions to 59 

1990 levels by 2020 through Assembly Bill 32 (AB-32), which requires accurate accounting of 60 

CH4 emissions for effective mitigation planning and verification of future emission reductions. 61 

The state official GHG inventory reports that California currently emits a total of approximately 62 

459.3 Tg CO2 (1 Tg = 1012 g) equivalent GHGs each year [California Air Resources Board 63 

(CARB), 2015]. The CARB GHG inventory is produced in support of AB-32, thus only includes 64 

anthropogenic emission sources. Among the reported GHGs, ~9% of the total GHG emissions 65 

are attributed to methane (CH4), which is the second largest contributor to climate forcing 66 

emissions in California behind carbon dioxide (CO2) [CARB, 2015]. Moreover, as shown in 67 

previous studies (e.g., Jeong et al. [2013, 2014]) CH4 emissions in California are relatively 68 

uncertain compared to those of CO2 due to lack of activity data and incomplete understanding of 69 

emission processes, and top-down studies can be complicated by California’s diverse emission 70 

sources, complex topography and weather patterns. 71 

 72 

Several recent studies have estimated CH4 emissions in different regions of California using 73 

measurements from ground towers, aircrafts, and satellites. At the regional scale, Zhao et al. 74 

[2009] and Jeong et al. [2012a, 2013] estimated CH4 emissions using towers in the Central 75 

Valley. In particular, Jeong et al. [2013] conducted the first multi-site analysis of CH4 emissions 76 

in California based on measurements from five ground sites and across seasons (ten months 77 

during 2010 - 2011), and estimated a state total of 2.03 – 2.71 Tg CH4/yr (at 68% confidence). 78 

Wecht et al. [2014] used airborne measurements during a short-period campaign (May – June 79 
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2010) and estimated a total of 2.65 – 3.07 Tg CH4/yr (at 68% confidence) based on a different 80 

prior emission model that resulted in a different source apportionment from that of Jeong et al. 81 

[2013], attributing significantly higher emissions to landfill and wastewater.  82 

 83 

At the sub-regional scale, most studies focused on the urban regions of southern California [e.g., 84 

Wunch et al., 2009; Hsu et al., 2010; Wennberg et al., 2012; Peischl et al., 2013]. Although the 85 

urban studies relied on different analysis methods (e.g., ratio of CH4 to CO (carbon monoxide)) 86 

and measured data from different years, the focus region for each study generally covered the 87 

South Coast Air Basin (SoCAB) of California. For SoCAB, the estimated CH4 emissions ranged 88 

from 280 to 700 Gg CH4/yr (based on the reported uncertainty estimates, 1 Gg = 109 g). In 89 

another study, Jeong et al. [2014] estimated statewide CH4 emissions from petroleum production 90 

and the natural gas system, taking a unique approach of combining a bottom-up inventory with 91 

results from a field campaign.  92 

 93 

Here we expand on previous work by Jeong et al. [2012a, 2013, 2014] to quantify both urban and 94 

rural CH4 emissions from California, presenting the first analysis of full annual CH4 emissions 95 

from California using atmospheric observations from 13 tower sites covering all major CH4-96 

emitting regions of California. In particular, this study uses the hierarchical Bayesian approach 97 

introduced by Ganesan et al. [2014] for the purpose of GHG emission quantification. In this 98 

study we illustrate how uncertainty in the inversion can be treated by a combination of our best a 99 

priori knowledge of error sources (e.g., transport error) and statistical inference, and how 100 

ground-based multi-tower measurements can be effectively used to constrain regional emissions. 101 

In Section 2, we describe the methods we employed, including atmospheric measurements, a 102 
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priori CH4 emissions, transport modeling, and the hierarchical Bayesian inverse method. Section 103 

3 presents results, including the inferred CH4 emissions from California for different regions and 104 

sources. Section 4 further discusses the results and presents conclusions for CH4 emissions in 105 

California. 106 

 107 

2. Data and Methods 108 

2.1. CH4 Measurements and Background 109 

CH4 measurements were made at the collaborative 13-site GHG network across California 110 

during June 2013 – May 2014. The information of sites and data availability is summarized in 111 

Table 1 (see Figure 1 for site locations). Detailed information regarding measurement methods 112 

for the Central Valley sites are summarized in Jeong et al. [2012a, 2013] and Andrews et al. 113 

[2014]. Here, we briefly describe measurements as a component of the inverse modeling 114 

framework. All sites are operated with temperature and pressure-controlled cavity ring-down 115 

CH4 gas analyzers (Picarro Inc.), permeation-tube gas sample driers, and periodic calibrations 116 

using either primary NOAA (National Oceanic and Atmospheric Administration) CH4 gas 117 

standards or secondary gas standards. For this study, we added four new sites in southern 118 

California: CIT (Caltech), SBC (San Bernardino), SIO (Scripps Institution of Oceanography) and 119 

VTR (Victorville), and two sites for the San Francisco Bay Area (SFBA): LVR (Livermore) and 120 

STR (Sutro tower). All new sites except STR had similar instrumentation to existing sites, while 121 

STR employed daily flask samples collected for approximately 2 minutes near 1400 Local 122 

Standard Time (LST) for subsequent analysis at NOAA Earth System Research Laboratory. 123 

Measurements at THD (Trinidad Head) were made by a flame ionization gas chromatography 124 

(FIGC) system as part of the Advanced Global Atmospheric Gases Experiment (AGAGE) 125 
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network [Prinn et al., 2000]. The Tohoku University calibration scale used by AGAGE is 126 

indistinguishable from the NOAA04 calibration scale used for our Picarro measurements, with a 127 

relative scale factor of 1.0003 [Hall et al., 2014]. Thus, no corrections for scale differences were 128 

applied. In addition, we assume that the isotopic effect in transferring the NOAA standards that 129 

are calibrated by FIGC measuring all CH4 isotopologues to the Picarro instrument (measuring 130 

only the predominant CH4 isotopologue) is negligible. For continuous measurement sites, 131 

calibrated data were averaged to hourly intervals and then 3-hourly intervals for inversions 132 

following the procedure in Jeong et al. [2012a, 2013]. All sites are expected to provide 133 

measurement precision that is smaller than the CH4 synoptic variations typically observed in the 134 

ambient air, and with absolute accuracy sufficient to provide negligible bias in estimating the 135 

scaling relationship between observed and predicted CH4 signals. 136 

 137 

Following previous work (e.g., Jeong et al. [2013]), we selected measurements that coincided 138 

with periods when the atmospheric boundary layer was well-mixed. For the Walnut Grove tower 139 

(WGC) we explicitly evaluated atmospheric mixing using measured vertical CH4 profiles. As in 140 

Jeong et al. [2012a, 2013], WGC data from 91 m were selected in the time window between 141 

1200 and 1700 LST, subject to the requirement that the CH4 mixing ratio difference (C91 – C483) 142 

between 91 and 483 m fell within the range –1 sd < (C91 – C483)  < 3 sd, where sd is the standard 143 

deviation of the 91-483 m difference. This additional requirement retained approximately 80% of 144 

data in the 1200 – 1700 LST window. We selected all data in the afternoon time window (1200 – 145 

1700 LST) for other sites without profile information.   146 

 147 
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The predicted CH4 upstream boundary values were estimated using a similar method to the one 148 

used in Jeong et al. [2012b, 2013]. The details for estimating the boundary values are described 149 

in Jeong et al. [2013] and only a summary is provided here. CH4 boundary values were estimated 150 

using data from the Pacific coast aircraft network CH4 profiles 151 

(http://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remote Pacific marine boundary layer 152 

sampling sites (http://www.esrl.noaa.gov/gmd/ccgg/flask.html) within the NOAA Earth System 153 

Research Laboratory (ESRL) Cooperative Air Sampling Network. The data were smoothed and 154 

interpolated to create a three-dimensional (3-D) curtain, varying with latitude, height and time. 155 

To quantify the errors associated with the 3-D curtain, we fit a smooth curve through the data 156 

and computed the seasonal cycle of the root mean square of the residuals from the curve. 157 

Predicted background values were computed for each hourly footprint simulation by sampling 158 

the curtain at each of the 500 particle trajectory endpoints (near the domain boundary at 130°W) 159 

and calculating the average value.  160 

 161 

2.2. A priori CH4 Emission Model 162 

This work used the California Greenhouse Gas Emission Measurements (CALGEM) project a 163 

priori CH4 emission model (henceforth CALGEM model, available at calgem.lbl.gov) described 164 

by Jeong et al. [2012a, 2013, 2014] with some modifications. The CALGEM emission model 165 

provides emissions by sector at a high spatial resolution (0.1º × 0.1º) for California. The 166 

CALGEM model has seasonal components for wetlands and crop agriculture only, and these 167 

seasonal emissions are combined with non-seasonal emissions to construct monthly emission 168 

maps for inversions. The inversion approach using non-seasonal prior emissions is widely used 169 

(e.g., Zhao et al. [2009], Jeong et al. [2012a; 2012b; 2013], Wecht et al. [2014], Cui et al. 170 

http://www.esrl.noaa.gov/gmd/ccgg/aircraft/
http://www.esrl.noaa.gov/gmd/ccgg/flask.html
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[2015]). In particular, Jeong et al. [2012a; 2012b; 2013] showed non-seasonal priors can provide 171 

information on seasonality in the posterior emission.  172 

 173 

In this study, the CALGEM prior emission distributions are scaled to match 2012 CARB state 174 

totals for anthropogenic emission sectors [CARB, 2014], with small (< 50 Gg CH4/yr) 175 

adjustments for some regions and sectors (per ARB staff private communication). The spatial 176 

distribution of the dairy livestock emissions was revised by incorporating the 2012 county-level 177 

dairy statistics from USDA 178 

(http://www.nass.usda.gov/Statistics_by_State/California/Publications/County_Estimates/) to the 179 

spatial distribution from Jeong et al. [2013]. This revision changed the dairy livestock emissions 180 

for each region due to recent changes in the number of dairy cows, in particular for SoCAB. The 181 

current dairy livestock emissions in SoCAB (Table 2) decreased by ~50% compared to those 182 

(~80 Gg CH4/yr) of Jeong et al. [2013], which was based on the 2004 statistics reported in Salas 183 

et al. [2009], reflecting the decrease in the number of dairy cows in the region (see Figure S1 in 184 

the Supporting Information (SI) for the trend of dairy cows in SoCAB).  For natural wetlands, we 185 

used the prior emission map from Jeong et al. [2013]. 186 

 187 

Table 2 provides annual CALGEM prior emissions used in this study by source and region, and 188 

Figure 1 shows the annual total emission map for the CALGEM prior emission model along with 189 

the sub-region classification. The regions in this study are different from those in Jeong et al. 190 

[2013] and follow the California Air Basins 191 

(http://www.arb.ca.gov/ei/maps/statemap/abmap.htm). Inversion results are summarized by 192 

region to be compared with the prior emissions. Based on the prior emission estimates, the 193 

http://www.arb.ca.gov/ei/maps/statemap/abmap.htm
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Central Valley (Regions 3 and 8, Sacramento Valley (SV) and San Joaquin Valley (SJV), 194 

respectively) accounts for 55% of the total statewide CH4 emissions and the two major urban 195 

regions (Regions 7 and 12, SFBA and SoCAB) account for 29% of the total. In terms of source 196 

sectors, livestock emissions represent 52% of the state total emission followed by landfills (20%) 197 

and natural gas (17%; petroleum production included). Livestock emissions are concentrated in 198 

Region 8 (San Joaquin Valley) where 86% (667 Gg CH4 / 775 Gg CH4) of the region’s total 199 

emissions are from livestock. This is consistent with a recent study by Gentner et al. [2014] that 200 

suggests the majority of CH4 emissions in the San Joaquin Valley are from dairy operations.  201 

 202 

2.3. Atmospheric Transport Modeling 203 

We used the coupled WRF-STILT (Weather Research and Forecasting and Stochastic Time-204 

Inverted Lagrangian Transport) model for particle trajectory simulations [Lin et al., 2003; 205 

Skamarock et al., 2008; Nehrkorn et al., 2010]. The WRF-STILT model has been used to 206 

constrain GHG emissions in many studies including airborne measurement-based (e.g., Gerbig et 207 

al., [2003]; Kort et al., [2008]) and tower measurement-based (e.g., Zhao et al. [2009], Jeong et 208 

al. [2012a; 2012b; 2013], Newman et al. [2013]) applications. We adopt the set-up used in Jeong 209 

et al. [2013] to run the STILT model. In this set-up, an ensemble of 500 STILT particles are run 210 

backwards in time for 7 days driven with meteorology from the WRF model (version 3.5.1) 211 

[Skamarock et al., 2008]. Hourly predicted signals based on WRF-STILT are aggregated into 3-212 

houly averages for inverse modeling.  213 

 214 

The WRF model simulations closely follow those described in Jeong et al. [2012a; 2012b; 2013] 215 

with some modifications. Here, we use version 3.5.1 of the WRF model [Skamarock et al., 216 



Confidential manuscript submitted to Journal of Geophysical Research -Atmospheres 

10 
 

2008]. As in Jeong et al. [2013], we simulated meteorology for four different horizontal 217 

resolutions of 36, 12, 4, and two 1.3 km (vertical levels = 50) using initial and boundary 218 

meteorological conditions provided by the North American Regional Reanalysis (NARR) dataset 219 

[Mesinger et al., 2006]. In this study, the 1.3-km domain for the metropolitan area of Los 220 

Angeles was extended to better resolve outflow from the SoCAB region into eastern valleys that 221 

include the VTR site (see d04 in Figure 2). As in Jeong et al. [2013] we applied 2-way coupling 222 

between domains and 3-D analysis nudging at the outer domain every three hours using the 223 

NARR product.  224 

 225 

For surface physics, we use two different land surface models (LSM) depending the location of 226 

each site as in Jeong et al. [2013]. For the Central Valley, we use the five-layer thermal diffusion 227 

LSM (5-L LSM) to account for irrigation in the land surface process during summer while using 228 

the Noah LSM [Chen and Dudhia, 2001] for other seasons. This is because the Noah LSM 229 

overestimates the planetary boundary layer (PBL) in the Central Valley without considering 230 

irrigation properly (dry surface leads to overestimation in PBL) [Jeong et al., 2013]. For the 231 

urban areas (e.g., SoCAB), we used the Noah LSM following Newman et al. [2013]. 232 

 233 

We also use different PBL schemes depending on the location of the GHG site. As a default for 234 

urban areas, we use the MYNN2 PBL scheme [Nakanishi and Niino, 2006] coupled with the 235 

Noah LSM. This is because we found that the MYJ scheme [Mellor and Yamada, 1982; Janjić, 236 

1990] often underestimates nighttime PBL although it represents daytime PBL well. For the 237 

Central Valley region we also use the MYNN2 PBL scheme except for summer for which we 238 

used the MYJ scheme as in Jeong et al. [2013] coupled with the 5-L LSM for the Central Valley 239 
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site. Some sites required improved representation of topographic influences on boundary layer 240 

meteorology during winter. Based on the transport evaluation using predicted and measured CO 241 

data, we apply the Yonsei University (YSU) scheme [Hong et al., 2006] with additional 242 

parameterization that corrects for surface wind biases at sites with complex topography (e.g., 243 

winter season in the southern San Joaquin Valley) [Jiménez and Dudhia, 2012].  244 

 245 

A more complete evaluation of the WRF model simulations and transport errors associated are 246 

described in Bagley et al. (submitted to J. Geophy. Res.; henceforth, Bagley et al.), including a 247 

comparison of measured and predicted CO for the same period as this study (June 2013 – May 248 

2014).  The details for transport error are described in Bagley et al. using data from the wind 249 

profiler sites (Figure 2) and other observations. However, we note here that because CO is 250 

emitted from sources with different spatial and temporal variations than CH4, the results of the 251 

CO comparison need to be interpreted with care in ascribing uncertainties to CH4 emission 252 

estimates. In this study, we apply previous results from Jeong et al. [2013] to parameterize the 253 

prior probability distribution (instead of fixed values) for transport uncertainty and then update 254 

the prior uncertainty estimates using the hierarchical Bayesian method as described below. 255 

 256 

2.4. Bayesian Inverse Model 257 

We used a hierarchical Bayesian inversion (HBI, Ganesan et al. [2014]) method to estimate 258 

regional CH4 emissions in California. In this work we develop an HBI method with more 259 

complex structure in representing the model-measurement mismatch matrix than Ganesan et al. 260 

[2014] for regional CH4 emission quantification.  261 

 262 
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We start with Bayes’ rule and describe each probability distribution in the hierarchical structure 263 

of parameters that include the scaling factor (a set of factors used to adjust prior emissions, 264 

denoted as 𝝀). Generally, Bayes’ rule can be applied to multiple parameters at different levels as 265 

𝑝(𝝓, 𝜽|𝑫) ∝ 𝑝(𝑫|𝝓, 𝜽)𝑝(𝝓, 𝜽)           (1) 266 

     = 𝑝(𝑫|𝝓)𝑝(𝝓|𝜽)𝑝(𝜽) 267 

where Φ and θ represent the generic parameters in vector form and D is data used to estimate the 268 

parameters. The first line in Equation 1 simply states the posterior probability is proportional to 269 

the likelihood function and prior distribution for the parameters. The re-factorization in the 270 

second line of Equation 1 holds because the data D depend only on the parameter ϕ (thus θ is 271 

factored out) and the values of ϕ depend on the values of θ, constructing a hierarchical structure. 272 

The transition of 𝑝(𝝓, 𝜽) to 𝑝(𝝓|𝜽)𝑝(𝜽) is by the property of a conditional probability, given 273 

the dependence of ϕ on θ. Any probabilistic model that can be factorized in chains as shown in 274 

Equation 1 is a hierarchical model [Kruschke, 2015]. 275 

 276 

The general model in Equation 1 can be applied to estimate surface emissions and their 277 

uncertainties. For GHG applications, the parameter vector ϕ can be scaling factors for emission 278 

adjustment (or surface emission itself). The vector θ can be a set of parameters including the 279 

hyper-parameters (e.g., mean) that determine the distribution for the scaling factor or surface 280 

emissions. 281 

 282 

We use the following linear model for estimating scaling factors for regional emissions [Zhao et 283 

al., 2009; Jeong et al., 2012a; 2012b; 2013; Wecht et al., 2014] 284 

 285 
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y = Kλ + v (2) 286 

where y is the measurement vector (n × 1), which represents 3-hourly local mixing ratio time 287 

series after subtracting background values, K = FE (an n × k matrix), F is the footprint (n × m), 288 

E is prior emissions (m × k), λ is a k × 1 vector for scaling factors with a covariance matrix Q (k 289 

× k), and v is a vector representing the model-measurement mismatch with a covariance matrix R 290 

(n × n). In this study we solve for a vector of 195 for λ which includes 0.3°×0.3° grid cells (a 291 

total of 183) within the major regions (i.e., Regions 3, 7, 8 and 12). We aggregated grid cells 292 

from other 12 regions at the sub-region scale so that the number of parameters can be reduced for 293 

those regions with low prior emissions and weak sensitivity to the measurement sites. Thus, after 294 

solving for λ using the HBI method and multiplying it by E, we can obtain posterior emissions (a 295 

vector of m). 296 

 297 

For the model in Equation 2, the joint parameters we need to estimate are  298 

𝜣 = {𝝀, 𝝁𝝀, 𝝈𝝀, 𝝈𝑹, 𝜂, 𝜏}       (3) 299 

where  λ is the scaling factor, 𝝁𝝀 is the prior (i.e., hyper-parameter) mean for λ, and σλ is the 300 

uncertainty for λ (i.e., square root of diagonal elements of Q). In HBI using a sampling method, 301 

λ is sampled from a probability distribution with mean 𝝁𝝀 and standard deviation σλ, which are 302 

also estimated (as part of 𝜣) instead of being prescribed as in previous work (e.g., Jeong et al. 303 

[2013], see below and SI for details). σR, η and 𝜏 are the parameters used to construct the model-304 

measurement mismatch matrix R (see below for the representation of R). The diagonal elements 305 

of R represent the total model-measurement mismatch errors that are propagated through the 306 

inversion while Q is used to define the uncertainty level for the prior emission. These two 307 

quantities need to be either prescribed with known values or estimated. In HBI we estimate the 308 
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joint parameter set simultaneously, using the measurements only once [Ganesan et al., 2014]. 309 

This joint estimation is different from previous approaches (e.g., Jeong et al. [2013]) where the 310 

covariance matrix R was prescribed via explicit estimation without using atmospheric 311 

measurements. It is also different from other methods where atmospheric measurements were 312 

used to optimize R, and measurements were thereafter also used for inversions (e.g., Michalak et 313 

al., [2005]).  314 

 315 

With the parameter set identified, we need to write out the posterior probability up to the 316 

likelihood function and prior densities. We apply the identified joint parameter (i.e., Θ) to the 317 

general formulation of a hierarchical model in Equation 1 to express the posterior probability as 318 

 319 

𝑝(𝝀, 𝝁𝝀, 𝝈𝝀, 𝝈𝑹, 𝜂, 𝜏|𝒚)  ∝ 𝑝(𝒚|𝝀, 𝝈𝑹, 𝜂, 𝜏)𝑝(𝝀|𝝁𝝀, 𝝈𝝀)𝑝(𝝁𝝀)𝑝(𝝈𝝀)𝑝(𝝈𝑹)𝑝(𝜂)𝑝(𝜏)    (4) 320 

 321 

where the right-hand side shows the likelihood function and the prior distribution for each 322 

parameter. Note that in Equation 4 all variables are in vector form except for η and τ. To build 323 

Markov chain Monte Carlo (MCMC) samplers for the posterior distribution in Equation 4, the 324 

JAGS system (just another Gibbs sampler, Plummer [2003]) is used together with the R 325 

statistical language (https://cran.r-project.org/). JAGS has been widely used for statistical 326 

inference studies in many fields including ecology and genetics [Korner-Nievergelt  et al., 2015; 327 

McKeigue et al., 2010]. The individual probability distributions (i.e., probability density 328 

functions) in Equation 4 are described below.  329 

 330 

First, for the likelihood function we use 331 
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𝑝(𝑦|𝝀, 𝝈𝑹, 𝜂, 𝜏)~𝑁(𝑲𝝀, 𝑹)          (5) 332 

where N is the normal distribution(here multivariate truncated normal, Miller et al. [2014]; 333 

Michalak [2008]) with mean Kλ (n × 1) and covariance R (n × n). Note that y is conditionally 334 

independent of all other parameters given λ, σR, η and τ.  335 

 336 

In order to estimate parameter values with Bayesian inference, prior uncertainty needs to be 337 

specified. In the hierarchical model, we need to include prior uncertainty for the joint parameter 338 

set Θ using a series of distributions. The scaling factor λ is sampled from a normal distribution 339 

instead of a fixed value (e.g., Jeong et al. [2013], Wecht et al., [2014]) as 340 

𝑝(𝝀)~𝑁(𝝁𝝀, 𝛔𝜆)    (6) 341 

where 𝝁𝝀 itself is sampled from a truncated normal distribution [Miller et al., 2014; Michalak, 342 

2008] with a mean of 1 and a standard deviation of 0.5 so that 68% of the samples are within 50 343 

~ 150% from the mean, which is a similar set-up to that of Ganesan et al. [2014]. σλ is modeled 344 

using a half Cauchy distribution, which is one of the recommended distributions for model 345 

variances [Gelman and Hill, 2007; Gelman et al., 2014; Korner-Nievergelt  et al., 2015]. The 346 

hyper-parameterization (“hyper” meaning the upper level in the hierarchy) for σλ can formally be 347 

expressed as 348 

𝝈𝝀~ℎ𝐶𝑎𝑢𝑐ℎ𝑦 (0,1)    (7) 349 

where hCauchy is the half-Cauchy distribution. Note we take the absolute value from the Cauchy 350 

distribution so that we consider the positive values only (i.e., half Cauchy). Equation 7 suggests 351 

that if we generate random samples (large enough) from Equation 7 we get a median value close 352 

to 1. Thus, the use of 1 for the half Cauchy scale parameter (the larger the scale parameter, the 353 

more spread out the distribution) is similar to assuming the uncertainty for 𝝀 is 100% in the 354 
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classical Bayesian inversion (e.g., Zhao et al., [2013], Jeong et al., [2013]). The difference is that 355 

in this study σλ is sampled from a distribution with a heavy tail (see Figure S2 in SI for an 356 

example half Cauchy distribution) so that σλ can be optimized from a broad distribution (instead 357 

of being a fixed value such as 50% of the mean emission). 358 

 359 

For the model-measurement mismatch covariance matrix R, we use an exponential covariance 360 

function [Rasmussen and Williams, 2006] 361 

𝑅𝑖,𝑗 = 𝜂2 exp (−
1

𝜏
|𝑡𝑖 − 𝑡𝑗|) + 𝛿𝑖,𝑗𝜎𝑅𝑠

2     (8) 362 

where η, τ, and 𝜎𝑅𝑠
 are parameters that define the covariance function, t is the measurement time, 363 

and δ is the Kronecker delta function (value of 1 if i = j, otherwise zero). We use two terms in 364 

Equation 8 to ensure the positive definiteness of R [Stan Development Team, 2015]. The second 365 

term in Equation (8) (i.e., with the Kronecker delta function) is analogous to the noise variance 366 

in the regression equation [Rasmussen and Williams, 2006]. Note that here we use the L1 norm 367 

(i.e., |𝑡𝑖 − 𝑡𝑗|) as in Ganesan et al. [2014]. The subscript s in 𝜎𝑅𝑠
 indicates that 𝜎𝑅 is estimated for 368 

each site as was done in Jeong et al. [2013] for their multi-tower analysis. This set of multiple 369 

parameters for 𝜎𝑅 adds more complexity to the model (than estimating a single value for 𝜎𝑅) but 370 

also reflects the fact that model-measurement errors are not uniform across California.  371 

 372 

We model 𝜎𝑅𝑆
 using the half Cauchy distribution as in σλ [Gelman and Hill, 2007; Gelman et al., 373 

2014; Korner-Nievergelt et al., 2015]. The scale parameter (in the hyper-parameter sense) for the 374 

half Cauchy distribution for 𝜎𝑅𝑆
 is calculated using the first order approximation method 375 

following Jeong et al. [2012a; 2012b; 2013] and used as 376 

𝑝(𝜎𝑅𝑠
)~ℎ𝐶𝑎𝑢𝑐ℎ𝑦(0, 𝜎𝑅𝑝|𝑠

)   (9) 377 
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where 𝜎𝑅𝑝|𝑠
 is the first-order estimate for 𝜎𝑅𝑠

 and includes errors from several sources (e.g., 378 

transport and background errors) combined in quadrature (see Text S1 in SI for details on first-379 

order estimation for 𝜎𝑅𝑠
). More details for 𝜎𝑅𝑝|𝑠

 are also described in the following section.  380 

 381 

For η, we use non-informative prior as 382 

𝜂~𝑢𝑛𝑖𝑓(0, 𝐿)    (10) 383 

where η is allowed to vary from 0 to L with an equal probability of 1/L. In this study we use 384 

𝜎𝑅𝑝|𝑠
 as an upper limit for L because in our choice of the covariance function 𝜂 is estimated to be 385 

smaller than 𝜎𝑅 and this ensures the positive definiteness of the R covariance matrix, which is 386 

strictly checked in the JAGS sampler [Plummer, 2003; Version 3.4]. 387 

 388 

Following Ganesan et al. [2014], we use the exponential distribution for τ as 389 

𝜏~exp (
1

𝜏𝑝
)    (11) 390 

where τp is the hyper parameter for τ, which is assumed to be 7 days (typical synoptic time scale 391 

for transport, Ganesan et al. [2014]). 392 

 393 

2.5. Uncertainty Matrix 394 

The posterior distribution in Equation 4 is used to generate MCMC samples for the parameters 395 

(i.e., Θ) in Equation 3, which include the components of the error covariance matrices R and Q. 396 

In other words, we estimate the model-measurement mismatch covariance matrix (i.e., R) and 397 

prior emission uncertainty (Q) simultaneously with 𝝀 and other parameters (using the 398 

measurements just once) instead of using fixed values. In the case of the R matrix, it can be 399 

estimated without assuming prior knowledge (e.g., uniform distribution) or from a simple 400 
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assumption for the hyper-parameter as in Ganesan et al. [2014] where for the hyper-parameter of 401 

the variance component of R they used the sum of the fixed instrument uncertainty and the 402 

uncertainty associated with propagating the calibration scale (0.05 pmol/mol, respectively). Here 403 

we take a more informed approach by using site-specific values in constructing R, drawing on 404 

the model-measurement mismatch uncertainties reported in Jeong et al. [2013] for the sites 405 

included in that study: ARV, MAD, TRA, WGC and STB. For other sites, we estimated the 406 

model-measurement uncertainty for summer of 2013 following the method from Jeong et al. 407 

[2012a; 2012b; 2013] (see Text S1 in SI for details). For other seasons, we scaled the summer 408 

uncertainty estimates in proportion to the monthly background-subtracted mean mixing ratio 409 

signal. We use these uncertainty values (i.e., 𝜎𝑅𝑝|𝑠
) as the hyper-parameter for 𝜎𝑅𝑠

 in the 410 

covariance function for R. As described above, 𝜎𝑅𝑝|𝑠
 is used as the scale parameter in the half 411 

Cauchy distribution in Equation 9 (see Table S1 for 𝜎𝑅𝑝|𝑠
). As shown in Equation (8), the 412 

diagonal elements of R were then calculated as the sum of squares of 𝜎𝑅𝑠
 and 𝜂.  413 

 414 

Figure 3 shows the (optimized) posterior model-measurement mismatch uncertainty (i.e., 415 

diagonal elements of R) given the atmospheric measurements for several measurements sites that 416 

constrain the major emission regions (SV, SJV and SoCAB regions) (see Figure S3 in SI for 417 

correlation between posterior (𝜎𝑅𝑠
) and prior (𝜎𝑅𝑝|𝑠

)). As described, the HBI approach allows 418 

for simultaneous estimation of model-measurement mismatch uncertainty values while inferring 419 

posterior emissions, using the measurements only once. This means that the model-measurement 420 

mismatch uncertainty has posterior estimates given the prior (𝜎𝑅𝑝|𝑠
) and data (i.e., model 421 

predictions and measurements). Overall, the posterior values follow the trend of the prior in 422 

seasonality and magnitude (Figure 3). In most sites, both the prior and posterior uncertainties are 423 
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large during the winter season when boundary layer heights are low and predicted mixing ratios 424 

are very sensitive to the simulated boundary layer [Jeong et al., 2012a; 2013].  425 

 426 

In our inverse model, the uncertainty in the prior emissions is expressed in terms of uncertainty 427 

in the scaling factors (i.e., σλ, diagonal terms in Q). Here, as with σR, the posterior values of σλ 428 

are also sampled from a half Cauchy distribution with a scale parameter of 1 (Equation 7). For 429 

the major emitting regions (3, 7, 8 and 12), the region average of prior uncertainties for 430 

individual pixels is estimated to be ~150% (see Figure S4 in SI), which is higher than the 431 

prescribed 70% in Jeong et al. [2013]. It is reasonable to expect this result because the pixel-432 

based inversions have many more degrees of freedom and hence larger per pixel uncertainties 433 

than aggregate regions as in Jeong et al. [2013]. 434 

 435 

3. Results 436 

3.1. State Total Emissions 437 

State total emissions were estimated by optimizing 195 scaling factors each month (i.e., 438 

dimension of λ = 195 × 1) given the multi-site measurements and multiplying them by the 439 

CALGEM prior emissions, which were essentially the same as the CARB inventory at the sub-440 

region scale (see Figure 1 for each sub-region). As described, we estimate a scaling factor for 441 

each 0.3° pixel within the major emission regions (i.e., SV, SFBA, SJV and SoCAB), which 442 

account for 84% of the CALGEM total emission. For other regions, we estimated a scaling factor 443 

for each region. Figure 4 compares predicted and background-subtracted measured mixing ratios 444 

using all data (used in the inversion) available for each season and also shows linear regression 445 

analysis results. Before inversion, the regression analysis estimates best-fit slopes to be 0.41 – 446 

0.75 (predicted vs. measured). This simple analysis without full consideration of errors suggests 447 
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that CH4 emissions are underestimated by the CARB inventory. After inversion, the best-fit 448 

slope, root-mean-square error (RMSE) and coefficient of determination (r2) for each season are 449 

significantly improved. 450 

 451 

The HBI analysis estimates the state total annual emission is 2.04 - 2.90 Tg CH4/yr at 95% 452 

confidence (median = 2.42) not including the (median) posterior estimate for natural wetlands 453 

(0.07 Tg CH4/yr). This estimate is equivalent to 1.2 - 1.8 times the anthropogenic CH4 emissions 454 

in CARB’s current official inventory for the year 2013 (1.64 Tg CH4/yr) [CARB, 2015]. Note 455 

that the state total in CARB’s current official inventory for 2013 is only slightly different from 456 

the prior total in Table 2 after excluding the wetland emission. The state total emission estimate 457 

from HBI is consistent with the annual emission estimate from Jeong et al. [2013], 2.38±0.67 Tg 458 

CH4/yr (at 95% confidence), which combined inverse model estimates for the Central Valley 459 

with urban emissions estimated by Wennberg et al. [2012].  460 

 461 

As noted in the method section (Section 2), transport model error could affect the estimate of 462 

CH4 emissions. Comparison of predicted and measured CO mixing ratios at the four towers 463 

during June 2013 – May 2014 (same period as this study) yields near-unity slopes for the 464 

majority of sites and seasons [Bagley et al.], suggesting that the WRF-STILT simulations are 465 

sufficient to estimate emissions of CO and likely other GHGs across California to within 10% ± 466 

10% (at 95% confidence) on annual timescales. Based on this result, we add a mean transport 467 

bias uncertainty of 10% in quadrature to our Bayesian statistical uncertainty estimates to estimate 468 

total uncertainty in annual state total CH4 emissions. After adding the transport bias uncertainty, 469 

we estimate state annual anthropogenic CH4 emissions to be 2.42±0.49 Tg CH4/yr (95% 470 
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confidence including transport bias uncertainty), higher than the anthropogenic emission in 471 

CARB’s current inventory (1.64 Tg CH4/yr in 2013). We note that the estimated CH4 emissions 472 

drop to 1.0 - 1.6 times the CARB inventory if we correct for the 10% median CH4 emissions 473 

assuming the bias in CO is applicable to CH4. Undiagnosed sources of uncertainty may increase 474 

these error bounds beyond that indicated here. We also note that the transport error analysis 475 

based on CO rests on an assumption that a priori annual state total CO emissions are known to 476 

better than 10%, though Brioude et al. [2013] found that a comparison of measured and predicted 477 

CO (using the WRF-FLEXPART model) agreed to within about 15% for aircraft flights over 478 

SoCAB conducted in May and June 2010. 479 

 480 

We estimate statewide CH4 emissions for each season because our measurements are available 481 

for a full annual analysis (June 2013 – May 2014). This is the first analysis to estimate full 482 

seasonal CH4 emissions using multi-tower measurements across California. Although Jeong et 483 

al. [2013] estimated seasonal CH4 emissions in California using multi-tower measurements, they 484 

analyzed ten-month data only (not including July and August data) and did not constrain 485 

emissions from the southern California region. Figure 5 shows the estimated mean seasonal 486 

emissions for the state, which are the average of the monthly emissions belonging to the season. 487 

Note that the prior emissions in Figure 5 only partially account for seasonality because 488 

CALGEM has monthly emissions for crop agriculture (largely rice) and wetlands but not other 489 

sources. Across seasons, the posterior emissions are greater than the prior emissions without 490 

strong evidence for seasonality, similar to previous work by Jeong et al. [2013].  491 

 492 
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3.2. Emissions in Rural and Urban Regions 493 

The hierarchical Bayesian inversion using multiple sites across California constrains CH4 494 

emissions from a significant portion of both rural and urban regions in California. In particular, 495 

the inverse analysis in this study yields a large reduction in the posterior uncertainty for the 496 

urban regions of California (e.g., SoCAB) compared to the inverse analysis by Jeong et al. 497 

[2013] where urban regions were under-sampled. We first examine the emissions for the rural 498 

regions of California, focusing on the Central Valley because it accounts for ~90% of the total 499 

rural emissions based on the CALGEM prior emission.  500 

 501 

Figure 6 shows the comparison between prior and posterior emissions for the major emission 502 

regions that account for 84% of the state total in the CALGEM prior emission, including the 503 

Central Valley of California (see Table 3 for all regions). We estimate that the Central Valley 504 

(Regions 3 and 8) emissions are 1.02 – 1.74 Tg CH4/yr (at 95% confidence, median = 1.38 Tg 505 

CH4/yr). These estimates are consistent with the annual emission for the Central Valley 506 

estimated by Jeong et al. [2013], 1.57± 0.20 Tg CH4/yr (95% confidence). Similarly, Wecht et al. 507 

[2014] estimated 1.23 Tg CH4/yr for the Central Valley using a different transport model 508 

although it was only during the early summer period (May – June 2010). These results suggest 509 

emissions from the Central Valley are underestimated in the CALGEM prior emissions (0.94 Tg 510 

CH4/yr). The spatial distribution of posterior emissions is shown in Figure 7 along with 511 

comparison with the CALGEM prior field. As can be seen in the figure, the posterior emissions 512 

for some of the pixels in the Central Valley are significantly larger than the prior. However, it 513 

should be noted that the uncertainty range for those pixels is also significantly large. This result 514 

shows that although the emissions at the sub-regional scale are well constrained in the Central 515 
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Valley (aggregated error at 95% confidence is ~25% of the posterior total of the Valley), the 516 

emission uncertainties for many of the individual pixels are still high. Bergamaschi et al. [2005] 517 

and Jeong et al. [2012a; 2013] reported that posterior emissions show anti-correlations between 518 

regions, suggesting that there could be some trade-offs of posterior emissions between regions. 519 

In this study, using pixel-based inversion for major emitting regions we have significantly 520 

reduced the anti-correlation in the posterior emissions at the sub-regional scale (e.g., between 521 

Region 3 and Region 7) to 0 - 20%, compared to those (up to 60% depending on the season) of 522 

Jeong et al. [2012a] (see Figure S5). This indicates that our total emission for each sub-region is 523 

much more independent than those of Jeong et al. [2012a; 2013].  524 

 525 

For urban emissions of California, we focus on emissions from the two major urban regions 526 

(SoCAB and SFBA). According to the CALGEM prior, the two urban regions account for 25% 527 

of the state total emissions. The HBI analysis estimates the posterior emissions are 301 – 490 528 

(median = 380, 95% confidence) Gg CH4/yr for Region 12 (SoCAB), which are 0.9 – 1.4 times 529 

the prior (349 Gg/yr). This suggests that the prior inventory for SoCAB is consistent with our 530 

posterior estimate. Our posterior estimate is also consistent with the results of most of the recent 531 

studies that were conducted in SoCAB [Wunch et al., 2009; Hsu et al., 2010; Wennberg et al., 532 

2012; Peischl et al., 2013; Wecht et al., 2014; Wong et al., 2015; Cui et al., 2015]. Figure 8 533 

shows the comparison of estimated CH4 emissions for SoCAB among eight different recent 534 

studies including this study. The estimate (600 Gg CH4/yr) by Wunch et al. [2009] using the 535 

CH4/CO2 ratio is likely the upper limit for SoCAB CH4 emissions and is not included in this 536 

comparison. Although the estimated emissions are consistent among the different studies given 537 

the reported uncertainty, there are some differences in the mean/median estimates. These 538 
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differences may arise from different assumptions and undiagnosed uncertainties (e.g., spatial 539 

distribution of bottom-up emissions, transport model errors, different seasonal coverage). For 540 

example, most of the studies in SoCAB rely on the combination of measured CH4 to CO2 or CO 541 

ratios and the bottom-up inventory of CO2 or CO, with uncertainties that assume those 542 

inventories are relatively well-known (e.g., 10% uncertainty assumption in CO2 inventory by 543 

Wong et al. [2015]).  544 

 545 

This study constrains CH4 emissions for SFBA with a significant reduction in the posterior 546 

uncertainty, compared to Jeong et al. [2012; 2013]. We estimate the posterior emissions for 547 

SFBA to be 159 – 340 (median = 245) Gg CH4/yr (at 95% confidence). These emission estimates 548 

are consistent with those reported by Fairley and Fischer [2015] where they reported a total of 549 

240±60 Gg/yr (at 95% confidence) for the recent period of 2009 to 2012 using CH4:CO 550 

enhancement ratios from 14 air quality sites in SFBA. For SFBA, we have two bottom-up 551 

estimates to be compared with our inverse analysis: CALGEM emission model (143 Gg CH4/yr, 552 

see Table 2) and the Bay Area Air Quality Management District (BAAQMD) inventory (126 Gg 553 

CH4/yr, [BAAQMD, 2015]). Compared to bottom-up estimates, actual CH4 emissions in the 554 

SFBA are likely 1.1 – 2.4 and 1.3 – 2.7 times larger than the CALGEM prior and BAAQMD’s 555 

inventory, respectively, suggesting that both inventories are lower than our posterior estimate.  556 

 557 

3.3. Source Attribution of Emissions 558 

We investigate the likely sources of emissions in the rural and urban regions of California. We 559 

estimate CH4 emissions from different sources assuming the spatial distribution of the CALGEM 560 

emission model. Based on this assumption, we scale individual sector prior emissions at each 561 
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pixel or region by the inferred scaling factors from the HBI analysis. Figure 9 (left) shows 562 

posterior annual emissions for the HBI analysis by sector. The posterior emissions (804 – 1410 563 

Gg CH4/yr, median = 1070 Gg) for the dairy livestock (DLS) are 1.1  - 1.9 times larger than the 564 

prior emissions. Assuming the distribution of the prior, the posterior estimates for the non-dairy 565 

livestock (199 – 345 Gg CH4/yr, median = 263 Gg) are also 1.3 – 2.2 times larger than the prior. 566 

The combined total emissions for dairy and non-dairy livestock emissions (1050 - 1699 Gg 567 

CH4/yr) are 1.2 – 1.9 times higher than the CALGEM prior. The underestimate in livestock 568 

emissions agrees with the results described in the region analysis that posterior emissions in the 569 

Central Valley (Regions 3 and 8) are larger than the CALGEM prior. This is also consistent with 570 

the reported livestock emissions (1265 – 1805 Gg CH4/yr, at 95% confidence) by Jeong et al. 571 

[2013]. A recent global study suggests a similar underestimation for manure management in a 572 

bottom-up inventory. Based on published data on field-scale measurements of GHG emissions, 573 

Owen and Silver [2015] report that predicted CH4 emissions by the Intergovernmental Panel on 574 

Climate Change (IPCC) Tier 2 method are lower than the mean estimates using the field 575 

measurements for most manure management practices.  However, we caveat the source 576 

attribution above because the spatial distribution of sources by sector may not be perfectly 577 

captured in the CALGEM model. In terms of seasonality by sector, Figure 9 (right) suggests that 578 

except for WL and CP, the seasonal variation in the emissions is small, showing similar seasonal 579 

posterior emissions within error (Figure 9). 580 

  581 

Our inverse analysis also suggests that actual natural gas (NG; includes petroleum production) 582 

and landfill (LF) emissions are likely larger than the prior emissions. Our posterior NG 583 

emissions (305 – 502 Gg CH4/yr) are higher than the prior (283 Gg, see Figure 9) used in this 584 

study but consistent with that (331 Gg CH4/yr) estimated by Jeong et al. [2014] where they find 585 
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their spatially explicit bottom-up inventory for NG itself is generally lower than those of top-586 

down analyses (e.g., Peischl et al. [2013], Wennberg et al. [2012]). The result for seasonal 587 

emissions by sector in Figure 9 (right) shows that the seasonal variation for NG and LF is small, 588 

consistent among seasons within error. Other sources, including petroleum refining and mobile 589 

(RM), wastewater (WW), crop (rice) emissions (CP), and wetlands (WL) are generally similar 590 

between prior and posterior emissions. The rice emissions are 39 – 101 Gg CH4/yr (at 95% 591 

confidence), which are consistent with those of Jeong et al. [2013] (68±18 Gg, at 95% 592 

confidence) and Peischl et al. [2012] (~85 Gg).  593 

 594 

4. Discussion and Conclusions 595 

We further discuss likely source emissions by comparing our estimates with results from 596 

previous studies. Jeong et al. [2013] estimated annual CH4 emissions from the livestock source 597 

sector in the San Joaquin Valley (Region 8) to be 1.13 ± 0.42 Tg CH4/yr (at 95% confidence), 598 

significantly higher than all other sources combined in the region. This is consistent with the 599 

finding by Gentner et al. [2014] who concluded that the “vast majority” of the total emission in 600 

San Joaquin Valley is due to dairy operations. In another similar study, Guha et al. [2015] used 601 

collocated measurements of CO and various volatile organic compounds (VOCs, e.g. alkanes) 602 

and a Positive Matrix Factorization (PMF) technique to estimate the contribution of regional 603 

sources to observed enhancements of CH4. The results in Guha et al. [2015] indicate that the 604 

livestock emissions account for a majority of the CH4 (70 - 90%, uncertainty = 29%) 605 

enhancements based on measurements near Bakersfield, California during May - June 2010. The 606 

reported 29% uncertainty is calculated from the standard deviation in the mass fraction of CH4 607 

attributed to the dairy source factor profile as estimated from a bootstrapping method. Although 608 
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these two studies do not report estimated emissions by mass, they suggest a significant portion of 609 

the total CH4 emission in the San Joaquin Valley (Region 8) is attributed to the livestock sector.  610 

 611 

More quantitatively, Jeong et al. [2014] estimated CH4 emissions from the natural gas sector 612 

(petroleum production included) for the state based on activity data and reported emission factors 613 

(mostly from US Environmental Protection Agency (EPA)). They estimated the emission from 614 

the natural gas sector to be 128 Gg CH4/yr for the San Joaquin Valley, the majority of which was 615 

from petroleum and natural gas production. After adjusting this bottom-up estimate based on the 616 

result in SoCAB by Peischl et al. [2013], they estimated the natural gas emission in San Joaquin 617 

Valley to be 162.6 Gg CH4/yr, with the San Joaquin Valley accounting for 30% of the state total 618 

natural gas emissions. The adjusted natural gas emission (i.e., 162.6 Gg) by Jeong et al. [2014] is 619 

11 - 19% of the annual total emissions (0.86 – 1.49 Tg CH4) in the San Joaquin Valley estimated 620 

in this study, which is consistent with Gentner et al. [2014], Guha et al. [2015] and Jeong et al. 621 

[2013]. Note that, based on the CALGEM prior, the San Joaquin Valley emits 82% of the total 622 

CH4 emissions in the Central Valley, 86% of which is from the livestock sector. These results 623 

suggest that our a priori assumption about the ratio of livestock emissions to the total in the San 624 

Joaquin Valley is likely similar to the source attribution of the actual emissions in Region 8. 625 

Furthermore, our source analysis indicates that the posterior emissions for landfill, natural gas, 626 

and wastewater are generally consistent with or slightly higher than our CALGEM prior, and 627 

livestock emissions are higher than the prior although this is a statewide result (see Figure 628 

9(left)). Given this source analysis result, the higher posterior emissions in San Joaquin Valley 629 

(Region 8) from our region analysis (1.1 – 1.9 times the CALGEM prior) are likely mainly due 630 

to livestock sources.  631 
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 632 

We also examine the emissions in SoCAB for possible source attributions by combining the 633 

results from this study and other previous work. In this study we estimated that the CH4 634 

emissions in SoCAB are 330 – 421 Gg CH4/yr (median = 380, here we report the 68% 635 

confidence interval for comparison with other work). Combining the recent studies in SoCAB 636 

including this study (for Wunch et al. the estimate based on CO/CH4 ratios is used, see Figure 8) 637 

we estimate the SoCAB CH4 emission is 341 - 465 Gg CH4/yr (at 95% confidence, mean/median 638 

= 403 Gg CH4) [Wunch et al., 2009; Hsu et al., 2010; Wennberg et al. 2012; Peischl et al., 2013; 639 

Wong et al., 2015; Wecht et al., 2014; Cui et al., 2015]. To calculate the uncertainty in this 640 

estimate, we generated 50000 MCMC samples for each study based on the mean and uncertainty 641 

reported in individual studies (similar to generating samples for the prior distributions in HBI) 642 

and combined them for an overall mean distribution. Note that the uncertainty for the overall 643 

mean is smaller than those of the individual studies because the mean estimates of individual 644 

studies are close to the combined mean (i.e., a small spread around 403 Gg CH4), suggesting 645 

emission estimates in SoCAB are converging among different studies. It should also be noted 646 

that the emission estimates for SoCAB in most of these previous studies including ours include 647 

emissions from petroleum seepage and abandoned wells in the total without distinguishing these 648 

as non-anthropogenic emissions. This suggests that the CALGEM prior total for SoCAB (349 Gg 649 

CH4) scaled by the CARB inventory is comparable to the recent top-down estimates for SoCAB. 650 

For source attribution, Wennberg et al. [2012] suggest that the majority of the CH4 enhancements 651 

observed are likely due to natural gas activities, while Peischl et al. [2013] estimates 192± 54 Gg 652 

CH4 for the combination of emissions from natural gas transmission and distribution plus local 653 

seeps, and 32±7 Gg CH4 for oil and gas production and processing. Hence the total of fossil fuel 654 
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related activities from Peischl et al. [2013] is 224 ±55 Gg CH4, assuming uncorrelated errors in 655 

the above estimates. This estimate is larger than our CALGEM prior for the combined total from 656 

the natural gas (NG) and refining and on-road mobile (RM) sectors of 124 Gg (see Table 2) by a 657 

factor of 1.4 – 2.3, suggesting an underestimate for total fossil fuel related emissions in the 658 

CALGEM prior for SoCAB. Lyon et al. [2015] reported a similar result in a recent sub-regional 659 

scale study for the Barnett Shale region where they estimated higher CH4 emissions from the oil 660 

and gas sector than three inventories by factors of 1.5 – 4.3. For landfill, wastewater and 661 

livestock sectors, the CALGEM prior estimates 224 Gg CH4/yr for SoCAB, which is consistent 662 

with that (182 ± 54 Gg CH4/yr) of Peischl et al. [2013]. For livestock, Cui et al. [2015] estimates 663 

emissions in SoCAB to be 52±15 Gg CH4/yr, which is consistent with the CALGEM prior (44 664 

Gg CH4/yr). Last, Cui et al. [2015] also estimated a combined CH4 emission of 347±71 Gg 665 

CH4/yr for the landfill and natural gas sectors. This also indicates that natural gas emissions are 666 

likely larger than the CALGEM natural gas prior, because their minimum estimate (276 Gg) for 667 

the landfill and natural gas sectors is larger than that of the CALGEM prior for natural gas and 668 

landfills together (268 Gg). Taken together, these results suggest that while the prior emissions 669 

(SoCAB total of 349 Gg) are towards the low end of the top-down estimates (341 – 465 Gg), 670 

underestimation in NG emissions from the CALGEM prior model is possible as indicated by the 671 

higher top-down estimates from Peischl [2013] and Cui [2015].  672 

 673 

In summary, our measurement network across California constrains CH4 emissions from 674 

California’s urban and rural emissions, and the added measurement sites to the CH4 network 675 

significantly reduced the posterior uncertainty estimates. This suggests that the inverse 676 

framework based on the measurement network can be an effective approach to quantifying 677 



Confidential manuscript submitted to Journal of Geophysical Research -Atmospheres 

30 
 

emissions at the regional scale and monitoring long-term spatial and temporal changes in 678 

emissions. Although the CO comparison [Bagley et al.] appears largely consistent with 679 

expectation, it is possible that undiagnosed sources of error affect the CH4 emission estimates. In 680 

the future, a combination of improved prior emission and meteorological models, expanded 681 

multi-gas measurements, and inverse model analyses will reduce uncertainty in California’s 682 

GHG emissions. Also, more efforts are needed to constrain emissions by both sector and region. 683 

For example, while our results and other studies indicate both livestock and natural gas 684 

emissions appear to be underestimated, attribution of the magnitude of errors to specific sectors 685 

is difficult.  A recent study on CH4 emissions from the Aliso Canyon blowout in Los Angeles 686 

emphasizes the utility of tracers (e.g., ethane) for source speciation [Conley et al., 2016]. Using 687 

both methane and ethane measurements, Conley et al. [2016] reported that at its peak the Aliso 688 

Canyon event doubled SoCAB emissions during the 3-month period, producing a total of 97 Gg 689 

CH4, which is 28% of the SoCAB total CH4 emission (349 Gg/yr) from our CALGEM prior 690 

model.  Given the importance of distinguishing the regional variations in dominant CH4 sources 691 

(e.g., Central Valley vs. SoCAB) and large-scale events such as the Aliso Canyon blowout, a 692 

combination of facility specific emission measurements and regionally representative 693 

measurements of source-specific tracers (e.g., CO, VOCs, and potentially CH4 isotopes) 694 

[Townsend-Small et al., 2012; Peischl et al., 2013; Guha et al., 2015] are likely to prove useful in 695 

the future. 696 
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Tables 891 

Table 1. GHG Sites Information across California 892 

Site Location Latitude Longitude 

Inlet Height 

(m, a.g.l.)* 

Data Availability 

ARV Arvin 35.24 -118.79 10 June 2013 – May 2014 

CIT Caltech, Pasadena 34.14 -118.12 10 June 2013 – May 2014 

LVR Livermore 37.67 -121.71 27 June 2013 – May 2014 

MAD Madera 36.87 -120.01 10 June 2013 – May 2014 

STB Sutter Buttes 39.21 -121.82 10 June 2013 – May 2014 

STR San Francisco 37.76 -122.45 232 June 2013 – May 2014 

THD Trinidad Head 41.05 -124.15 20 June 2013 – August 2013 

TRA Tranquility 36.63 -120.38 10 June 2013 – April 2014 

TSB Tuscan Buttes 40.26 -122.09 10 June 2013 – May 2014 

VTR Victorville 34.61 -117.29 90 June 2013 – August 2013 

WGC Walnut Grove 38.27 -121.49 91 June 2013 – May 2014 

SBC San Bernardino 34.09 -117.31 58 June 2013 – May 2014 

SIO 

Scripps Institution of 

Oceanography 32.87 -117.26 10 

June 2013 – May 2014 

*Inlet heights used in the inversion 893 

894 
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Table 2. Annual CALGEM CH4 Emissions by Region and Sector (Gg CH4) 895 

Sourcea\

Regionb 
GBV 

(6) 

LC 

(5) 

LT 

(15) 

MC 

(4) 

MD 

(10) 

NC 

(2) 

NCC 

(9) 

NEP 

(1) 

SoCAB 

(12) 

SCC 

(11) 

SD 

(14) 

SFBA 

(7) 

SJV 

(8) 

SS 

(13) 

SV 

(3) 
Total 

DLS  0.1 0.0 0.1 2.5 21.1 21.7 2.8 2.2 37.9 1.0 2.6 14.3 598.1 3.8 30.1 738.3 

LF 1.1 1.5 0.0 2.6 8.2 2.3 9.0 1.1 157.0 14.3 26.3 53.9 28.7 3.1 26.4 335.4 

NDLS  2.0 0.4 0.1 8.3 3.5 8.2 5.2 13.3 5.8 8.3 1.9 10.5 68.5 1.6 19.8 157.4 

NG 0.2 0.4 0.2 2.3 5.5 1.7 4.0 0.4 112.2 17.4 16.2 38.8 51.1 3.1 29.8 283.3c 

RM 0.1 0.1 0.0 2.1 2.5 0.4 0.9 0.1 12.0 1.2 2.2 10.0 4.3 0.5 3.3 39.7 

WW 0.0 0.1 0.0 0.5 1.0 0.3 1.6 0.4 23.6 13.1 2.8 11.0 9.0 0.9 2.8 67.1 

WL  0.3 0.0 0.0 0.5 0.1 0.2 0.2 9.9 0.9 0.5 0.2 4.1 14.0 0.1 7.1 38.1 

CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 47.8 49.2 

Total 3.8 2.4 0.5 18.8 41.8 34.8 23.7 27.5 349.3 55.8 52.2 142.5 775.2 13.2 167.0 1708.6 
aSectors include dairy livestock (DLS), landfill (LF), non-dairy livestock (NDLS), natural gas 896 

including petroleum production and local processing (NG), petroleum refining and mobile 897 

sources (RM), wastewater (WW), wetland (WL), and crop (CP, largely rice). 898 

bThe number in the parentheses shows the region number shown in Figure 1. 899 

cincludes 24 Gg CH4/yr from petroleum seeps (CARB staff private communication). 900 

901 
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Table 3. Posterior Annual Emission Estimates (Gg CH4/year) by Region 902 

Regionsa 
1 

(NEP) 

2 

(NC) 

3 

(SV) 

4 

(MC) 

5 

(LC) 

6 

(GBV) 

7 

(SFBA) 

8 

(SJV) 

9 

(NCC) 

10 

(MD) 

11 

(SCC) 

12 

(SoCAB) 

13 

(SS) 

14 

(SD) 

15 

(LT) 

Prior 28 35 167 19 2 4 143 775 24 42 56 349 13 52 1 

HBI 

Posterior 

(Upper)b 

186 144 360 84 20 23 340 1486 180 243 162 490 68 145 2 

HBI 

Posterior 

(Lower)c 

1 1 164 1 0 0 159 859 1 1 1 301 1 37 0 

aRegion abbreviations are shown in the parentheses. 903 
b97.5th percentile 904 
c2.5th percentile 905 

906 
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Figures 907 

 908 

 909 

Figure 1. (a) CALGEM total (1.7 Tg CH4/yr, 1 Tg = 1012 g) prior emissions (nmol/m2/s) with 910 

locations of measurement sites across California, and (b) region classification (California air 911 

basins). 912 

913 
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 914 

Figure 2. WRF simulation domains and locations of wind profiler sites used for the evaluation of 915 

WRF meteorology: CCO (Chico), SAC (Sacramento), LVR (Livermore), CCL (Chowchilla), 916 

LHS (Lost Hills), LAX (Los Angeles Airport), ONT (Ontario Airport) and MRV (Moreno 917 

Valley). Black dashed lines show the 4 km (d03) and 1.3 km (d04) domains for WRF simulations, 918 

covering California and SoCAB, respectively. The SFBA region is also simulated on the 1.3-km 919 

grid (not shown).  920 

 921 

922 
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 923 

Figure 3. Estimated diagonal elements of the model-measurement mismatch matrix R for CH4 924 

inversions. The posterior values were estimated using 25000 MCMC samples and the error bar 925 

represents the 95% confidence interval. The prior values were estimated using the method 926 

described in Jeong et al. [2012a, 2012b, 2013] (see Text S1 in SI). For May at TRA and 927 

September at WGC, the posterior values were not estimated because most of the measurements 928 

were not available.  929 
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 930 

Figure 4. Comparison of predicted and measured CH4 mixing ratios before (prior) and after 931 

(posterior) inversion for each season. The relatively low best-fit slopes in the prior comparison 932 

(left plot in each season) suggest prior emissions are underestimated. Filled circles represent 933 

individual 3-hour data points across different sites used in the inversion. The gray dashed line 934 

indicates the 1:1 line and the black solid line represents the best-fit slope for the data shown. The 935 

regression coefficients in the posterior plot were calculated based on the median values of the 936 

25000 MCMC samples. The gray shaded area in the posterior plot represents the 95% 937 

uncertainty region for the regression analysis using 25000 MCMC samples.  938 

939 
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 940 
Figure 5. Inferred CH4 emissions using measurements from 13 sites for four seasons: summer 941 

(JJA), fall (SON), winter (DJF) and spring (MAM). The error bar represents the 95% confidence 942 

interval around the median value of the posterior emission estimate. 943 

944 
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 945 

Figure 6. Estimated annual CH4 emissions for the major emission regions (at 95% confidence). 946 

Regions 3, 7, 8 and 12 represents the Sacramento Valley (SV), San Francisco Bay Area (SFBA), 947 

San Joaquin Valley (SJV) and South Coast (SoCAB) air basins, respectively. 948 

949 
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 950 

 951 

Figure 7. Estimated annual CH4 emissions from the HBI analysis: (a) posterior (median) annual 952 

emissions (Gg/yr), (b) ratio of posterior to prior, (c) ratio of estimated 97.5th percentile to prior, 953 

and (d) ratio of estimated 2.5th percentile to prior. 954 

955 
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 956 
Figure 8. Comparison of the CALGEM prior (total for SoCAB = 349 Gg CH4/yr) and estimated 957 

CH4 emissions for SoCAB in the eight different recent studies including the posterior emission 958 

from this study. The value from Wunch et al. [2009] shows the CO-based estimate. Originally 959 

Hsu et al. reported LA County emissions (at 200 Gg CH4/yr) and Wennberg et al. expanded the 960 

Hsu et al. results to the full SoCAB. The uncertainty estimates are 68% confidence intervals 961 

reported by the individual studies. 962 

963 
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 964 

  

Figure 9. Posterior annual (left) and seasonal (right) emissions (Gg CH4/yr) estimated from the 965 

HBI analysis by sector: dairy livestock (DLS), non-dairy livestock (NDLS), landfill (LF), natural 966 

gas including petroleum production (NG), petroleum refining and mobile sources (RM), 967 

wastewater (WW), crop agriculture (CP, largely rice), and wetland (WL). The error bar 968 

represents the 95% confidence interval.  969 

 970 
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