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On a One-Dimensional Finite Strain Beam Theory: The Three
Dimensional Dynamic Problem

J. C. SIMO.

Post-Doctoral Fellow. University of California, Berkeley.

Abstract

This paper is concerned with a one-dimensional finite strain beam theory
which generalizes to the fully three dimensional dynamic situation the formula-
tion originally developed by Reissner for the plane static problem. Our
approach proceeds by constraining the general 3-dimensional theory with the
introduction a kinematic assumption. The crucial step in the formulation
presented is the particular parametrization chosen, which results from the
kinematic description of the beam in terms of a moving orthogonal frame. This
frame does not coincide with the convected frame, often used in the formula-
tion of rod theories, unless shear deformation is ignored. The introduction of
the moving frame allows a simple geometric interpretation of the strain meas-
ure conjugate to the resultant torque as the axial vector of a spatial skewsym-
metric tensor associated with the moving frame. In addition, the objective rate
which results from the reduced expression for the internal power in terms of
the resultant (spatial) force and torque, has a simple physical interpretation
involving the spin of the moving frame. The formulation presented is particu-
larly useful in a numerical treatment of the 3-dimensional dynamic problem,
and forms the basis of the finite element implementation considered in a forth-

coming paper.
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1. Basic Kinematics.

In this section we discuss the basic kinematic concepts relevant to present 3-dimensional
nonlinear model.

1.1. Moving basis. Kinematic assumption.

Geometrically, the current configuration of a rod is described by defining a family of cross
sections the centroids of which are connected by a curve which we refer to as the line of cen-
troids. Notice that a result of shearing of the rod, cross sections are not normal to the line of
centroids in the current configuration. Accordingly, to specify the current configuration of the
beam we formally introduce the following objects

(i) A curve defined in an open interval ICR:
Sel— ¢,(S)ER’, 1.1

called the line of centroids.
(i) A family of planes defined by the unit vector field

Sel— n(S)eR’. (1.2)
The planes through ¢,(S)€R?> normal to 2(S), S€I, will be referred to as cross sections
of the rod.
(iii) A fiber within each cross section defined by the unit vector field

Sel— ,(S)eR?. (1.3)

Thus, at each point of the curve S—¢,(S) we may define an orthonormal frame
{£,(5), t2(5), 2 (S)}, which we shall refer to as moving or intrinsic frame, such that

W =1, leeS)=1, 8(S) otr(S) =0, T=1,2), ,(S) «t2(S) =0

and
t3(S) = n(S) = ,(8) x t,(S), SeICR. (1.4

For convenience, the notation t3(S§) = n(S) will often be employed. Our basic kinematic
assumption, then, is that the admissible configurations of the rod, denoted by

¢ IxQ — R3, (1.5)
where © C R? is compact, have the following explicit form

2
x=¢EnEnS) = ,() + ¥ £rtr(S). (1.6)
P}

The geometric significance of assumption (1.6) is illustrated for the plane case in Figure 1. For
simplicity we shall assume herein that the unstressed configuration of the rod, which is taken as
the reference configuration, is such that the line of centroids is a straight line so that the mov-
ing frame in the reference configuration becomes simply the standard basis in R3, and is
denoted by {E]. This is illustrated in Figure 1. For convenience, we shall often use the nota-
tion f b f]ﬁ] + fztz.

Remark 1.1. We emphasize that the unit vector field S — n(S) is not tangent to the line
of centroids S—¢,(S) in the current configuration; but normal to the cross section passing
through ¢,(S5). O

Remark 1.2. The parameter S €1 represents the arch of length of the line of centroids in
the reference (unstressed) configuration. There is no difficulty in considering "initially curved"
geometry. In such an event, the basis {E;} becomes a function of S€I. O



Simo 3-D Finite Deformation Beam Model 3

t, )
n - a
N7 e
v
.~
- E1
Eit ) ) T‘—sz’dg>_53
0 Es
|
{ S u

Figure 1. Kinematic assumption. Reference and current configurations (plane problem)

1.2. Derivatives of the moving basis.

Since the moving basis {t;(S)} is orthonormal for each S€I, there exists an orthogonal
transformation S — A(5)€S0 (3), where SO(3) stands for the orthogonal (Lie) group, such
that

t1(S) = A(S)E;, or (8)=Au8, I=(1,23), (1.7

where, (&) denotes the fixed spatial frame, not necessarily coincident with {E}, and
A(S) = A, ;8,®F; is a two—point orthogonal tensor field. Taking derivative of (1.7) relative to

S €1 we obtain

—fs—t](S) = Q) 4(S) (1.8)
where:
- |4 T
Q) = dSA(S)]A (s) 1.9

is a skew—symmetric tensor field; i.e., £1(S) + T(S) = 0. Since £2(S) is an spatial tensor
for each S €1, its components may be given relative to the moving frame {t), and expressed in
matrix form as

0 x3(8) —xy(S)
[ (S)] = —]—«3(S) 0 «1(5) |. (1.10)
k2(S) —x(S) 0

It is convenient to introduce the axial vector field S— 0 (S)€R? associated with the skew-
symmetric tensor {2 (S), which is defined by the relation £ (S) £(S) = O. Thus, relative to
the moving frame we have the representation

a(8) = x,(8) 1(S) + «2(S) t2(5) + «3(5) a(S). 11D
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The derivatives of the moving frame given by (1.8) may then be recast into the alternative
expression

—‘—;d—gt;(S) =0S)xt(S), (=1,23). (1.12)

This completes the basic kinematic relations needed for subsequent developments. We
note the following

Remark 1.3. The moving frame {;(S)} should not be confused with the convected basis
which is often used in the development of rod theories (e.g. Antman {1972], Naghdi [1980]),
and is defined as follows. Let F(£,5) be the deformation gradient and F,(S) = F({,S)r:-o
Then, the convected basis {E} is defined as

2,(5) =F,(5) &, (1=1,2,3). (1.13)
From the basic kinematic assumption (1.6) it easily follows that

2
F,(5) = 3 tr(S)®kr + L ¢,(5)®E; (1.14)
& as

The convected base vectors, then, are given by

2,(S) = t,(5),  EAS) = ts(S), a;(s>=;%—¢,,(s>. (1.15)

Thus, the essential difference between the convected basis and the moving basis {t,(S)} is that
E; is tangent to the line of centroids whereas n(S) = t3(§) is normal to the cross section.
Notice also that the moving basis {t;(S)} is orthonormal whereas the convected basis is not. If
shear deformation is not taken into account the difference between both bases disappears. O

Remark 1.4. It is emphasised that the vector field S — 2 (S), although parametrized for
convenience by the reference arc length S€1, takes values on the current configuration. Accord-
ingly, its components are given relative to a spatial basis; either {&;] or relative to {t} as in
(1.11). Alternatively, we may define a material vector field by setting

S"‘K(S)EK[(S)E] (1.16)

In view of (1.7), 8 (S) and K(S) are spatial and material vector fields related according to
n(s) =AS)k(S). a1mn

The vector K(S) appears naturally in the material form of the reduced expression for the inter-
nal power, as shown in Section 4. O

2. Motion. Linear and Angular Momentum.

In this section we extend the kinematic concepts discussed above to account for dynamic
effects. We shall see that the expression for the angular momentum involves the material time
derivative of the vorticity vector associated with the moving frame.

A motion of the rod is a curve of configurations parametrized by time; that is

2
t—¢, =¢,(85,0)+ F &rtr(S,1), (2.1
=l

where t€R™” is the time. Prior to introducing the linear and angular momentum vector fields
associated with the motion (2.1), we need the following result.

Time derivatives of the moving frame. The moving frame {t,(S,7)} is defined by (1.7)
where the orthogonal transformation now depends on time; e.g., (5,1)— A(S,t). Denoting by
a superposed "dot" the material time derivative, we then have (I=1,2,3)

(5,0 = [AS,)AT(S, )1 1,(S,1) = W(S,1) ,(S,1) (2.2)



where W(S.7) = —W7'(S,1) is a spatial skew—symmetric tensor which defines the spin of the
moving frame. The associated axial vector w(S,7), which satisfies W(S,7) w(S,r) = O, gives
the vorticity of the moving frame. In terms of the vorticity vector, equation (2.2) may be writ-

ten as
t,(S,0) = w(S,0)xt,(S,0) (2.3)
Linear and Angular Momentum. Consider an arbitrary cross section denoted by 1, and
given by Q, = ¢,E_FLM(Q), for each s€l. We define the linear momentum per unit of
reference arc length, associated with the motion (2.1), by the integral

L= [0,(£,5) 8,50 dE = 4,8,(50, (2.4)
[t

where p, (£,5) is the density in the reference configuration, and we have employed the fact that
S—¢,(S,1) defines the current position of the centroid of the cross section.

Similarly, the angular momentum per unit of reference arc length, associated with the
motion (2.1), and relative to the point x, = ¢,(S,1), is defined as

H, = {p,,(f,S) [x — ¢,(5,01x (€,5,0) de , 2.5)

where x = ¢ (£,S5,1). To find a reduced expression for H, we make use of (2.3) as follows.
Expression for H,. From the kinematic assumtion (2.1) and (2.3) we have

. . 2 .
b-b =T &t =wx(p—e,). (2.6)
=1

Substitution of (2.6) into (2.5) together with the fact that x, = ¢,(S, 1) defines the centroid of
the cross section, yields

H,=£po(¢-¢a>xlwx(¢—~¢0)ldf

[ oo llo—0,121 - (66,00 ~¢,)] délw =L, w, @)
0
where I, is the inertia tensor with the following explicit representation relative to the moving
frame
2 2
L=I(3 Y [p. 6.5 ¢ 65d6) 651 — 1,815 . (2.8)
A=18=171

Notice that the components of Ip relative to the moving frame do not depend on time. Taking
the material time derivative of (2.7), noting that w = w;¢; and making use of (2.3), we obtain
the following expression for H,,

H=Lw+wxH,. (2.9)
The analogy between (2.9) and the expression for the angular momentum in rigid body

mechanics is evident.

Remark 2.1. Let us consider the particular case in which the moving frame {t,(S,1)} is
directed along the principal axes of inertia of the cross section. Introducing the notation

1,(S) E_!;[fzppo(f,S) de, 1,(S) z!lg,]zp,,(m) dt | (2.10)
]

and denoting by J = I, + I, the polar moment of inertia of the cross section, expression (2.7)
for the inertia tensor then reduces to the familiar form

Ip = I] 1, ®t; + 12 1,0t + Ja®n O (2.11)
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3. Force and Torque. Equations of Metion.

In this section we summarize the equations of motion for the nonlinear beam model. A
comprehensive treatment can be found in e.g., Antman [1972], Sect.6. For completeness a
simple derivation is included in the Appendix. The component form of these equations in the
material description take a particularly simply form involving the orthogonal matrix [A] which

is well suited for computational purposes.
Consider a cross section €}, = ¢, S Fixe d(ﬂ) in the current configuration, and let P(£,S)
denote the first Piola-Kirchhoff stress tensor. We may express the two-point tensor P(£,5) as

PES) = T](f,S)@E] + Tz(f,S)@iz + T3(§,S)®i3. 3.1)

Clearly, T3(¢,5) = P(¢£,5) £ is the stress vector (per unit of reference area) acting on the cross
section 2,CR2

The resultant contact force per unit of reference length £(S,1) over the cross section {}, in
the current configuration is then given by

(5,0 = [ P€.5) ka6 = [ T3.5) de (3.20)
[{} 0

Similarly, the resultant torque per unit of reference arc length m(S,t) over the cross section 1, in
the current configuration is given by

m(S,) =£ [x — 6,(5,0]x T3(£,5) dé . (3.2b)

The linear and angular momentum balance equations then take the form (see Appendix)
5‘% f+g=L = Apif;,,., (3.3a)
-aggm+a:;xf+iﬁ-ﬁ,£-;;, Sel, (3.3b)

where q and m are the "applied” force and torque per unit of reference arc length. In applica-
tions, the material form of these equations is often more convenient.

3.1. Material description.

The vector fields £(S,¢) and m(S,?), although parametrized for convenience by the refer-
ence arc length S €1, take values on the the current configuration; i.e., their components are given
relative to a spatial basis, either {&,] or {t)}. Alternatively, we define material vector fields

S“"’NEN]E], S"’MEM]E], Sel, (3.4)

by pulling-back the vector fields £(S,r) and m(S,1) to the reference configuration IxQ2 C R?
with the orthogonal transformation S — A(S,t). Accordingly, we have the relations:

f=AN, and m=AM 3.5)

The geometric meaning of N(S,t) and M(S,7) follows from the observation that
f= N/A E; = Nity, and m= M;t; : (3.6)

Thus, the components of the force and moment vectors § and m relative to the moving frame {t)
equal those of N and M relative to the reference frame {E).

The component form of the equations in the material description are obtained by

*For a formal definition of the pull-back operation see, e.g, Abraham, Marsden & Ratiu {1983], Manifolds,
Tensor Analysis and Applications, Addison-Wesley Co., Ma.
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substitution of (3.5) into (3.3a,b).

Remark 3.1. The classical equations of thin rods of Kirchhoff-Love (Love [1944],
pp.387-388) may be now recover from (3.3a) and (3.3b) as follows. First, we introduce the
current arc length defined by the map

5
5 — 58 = [ 18¢ow,0/0uldu, €X))

which may be regarded as a smooth reparametrization. Next, we note that if no shearing
effect is considered, we must have

9 ds . N
as¢o(5,1) o aG), laG)l=1 (3.8)
which is simply the first Frenet formula. From (3.6); we have
dm _ ds |OM;
55 45 "—'—as 0 ]JMJI tr. (3.9)
Making use of (3.8) and (3.6);, since i X t3=t, and @i X t; = —¢t;, we also have:
¢ d:
-5-5:0—><f== —Z;—[Nltz——Nth (3.10)

Substitution of (3.9) and (3.10) into (3.3b) leads, for the static case and with the assumption
that m = o, to the Kirchhoff-Love moment equilibrium equations ' (Love [1944], p.388,
Eq.(11)). The force equilibrium equation follows at once from (3.3a) and (3.6),.0

4. Internal Power and Strain Measures. Constitutive Equations.

Our purpose in this section is to formulate properly invariant reduced constitutive equa-
tions in terms of global kinetical and kinematical objects. Our first step is to obtain a reduced
expression for the internal power from the general expression of 3-dimensional theory, by
introducing the basic kinematic assumption (2.1). This reduced expression yields the appropri-
ate definition of strain measures conjugate to the resultant force and moment in the spatial as
well as in the the fully material descriptions.

4.1. Internal power. Strain measures.

We first consider the reduced expression for the internal power in terms of the spatial
force £(S,7) and torque m(S,1) defined by (3.2a) and (3.2b), respectively. The basic result is
summarized in the following

Proposition 4.1. With the kinematic assumption (2.1) in force, the internal power I1 may
be expressed as

) v v
n= rf P:FdedS=[foy +menlds, (4.1a)
x 1

where 0(S,¢) is the spatial vector with components given by (1.11), ¥(S,?) is a spatial vector
defined by '

y(S.) = %"—(S,z) — 8., @.10)

v
and (¢ ) stands for the following objective rate

""Notice that [€3] defined by (1.10) would have opposite sign with the convention in Love [1944], Eq. (5),
p.384.
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v
()

() mwx (o) (4.10)
ot

Proof. To prove expressions (4.1a,b) we first compute the deformation gradient. From
(2.1) and using (1.12) we obtain

2
F=3 t®E+ | + 0 x(x—¢,)QF; (4.2)
T

9,
85

Taking the material time deri‘)ative and making use of (2.3) we have
99,
M

. 2 N . .
F=3 (wxt)®kr + | + 00X (x—¢)I®E+ [ax{wx (x—¢,))I®E;  (4.3)
=1

3
Since P = § T®E,, it follows that
=1

i 9¢, _ .
P F=Tje. 3s + [(x—¢,)xTy -0
2

+ Tselox{wx(x—¢,)}]] + T weltrxTp) (4.4

[el

We now make use of the angular momentum balance condition %? xTi{=0, and (1.12) to
1

express the last term in (4.4) as

2 2
ZW o(trxTr) =we 2 9 (x—@,) xTr
=1 =) 9ér

=—-w.{%%xT3]E—T3-[wx a:SD +wx{ax(x—-¢,)ll 4.5

Substitution of (4.5) into (4.4), use of definitions (3.2a) and (3.2b), together with the identity
axlwx (x—¢,)]—wxlax(x—e¢,)]

leads to the following reduced expression for the internal power
0 a¢o a¢o ]
n f-[at(as) w X aS]+m-(n wxn), 4.7

which proves the proposition. O v

Remark 4.1. The physical significance of the rate (o ) should be clear. It gives the rate
of change of { ) relative to an observer which moves with the spatial frame {t;}, since the
effect of the spin of the moving frame {tJ given by w is substracted from the material time
derivative. Thus, one often speaks of a corrotated rate. This interpretation follows at once
from (2.3). O

Alternatively, we may recast the reduced expression (4.1a) for the internal power in terms
of material fields N and M as follows.

Proposition 4.2. With the kinematic assumption (2.1) in force, the reduced expression
for the internal power may be expressed as

HErfP:f"dde=f[N-f+M-R]d9, (4.82)
X {} I

where N(S,7) and M(S,1), are material vector fields defined by (3.5), and ' (S,r), K(S,1) are
material vector fields given by
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9d, &8 — AT a¢o_.
35 Es= A [as nl,

k=ATa (4.8b)

r=A"7

Proof. The result follows at once from (2.2)-(2.3) by noting that for any spatial vector

h = h;t; we have
v 3 9 0 T

hz-a—th-wxh=5;h—Wh==A5;[A h]. 4.9)
Since m, M, f and N are related according to (3.5), use of proposition 4.1 and (4.8b) suplies
the result. O

Remark 4.2. It is interesting to examine the limiting case of the Kirchhoff-Love situation
considered in Remark 3.1. As a result of assumption (3.8) the strain measures ¥ and I' reduce
to

ds - ds -
v [dS 118, and T [dS 11 &, (4.10)

since i = ty= A £3. Thus, shear deformation of the rod vanishes identically. Actually, the
situation discussed in Love [1944] (Sects. 255-256, pp.388-393) corresponds to that of a super-
posed infinitesimal deformation, and may be obtained as a particular case of proposition 4.2 by
consistent linearization procedures. O

Remark 4.3. The strain measures (4.8b) could also be obtained by starting with the
material form of the balance equations and making use of a one dimensional virtual work type
of argument as in Reissner [1972]. Our approach, however, proceeds directly from the 3-
dimensional theory. O

Next, we formulate global constitutive equations.

4.2. Constitutive Equations.

In what follows, attention is restricted to the elastic case and the pure mechanical theory.
More general situations including heat conduction may be considered by the methods in e.g.,
Naghdi [1980] or Antman {1972]. For present purposes we simply note that as a result of pro-
position 4.1 for elastic behavior we may define a stored energy function ¢ (S,y,0) such that

(- aq_:(g,yz,n)’ and m,éﬂ%f_&l, sel 4.11)

Similarly, in the material description, as a result of proposition 4.2 we may define a stored
energy function ¥ (5,r,K) such that

N_a\x'(gl:r,x), and M,ﬂ%ﬁ&, Sel (4.12)

For computational purposes, particularly for inelasticity, the rate form of constitutive equations
(4.11) and (4.12) is often needed. In the material description taking the material time deriva-
tive of (4.12) we simply have

oV oV F P
oror 9Jrok
=1 aw av = CE,r,x) - (4.13)
M| |orok 9kxox K

Making use of (4.9) and the chain rule, equation (4.13) may be expressed in the spatial
description as

;7 oy ay (v v
dyod dyda | |” 4
m 0 0

dydn 9040
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We refer to C and ¢ as the material and spatial elasticity tensors, respectively. In particular,
one often assumes in applications that the material elasticity tensor C in the rate constitutive
equations (4.13) is diagonal! with constant coefficients. This is equivalent to assuming a qua-
dratic (uncoupled) expression for the material stored energy function ¥ (S,1,K). Of this partic-
ular type are the constitutive equations of the classical Kirchhoff-Love rod theory. This com-
pletes our discussion of constitutive equations.

Remark 4.4. With the assumption that the material elasticity tensor C in (4.13) is diago-
nal with constant coefficients, one can formulate simple inelastic constitutive models which are
properly invariant and account for viscoplastic response. Such models are particularly useful in
computational applications. See Simo, Hjelmstad & Taylor [1984]. O

5. Concluding Remarks: The Plane Case.
We shall show that for the plane problem the formulation heretofore presented reduces to
that proposed by Reissner [1972].
Assume that the motion of the beam takes place in the coordinate plane normal to
E, = &,=t,, as illustrated in Figure 1. The orthogonal tensor A (S) then admits, for all S€l,
the matrix representation
cosd 0O sinf O
[A(S)] = 0 1 0 0 5.1
~sin® 0 cosf 1

The axial vector 2 (S) given by (1.11), now coincident with K(S) defined by (1.16), and the
vorticity vector w have the expressions

nzxs—g%izz, w-=—?£-i«:2. (5.2)
The strain measures I' defined by (4.8b) take the form
ry= (1+u)cos® + v'sind — 1, T,=—(1+u")sind + v’'cosd (5.3)
where —a%o— = (14+u')&;+ v'e; Introducing the notation
=21, o= tan” (5.4)

where 5(S) is the current arc length defined by (3.7) so that
%=\/(l+u')2+ )2, (5.5)

the strains I'; and 'y given by (5.3) may be expressed as
ri=(1+€)cosa—0) — 1, r;=(1+¢€)sinfa—9), (5.6)

which coincide with the expressions given in (Reissner [1972,1982]). Notice that « — @ defines
the shear angle in the natural way. Explicit component expressions for the 2-dimensional
equilibrium equations in terms of N and M follow at once by substitution of (3.5) into (3.3a)
and (3.3b).



Simo . 3-D Finite Deformation Beam Model 11

References
ANTMAN, S.S., [1972], "The Theory of Rod," Handbuch der Physik, Vol. Vla/2, Springer-
Verlag, Berlin.
LOVE, A.E.H., {1944), The Mathematical Theory of Elasticity, Dover Publications, New York.

NAGHDI, , [1980], "Finite Deformations of Elastic Rods Shells,” Proc. [lUTAM Sympo-
sium on le e Elasticity, Lehigh University.

REISSNER, E., [1972], "On One-Dimensional Finite Strain Beam Theory: The Plane Prob-
lem," J. Appl. Math. Phys. 23, pp.795-804.

REISSNER, E., {1982], "Some Remarks on the Problem of Column Buckling,” Ingenieur-
Archiv, 52, pp.115-119, Springer.

SIMO, J.C., K.H. HIELMSTAD & R.L. TAYLOR, [1984], "Numerical Formulations for the
Elasto-Viscoplastic response of Beams Accounting for the Effect of Shear,” Comp. Meth.
Appl. Mech. Engn., (To appear)

Appendix

To develop equations of motion expressed in terms of the resultant force f(§,7) and the
resultant moment m(S,t), we proceed from the material form of the balance of linear and
angular momentum principles of the 3-dimensional theory, which may be expressed as

DIVP + p,B=p,¢,, FPT=PF7, (A1)

where (£,5)— B(£,S,1) is the body force field, and DIVP = 8T /8¢,.
Balance of Linear Momentum. From (3.1) and (3.2), making use of (A.1),, we have:

9 9
35180 = f 2 T,d¢

s
--f 3 A oonlde+ [ pod.ae (A.2)
o [=1 96r 0
Applying the divergence theorem, and defining the applied load as
2
as,n = ZJ [Trveldl + [ p,BdE, (A3)
=180 0

where v = v E; + v, E; is the vector field normal to the "lateral” contour 98} of the beam, we
obtain the balance equation'

GS — f(S,1) +q(5,0) = L, = A,,¢ (s,7), Se€ID (A.4)

Balance of Angular Momentum. From (3.2a) and (3.2b) we have

2 df +f poddE

-——m(S ) =

- Ipw+£%%xT;d§— G:S" x f — @(S), (A.5)

where use has been made of (2.11), the divergence theorem, and the following notation for the
applied moment field:

2
=100} [{]
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From the balance of angular momentum condition (A.1); it follows that g—? x Ti= 0. Thus,
1
(A.5) reduces to

9 dd,
35 m(S,?) + 35

X{+W(S.) =1, w+wxH, Sel, O (A7)





