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ABSTRACT 

A simple physical model is developed to understand the effect of normal 

stress on fluid flow through a single fracture. Roughness along the fracture 

walls plays a definite role in controlling the flow. In the usual parallel

plate representation for a fracture, the flow is proportional to the cube of 

the constant aperture, b. However, when the effect of fracture roughness is 

taken into account, the flow follows an equivalent "cubic" law where the cube 

of the single value for the aperture must be replaced by an appropriately 

weighted average <b3>. To obtain this average value, a physical model was 

developed wherein the single fracture is represented by a collection of voids 

and the closure of the fracture results from a deformation of thes~ voids. 

The model enables one to characterize the fracture roughness from a relation

ship between the stress-displacement measurements of intact rock and those of 

jointed rock. This calculated value of <b3> leads to flow rate as a function 

of normal stress. Predicted flow rates using this model are in good agreement 

with results from laboratory data on granite and basalt. By making several 

simplifying physical assumptions, we have eliminated the necessity of incor

porating fitting parameters to the flow data. In this manner, a basic under

standing of the factors controlling the flow of fluids through fractures has 

been obtained. 



3 

INTRODUCTION 

This paper is an attempt to develop a basic understanding of flow through 

fractured rock masses that are under stress. The hydromechanical coupled 

system chosen for our study is a single horizontal rough-walled fracture under 

normal stress. Our theory 

(i) relates the mechanical properties of the fractured rock to the 

geometrical characterization of the rough-walled fracture; 

(ii) modifies the equation describing flow through a fracture with smooth 

parallel walls to include the effect of the roughness of the fracture 

surfaces; and 

(iii) predicts the flow rate as a function of normal stress on the fractured 

rock. 

Our theory is validated against laboratory experiments with radial flow through 

single fractures in granite and basalt cores~ 

Steady laminar flow of a viscous incompressible fluid in a fracture 

composed of two smooth, parallel walls separated by distance b obeys the cubic 

law, that is, the flow rate is proportional to b3 [Boussinesq (1868), Lomize 

(1951), Snow (1965), Romm (1966), Bear (1972), Iwai (1976)]. In actual rock 

fractures the walls are far from smooth [Louis (1969), Sharp (1970), Ohnishi 

(1973)]. The asperities protruding into the flow stream vary in height and 

can be as tall as the fracture aperture b itself. In this paper we will 

examine the validity of the cubic flow law for flow through a rough-walled 

fracture. We show that an equivalent cubic law may be used as long as the 

"typical size of the asperity" (the typical distance over which the aperture 



4 

may be considered constant) is small compared to the scale of the flow region 

under study. When this physical constraint is satisfied, the effect of frac

ture roughness enters into the flow equation by introducing a statistical 

average for the variation in aperture. This implies that a rough wall frac

ture may be suitably modeled using a mathematical expression for aperture 

distribution. A schematic model of a fracture consisting of a smooth top slab 

and a rough bottom slab with asperities of different heights (hj) is shown in 

Fig. 1. The configuration of asperities gives rise to a fracture with variable 

apertures (bj}• 

Though an asperity model for a fracture seems to be the natural candidate 

for the study of fluid flow through fractures, it is not suited to the inter

pretation of the mechanical property of a single fracture under stress. The 

fact that the elastic modulus of a jointed rock is, in general, less than that 

of an intact rock is well established [Goodman, 1974, 1976]. Typi~al normal 

stress-displacement curves for intact rock and jointed rock are shown schemati

cally in Fig. 2. The shapes of the slopes of these curves clearly demonstrate 

that at low stress (< 10 MPa) the Young's modulus for the jointed rock is much 

smaller than that of the intact rock. As stress increases, the modulus in

creases and approaches the value of the intact rock at higher stresses. 

Gangi (1978) has used an asperity model to determine the stress dependence 

permeability in fractured rock. In Gangi's "bed of nails" model, the closure 

of the fracture under stress is ascribed to the elastic compression of the 

asperities, and the "softness" of the fracture is said to result from the small 
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number of asperities that are in contact. These contact areas therefore 

sustain much higher stresses than that measured by the total load divided by 

the total fracture area. As a result, the strain of the asperities in contact 

is expected to be larger than the strain in the intact rock under the same 

load. With this "bed of nails" model, Gangi obtained a very good fit to flow 

data for a fractured sandstone [Nelson, 1975]. 

However, when we applied such a model to both the flow data and stress

strain measurements for a granite fracture [Iwai, 1976], we encountered some 

difficulty. Equations used in our analysis are given in the Appendix. We 

found that in order to obtain a result that was quantitatively compatible with 

Iwai's flow data, we arrived at a contact area that, at the maximum experi

mental stress level of 20 MPa, was only 0.001 of the total fracture area. In 

contrast, Iwai's experimental results for contact area at this maximum stress 

were between 0.1 and 0.2. This discrepancy between theory and measurement is 

too large to be ignored. Furthermore, when we required the theoretical frac

tional contact area to conform to Iwai's (1976) measured values, then no agree

ment between calculated and measured flow rates could be obtained. To force 

an agreement required adopting a value of Young's Modulus for each asperity 

that was two orders of magnitude smaller than that of intact rock, which does 

not seem reasonable. We therefore proceeded to seek an alternative physical 

model for the hydromechanical behavior of a single fracture under normal 

stress. 

In this present study, we consider the closure of a fracture as result

ing from the deformation of "voids" or "cracks" between the asperities. The 
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physics of this void model predicts a very soft elastic property at low 

stresses; it also predicts a gradual increase of the effective Young's modulus 

to approach the intrinsic value of solid rock, in accordance with the behavior 

displayed in Fig. 2. Geometrically, one may either envision a single fracture 

as composed of a collection of voids or a distribution of asperities as illus-

trated in Fig. 3. The asperity model and the void model are entirely inter-

changeable as far as the geometry of the fracture is concerned. 

OUr theory utilizes the void model to describe the behavior of the frac-

ture under normal stress and the asperity model to describe the flow through 

a rough-walled fracture. A mathematical correspondence between the void model 

and asperity model is developed. This correspondence allows the prediction of 

the flow rate as a function of normal stress. As no arbitrary adjustable 

parameter is employed in the validation of this theory, our model probably 

contains the essential physics relevant to the problem of fluid flow through 

a single fracture under normal stress. 

GEOMETRICAL CHARACTERIZATION OF FRACTURE ROUGHNESS FROM ELASTIC PROPERTIES 

From the slopes of the normal stress-displacement curves such as those 

shown in Fig. 2, one can obtain the intrinsic Young's modulus E for the solid 

rock and the eff0ctive Young's modulus Eeff for the jointed rock from 

(1) 

(See nomenclature for definitions of terms.) 
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At low stresses, the effective Young's modulus Eeff of the jointed rock is 

much smaller than that of the solid rock. As stress is increased, Eeff 

approaches the value of E for the solid rock. This behavior can be success-

fully reproduced if the single fracture of the jointed rock is modeled as a 

collection of voids. 

Consider first the geometry of one elliptic flat crack of length 2d 

enclosed in a rock volume of u = 6~y6z. Following closely the formulation 

of Walsh (1965), one can show that for a rock with a collection of voids, all 

with the same orientation as the one shown in Fig. 4, the effective modulus 

Eeff of the rock with voids is related to the intrinsic rock modulus E by 

1 1 
E<u> 

( 2) 

where both the crack length cubed and the volume enclosing each void have been 

averaged over all the voids in the sample. This expression is not sensitve to 

the actual shape of the void. Walsh's derivation involved the determination 

of the strain energy of a rock mass containing no voids and the increase in 

strain energy due to the presence of voids. The second term on the right-hand 

side of (2) arises from the strain energy associated with the cracks. Since 

(2) applies to a physical situation of sparse voids, the effect of the voids 

on the elastic modulus is expected to be small. Then the p~operty of the rock 

medium in which the voids are situated may be described by Young's modulus for 

intact rock, and therefore the same modulus E appears in the strain energy 

term associated with the cracks. 
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Let us now consider one single horizontal fracture as a collection of 

voids and translate the geometry of one flat crack in Fig. 4 to the situation 

in Fig. 5. Here the voids are dense and the void ratio is large. Only a 

small fraction of the total fracture area is in contact. To describe the 

effective modulus Eeff of the fractured rock in the vicinity of the fracture, 

(2) may be modified to 

( 3) 

where (3) now includes Eeff in the last term. When the voids are large in 

number and close in proximity, the void-void interaction is no longer negli-

gible as is assumed in the derivation of (2). Since it is difficult if not 

impossible to account for this interaction in the calculation of strain 

energies, we make a plausibility argument to lump the effect of the interac-

tion by introducing Eeff in the last term of (3). The argument being that 

due to the high void ratio, the property of the rock medium is better repre-

sented by the effective modulus of the fractured rock than by the modulus of 

the intact rock. Equation 2 is the weak interaction limit when void ratio is 

small and (3) is the intermediate interaction range when void ratio is large 

in the calculation of the effect of voids on the elastic moduli of rocks. 

SUppose there are M voids in the fracture with a total cross sectional 

area A. Then the average volume enclosing each crack may be written as 

<u> = 
Mz 

M 
(4) 
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where ~z is a thickness around the fracture within which Eeff is applicable 

(see Fig. 5). Since the rock fracture is represented by a collection of voids, 

one expects the contact area of the fracture walls to be small such that the 

total void area is almost identical to the total fracture cross section area A. 

Therefore, 

In addition, for a spatially random collection of M voids, <d
3> ~ 

(3) may now be written approximately as 

1 
_ 4~<d3 > ~ 

1 
_ ~M<(2d) 2 ><d> ~ 

E u A~z 

~<d> 
1 -

( 5) 

2 
<d > <d>' 

( 6) 

An actual calculation using random numbers showed that <d3> is about one and 

a half·times that of <d2><d>. The approximation that they are equal, together 

with the approximation in (5) will introduce a numerical constant in the last 

term of (6). It will be clear from the discussion following (8) that wpether 

this constant is one as shown in (6) or otherwise will have absolutely no 

effect in all the results derived from the physical model proposed here. Note 

that (6) gives the impossible result of negative Eeff if <d> > ~z/~. Very 

large <d> corresponds to the physical limit of a fracture with ~ contact area, 

which is the strong interaction limit of the physical model. This limit is not 

described properly by (3) from which (6) is deduced. 

The physical picture implied by (6) is illustrated schematically in 

Fig. 6, which is an attempt to portray a portion of fracture shown in Fig. 5 

at different stages of normal stress. The crack length 2d is defined as the 

distance between two adjacent areas where the two fracture surfaces come into 
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contact. These areas of contact are simply the asperities as shown in Fig. 3. 

Under increasing load, the deformation of the voids causes more asperities to 

come in contact, and leads to a decrease in the average crack length. This 

process results in a gradual increase of the effective modulus with increasing 

normal stress according to (6). The average crack length 2<d> continues to 

decrease as the voids deform until the term ~<d>/Az becomes negligibly small 

compared to 1, at which point the jointed rock will exhibit an effective mod

ulus identical to that of the intrinsic modulus. Recall that Az is the thick

ness around the horizontal fracture where the rock must be characterized by the 

effective modulus. For a fracture with a maximum aperture at zero stress of a 

few hundred microns (1o-2 em), one might conjecture Az to be on the order of 

centimeters. With such a rough estimation of Az in eq. (6), one can show that 

when the average crack length decreases to the order of a few microns, the 

effective modulus differs from the intrinsic value of intact rock by no more 

than 1%. 

We emphasize that when the Young's modulus exhibited by a jointed rock is 

very much smaller than that of intact rock (one to two orders of magnitude at 

low stresses as reported by Iwai, 1976), the "softness" of the jointed rock 

must be interpreted as caused by the deformation of the voids surrounded by 

contact areas and not due to the elastic compression of the asperities. How

ever, in the case of a "stiffer" joint, where Young's modulus of the discontin

uous rock is not too different from that of intact rock, then the attribution 

of the fracture displacement to the compression of asperities should be valid. 

However, at low stress when the fracture closes easily, then deformation of 

voids is proposed as the controlling mechanism. 
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Our discussion so far does not exclude the possibility of inelastic crush-

ing of the asperities in the process of loading, this point will be discussed 

below. It is clear from Fig. 6 that one may view the sequence (a) (b) (c) 

either as a decrease in the average crack length 2<d> or as an increase in the 

number Nc of areas in contact under increasing load. For a rough-walled frac-

ture, we shall describe the former process as a "void model" and the latter 

process as an "asperity model." For a spatially random distribution of voids 

or asperities, Nc varies inversely with <d>. Given elastic stress measure-

ments, it is evident from (6) that the relative average crack length 2<d> as 

a function of stress or fracture displacement can be calculated, and in turn, 

Nc may be deduced. 

The number of contact areas, Nc, is the key to aperture distribution. 

Fig. 1 represents a rough-wall.ed fracture as an array of asperities of varying 

heights hj and corresponding aperture bj• At zero applied stress, the maximum 

possible aperture is b0 • With applied axial stress cr, the fracture closure 

AV results in a downward displacement of the top slab. At nonzero stresses, 

the aperture which corresponds to each asperity of height h is 

- AV - h) 

0 

h < (b - AV) 
0 

h > (b - AV) 
0 

Let n(h) denote the asperity height frequency distributim1 function which 

characterizes the fracture prior to loading. Then Nc, the total number of 

asperities in contact at any stress, is 

b 

Nc(AV) = 1 ° n(h)dh. 

b -AV 
0 

( 7) 

( 8) 
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It is clear from (8) that the asperity height distribution function, n(h), can 

be obtained from the derivative of Nc• 

For a given set of stress-displacement measurements, it is possible only 

to deduce the change in <d>/bz relative to its value at zero applied stress 

from (6). This implies that Nc and in turn n(h) can only be determined to 

within some constant multiplier. However, if one knows the approximate per

centage of the contact area at a particular stress, then this constant can be 

determined without ambiguity. Once n(h) is obtained, the aperture distribu

tion is also known since aperture is related to asperity height by (7). 

To recapitulate, stress-displacement measurement of fractured and un

jointed rock can be used to derive the relative average crack length and in 

turn the relative number of asperities in contact. This provides a bridge 

between the "void" model and the "asperity" model. One can then correlate the 

elastic stress displacement measurements in jointed rock to the geometrical 

characterization of the roughness of the fracture surfaces. The actual calcu

lation of 2<d>, Nc and n(h) will be presented below. 

EQUIVALENT CUBIC FLOW LAW FOR A ROUGH-WALLED FRACTURE 

We now turn to the derivation of an appropriate expression for flow 

through a rough-walled fracture. It has been shown [Boussinesq (1868), Lomize 

(1951), Snow (1965), Romm (1966), Bear (1972)] that steady laminar velocity of 

a viscous incompressible fluid through a fracture composed of two smooth par

allel walls separated by distance b satisfies the equation 



+ v = - P.!.L. b2 "+ vH. 
12jl 

13 

( 9) 

Note that (9), which governs the flow through a fracture bounded by two flat, 

parallel plates, has the same form as Darcy's law for porous isotropic media. 

In both cases b is a constant throughout the medium. It follows from (9) that 

the volumetric flow obeys the cubic law, namely 

( 10) 

where c is a proportionality constant that depends on the geometry of the 

system and properties of the fluid. For straight flow through a rectangular 

sample of length L and width w 

c = w E.SL 
L 12ll 

( 11 ) 

For radial flow in a cylindrical sample of radius re and wellbore radius rw, 

c 2'1T E.SL = - . 
r 12ll 

tn e 
( 12) 

r 
w 

In actual rock fractures, the fracture walls are far from smooth and the 

question of the validity of (9) and (10) therefore arises. In a recent anal-

ysis of results of laboratory investigations on flow through rough fractures, 

Witherspoon et al. (1980) have found the cubic law to hold. The effect of 

roughness causes a reduction in flow from that predicted using (10). However, 

this flow reduction can be handled through an empirical multiJ?lication factor 

to the constant C in (10) without altering the cubic dependence on fracture 

opening. 
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Let us now examine the theoretical validity of the cubic law for steady 

laminar flow through a rough-walled fracture. Consider two-dimensional flow 

within a horizontal fracture in the x-y plane (r-6 plane in cylindrical coordi

nates). The fluid velocity V(x, y) referred to in the following is an average 

over the z direction, that is, over the fracture aperture. The roughness in 

the fracture walls is represented by the aperture function b(x, y). For flow 

through a rough-walled fracture of variable aperture, (9) may be 

rewritten for any point (x, y) 

( 13) 

furthermore, for incompressible, steady flow, 

v . v = o. ( 14) 

Equati9ns 13 and 14 give 

( 15) 

This equation generally cannot be solved analytically for an arbitrary b(x, y). 

If one sacrifices mathematical rigor and makes some further assumptions 

based on the physics of the problem, a useful expression can be developed. 

Consider the fluid flow in a single horizontal fracture in the x-y plane with 

a pressure head maintained between x = 0 and x = L. Fig. 1 shows a schematic 

model for the cross secti~n of a fracture with variable aperture. It can serve 

as a model for the x-dependence of b(x, y) at a fixed y, or the y-dependence 

of b(x, y) at a fixed x, depending on whether the cross section considered is 

perpendicular toy axis or~ axis, respectively. We shall term the aj's in 
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Fig. 1 the "asperity length" because they are the lengths over which the aper-

ture may be considered to be constant and take on the value bj• Aperture b3 

in Fig. 1 is explicitly allowed to vanish over the length a 3 to simulate the 

situation in real fractures where there exist areas of contact over which the 

fracture is closed. Keeping in mind that a pressure gradient is maintained 

A 

along the x axis, it is clear from the schematic model in Fig. 1 that when the 

fluid flow is averaged over a length segment that is large by comparison with 

A 

the scale of aj, the flow is essentially in the x direction. The fluid 

A 

velocity does, of course, have a y component for dimensions that are on the 

order of aj in magnitude. In other words, as long as the typical size of the 

asperity is small in comparison with the scale of the macroscopic dimensions 

of the sample, it is permissible to assume the fluid velocity to have only an 

A 

x component. For any cross section at a fixed x coordinate x0 , the macro-

scopic average velocity is therefore: 

V(x , y) = ~V(x , y) 
0 0 

= A~ 2 y) ~I -x 12]1 b (xo, \..LA 

The total average flow through the width w, at x is 
0 

Q(x ) 
0 

w 

-j V(x , y)b(x , y) dy 
0 0 

0 

,_E3._dH 
12]1 dx 

X 
0 

X 
0 

w 

f 
0 

j 

3 b (x , y) dy 
0 

3 
a.b. 

J J 

X 
0 

• ( 16) 
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where <b3> is by definition the weighted average: 

j 

3 
a.b. 

J J 

a. 
J 

3 a,b, 
J J 

=-----
w 

( 17) 

( 18) 

Equation 17 is the cubic flow law at a fixed x for a fracture whose varia
o 

tion in aperture is transverse to the average flow. The total flow through 

the cross section at this fixed x is equivalent to a uniform aperture of 
0 

3 1/3 <b (x0 , y)>x • We now consider the variation of the aperture longitudinal 
0 

to the average flow, that is, consider a cross section at a fixed y coordinate, 

y • Equation 13 gives 
0 

+ 
and V • V = 0 implies 

U is a constant independent of x, it is related to the flow at any x by 

u = 
Q(x) 

Summing the pressure drops along the length of the sample: 

L J dH(x) 

0 

L 

-J 
0 

__ -_1.;..;.2.;..;.U;..:;l-l;..__ dx 
2 

pgb ( x, y ) 
0 

( 19) 

(20) 

(21) 



= -12Uu ~ 
pg L 

(21) and (22) lead to the flow in a variable-width fracture: 

Q(x) 
1 

[H ( 0 ) - H ( X ) ) 

17 

(2 2) 

(23) 

where <b3>113 is an average over the width of the sample, it arises from the 
X 

variation of aperture transverse to the macroscopic flow; <1/b
2> is an aver

y 

age over the length of the sample, it arises from the aperture variation longi-

tudinal to the macroscopic fluid flow. Equation 23 differs from the parallel-

plate description of a smooth fracture [(10) and (11)] in that two statistical 

averages of the variable aperture now replace the constant aperture-cubed term. 

Following the procedure of the derivation above, we can show that for 

divergent radial flow in a cylindrical rock sample of radius re and wellbore 

radius rw, an expression corresponding to (23) may be derived: 

Q(r ) = 
e 

r 
w 

1 
[H ( r ) - H ( r ) ] 

<:i>e w e 

(24) 

Here, <b3>1/ 3 arises from the average over the variation of aperture trans
r 

verse to the macroscopic radial flow and <1/b
2

>
8 

arises from the average over 
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the variation of aperture longitudinal to the radial flow direction. The 

presence of the numerical factor f (f ) 1 and varies with the ratio r /r ) in 
e w 

addition to the usual geometrical factor associated with radial flow in (12) 

is a correction for size-effect in the case of cylindrical symmetry. This 

correction factor emerges from consideration of the variation of fracture 

width longitudinal to the radial flow direction. The derivation is similar 

to that outlined in (19) through (22), but when the summation in (22) is 

carried out numerically for different ratios of r /r , the geometrical factor 
e w 

f in(r /r ) results. Calculated values of f are tabulated in Table 1 to show 
e w 

that the correction becomes negligible as the ratio r /r becomes large. On 
e w 

the other hand, these results indicate that for rock samples whose dimensions 

are such that the outer radius is less than seven times the wellbore radius, 

the assumption that flow is radial is probably a poor approximation. 

Table 1. Size effect correction factor for 
radial flow. 

f 

7 1.093 

13 1.033 

37 1.008 

61 1.004 
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CALCULATION OF FRACTURE FLOW AS A FUNCTION OF STP~SS 

From (6), (7), and (8), we have shown that stress-displacement measure

ments for fractured rock can be used to arrive at aperture functions for dif

ferent values of normal stress. Furthermore, (23) and (24) indicate that when 

a fracture can be characterized by an aperture function, a statistical averag

ing of the variation in aperture over the entire fracture may be carried out 

to obtain the fluid flow. In the following, we shall consider the application 

of this theory to specific cases where experimental measurements are available. 

Iwai (1976) performed laboratory investigations on the mechanical and 

hydrological properties of tension fractures in samples of basalt, granite, 

and marble. Cylindrical samples of intact rock, 0.15 min diameter, were 

diamond-cored from blocks, and a horizontal tension fracture was created in 

each sample using a modified form of the "Brazilian" loading method [Goodman, 

1974]. A center hole, 0.022 min diameter, provided access for outward radial 

flow of water. Three LVDT's (linear variable differential transformers) 

placed 120° apart and mounted so as to straddle the fracture were capable of 

detecting aperture changes as small as 0.4 ~m. Elastic deformation measure

ments of the intact rock were performed on solid samples diamond-cored from 

the same rock block. Iwai's data for the mechanical properties of granite, 

basalt, and marble are shown in Figures 7, 8, and 9, respectively. The labels 

~vt,1' ~vt, 2 , ~Vt, 3 refer to measurements recorded by the LVDT's, from which 

an average value, ~Vt was determined. The fracture deformation, ~V, was 

obtained by subtracting the rock deformation, ~Vr, from ~Vt• Deformations 

were measured with water flowing through the horizontal fracture. 
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To determine the aperture distributions, analytic functions were fitted 

to the stress displacement data in Figures 7-9. The effective and intrinsic 

Young's moduli for each material at different stages of stress were computed 

from the derivative of these functions, using (1). Equation 6 was then used 

to obtain the relative crack length 2<d>. N , the total number of asperities 
c 

in contact as a function of fracture closure, followed since it is inversely 

proportional to 2<d>. The results are plotted as points in Fig. 10, and ana-

lytic functions, represented by the solid lines were fitted to these points. 

The asperity height distribution function n(h) was then computed using (8), 

from which we evaluated the aperture averages in (23) and (24). 

A further assumption was necessary to simplify the actual computations. 

In a real fracture, the variation of the aperture is expected to be spatially 

random, and thus, the same set of aperture frequency distributions should be 

applicable to a description of the fracture regardless of the orientation of 

the cross section chosen. Therefore, the subscripts x, y, r, and 8 in the 

statistical averages in (23) and (24) may be dropped. Furthermore, if the 

average macroscopic flow is in fact along x, the average of <b
3> in (23) may 

X 

be carried out first, giving an effective fracture opening of <b3>~13 ; then 

the subsequent average <1/b
2> is trivial: 

y 

(25) 



Equation 23 then reduces to 

Q(x) = W pa 3 
~ <b >(H(O) - H(x)). 

L 12ll 

for straight flow geometry, and (24) reduces to 

Q(r ) = 
e 

for radial flow. 
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( 26) 

( 27) 

The statistical average for the variation in aperture was computed from: 

·Jbo n(h)dh 

0 

(28) 

The maximum aperture, b0 , of the fracture at zero stress can be determined 

from the contact area at a specified stress. If the contact area as a frac-

tion of the total fracture area is known to be w at a specified deformation ~v, 

then 

w= 
N (~V) 

c 
N (b ) 

c 0 

because by definition, the fracture will be totally closed when ~V 

(29), b is readily determined. 
0 

( 29) 

It is implicit in (28) and (29) that all asperities have the same cross-

sectional area. This assumption is physical. The size of each asperity 

should be on the order of a, the typical "size of the asperity" discussed 
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above. Then N (b ) multiplied by a
2 

simply gives A, the total fracture cross
e o 

sectional area. our choice of the functional form of N (~V) to fit the calcu
c 

lated values was governed by two considerations: (i) N (~V) is an increasing 
c 

function of ~V, and (ii) n(h) the derivative of N (~V), is such that the 
c 

integral in (28) may be carried out analytically. The latter constraint con-

siderably limited the range of our choice. We settled on a power functional 

dependence for N (~V) given by: 
c 

N (~V) = N (0) + a(~V)e 
c c 

and 

(30) 

(31) 

where N (0), a and 8 were the fitting parameters to be derived from the calcu
c 

lated values of of N (~V). Note that according to (8), n(h) is only defined 
c 

from N (~V) for h ) (b - ~V), whereas the statistical average in (28) requires 
c 0 

the entire range of n(h) from zero through b. The functional form in .(31), 
0 

therefore, supplies the extrapolated values of n(h) in the interval 

0 ( h < (b - ~V ) where ~V is the maximum value of the measured fracture 
o m m 

closure. After calculating average apertures from (28), radial flow as a 

function of stress could be obtained using (27). 

Iwai estimated w, the fraction of contact area in the single fracture, by 

a method similar to that of an impressograph. He found the value of w to be 

0.1-0.2 for granite and 0.25-0.35 for marble at a normal stress of 20 MPa. 

No measurements of w for basalt were reported. We used the range of values 

w = 0.1, 0.15, 0.2 for both granite and basalt, and the value 0.25 for marble 

in the calculation of flow as a function of normal stress, Q(O). Results of 
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calculated flow versus stress are compared to experimental data for granite, 

basalt, and marble in Figures 11, 12, and 13, respectively. The effects of 

variations in ware included in Figures 11 and 12. Recalling that no arbi-

trary adjustable parameter was involved in the calculation, we consider the 

agreement, between the calculated theoretical flow and the measurements, in 

the cases of granite and basalt to be remarkable. In the case of marble the 

agreement between theory and measurements is poor. An explanation for this 

will be given in the following section. 

Iwai (1976) also studied the effect of repeated loading on the mechanical 

and flow behavior of a fracture. In the case of basalt, very little hyster-

esis in the stress-displacement data was observed. Whereas in the case of 

granite, there was a considerable amount of permanent set as shown in Fig. 14. 

The difference can be understood in terms of fracture roughness profiles 

between basalt and granite. The fracture roughness profile was modeled by 

N (6V), as derived from the stress-displacement data of the first loading 
c 

cycle. The function N (6V) in Fig. 10 can be converted to a fracture profile 
c 

in real space in terms of separation between asperities and asperity heights; 

a small portion of such a profile including two asperities of maximum height 

b is shown in Fig. 15. Since our theory only determines the relative crack 
0 

length but not the absolute crack length, the horizontal scale is left in 

arbitrary units. However, for a physically realistic crack length on the 

order of a centimeter at zero stress, the horizontal scale should be expanded 

about 50 times in order to conform to the same unit as the vertical scale. 

It is clear from Fig. 15 that the granite fracture surface includes a few 

asperities that are much taller than the rest. It is very likely that these 
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asperities would be crushed by repeated loading, giving rise to a permanent 

set. By comparison, the asperity heights of the basalt are relatively more 

"uniform" so that the crushing of tall asperities is less probable. Since 

the crushing of tall asperities in a fracture under repeated loading changes 

the roughness profile of the fracture, one should expect the flow rate as a 

function of stress to be different after several cycles. Such an interpreta

tion is supported by Iwai's (1976) flow data for granite and basalt after 

repeated loadings. His results for flow versus stress differ substantially 

from cycle to cycle in granite whereas the flow remains essentially the same 

with repeated loading in basalt. 

Theoretical calculations to predict the flow for the different loading 

and unloading cycles in granite were carried out in the same manner as dis

cussed earlier. Beginning with the stress-displacement data for granite in 

Fig. 14, we calculated the function for the asperities in contact and derived 

the theoretical flow Q(o) for each cycle separately. The theoretical predic

tions as compared to data are shown in Figs. 16 and 17. The fractional contact 

area was assumed to be 0.15 in all calculations. Similar calculations were 

not carried out for basalt because the differences in the flow data for dif

ferent cycles were too small to render a meaningful comparison between data 

and our theory. Relevant parameters used in equation 31 for all cases calcu

lated so far are tabulated in Table 2. 
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Table 2. Selected parameters used in the "void" model. 

Rock type and 
f3 bo (J..Im} flVm (J.lm) mechanical specification 

granite, run 1, loading .15 35. 114. 44 108. 20 

granite, run 1' unloading .15 36. 114. 54 108.20 

granite, run 2, loading .15 13. 41. 32 35.37 

granite, run 2, unloading .15 14.5 40.92 35.37 

basalt, run 1, loading .15 7. 5 65.78 49.50 

marble, run 1, loading .. 25 15 • 37.22 33.80 

DISCUSSION OF RESULTS 

Since our present theory involves no flow data fitting, the agreement 

between theory and flow data displayed in Figs. 11, 12, 16, and 17 has some 

important implications. It indicates that our theory probably contains the 

essential physics that is relevant to the problem of fracture flow coupled 

with stress. The theory contain~ several simplifying assumptions, but it 

does not depend on an arbitrary adjustable parameter. The lack of any fitting 

parameters in the interpretation of flow versus stress data is the key differ-

ence between this work and previous studies [Gangi (1978}, Witherspoon et al. 

(1980)]. Our physical theory requires the input of (i) the stress-displacement 

data for both the unjointed and jointed rock, and (ii) an estimated fractional 

contact area for the fracture walls at a specified stress. The stress-

displacement data lead to the derivation of the relative asperity-height 

distribution. The fractional contact area supplies the constant which allows 
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the calculation of the absolute height of the tallest asperity. The salient 

feature of the theory is that a roughness profile of the fracture may be 

deduced from the stress-displacement measurements, which in turn allows the 

prediction of flow as a function of stress. 

In general, any or all of the several physical assumptions and mathemat-

ical approximations in our model can contribute to errors in the calculated 

result for flow. In particular, N (AV), the number of asperities in the 
c 

contact function, and n(h), the asperity height distribution function, are 

involved in all phases of the computation; it is likely then that errors 

associated with these quantities may play a greater role in contributing to 

the discrepancy between the theoretical prediction of flow and the experi-

mental measurements. Recall that the mathematical treatment of N (AV) and 
c 

n(h), involved the following: (i) the fitting of an analytic function to the 

stress-displacement data. (ii) the fitting of an analytic function to the 

calculated values of N (AV), and (iii) the definition-of the values of n(h) 
c 

in the range of small h by extrapolation from the analytic function fitted to 

N (AV). It is clear that these various manipulations can all contribute to 
c 

error in the subsequent prediction of the theoretical flow Q(cr). 

Figure 10 shows that an exact fit to the calculated values of N (AV) ~Y 
c 

the analytic function (30) is not obtained with all three rock types. This 

would account for some discrepancy in the theoretical flow and in the data 

(Figs. 11, 12, 13). In treating the stress-displacement data in order to cal-

culate N (AV), we encountered no difficulty in choosing an analytic function 
c 

with an excellent fit in the cases of granite and basalt (Figs. 7 and 8). 
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However, the stress-displacement data for marble (Fig. 9) could not be fitted 

by an analytic function throughout the range of measured stress due to the 

"anomalous" shape of the data (note in particular the component ~V 
1 

in 
t, 

Fig. 9). The analytic function chosen deviated significantly from the meas-

ured ~Vt for stresses greater than 2 MPa. Since the values of N (~V) are 
c 

calculated from the derivatives of stress-displacement curves, the effect of 

any discrepancy in the theoretical fit to the stress-displacement data would 

be greatly magnified in the resultant N (~V) values. Therefore, the resultant 
c 

N (~V) for marble is probably a poor representation of the actual roughness 
c 

profile of the fracture walls, thus giving rise to errors in the prediction of 

flow (Fig. 13). Furthermore, the nonsmoothness of the theoretical flow curve 

in Fig. 13 is further evidence of noise in the stress-displacement data for 

marble~ Of course, one may choose to fit the stress-displacement data numeri-

cally rather than by an analytic function which will require numerical integra-

tion of (28). It is conceivable that such a procedure could produce a better 

fit to the resultant flow. However, since it is not clear whether the anomaly 

in the stress-displacement data as shown in Fig. 9 was actually physical or 

experimental in nature, and since the emphasis of this present study is on the 

understanding of the physical processes rather than the exact fitting of curves, 

we did not pursue this matter further, but devoted our efforts to calculations 

on granite and basalt. Finally, the use of extrapolated values for n(h) in 

the range of h from 0 to (b - ~V ) introduces error in the theoretical 
o m 

calculation of flow, especially in the region of high stresses. However, the 

significance of the error introduced by this approximation can only be assessed 

after our theory is compared with much more data. 
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It appears then that given relatively noise-free stress displacement data, 

our theory can predict flow behavior in reasonable agreement with measurements. 

Both a "void" and an "asperity" description of the fractures were used in the 

theory. The former is suited to the mechanical property and the latter to the 

hydrological property of the rough-walled fracture. The physical picture that 

emerges from such a model is that at zero applied stress, the fracture is 

propped open by only a few tall asperities, giving rise to very long average 

"crack" lengths, therefore the elastic property of the jointed rock appears to 

be extremely soft at low applied stresses. At higher stresses, the number of 

asperities in contact increases rapidly, causing a rapid decrease in the aver

age crack length, thus the Young's modulus of the jointed rock approaches that 

of the intact rock. 

The fact that the fractional contact area at the maximum applied stress of 

20 MPa is on the order of 0.15 is of interest. While the stress-displ~cement 

measurements indicate that the Young's modulus of the jointed rock becomes 

almost identical to that of the intact rock at this stress level, the fracture 

is far from being "closed"; only about 15% of the fracture surfaces are in 

contact. The mechanical property of the fracture becomes indistinguishable 

from that of the intact rock, not because the fracture is "closed," but because 

the average crack len~h under increased load has shortened sufficiently, caus

ing the voids in the fracture to deform from elongated shapes (Figs. 4 and 5) 

to voids more like spheroids. Thus, with respect to its elastic property, the 

fracture behaves very much like an intact rock; but with respect to its hydrau

lic property, the fracture is definitely "open" to allow fluid transport. 
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Our observation therefore indicates that a fracture probably cannot be "closed" 

sufficiently to completely prevent hydraulic flow unless it is subjected to 

very high normal stresses. This seems to be consistent with the observation 

of Kranz et al. (1979) from their measurement of permeability from pulse decay 

data. Kranz et al. deduced indirectly from their data that the difference in 

the flow rate between a rock with and without a joint does not vanish until 

the effective pressure is at least 200-300 MPa. 

CONCLUSION 

Our investigation shows that the simple smooth parallel plate representa

tion of a rock fracture is probably inadequate in analyzing flow through a 

fracture that is deforming under stress. Roughness in the fracture walls plays 

a definite role in affecting the flow. In the parallel-plate model for a frac

ture, the flow is proportional to the fracture aperture cubed. When the effect 

of roughness in the fracture walls is taken into account, the flow still fol

lows an equivalent "cubic" law with the single value for the aperture replaced 

by a statistical average. Furthermore, in radial flow geometry, an additional 

correction factor due to rock sample size also arises. The correction factor 

developed here suggests that flow measurements performed on rock samples with 

sample diameter over well bore ratio that is much smaller than 7 will probably 

give results significantly different from measurements performed on larger 

samples. 

In this study, we included the effect of fracture roughness in a physical 

model, from which flow through the fracture as a function of stress was calcu

lated. Given the stress-displacement data (for both fractured and unjointed 
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rock) and the approximate fractional contact area at any specified stress, we 

have developed a procedure for determining roughness profiles of fractures at 

different levels of stress. One interesting observation from this study is 

that the fracture probably cannot be "closed" completely unless the applied 

normal stress is extremely high. In developing this model, we have made sev

eral simplifying assumptions, with the main objective of eliminating arbitrary 

adjustable parameters from the theory. The success in interpreting different 

aspects of available data on granite and basalt seems to indicate that the 

model is physically sound. The physical insight gained in this study is 

significant. It is now possible to understand how the roughness profile of 

a fracture changes with the application of normal stress; one can also predict 

the resultant flow through the fracture since it is mainly governed by the 

geometry of this profile. In future work, we hope to extend the concept 

developed here to apply to fractures under normal plus shear stresses and to 

networks of fractures. 
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APPENDIX 

Figure 1 shows a schematic representation of a fracture as proposed by 

Gangi (1978). The asperities are indexed by j. At zero applied normal stress, 

each asperity is defined by height hj, width aj, and the corresponding aper-

ture bj, b0 being the maximum aperture. Assume that the asperities obey Hook's 

law as the top surface of the fracture in Figure 1 displaces downward by 6V 

under normal applied stress, then the measured stress is: 

I 

'n(h.)k.[h.- (b - 6V)) L J J J o 
o(6V) 

1 
(A1) =-

A 

j 

where kj is the spring constant of the jth asperity, n(hj) is the number of 

asperities with height hj and the summation sums only over the asperities whose 

heights at zero applied stress are greater than (b0 - 6V). To a first approxi-

mation, the spring constant may be expressed in terms of the intact rock Young's 

modulus E, the asperity height, and the asperity cross-section area Sj ~ aj2, 

s. 
k. =E....lh 

J . 
J 

(A2) 

Putting (A2) into (A1) and in the limit that the summation may be written as an 

integral, we obtain 

o(6V) 
E =-
A 

b -t:.V r· o n(h}s(h)(h- b
0 

+ 6V) 

jb h 
dh. (A3) 

0 

Therefore the variable aperture of the fracture is characterized by the 

asperity height and area distribution function n(h)s(h), which should satisfy 

the normalization condition 
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t:.v 

l n(h)s(h) = A. 

0 

(A4) 

Since the asperity height, h, and the aperture, b, at zero applied stress are 

related by 

b = b - h 
0 

(A3) may also be rewritten as 

a(f:.V) =.! rt:.v n(b)s(b)(f:.V- b) db. 
A Jo (b

0 
- b) 

(AS) 

(A6) 

In (26) of the main text we showed that the flow in a rough fracture may 

be written as 

Q(f:.V) 
3 

= Q(O) .<b (f:.V)> = Q(O) 
<b3 (0)> 

(A7) 

Suppose we allow n(b)s(b) to vary as a power of aperture, obeying the 

normalization condition of (A4), then 

( 
. ) B-1 

n(b}s(b) = AB ~0 (AB) 

where B is a dimensionless parameter. Given any value of B, one can put (AS) 

into (A6) and (A7) and compute the stress a(f:.V)/E and the flow Q(f:.V)/Q(O}, 

each in terms of the parameter f:.V/b0 • The actual value of b0 is not known. 

Furthermore, the fractional contact area w of all the asperities at any dis-

placement t:.v can be determined from (AS), 
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AV 

(I) ::::: 

J. n(b)s(b)db 

_o;...b _____ - ( ~: / 
f.. 0 

n( b)s(b)db 

(A9) 

We now have the quantities Q(AV)/Q(O), a(AV)/E, and wall in terms of 

AV/b0 and s. We may choose to treat S as an adjustable parameter to calculate 

curves of flow versus stress. Then the S determined from such a procedure 

will also dictate the theoretical fractional contact area w at any specified 

displacement AV. Conversely, if one chooses to specify the value of w, we are 

in fact fixing S, and this value of S from (A9) will determine the variation 

of flow versus stress. Both procedures were employed in the analysis of Iwai's 

(1976) flow and stress-displacement data. 



34 

ACKNOWLEDGEMENT 

We would like to thank Professor Neville G. w. Cook for discussions in 

the initial phases of this work. This work is supported by the Department of 

Energy under contract w-7405-ENG-48. 

REFERENCES 

Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York, 1972. 

Boussinesq, J., Jour. de Liouville, 12, 377-424, 1868. 

Gangi, A. F., Variation of whole and fractured porous rock permeability with 

confining pressure, Int. J. Rock Mech. Min. Sci., 15, 249-257, 1978. 

Goodman, R. E., The mechanical properties of joints. Proceedings of the Third 

Congress, International Society for Rock Mechanics, Denver, V.I-A, 1974. 

Goodman, R. E., Method of Geological Engineering in Discontinuous Rocks. 

West Publishing Co., New York, 1976. 

Iwai, K., Fundamental Studies of the Fluid Flow Through a Single Fracture. 

Ph.D. thesis, u. of California, Berkeley, 1976. 

Kranz, R. L., Frankel, A. D., Engelder, T., and Scholz, c. H., The permeability 

of whole and jointed Barre granite. Int. J. Rock. Mech. Min. Sci., 16, 

225-234, 1979. 



Lomize, G. M., Filtratsiya V Treshchinovatykh Porodakh (Flow in Fractured 

Porous Rocks), Gosenergoizdat, Moscow, 1951. 

35 

Louis, c., A study of groundwater flow in jointed rock and its influence on 

the stability of rock masses. Imperial College Rock Mechanics Research 

Report No. 10, 1969. 

Nelson, R., Fracture Permeability in Porous Reservoirs: Experimental and 

Field Approach. Ph.D. Dissertation, Department of Geology, Texas A&M 

University, 1975. 

Ohnishi, Y., Laboratory Measurement of Induced Water Pressures in Jointed Rock. 

Ph.D. Thesis, u. of California, Berkeley, 1973. 

Romm, E. s., Filtratsionnye Svoistva Treshchinovatykh Gornyx Porod (Flow 

Characteristics of Fractured Rocks). Nedra, Moscow, 1966. 

Snow, D. T., A Parallel Plate Model of Fractured Permeable Media. Ph.D. 

thesis, u. of California, Berkeley, 1965. 

Walsh, J. B., The effect of cracks on the uniaxial elastic compression of 

rocks. J. Geophys. Res., ~~ 399-411, 1965. 

WitherspJon, P. A., Wang, J. s. Y., Iwai, K., and Gale, J. E., Validity of 

cubic law for fluid flow in a deformable rock fracture. Water Resour. 

~ ~(6), 1016-1024, 1980. 



36 

a 

A 

b 

bo 

br 

c 

d 

E 

Eeff 
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f!H 
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kj 

J/, 

L 

M 

n(h)dh 

Nc(l:IV) 

Q 

re 

r, e, z 

NOMENCLATURE 

typical asperity size 

fracture cross sectional area 

fracture aperture 

maximum fracture aperture 

residual fracture aperture 

constant in cubic flow law 

crack length 

Young's modulus for rock 

Effective Young's modulus for jointed rock 

size-effect factor 

acceleration of gravity 

asperity height in fracture 

piezometric head 

summation index 

spring constant of the jth asperity 

length over which displacement measurements are made 

length of rectangular rock sample 

number of voids in schematic representation of fracture 

asperity height dis·;;.ribution function 

number of areas of contact in fracture 

flow rate 

outer radius of cylindrical sample 

cylindrical coordinates 
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rw wellbore radius of cylindrical sample L 

Sj cross section area of the jth asperity 

u volume enclosing one crack 

u equivalent flow velocity L/T 

+ 
v flow velocity L/T 

b.v fracture deformation L 

b.vr rock deformation L 

AVm maximum value of measured fracture deformation L 

AVt total jointed rock deformation L 

w width of rectangular sample L 

x, y, z Cartesian coordinates 

x. y, z unit vectors 

a, !3 parameters in analytical form of Nc(AV) 

JJ dynamic fluid viscosity M/LT 

p fluid density 

Cf stress normal to fracture 

w contact area as a fraction of the total area of the fracture 
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