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Abstract 

We study game theoretic decision making using a 
bidirectional evidence accumulation model. Our model 
represents both preferences for the strategies available to the 
decision maker, as well as beliefs regarding the opponent’s 
choices. Through sequential sampling and accumulation, the 
model is able to intelligently reason through two-player 
strategic games, while also generating specific violations of 
Nash equilibrium typically observed in these games. The 
main ingredients of accumulator models, stochastic sampling 
and dynamic accumulation, play a critical role in explaining 
these behavioral patterns as well as generating novel 
predictions. 

Keywords: Decision making; Game theory; Sequential 
sampling; Preference accumulation 

Introduction 

Game theory studies the behavior of idealized decision 

makers. The standard solution concept for a strategic game 

is Nash equilibrium, which relies on common rationality 

and accurate expectations.  Given expectations of others’ 

choices, players behave rationally, and the resulting play 

conforms to these expectations (Luce & Raiffa, 1957).  

Not surprisingly, human decision makers display 

numerous systematic departures from Nash equilibrium (see 

Camerer, 2003 for a review). We present a cognitive model 

of strategic deliberation and choice in one-shot, two-player 

games, that is able to accommodate these departures. Our 

model proposes that decision makers dynamically and 

stochastically accumulate both their own preferences for 

available strategies, as well as beliefs about the opponent’s 

preferred strategies. There are bidirectional relationships 

between preferences and beliefs, so that beliefs about what 

the opponent will choose influence the decision makers’ 

preferences, and these preferences in turn influence beliefs 

about the opponent’s choices. Ultimately, decision makers 

can respond to what they think the opponent will do, and 

also revise these beliefs as they deliberate.  

Our model can be seen as an extension of decision field 

theory (Busemeyer & Townsend, 1993; also Bhatia, 2014 

and Rieskamp, 2006), an existing accumulator-based theory 

of non-strategic risky choice. Accumulator models rely on 

two main ingredients: stochastic sampling and dynamic 

accumulation (see Busemeyer, 2015 for a review).  These 

ingredients are critical in our model for making deliberation 

subject to intrinsic variability and requiring it to play out 

over time, and we show that both ingredients have a central 

role in capturing the behavioral patterns observed in 

strategic choice. By demonstrating the relationship between 

our model and established preference accumulation models, 

we demonstrate that a single framework can be used to 

understand choice behavior across a variety of non-strategic 

and strategic settings. 

Game Theoretic Decision Making 

In strategic games, two or more players make choices over a 

set of strategies. Crucially, the strategies chosen by the 

players collectively determine the outcomes of the game, so 

that each player’s utility depends on the other’s choice as 

well as on their own. We define a finite-strategy two-player 

game with a set of pure strategies for each player, 𝑆1 =
{𝑠11, … 𝑠1𝑁} and 𝑆2 = {𝑠21, … 𝑠2𝑀} respectively, and a pair 

of payoff functions 𝑢1 and 𝑢2 that give each player’s utility 

for each profile of pure strategies (𝑠1𝑖 , 𝑠2𝑗). Thus if player 1 

selects 𝑠1𝑖 and player 2 selects 𝑠2𝑗the utility for player 1 is 

𝑢1(𝑠1𝑖; 𝑠2𝑗) and the utility for player 2 is 𝑢2(𝑠2𝑗; 𝑠1𝑖), with  

𝒖𝑖𝑗 = (𝑢1(𝑠1𝑖; 𝑠2𝑗), 𝑢2(𝑠2𝑗; 𝑠1𝑖)).  We define the set of best 

responses for player µ to an opponent’s strategy 𝑠−µ as 

BR(𝑠−µ) =  arg max 𝑢µ(𝑠µ;  𝑠−µ).  Then a pure strategy 

Nash equilibrium can be defined as a strategy profile 

(𝑠1𝑖 , 𝑠2𝑗) such that 𝑠1𝑖 ∊ BR(𝑠2𝑗) and 𝑠2𝑗 ∊ BR(𝑠1𝑖).  

There are a number of settings where Nash equilibrium 

fails to accurately describe human behavior. For example, 

Nash equilibrium predicts unraveling when players have 

incentives to undercut each other. Consider the traveler’s 

dilemma game (Basu, 1994), in which two travelers have 

lost identical items and must request compensation. The 

airline accepts the lower claim as valid and pays that 

amount to both players, and, additionally penalizes the 

higher claimant with a fee and rewards the lower claimant 

with a bonus.  We represent this game with the strategy sets 

S1 = S2 = {20,30,…,90}, where x1i and x2j correspond to the 

amounts (in dollars) associated with strategies s1i and s2j, 

and we have utilities uij = (0.01(x2j – γ), 0.01(x2j + γ)) if x1i > 

x2j, uij = (0.01x1j, 0.01x2j) if x1i = x2j, and uij = (0.01(x1j + γ), 

0.01(x2j – γ)) if x1i < x2j.  Here γ corresponds to the 

reward/penalty offered by the airline, and is set so that 10 < 

γ ≤ 20. For comparability with other games, we have scaled 

utilities to lie between 0 and 1. 

The airline’s scheme rewards undercutting the other 

traveler.  The best response is always to claim exactly 10 

less than the other traveler does (if it is feasible to do so).  
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As a result, the only Nash equilibrium strategy for both 

players is to claim 20. In experiments average claims 

actually are well above the lower bound that Nash 

equilibrium predicts (e.g. Capra et al., 1999).  

Experiments on the traveler’s dilemma game also find 

that claims are higher when the reward/penalty, γ, is lower. 

This payoff sensitivity is hard to reconcile with players 

choosing best responses to the strategies they expect their 

opponent to play. Nash equilibrium predicts that responses 

in the traveler’s dilemma should be independent of γ, as 

changing payoffs without changing best responses should 

have no effect on choice behavior.  

Another setting in which Nash equilibrium fails to 

appropriately describe behavior involves coordination 

games. These are games with multiple pure strategy Nash 

equilibria, in which players are incentivized to choose the 

same strategy.  Due to the presence of multiple equilibria, 

Nash theory cannot make precise predictions.  However, 

human decision makers are often fairly predictable. 

Consider the Hi-Lo coordination game, in which decision 

makers have to choose between two strategies: Hi and Lo. 

In this game we have: uij = (1.0,1.0) if both players both 

choose Hi; uij = (γ, γ), with 0 < γ < 1.0, if both plays choose 

Lo; and uij = (0,0) if they choose different strategies. Not 

surprisingly, decision makers almost always successfully 

coordinate on Hi-Hi to obtain the highest possible rewards 

in this game (Colman, 2003).  

In some games, decision makers do not choose any of the 

Nash equilibrium strategies when the potential costs of 

miscoordination are too great.  This can be observed in the 

boobytrap game, which is a standard prisoner’s dilemma 

augmented with a third option that allows decision makers 

to purchase a “boobytrap” to punish their opponent if he or 

she defects (Misyak & Chater, 2014). Particularly, we have 

uij = (0.9,0.9) if both players cooperate, uij = (0.8,0.8) if both 

players defect, and uij = (0.89,0.89) if both players choose 

boobytrap. Additionally, uij = (0.7,1) if player 1 cooperates 

and player 2 defects, uij = (0.9,0.89) if player 1 cooperates 

and player 2 chooses boobytrap, and uij = (0,0.69) if player 1 

defects and player 2 chooses boobytrap (and vice versa, as 

the game is symmetric). Nash equilibrium predicts that 

decision makers should ignore the boobytrap choice, 

however the presence of the boobytrap greatly increases the 

rate of cooperation in the game, contradicting the prediction 

of Nash equilibrium. 

Yet another set of findings not accounted for by Nash 

equilibrium theory involves strategy salience. In many 

games, strategies with salient labels are more likely to be 

chosen. This is the case in coordination games offering 

multiple payoff identical strategies, with one of the 

strategies circled, underlined, or made salient using some 

other technique. Here players can coordinate successfully by 

selecting the salient strategy (Mehta et al., 2004).  

Bidirectional Accumulation 

We propose an extension to a preexisting accumulator 

model of risky choice, decision field theory (Busemeyer & 

Townsend, 1993). As in decision field theory, decision 

makers use two layers of nodes: one to accumulate 

preferences in favor of the available choice options, and one 

to represent the probabilistic events involved in the decision.  

In the strategic context, the choice options are the strategies 

available to the decision maker and the events are the 

possible strategies the opponent may use. Thus, the strength 

of the connection from the node representing a strategy j for 

the opponent to the node representing preference for a 

decision maker’s strategy i, is proportional to the utility of 

strategy i for the decision maker, given that the opponent 

plays strategy j. Decision makers sample the events 

according to the subjective probabilities they assign to their 

occurrence. Thus, strategies that are more likely to be 

played by the opponent are sampled more frequently and 

thereby play a larger role in determining the decision 

makers’ preferences.  

Decision field theory assumes that decision makers’ 

beliefs about events (and subsequently sampling 

probabilities for these events) are fixed. For the most part 

this is reasonable: decision makers’ preferences do not 

influence the actual probability with which different events 

occur. This assumption is less reasonable in strategic 

settings. Sophisticated opponents, who can anticipate 

decision makers’ choices, will adjust their own choices to 

maximize their reward. We thus assume a bidirectional 

accumulation process to represent strategic deliberation. At 

each time period, decision makers sample one of their 

opponent’s strategies based on the activations of the nodes 

corresponding to these strategies, and update their 

preferences over their own strategies based on this sample. 

Decision makers then sample one of their own strategies 

based on the activation of the nodes, and use this sample to 

update their beliefs about their opponent’s choices. In 

essence, decision makers have dynamically changing mental 

representations for not only their own preferences, but also 

their beliefs about their opponents’ preferences, allowing 

them to deliberate intelligently using perspective taking and 

a sophisticated theory of mind.  

 
 

 
 

Figure 1: Illustration of bidirectional accumulation model 
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Figure 2: Simulated distribution of choices in the traveler’s dilemma. 

 

 

Formally, if the decision maker has to choose from the set 

of strategies 𝑆1 = {𝑠11, … 𝑠1𝑁}, then the preference layer in 

our model consists of N nodes, with node i representing 

strategy 𝑠1𝑖. The activation of node i at time t, A1i(t) 

corresponds to the decision maker’s preference for strategy i 

at time t.  Correspondingly if the opponent has the set of 

available strategies 𝑆2 = {𝑠21, … 𝑠2𝑀}, then the belief layer 

in our model consists of M nodes, with node j representing 

strategy 𝑠2𝑗. The activation of node j at time t, A2j(t) 

corresponds to the beliefs that the decision maker has about 

the opponent’s preference for strategy j, at time t.  We also 

denote the salience bias of any strategy i (for the decision 

maker) or j (for the opponent) as 𝜎1𝑖 or 𝜎2𝑗.  These salience 

biases 𝜎1𝑖 and 𝜎2𝑗 are independent of the decision process 

and are determined by various exogenous factors.  

At each time period t, the decision maker draws one 

sample of the opponent’s strategies. We assume that a 

softmax (logit) function, with stochasticity parameter 𝜆 > 0, 

determines the effect of activation strength and the 

exogenous salience bias on sampling probability. Thus, the 

probability of sampling strategy j at time t is given by: 𝑝𝑗 =

 𝑒𝜆(𝐴2𝑗(𝑡−1)+𝜎2𝑗)  ∑ 𝑒𝜆(𝐴2𝑘(𝑡−1)+𝜎2𝑘)𝑀
𝑘=1⁄ . If the opponent’s 

strategy j is sampled, then the decision maker observes the 

utility for each strategy i conditional on the opponent 

playing this sampled strategy: 𝑢1(𝑠1𝑖; 𝑠2𝑗).  The decision 

maker’s preferences are then updated based on this 

calculated utility, so the activation for each strategy i 

becomes: 𝐴1𝑖(𝑡) = 𝐴1𝑖(𝑡 − 1) +  𝑢1(𝑠1𝑖;  𝑠2𝑗). 

As discussed, beliefs about the opponent’s strategies are 

themselves updated based on the utility the opponent would 

derive conditional on a sample of the decision maker’s 

strategies. Thus, after updating activation states A1i(t), 

decision makers draw one sample of their own strategies. 

The probability of sampling strategy i at time t is given by: 

𝑞𝑖 =  𝑒𝜆(𝐴1𝑖(𝑡)+𝜎1𝑖) ∑ 𝑒𝜆(𝐴1𝑘(𝑡)+𝜎1𝑘)𝑁
𝑘=1⁄ . After sampling 

strategy i, the updated activation for each opponent strategy 

j is 𝐴2𝑗(𝑡) = 𝐴2𝑗(𝑡 − 1) + 𝑢2(𝑠2𝑗;  𝑠1𝑖). 

The deliberation process begins with nodes having no 

initial activation: A1i(0) = 0 for all i; A2j(0) = 0 for all j.  

Activation accumulates according to these equations until a 

time t = T. At this time, the most preferred strategy --that is, 

the one whose node has the highest activation-- is the 

strategy that is chosen by the decision maker. The parameter 

T corresponds to an exogenous time limit on the 

deliberation process, and represents the amount of time 

taken by the decision makers to make their choices.  The 

proposed model is illustrated in Figure 1.  

Explaining Behavioral Findings 

In order to demonstrate how our model works, we use it to 

simulate choices in the games we introduced earlier. Our 

simulations use the same strategy and reward profiles as in 

examples in the previous section. For each of the games and 

each set of parameter values, we simulate our model 3000 

times and report aggregate choice probabilities. We find that 

the model is fairly robust to parameter variation in the range 

𝜆 ∈ [0.25, 4] and  𝑇 ∈ [10, 30], and any combination of 

parameter values in this range produces behavior consistent 

with the empirical findings we have reviewed.  When not 

explicitly specified, we set salience to 𝜎1𝑖 =  𝜎2𝑗 = 0.  

Traveler’s Dilemma. In the traveler’s dilemma our 

model predicts a failure of unraveling. This is demonstrated 

in Figure 2 which plots the probability of selecting 
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strategies in the set {20, 30, …, 90} for γ = 11 and γ = 19, 

with varying values of 𝜆 and T. Instead of predicting that 

players always claim the lowest possible amount, as in Nash 

equilibrium, here the model generates a distribution of 

choices that spreads across the range of strategies available 

to the decision maker. The model also displays payoff 

sensitivity.  For a larger value of the reward/penalty 

parameter (γ = 19), the distribution of choices is smaller.   

The intuition behind the model’s predictions is appealing. 

For low rewards/penalties, i.e. low values of γ, the payoffs 

when both players make high claims are significantly higher 

than the payoffs when there is a low claim. The potential 

cost of missing out on this high payoff dwarfs the cost of 

making a higher claim than the opponent or the benefit of 

making a lower claim than the opponent.  So, a few samples 

(or even a single sample) of the opponent playing a high 

claim will lead to high activation for one’s own high claims.  

As beliefs about the opponent’s strategy are updated, there 

will be more samples of high claims, and strategies 

involving an additional step of undercutting can accumulate 

the most utility.  The number of steps of undercutting that 

does occur depends on payoff magnitudes. Increasing the 

parameter γ encourages undercutting.  Although it does not 

affect best responses (that is, the ranking of payoffs in any 

given sample of play), it does affect the accumulation of 

payoffs over time, so strategies involving more undercutting 

can accumulate activation more quickly.  

Stochastic sampling plays an important role in the 

emergence of payoff sensitivity.  The magnitudes of payoff 

differences affect the probabilities of sampling each 

strategy.  The degree of responsiveness to the payoff 

parameter γ that we observe in the predicted choices for this 

game depends on the logit sampling parameter 𝜆. 

Comparing across the columns of Figure 2, we see larger 

shifts in the distribution of choices from a change in the 

reward/penalty parameter γ as the parameter 𝜆 increases.  

Our model also makes new predictions about the 

relationship between decision time and the strategy chosen 

in the traveler’s dilemma.  Each step of undercutting takes 

time, and thus both the decision maker’s preferred claim and 

the beliefs about the opponent’s claim should thus decrease 

over time.  Comparing across the rows of Figure 2, we 

observe lower claims when the decision time T is larger. 

Indeed, experiments have revealed that decision makers take 

longer to choose the lowest claim than the highest claim 

(Rubinstein, 2007).  

Overall, with reasonable parameter values, the model 

predicts a failure of unraveling. Indeed, full unraveling, 

consistent with Nash equilibrium would only occur with 

very large values of 𝜆 and T, i.e., when poorly performing 

strategies are rarely sampled and there are many periods of 

sampling and iterative updating.  Assuming deterministic 

sampling of best responses or unlimited decision time would 

thus lead to poor behavioral predictions for the traveler’s 

dilemma. Conversely, assuming uniformly random 

sampling would lead to unreasonably high odds of choosing 

80 relative to 70, underestimating people’s ability to put 

themselves in their opponents’ shoes and think strategically 

about their responses.  

The Hi-Lo Game. Although the Hi-Lo game has two 

Nash equilibria, our model favors the Hi-Hi equilibrium. 

This is shown in Figure 3, which plots the probability of 

choosing Hi as a function of the payoff for coordinating on 

Lo (γ) for varying values of T and λ. Across all parameter 

values we consider, Hi is the modal choice. When the 

payoff asymmetry is extreme, i.e., γ = 0.1, Hi is almost 

certain to be chosen.  Still, as the Lo-Lo payoff γ increases, 

so does the probability of choosing Lo.   

Predictable coordination in the Hi-Lo game is intuitive.  

The Hi strategy, which offers higher payoffs in the case of 

successful coordination, accumulates more activation when 

it is sampled from the other layer of the network than the 

low strategy does. This creates a feedback effect, so the 

model is more likely to think about Hi when forming beliefs 

about the opponent’s choices.  Believing that the opponent 

will choose Hi further reinforces the model’s preference Hi. 

The positive feedback loop, along with stochastic 

sampling, actually facilitates the occasional choices of Lo.  

If Lo is sampled first, it gains an advantage, and it becomes 

more likely to be sampled again.  As the logit sampling 

parameter λ increases, it becomes somewhat more likely 

(albeit still not very likely) that the model repeatedly 

samples Lo early on, gets fixated on this strategy, and 

eventually chooses it.  In the extreme case that the sampling 

parameter λ gets unrealistically large, the strategy sampled 

in the first time period may be sampled forever thereafter, 

completely determining the path of the deliberation. Since 

both strategies have the same probability of being sampled 

in the first period of the deliberation, the model’s choice 

distribution approaches a 50-50 split between Hi and Lo 

independent of γ for very large values of λ. As can be seen, 

decision time has little effect on the choice distribution, with 

longer deliberation only slightly reducing noise and 

increasing the probability of selecting the modal choice, Hi.    

The Boobytrap Game. Our model deviates far from 

Nash equilibrium in the boobytrap game as well.  For 𝜆 ∈
[0.25, 4] and 𝑇 ∈ [10, 30], it predicts that players will 

almost certainly cooperate (cooperation with a greater than 

90% chance for all parameters). Here, a non-Nash strategy 

is favored due to the high magnitude of its advantage when 

the other player does not best respond compared to the low 

magnitude of its cost when the other player does respond 

rationally.  Against the boobytrap strategy, defection is 

extremely undesirable. The model predicts that players will 

never choose the boobytrap strategy, because it is dominated 

by cooperation.  However, the model predicts that decision 

makers usually will contemplate this boobytrap strategy as 

part of their deliberation, and this causes their preferences 

for defection to drop strongly.   

Again, our model’s behavior would be very different with 

an assumption of deterministic sampling of the most highly 

activated strategy.  With deterministic sampling, the model 

is confident that the boobytrap strategy will not be played, 

so it chooses to defect.   
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Figure 3: Simulated probability of choosing Hi in the Hi-Lo game. 

 

 

 

Figure 4: Simulated probability of heads in the simple heads-or-tails coordination game. 

 

Salient Labels. Our model recognizes salience effects, 

too.  In the simple heads-or-tails coordination game with 

heads being especially salient, such that 𝜎1H = 𝜎2H = 𝜍  and 

𝜎1T = 𝜎2T = 0, we find that the probability of choosing 

heads is increasing in its salience 𝜍, as shown in Figure 4.  

This figure plots the probability of choosing heads in this 

game as a function of the salience of heads, 𝜍, for varying 

values of T and λ. As we should intuitively expect, when 

sampling is less noisy, i.e., when λ is greater, the players are 

more sensitive to salience.  Specifically, when near the high 

end of our range, i.e., 𝜆 = 4, if heads is sufficiently salient, 

it is almost certain to be chosen.  (In contrast, with an 

assumption of uniformly random sampling, our model 

would not account for any salience effect at all.) 

Convergence occurs quickly, so we see few effects from 

increasing the decision time T. Higher values of T only 

slightly reduce noise and increase the choice probability of 

heads when the logit sampling parameter 𝜆 is small.  

Discussion 

We have proposed a cognitive model of strategic 

deliberation and decision making. Our model is able to 

account for violations of Nash equilibrium involving 

failures of unravelling, payoff sensitivity, predictable 

coordination, and salience, and we illustrate this by 

simulating our model on four different games. Note that 

these violations have also been documented in a number of 

additional games, including the minimum-effort 

coordination game, the stag hunt game, the battle of sexes 

game, the discoordination game, the 11-20 game, the hide 

and seek game, the matching pennies game, and the Kreps 

game. Elsewhere we show that our model makes realistic 

behavioral predictions for all of these games, for 𝜆 ∈

[0.25, 4] and 𝑇 ∈ [10, 30], however we exclude these 

findings from this paper, due to space constraints.  

Our model is closely related to existing accumulator 

theories choice, and we suggest that it can be seen as a 

direct extension of decision field theory (Busemeyer & 

Townsend, 1993; also see Busemeyer, 2015 for a review). 

The novel element in our model involves the representation 

of beliefs regarding opponent’s choices and the bidirectional 

updating of both preferences and beliefs over the time 

course of the decision process. Intuitively, bidirectional 

feedback in the accumulation process allows decision 

makers to base their choices on their beliefs about the 

opponent’s choices, but also to update their beliefs as their 

own preferences evolve. As this updating happens gradually 

over time, the decision makers’ intended choices (and 

beliefs about the opponent’s choices) get increasingly more 

sophisticated the longer they spend deliberating. Eventually 

the nodes for the opponent’s strategies develop unequal 

activation, with strategies that are appropriate responses to 

the decision maker’s preferences having higher activation. 

Highly activated opponent strategies are more likely to be 

sampled, and the decision maker is subsequently more likely 

to develop preferences that intelligently respond to the 

opponent’s anticipated choices.  

Note that there is considerable evidence that decision 

makers are able to represent the preferences and beliefs of 

others separately from their own. Although the nature of 

these representations is not typically studied in the context 

of game theoretic deliberation, some experimental work on 

theory of mind in strategic games does support our proposed 

model. Hedden and Zhang (2002), for example, find that 

players in sequential move games have sophisticated beliefs 

about the opponent’s preferences, and that these beliefs are 
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dynamically modified based on the evidence presented to 

the decision maker during the decision process. Goodie et 

al. (2012) also find that players’ beliefs about their 

opponent’s preferences are fairly complex, and are formed 

in response to the players’ own preferences. 

Our approach is also closely related to cognitive decision 

modeling (in non-strategic settings) that uses neural 

networks with recurrent connectivity (Glöckner et al., 2014; 

Holyoak & Simon, 1999). Recurrence in these networks is 

often bidirectional; the activation of cues and decision 

attributes may influence and be influenced by beliefs and 

preferences. The bidirectional feedback in the above models 

and in ours is very similar, implying that our model could be 

adapted for other cognitive decision modeling applications.  

Our bidirectional accumulation model also bears some 

resemblance to models of behavioral game theory, such as 

level-k reasoning and logit quantal response equilibrium 

(McKelvey & Palfrey, 1995; Nagel, 1995). In both our 

model and in level-k reasoning, individuals engage in an 

iterative process of deliberation that terminates before 

reaching a point of self-consistency.  Likewise, in both our 

model and in logit quantal response equilibrium, individuals 

use a stochastic logit response rule to consider responses, 

thereby generating payoff sensitivity.  However, unlike 

these models, our approach implements the deliberation 

process within a well-established psychological framework. 

This allows our model to describe salience effects, while 

also predicting the effects of time pressure and response 

time. Our model also makes more realistic stochastic choice 

predictions than either of these two existing theories: It 

permits trial-to-trial variability in choice, while also 

avoiding the selection of dominated strategies.  

Our approach is also quite parsimonious. There are two 

parameters in our model: the decision time parameter, T, 

and the stochastic sampling parameter, λ. Decision time T 

can be seen as controlling the extent of bidirectional 

processing one can engage in during deliberation and thus 

determining one’s level of strategic sophistication. Quick 

decisions involve fairly limited reasoning, with choices 

responding to simplistic beliefs about the opponent. 

Decisions that are a product of extended deliberation, in 

contrast, generate choices based on a more sophisticated 

theory of mind. As in all accumulator models, decision time 

also influences the amount of variability in the decision.  

The stochastic sampling parameter λ can also be seen as 

affecting the extent of bidirectional processing one engages 

in. When λ is small, strategies are sampled with close to 

uniform probability, and activation in one layer of the 

network has little or no effect on the accumulation of 

activation in the other layer of the network.  As 𝜆 increases, 

the decision maker becomes more and more likely to sample 

the most preferred strategies. When λ is very large, the most 

highly activated strategies are almost deterministically 

sampled, so preferences and beliefs interact more strongly 

during the deliberation.  

Ultimately, the model’s key behavioral properties depend 

critically on its dynamic and stochastic processes.  Many 

scholars have suggested that behavioral theories of decision 

making can, with incorporation of these fundamental 

cognitive processes, describe a wide range of behavior (e.g. 

Busemeyer, 2015). Our results reinforce these claims by 

demonstrating the explanatory power of stochastic sampling 

and dynamic accumulation in strategic choice.   
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