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Abstract

ASYMPTOTICALLY SYMMETRIC METRICS AND RICCI FLOWS

by

Yufei Shan

This thesis presents a comprehensive investigation into the properties of asymptoti-

cally hyperbolic manifolds and provides an exact definition for asymptotically symmetric

manifolds.

Chapter 1 begins with a thorough classification of symmetric spaces of non-compact

type, as detailed in Section 1.1. Utilizing parabolic geometry, we then explore the

boundary geometry of symmetric spaces of non-compact type, aiming to precisely

define asymptotically symmetric manifolds in Section 1.2.

Chapter 2 focuses on the perturbation existence of asymptotically hyperbolic Einstein

manifolds. Following the methodology proposed by O. Biquard, we present the concep-

tual proof of perturbation existence for general asymptotically symmetric manifolds, as

outlined in their work [5].

In Chapter 3, we examine the stability of asymptotically hyperbolic Einstein manifolds

under normalized Ricci flow. Drawing on R. Bamler’s research [1], we establish a

reduction of the stability problem to estimating the heat kernel for the Lichnerowicz

operator (refer to Lemma 3.2.2). Furthermore, we discuss the underlying ideas behind

proving these heat kernel estimates.

Finally, in the last chapter, we introduce our improved result on long-time existence,

building upon the work presented in [42]. This enhancement in long-time existence

demonstrates the significant contributions made by this thesis.

v
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Chapter 1

Preliminary

In this chapter, we shall introduce some basic knowledge that is needed for the following

chapters. In the section 1.1, we shall talk about symmetric spaces and the corresponding

Lie algebra following the book [25] of S.Helgason. In the section 1.2, we will identify the

boundary geometry of symmetric spaces of the non-compact type as a model parabolic

geometry. By this identification, O.Biquard tried to define the so called asymptotically

symmetric spaces in [5] at least the rank one case about which we shall talk in the section

1.1.6. The references for this section are the book [12] of the A.Čap and J.Slovák and

the book [5] of O.Biquard. In the section 1.4, we shall introduce the spectrum theory

and the semi-group theory. The first one will be used to discuss the spectrum of the

Laplacian operator on the AH manifolds and the second one will be used to show the

exponential decay of the heat kernel. The references for this section are the books [46]

of M.Taylor. In the section 1.3, we shall introduce some basic concepts and methods

about microlocal analysis and semi-classical analysis which will be used in the paper

[48] of A.Vasy and the paper [33] of R.Mazzeo and R.Melrose to show the meromorphic

continuation of the modified Laplacian (See the chapter 3 for details). And in the paper
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Chapter 1 Preliminary

[44] of AS.Barreto, A.Vasy and R.Melrose, they also make use of the semi-classical

analysis to show the high energy resolvent estimate on AH manifold (See the chapter

3 for details). In the section 1.4.3, we shall talk about the Newton‘s method which is

used to relate linear operators with non-linear operators. By the newton‘s method, we

can see the existence of the solution to an non-linear equation is mainly determined by

the invertibility of its linearization operator. We shall make use of this to talk about the

existence of the solutions to Einstein equations in the Chapter 2.

§ 1.1 Symmetric spaces and the semi-simple Lie algebra

In this section, we first review some basic notions and facts about the the Lie group

and the Lie algebra. With these knowldege and notions, we shall review some basic

concepts about globally symmetric spaces of noncompact type. In particular, we will

follow the ideal of R.Bamler (see [2]) to write down the Laplacian operator for tensor

in the "spherical coordinate" by the root system of its corresponding Lie algebra.

Then, we will introduce the famous classification result of globally symmetric spaces

which was first accomplished by E.Cartan. Here, we follow the book [25] of S.Helgason.

Finally, we will use the rank 1 symmetric spaces of noncompact type as concrete

examples. We will specifically write down the Laplacian operator on the symmetric two

tensor bundle under the spherical coordinate for the hyperbolic case and the complex

hyperbolic case.

2



§1.1 Symmetric spaces and the semi-simple Lie algebra

1.1.1 Lie groups and Lie algebras

In this subsection, we will review some basic knowledge of the Lie group and Lie

algebras. Specially, we will review how the Lie algebra determine a corresponding Lie

group (See the theorem 1.1.2 and the theorem 1.1.5).

A Lie group is a smooth manifold 𝐺 (without boundary) that is also a group in the

algebraic sense, with the property that the multiplication map 𝑚 : 𝐺 × 𝐺 → 𝐺 and

inversion map 𝑖 : 𝐺 → 𝐺 given by 𝑚(𝑔, ℎ) = 𝑔ℎ 𝑖(𝑔) = 𝑔−1 are both smooth. (See

p.151Lee2013)

Moreover, any element 𝑔 ∈ 𝐺 defines maps 𝐿𝑔, 𝑅𝑔 : 𝐺 → 𝐺, called left translation

and right translation, respectively, by

𝐿𝑔 (ℎ) = 𝑔ℎ, 𝑅𝑔 (ℎ) = ℎ𝑔 for any ℎ ∈ 𝐺

Thus, it is natural to introduce the concept of the right invariant vector field. Let 𝑋 be

a vector field on a Lie group 𝐺 and 𝑋 (𝑔) is the vector on 𝑔 ∈ 𝐺. Then 𝑋 is called right

invariant vector field, if

𝑑𝑅ℎ [𝑋 (𝑔)] = 𝑋 (ℎ𝑔)

for arbitrary 𝑔, ℎ ∈ 𝐺. (𝑑(𝑅ℎ) is the tangent map of 𝑅ℎ) (p.46 [8]). It is straightforward

to verify that the right (or left) invariant vector field forms a Lie algebra over ℝ under

the Lie bracket for vector fields (Proposition 7.1 in [28]). We denote this Lie algebra

corresponding to the right (or left) invariant vector fields as 𝔤 (See p.1 in [28] for the

definition of the Lie algebra). By the definition of the right (or left) invariant vector

field, it is easy to see that dim(𝔤) = dim(𝑇𝑒𝐺).

3



Chapter 1 Preliminary

By the integral curve generated by the right (or left) invariant vector field, it is natural

to introduce the definition of the exponential map. For∀ 𝑣 ∈ 𝑇𝑒𝐺, let {𝜑𝑡}𝑡∈ℝ be the one-

parameter group generated by the right (or left) invariant vector field 𝑋 (𝑔) = 𝑑𝑅𝑔 (𝑣),

the exponential map is defined by the following map (Section 8 in [8])

exp : 𝑇𝑒𝐺 → 𝐺

𝑣 ↦→ 𝜑𝑒(1)

There are some basic properties about the exponential map such as (1) exp(𝑡𝑣) = 𝜑𝑒(𝑡),

𝑡 ∈ ℝ; (2) exp[(𝑡1 + 𝑡2)𝑣] = exp(𝑡1𝑣) ¤exp(𝑡2𝑣), 𝑡1, 𝑡2 ∈ ℝ; (3) exp(−𝑡𝑣) = [exp(𝑡𝑣)]−1,

𝑡 ∈ ℝ. One of the most important properties is

Proposition 1.1.1 ([8], Proposition 8.2). Let 𝐺 and 𝐻 be two Lie group and 𝑓 : 𝐺 → 𝐻

be homomorphism. And the following diagram is commutative.

𝑇𝑒𝐺 𝑇𝑒𝐻

𝐺 𝐻

(𝑑 𝑓 )𝑒

exp exp
𝑓

where the tangent map (𝑑 𝑓 )𝑒 can be thought of as a Lie algebra homomorphism.

For simplicity, we just use homomorphism and isomorphism instead of Lie group

homomorphism and Lie group isomorphism without confusing.

From the previous facts, we see how to obtain a Lie algebra from a Lie group. The

following theorems will show us how to recover a Lie group from a Lie algebra and in

what sense this Lie group is unique.

Theorem 1.1.2 ([8], Theorem 13.3). (One to one correspondence between simply

connected Lie group and Lie algebra) There is a one to one correspondence between

4



§1.1 Symmetric spaces and the semi-simple Lie algebra

isomorphism classes of Lie algebras and isomorphism classes of simply connected Lie

groups.

Proof: The above theorem follows from a theorem of Ado who prove that every Lie

algebra has a faithful representation in 𝑔𝑙(𝑛,ℝ) for some 𝑛. □

Then, Given a Lie group, the Lie subalgebra of Lie algebra for the Lie group cor-

respond an unique Lie subgroup. Before stating the theorem, we first introduce the

definition of the Lie subgroups.

Definition 1.1.3 ([25], p.112). (Lie subgroups and subalgebras) Let 𝐺 and 𝐻 be

a Lie group. If there exists a inclusion (i.e. inclusion means injective) Lie group

homomorphism 𝑖 : 𝐻 → 𝐺 such that the tangent map of 𝑖 is injective. Then, 𝐻 is called

the Lie subgroup of 𝐺. Moreover, if the topology of 𝐻 is the induced topology of 𝐺,

then 𝐻 is called topological Lie subgroup of 𝐺.

Remark 1.1.4. The topology of 𝐻 might not be the induced topology of𝐺. For example,

consider the Lie group (ℝ/ℤ,ℝ/ℤ) and the Lie subgroup (𝑎𝑡, 𝑏𝑡), where 𝑎, 𝑏 ∈ ℝ −ℚ

are fixed and 𝑡 is arbitrary real number.

Theorem 1.1.5 ([25], Theorem 2.1, Ch II). (One to one corresponding between con-

nected Lie subgroups and Lie subalgebras) Let 𝐺 be a Lie group. If 𝐻 is a Lie

subgroups of 𝐺, then the Lie algebra 𝔥 of 𝐻 is a subalgebra of 𝔤, the Lie algebra of 𝐺.

Each subalgebra of 𝔤 is the Lie algebra of exactly one connected Lie subgroup of 𝐺.

Moreover, if 𝔥 is a ideal of 𝔤, then 𝐻 is a normal Lie subgroup of 𝐺.

5



Chapter 1 Preliminary

1.1.2 The semisimple Lie algbra and root system

There is natural symmetric two form on the Lie algebra, the so-called Killing form. With

this form, we will introduce the semisimple Lie algebra which is a Lie algebra with an

non-degenerate Killing form. The semisimple Lie algebra can always be uniquely

decomposed into a direct sum of its simple ideals. Therefore, we can classify the

semisimple Lie algebras by simple Lie algebras. In order to classify the simple Lie

algebras, we need to introduce the root system which is also important to the find a

good frame to simplify the expression of the Laplacian operator for tensor on the global

symmetric space of noncompact type. We will show that the Lie algebra over ℂ is

uniquely determined (up to isomorphism) by its root system and its Cartan subalgebra.

By the Dynkin Diagrams, we can classify all the root systems. Therefore, so do the

simple Lie algebra over ℂ. By the real form, we can get corresponding facts for the

Lie algebra over ℝ. The reason we concern about the Lie algebra over ℝ is that all the

Lie algebras induced by the Lie groups are on ℝ. Let us start with the definition of the

Killing form.

Definition 1.1.6 ([25], p.131). (Killing Form) Let 𝔤 be a Lie algebra over a field of

characteristic 0. Denoting by 𝑇𝑟 the trace of a vector space endomorphism we consider

the bilinear form 𝐵(𝑋, 𝑌 ) = 𝑇𝑟(𝑎𝑑𝑋𝑎𝑑𝑌 ) on 𝔤×𝔤. The form 𝐵 is called the Killing form

of 𝔤. It is clearly symmetric.

Then, we will introduce the definition of semisimple Lie algbra

Definition 1.1.7 ([25], p.131). (Semisimple and simple) A Lie algebra 𝔤 over a field

of characteristic 0 is called semisimple if the Killing form 𝐵 of 𝔤 is nondegenerate. We

shall call a Lie algebra 𝔤 ≠ {0} if it is semisimple and has no ideals except {0} and {𝔤}.
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§1.1 Symmetric spaces and the semi-simple Lie algebra

A Lie group is called semisimple (simple) if its Lie algebra is semisimple (simple).

The following proposition is essential for the semisimple Lie algebra. It shows that

the semsimple Lie algebra can always be decomposed into a direct sum of two ideals if

it has non-trivial ideal.

Proposition 1.1.8 ([25], Propostion 6.2). Let 𝔤 be a semisimple Lie algebra, 𝛼 an ideal

in 𝔤. Let 𝛼⊥ denote the set of elements 𝑋 ∈ 𝔤 which are orthogonal to 𝛼 with respect to

𝐵. Then 𝛼 is semisimple, 𝛼⊥ is an ideal and

𝔤 = 𝛼 ⊕ 𝛼⊥

Then, the following two corollaries are just straightforward by the previous proposi-

tion.

Corollary 1.1.9 ([25], Corollary 6.2). A semisimple Lie algebra has center {0}.

Proof: For simsimple Lie algebra, 𝔤, the center is 𝔤⊥. □

Corollary 1.1.10 ([25], Corollary 6.3). A semisimple Lie algebra 𝔤 is the direct sum

𝔤 = 𝔤1 ⊕ · · · ⊕ 𝔤𝑟

where 𝔤𝑖 (1 ≤ 𝑖 ≤ 𝑟) are all the simple ideals in 𝔤. Each ideal 𝛼 of 𝔤 is the direct sum

of certain 𝔤𝑖.

Next, we will introduce the root system, which is important to the classification of

the simple Lie algebra. Let us start with the definition of the Cartan subalgebra and root

system.

7



Chapter 1 Preliminary

Definition 1.1.11 ([25], p.163). Let 𝔤 be a semisimple Lie algebra over ℂ. A Cartan

subalgebra of 𝔤 is a subalgebra 𝔥 of 𝔤 satisfying that (1) 𝔥 is a maximal abelian

subalgebra of 𝔤; (2) For each 𝐻 ∈ 𝔥, the endomorphism 𝑎𝑑(𝐻) of 𝔤 is semisimple

(diagonalizable).

The Cartan subalgebra always exists (See Theorem 4.1, Ch III in [25]). Let 𝛼 be a

linear function on the complex vector space 𝕙 (Cartan subalgebra). Let 𝔤𝛼 denote the

linear subspace of 𝔤 given by

𝑔𝛼 = {𝑋 ∈ 𝔤 : [𝐻, 𝑋] = 𝛼(𝐻)𝑋 for all 𝐻 ∈ 𝔥}.

The linear function 𝛼 is called a root if 𝑔𝛼 ≠ 0 and 𝑔𝛼 is called a root space (See p.165

in [25]). The set of all the nonzero roots is denoted as Δ (See p.166 in [25]). There are

some basic concept for the root.

Proposition 1.1.12 ([25], Theorem 4.2, Theorem 4.3). (1) The restriction of the Killing

form 𝐵 to 𝔥 × 𝔥 is nondegenerate.

(2) The only roots proportional to 𝛼 are −𝛼, 0, 𝛼.

(3) Suppose 𝛼 + 𝛽 ≠ 0. Then [𝑔𝛼, 𝑔𝛽] = 𝑔𝛼+𝛽

By the (1) of the above proposition, for each 𝛼 ∈ Δ there exists an unique elements

𝐻𝛼 ∈ 𝔥 such that 𝐵(𝐻, 𝐻𝛼) = 𝛼(𝐻) for all 𝐻 ∈ 𝔥. We put ⟨𝜆, 𝜇⟩ = 𝐵(𝐻𝜆 , 𝐻𝜇). Let

𝔥R =
∑
𝛼∈Δ R𝐻𝛼. Then, we have that 𝐵 is real and strictly positive definite on 𝔥𝑅 × 𝔥𝑅

and the Cartan subalgebra 𝔥 = 𝔥R ⊕
√
−1𝔥R (See Theorem 4.4, CH III in [25] for the

proof). Moreover, we have

2⟨𝛽, 𝛼⟩
⟨𝛼, 𝛼⟩ ∈ ℤ and 𝛽 − 2⟨𝛽, 𝛼⟩

⟨𝛼, 𝛼⟩ 𝛼 ∈ Δ for any 𝛼, 𝛽 ∈ Δ

8



§1.1 Symmetric spaces and the semi-simple Lie algebra

(See p.40 in [28] for more details). Now, we can the abstract definition of the root

system which is actually a description of the inherent construction of the set of roots.

Definition 1.1.13 ([28], p.42). A subset Φ of the Euclidean space (𝐸, (., .)) is called a

root system in 𝐸 if the following axioms are satisfied

(1) Φ is finite, spans 𝐸, and does not contain 0.

(2) If 𝛼 ∈ Φ, the only multiples of 𝛼 in Φ are ±𝛼.

(3) If 𝛼, 𝛽 ∈ Φ, then 𝛽 − (2⟨𝛽, 𝛼⟩/⟨𝛼, 𝛼⟩)𝛼 ∈ Φ.

(4) 2⟨𝛽, 𝛼⟩/⟨𝛼, 𝛼⟩ ∈ ℤ.

Then, we see that the root set Δ is a root system with the inner product defined by

the corresponding Killing form. As we mentioned, a semisimple Lie algebra over ℂ is

determined (up to isomorphism) by means of a Cartan subalgebras and the corresponding

root system. (See Theorem 5.4 in [25] for details). Finally, we can use the Dynkin

Diagrams to classify the root system. So do the semisimple Lie algebra. (See Section

3, Ch X in [25])

Next, we will review the real form of semisimple Lie algebra which is served as

a bridge between the Lie algbra over ℂ and that over ℝ. First, let us introduce the

definition of the complexification.

Definition 1.1.14 ([25], p.179). (Complexification) Let 𝔤0 be a Lie algebra over ℝ.

The complex vector space 𝔤 = (𝔤0)ℂ consists of all symbols 𝑋 + 𝑖𝑌 , where 𝑋, 𝑌 ∈ 𝔤0.

We define the bracket operation in 𝔤 by

[𝑋 + 𝑖𝑌 , 𝑍 + 𝑖𝑇] = [𝑋, 𝑍] − [𝑌, 𝑇] + 𝑖( [𝑌, 𝑍] + [𝑋, 𝑇])

9



Chapter 1 Preliminary

𝔤 = (𝔤0)ℂ is a Lie algebra with the above bracket over ℂ. 𝔤 = (𝔤0)ℂ is called the

complexification of the Lie algebra 𝔤0. Moreover, denote the Lie algebra of 𝔤 over ℝ

as 𝔤ℝ.

The Killing form of the complexification has the following relation

Proposition 1.1.15 ([25], lemma 6.1). Let 𝐾0, 𝐾, 𝐾ℝ denote the Killing forms of the Lie

algebras 𝔤0, 𝔤 and 𝔤ℝ respectively. Then

𝐾0(𝑋, 𝑌 ) = 𝐾 (𝑋, 𝑌 ) 𝑓 𝑜𝑟 𝑋, 𝑌 ∈ 𝔤0

𝐾ℝ(𝑋, 𝑌 ) = 2Re(𝐾 (𝑋, 𝑌 )) 𝑓 𝑜𝑟 𝑋, 𝑌 ∈ 𝔤ℝ

Then, we can define the real form.

Definition 1.1.16 ([25], p.180). (Real form) Let 𝔤 be a Lie algebra over ℂ. A real

form of 𝔤 is a subalgebra 𝔤0 of the real Lie algebra 𝔤ℝ such that the complexification of

𝔤0 is 𝔤. And the mapping 𝜎 of 𝔤 onto itself given by 𝜎 : 𝑋 + 𝑖𝑌 → 𝑋 − 𝑖𝑌 (𝑋, 𝑌 ∈ 𝔤0) is

called the conjugation of 𝔤 with respect to 𝔤0.

1.1.3 The symmetric space and its classification

In this section, we first identity the globally symmteric space with the so called effective

symmetric Lie algebra. Then, we will classify the effective orthogonal symmetric Lie

algebra by the classification of the semsimple Lie algebra over ℂ. First, Let us start with

the definitin of the globally symmetric space.

Let (𝑀, 𝑔) be a Riemannian manifold and 𝑝 ∈ 𝑀. We call an isometry Φ : 𝑀 →𝑀

with Φ(𝑝) = 𝑝, a reflection at 𝑝, if 𝑑Φ |𝑝 = −id𝑇𝑝𝑀 . A Riemmaninan manifold (𝑀, 𝑔)

10
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is called Riemannian locally symmetric space if for arbitrary point 𝑝 ∈ 𝑀 there exist

a neighborhood of 𝑝 ∈ 𝑀, 𝑈𝑝, and a reflection Φ𝑝 at 𝑝 in 𝑈𝑝. Moreover, if Φ𝑝 can be

extended into a reflection on 𝑀, then (𝑀, 𝑔) is called Riemannian globally symmetric

space (See p.205 [25]). The most important property of the Riemannian symmetric

space is that the Riemannian curvature of the locally symmetric space is parallel, i.e.

∇𝑅𝑚 ≡ 0.

Next, we will introduce the definition of the effective orthogonal symmetric Lie

algebra which can be thought of as a Lie algebra description of the Riemmannian

globally symmetric space.

Definition 1.1.17 ([25], p.213). (Orthogonal symmetric Lie algebra) A pair (𝔤, 𝔰) is

called an orthogonal symmetric Lie algebra if

(1) 𝔤 is a Lie algebra over ℝ.

(2) 𝔰 is an involutive automorphism of 𝔤

(3) 𝔩, the set of fixed points of 𝔰, is a compactly imbedded subalgebra of 𝔤

Moreover, it is said to be effective if, in addition, 𝔩∩𝔠 = {0} (𝔠 is the center of 𝔤). A pair

(𝐺, 𝐾), where 𝐺 is a connected Lie group with Lie algebra 𝔤, and 𝐾 is a Lie subgroup

of 𝐺 with Lie algebra 𝔩, is said to be associated with the orthogongal symmetric Lie

algebra (𝔤, 𝔰).

By the [Proposition 3.5, Proposition 3.6, Ch IV] in [25], there is one to one correspon-

dence between the Riemannian globally symmetric spaces and the effective orthogonal

symmetric Lie algebras.

Next, we will decompose the symmetric space by its effective orthogonal symmetric

Lie algebra.

11
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Definition 1.1.18 ([25], p.230). Let (𝔤, 𝔰) be an effective orthogonal symmetric Lie

algebra. 𝔤 = 𝔭 ⊗ 𝔩 be the decomposition of 𝔰 into the eigenspaces of 𝔰 for the eigenvalue

+1 and −1 respectively.

(a) If 𝔤 is compact and semisimple, (𝔤, 𝔰) is said to be the compact type.

(b) If 𝔤 is noncompact and semisimple and 𝔤 = 𝔭 ⊗ 𝔩 is a Cartan decomposition of 𝔤,

then (𝔤, 𝔰) is said to be of the noncompact type.

(c) If 𝔩 is an Abelian ideal in 𝔤, then (𝔤, 𝔰) is said to be of the Euclidean type.

Then, we have the cooresponding definition of symmetric spaces.

Definition 1.1.19 ([25], p.230). Let (𝔤, 𝔰) be an orthogonal symmetric Lie algebra and

suppose the pair (𝐺, 𝐻) is associated with (𝔤, 𝔰). The pair (𝐺, 𝐻) is said to be of the

compact type, noncompact type, or Euclidean type according to the type of (𝔤, 𝔰).

The basic decomposition of the symmetric space is following

Theorem 1.1.20 ([25], p.244). Let 𝑀 be a simply connected Riemannian globally

symmetric space. Then 𝑀 is a product

𝑀 = 𝑀0 × 𝑀− × 𝑀+

where 𝑀0 is a Euclidean space, 𝑀− and 𝑀+ are Riemannian globally symmetric of the

compact and noncompact type, respectively.

We can also use the section curvature to get the compactness by the following theorem.

Theorem 1.1.21 ([25], p.241). (Sectional curvature) Let (𝔤, 𝔰) be an orthogonal sym-

metric Lie algebra and suppose that the pair (𝐺, 𝐾) is associated with (𝔤, 𝔰). We assume

12
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that 𝐾 is connected and closed. Let 𝑄 be an arbitrary 𝐺-invariant Riemannian structure

on 𝐺/𝐾 (such a 𝑄 exists).

(i) If (𝐺, 𝐾) is of the compact type, then 𝐺/𝐾 has sectional curvature everywhere ⩾ 0

(i) If (𝐺, 𝐾) is of the noncompact type, then 𝐺/𝐾 has sectional curvature everywhere

⩽ 0

(i) If (𝐺, 𝐾) is of the Euclidean type, then 𝐺/𝐾 has sectional curvature everywhere

= 0

Moreover, we can further decompose the compact and the noncompact symmetric

space. First, we will introduce the definition of the irreducible symmetric spaces

Definition 1.1.22. Let (𝔤, 𝔰) be an orthogonal symmetric Lie algebra, 𝔩 and 𝔭 the

eigenspaces of 𝑠 for the eigenvalues +1 and −1, respectively; (𝔤, 𝔰) is said to be irre-

ducible if the two following conditions are satisfied:

(i) 𝔤 is semisimple and 𝔩 contains no ideal ≠ {0} of 𝔤

(ii) The algebra 𝑎𝑑𝔤 (𝔩) acts irreducibly on 𝔭.

Definition 1.1.23. Let (𝐺, 𝐾) be a pair associated with (𝔤, 𝔰); then (𝐺, 𝐾) is said to be

irreducible if (𝔤, 𝔰) is irreducible.

Theorem 1.1.24. Let 𝑀 be a simply connected Riemannian globally symmetric space

of the compact type or the noncompact type. Then 𝑀 is a product

𝑀 = 𝑀1 × . . . × 𝑀𝑟

where the factors 𝑀𝑖 are irreducible. If 𝑀 is Hermitian, then each 𝑀𝑖 is Hermitian.

13
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It turns out that the classification of the irreducible orthogonal symmetric Lie algebras

is determined by the classification of the simple Lie algebra on ℂ. See the [25]. By the

[p.518, Table V] [25], we can see for the rank one case are

𝑆𝑈 (1, 𝑛)/𝑈 (𝑛), 𝑆𝑂(1, 𝑛)/𝑂(𝑛), 𝑆𝑝(1, 𝑛)/𝑠𝑝(1) × 𝑠𝑝(𝑛), 𝐹−20
4 /𝑆𝑝𝑖𝑛9

1.1.4 The symmetric space of noncompact type

In this section, we will introduce the properties of the symmetric space of noncompact

type and use the root system to derive the spherical coordinate.

Let 𝑀 be a symmetric space with noncompact case, then by the previous discussion

we have a Lie algebra and a decomposition 𝔤 = 𝔭 ⊕ 𝔩

Definition 1.1.25 ([2], Section 3). (Maximal abelian algebra)𝔞 ⊆ 𝔭 which is not

contained in a bigger abelian subalgebra in 𝔭.

Definition 1.1.26 ([2], Section 3). The rank of symmetric space The dimension

𝑟 = dim𝔞 is called the rank of the symmetric space 𝑀.

Definition 1.1.27 ([2], Section 3). (Root) We say that 𝛼 ∈ 𝔞∗ is a root of 𝔤 relative to

𝔞 if 𝛼 ≠ 0 and there exists some 𝑋 ≠ 0 ∈ 𝔤 such that [𝑣, 𝑋] = 𝛼(𝑣)𝑋 for any 𝑣 ∈ 𝔞.

Denote Δ the set of all the root. And denote 𝔤𝛼 the corresponding eigenspace about 𝛼.

Definition 1.1.28 ([2], Section 3). (Positive root) Let 𝑣0 ∈ 𝛼 be an arbitrary vector

such that 𝛼(𝑣0) ≠ 0 for all nonzero 𝛼 ∈ Δ and define the set of positive roots by

Δ+ = {𝛼 ∈ Δ : 𝑎(𝑣0) > 0}.

The existence of the involution 𝜃∗ implies −Δ = Δand the involution 𝜃∗ maps 𝔤𝑎 to

𝔤−𝑎. So if we set and 𝔭𝑎 = (𝔤𝑎 ⊕ 𝔤−𝑎) ∩ 𝔭 and 𝔩𝑎 = (𝔤𝑎 ⊕ 𝔤−𝑎) ∩ 𝔩. Let 𝑣0 ∈ 𝛼 be an

14
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arbitrary vector such that 𝑎(𝑣0) ≠ 0 for all nonzero 𝑎 ∈ Δand define the set of positive

roots by Δ+ = {𝑎 ∈ Δ : 𝑎(𝑣0) > 0}.

Then we have the following root space decomposition

𝔤 =𝛼 ⊕𝑎∈Δ+ (𝔤𝑎 ⊕ 𝔤−𝑎) ⊕ 𝔩0

=𝔭 ⊕ 𝔩 = 𝛼 ⊕𝑎∈Δ+ (𝔭𝑎 ⊕ 𝔩𝑎) ⊕ 𝔩0

These splittings are orthogonal with respect to the Killing form. The subspace 𝔩0

is a Lie algebra. Its geometric meaning will be described below. Using the Jacobi

identity, we can conclude that for any two 𝑎, 𝑏 ∈ Δ, we have [𝔤𝑎, 𝔤𝑏] ⊆ 𝔤𝑎+𝑏. Hence

𝔫 = 𝔫+ = ⊕𝑎∈Δ+𝔤𝑎 and 𝔫− = ⊕𝑎∈Δ+𝑔−𝑎 are the nilpotent algebras with 𝜃∗(𝔫+) = 𝔫−. The

spaces 𝔫+ and 𝔫− are isotropic with respect to the Killing form, but on 𝔫 ⊕ 𝔫−

(., .) = − < ., 𝜃∗ >

is a positive definite scalar product.

Next, we will introduce the (Orthonormal Basis) on the symmetric space of non-

compace type. Let 𝑎1, · · · , 𝑎𝑛−𝑟 be the roots of Δ+ be the roots of Δ+ occurring with

the appropriate multiplicities and let 𝑥1, · · · , 𝑥𝑛−𝑟 be an orthonormal basis of 𝔫+ with

respect to (., .) such that 𝑥𝑖 ∈ 𝔤𝑎𝑖 . Then [𝑥𝑖, 𝑥 𝑗] ∈ 𝑔𝑎𝑖+𝑎 𝑗 . So < 𝑥𝑖, 𝑦 𝑗 >= −𝛿𝑖 𝑗 and

< 𝑥𝑖, 𝑥 𝑗 >= 0 and [𝑥𝑖, 𝑦 𝑗] ∈ 𝔤𝑎𝑖−𝑎 𝑗 and [𝑦𝑖, 𝑦 𝑗] ∈ 𝔤−𝑎𝑖−𝑎 𝑗 . We set

𝔭𝑖 =
1
√

2
(𝑥𝑖 − 𝑦𝑖), 𝑘𝑖 =

1
√

2
(𝑥𝑖 + 𝑦𝑖)

Hence, 𝑝1, · · · , 𝑝𝑛−𝑟 form an orthonormal basis of the orthogonal complement 𝛼⊥ of 𝛼
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in 𝔭 and 𝑘1, · · · , 𝑘𝑛−𝑟 are a negative orthonormal basis of the orthogonal complement

of 𝔩0 in 𝔩.

We also choose an orthonormal basis 𝑣1, · · · , 𝑣𝑟 of a with respect to < ., . >. Observe

that 𝜃∗ [𝑥𝑖, 𝑦𝑖] = [𝑦𝑖, 𝑥𝑖] = −[𝑥𝑖, 𝑦𝑖], hence [𝑥𝑖, 𝑦𝑖] ∈ 𝔭. Moreover, [𝑥𝑖, 𝑦𝑖] ∈ 𝔤0, so

[𝑥𝑖, 𝑦𝑖] ∈ 𝛼. Since for any 𝑣 ∈ 𝛼, we have

< [𝑥𝑖, 𝑦𝑖], 𝑣 >= − < [𝑥𝑖, 𝑣], 𝑦𝑖 >= −𝑎𝑖(𝑣) < 𝑥𝑖, 𝑦𝑖 >= 𝑎𝑖(𝑣)

We obtain

[𝑥𝑖, 𝑦𝑖] = 𝑎∗𝑖

Finally, we apply our knowledge on the infinitesimal structure to find out more about

the global geometry of 𝑀. The subgroup 𝐴 = exp(𝛼) < 𝐺 corresponding to a is abelian

and isomorphic to ℝ𝑟. The orbit 𝐹 = 𝐴𝑝0 is a geodesic submanifold of M isometric to

ℝ𝑟 and is called a maximal flat of 𝑀. The subgroup 𝐾0 = exp(𝔩0) < 𝐾corresponding

to 𝔩0 is the point stabilizer of the flat 𝐹. Observe that there are symmetric spaces with

trivial 𝐾0, such as 𝑆𝐿(𝑛) \ 𝑆𝑂(𝑛), however many symmetric spaces, e.g. hyperbolic

space ℍ𝑛 (𝑛 ≥ 3), have nontrivial 𝐾0. The stabilizer (not the point stabilizer) 𝑆𝑡𝑎𝑏𝐾 (𝐹)

of the flat 𝐹 however consists of several components of 𝐾0. Forming the quotient

𝑊 = 𝑆𝑡𝑎𝑏𝐾 (𝐹)/𝐾0 yields a discrete group, called the Weyl group. It follows that the or-

bit 𝐾 (𝑝) of every point 𝑝 ∈ 𝑀 under the isotropy group 𝐾 intersects 𝐹 in a nonempty set

which is invariant under𝑊. Moreover, 𝐹 can be decomposed into fundamental domains

for the action of 𝑊, which are called Weyl chambers, and 𝑊 is generated by reflections

along the walls of an arbitrary Weyl chamber. Finally, consider the subgroups 𝑁 resp.

𝑁− corresponding to 𝔫 resp. 𝔫−. The product subgroups 𝑃 = 𝐴𝑁 and 𝑃− = 𝐴𝑁− are
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called Borel subgroups. They act simply transitively on 𝑀 and stabilize a Weyl chamber

at infinity in the geodesic compactification.

Then, in order to introduce the spherical coordinate, we will identity the symmetric

space with the homogeneous space.

Definition 1.1.29 ([12], definition 5.2.1). (Homogeneous vector bundle) Let 𝐺 be a

Lie group and let 𝐾 be a closed subgroup of 𝐺. Let 𝑀 = 𝐺/𝐾. A vector bundle 𝐸 over

𝑀 is called a homogeneous vector bundle if 𝐺 acts on 𝐸 on the left and the 𝐺 action

satisfies

(1) 𝑔𝐸𝑥 = 𝐸𝑔𝑥 for 𝑥 in 𝑀, 𝑔 in 𝐺

(2) The mapping from 𝐸𝑥 to 𝐸𝑔𝑥 induced by 𝑔 is linear for 𝑔 in 𝐺 and 𝑥 in 𝑀.

Remark 1.1.30. We shall give a basic construction that describes all homogeneous

vector bundles over 𝑀. Let (𝜌, 𝐸0) be a finite dimensional representation of 𝐾. Let 𝐾

act on the right on 𝐺 × 𝐸0 as follows:

(𝑔, 𝑣)𝑘 = (𝑔𝑘, 𝜌(𝑘)−1(𝑣)) 𝑓 𝑜𝑟 𝑔 ∈ 𝐺, 𝑣 ∈ 𝐸0 𝑎𝑛𝑑 𝑘 ∈ 𝐾

We set 𝐸 = 𝐺 ×𝜌 𝐸0 = (𝐺 × 𝐸0)/∼ where

(𝑔𝑘, 𝑣) ∼ (𝑔, 𝜌 (𝑘) 𝑣)

Then 𝐸 is a homogeneous vector bundle on 𝑀. In fact, all the homogeneous vector

bundle on 𝑀 can be constructed by the above process.

Remark 1.1.31. In fact, we can regard 𝑀 as the base of a right 𝐾-principal bundle
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𝜋 : 𝐺 → 𝑀. Then, homogeneous vector bundle actually is the associated vector bundle

of this principal bundle and the representation 𝜌.

Remark 1.1.32. We have the following commutative diagram

𝐺 × 𝐸0 𝐺 ×𝜌 𝐸0 = 𝐸

𝐺 𝐺/𝐾 = 𝑀

𝜋1

𝑝𝐺 𝑝𝑀

𝜋

where 𝑝𝐺 is the projection of 𝐺 × 𝐸0 on 𝐺, 𝑃𝑀 is the projection of the homogeneous

vector bundle 𝐸 on the base manifold 𝑀, and 𝜋1 is the quotient map with the equivalent

relation ∼.

Definition 1.1.33 ([12]). (Section of homogeneous vector bundle) Let 𝐺 be a Lie

group and let 𝐾 be a closed subgroup of 𝐺. Let 𝑀 = 𝐺/𝐾 and 𝐸 = 𝐺 ×𝜌 𝐸0 be a

homogeneous vector bundle on 𝑀 where 𝐸0 is a finite dimensional vector space and

𝜌 : 𝐾 → 𝐺𝐿(𝐸0) is a representation of 𝐾 on 𝐸0. A smooth map 𝑓 : 𝑀 → 𝐸 is called

section of 𝐸 if

𝜋 ◦ 𝑓 = 𝑖𝑑𝑀

where 𝜋 : 𝐺 → 𝐺/𝐾 = 𝑀 is the natural quotient map. And denote all the smooth

section of 𝐸 as 𝐶∞(𝑀.𝐸).

Definition 1.1.34 ([12]). (The lift of section) Let 𝑓 : 𝑀 → 𝐸 be a section of a

homogeneous vector bundle 𝐸 on the manifold 𝑀 = 𝐺/𝐾 where 𝐺 is a Lie group and

𝐾 is a Lie subgroup of 𝐺. Then 𝑓 : 𝐺 → 𝐺 × 𝐸0 is called the lift of the section 𝑓 if

𝜋1 ◦ 𝑓 = 𝑓 ◦ 𝜋.

Remark 1.1.35. The lift of 𝑓 : 𝑀 → 𝐸, 𝑓 : 𝐺 → 𝐺 × 𝐸0, can be thought of as a section

on the trivial bundle 𝐺 × 𝐸0. On the other hand, if one of the section 𝑓 : 𝐺 → 𝐺 × 𝐸0
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satisfies that 𝑓 (𝑔𝑘) = 𝜌(𝑘−1) 𝑓 (𝑔), then there exists an unique section 𝑓 : 𝑀 → 𝐸, such

that 𝑓 is the lift of 𝑓 .

Let 𝑔 ∈ 𝐺 and 𝑓 : 𝑀 → 𝐸 be a section on the homogeneous vector bundle. Then, 𝑔

can induce another section 𝑔∗( 𝑓 ) on the same homogeneous vector bundle by

𝑔∗( 𝑓 ) : 𝑀 = 𝐺/𝐾 → 𝐸 = 𝐺 ×𝜌 𝐸0, [ℎ] ↦→ [𝑔−1ℎ, 𝑓 (𝑔−1ℎ)] 𝑓 𝑜𝑟 ℎ ∈ 𝐺

where [𝑔−1ℎ] is the equivalent class in 𝐺/𝐾, and [𝑔−1ℎ, 𝑓 (𝑔−1ℎ)] is the equivalent class

in 𝐺 ×𝜌 𝐸0. 𝑓 : 𝐺 → 𝐺 × 𝐸0 is the lift of 𝑓 : 𝑀 → 𝐸. In particularly 𝑔∗( 𝑓 ) is called the

push-forward of section 𝑓 . Obviously, The lift of 𝑔∗( 𝑓 ) is

˜𝑔∗( 𝑓 ) (ℎ) = 𝑓 (𝑔−1ℎ)

Definition 1.1.36 ([12]). (Lie derivative) Let 𝑓 : 𝑀 → 𝐸 be a section of a homogeneous

vector bundle 𝐸 on the manifold𝑀 = 𝐺/𝐾 where𝐺 is a Lie group and 𝐾 is a Lie subgroup

of 𝐺. And let 𝑓 : 𝐺 → 𝐺 × 𝐸0 be the lift of 𝑓 . Suppose that 𝑋 is a vector field on

𝑀 = 𝐺/𝐾 and �̃� is a vector field on 𝐺 such that 𝑑𝜋( �̃�) = 𝑋 . Then, a section on the

homogeneous vector bundle, 𝑓 ′ : 𝑀 → 𝐸, is called the Lie derivative of the section

𝑓 : 𝑀 → 𝐸 along the direction 𝑋 if the lift of 𝑓 ′ is

𝑑 𝑓 ( �̃�) (𝑔) = lim
𝑡→0

𝑓 (𝜑(𝑡, 𝑔)) − 𝑓 (𝜑(0, 𝑔))
𝑡

where 𝜑(𝑡, 𝑔) is the one-parameter group generated by the vector field �̃� . Denote this

section L𝑋 𝑓 .

Remark 1.1.37. Since 𝑓 ′ = 𝑑 𝑓 ( �̃�) satisfies that 𝑓 ′(𝑔𝑘) = 𝜌(𝑘)−1 𝑓 ′(𝑔) for 𝑔 ∈ 𝐺 and

𝑘 ∈ 𝐾, by the Remark 1.20, there exists an unique section of of homogeneous vector

bundle 𝑓 ′ : 𝑀 → 𝐸 such that the lift of this section is 𝑓 ′.
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Proposition 1.1.38 ([2], Section 3). Let 𝑋 and 𝑌 are two different vector field on

𝑀 = 𝐺/𝐾. And let 𝑓 : 𝑀 → 𝐸 is a section of the homogeneous vector bundle 𝐸. Then,

we have

L𝑋L𝑌 𝑓 − L𝑌L𝑋 𝑓 = −L[𝑋,𝑌 ] 𝑓

Then, we will show that the tangent bundle for symmetric space, (𝑀, 𝑔) = 𝐺/𝐾, can

be thought of as a homogeneous vector bundle with the representation of 𝐾 on 𝔭. This

𝐺 is the isometric group of (𝑀, 𝑔) and 𝐾 is the isotropic group fixing a fixed point 𝑝0.

Let 𝔤 be the Lie algebra of 𝐺. Then, by the previous section, we have 𝔤 = 𝔭 ⊕ 𝔩, where 𝔩

is the Lie algebra of 𝐾. The reference is from [5] of O.Biquard.

(1) We the following natural map

𝜋 : 𝐺 × 𝑀 → 𝑀

(𝑔, 𝑝) ↦→ 𝑔(𝑝)

and

𝜋𝑝 : 𝐺 → 𝑀

𝑔 ↦→ 𝑔(𝑝)

Then, consider the tangent map of 𝜋𝑝0 ,

(𝑑𝜋𝑝0)𝑒 : 𝑇𝑒𝐺 → 𝑇𝑝0𝑀

𝑣 ↦→ (𝑑𝜋𝑝0)𝑒(𝑣) =
𝑑

𝑑𝑡
exp (𝑣𝑡) (𝑝0) |𝑡=0

Moreover, the kernel of (𝑑𝜋𝑝0)𝑒 is 𝔩 and (𝑑𝜋𝑝0)𝑒 is surjective. Therefore, 𝔭 � 𝑇𝑝0𝑀 Let
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Γ(𝑀) be the all the vector field on 𝑀. Then, we have the following map

(𝑑𝜋)𝑒 : 𝑇𝑒𝐺 → Γ(𝑀)

𝑣 ↦→ 𝑋 (𝑝) = (𝑑𝜋𝑝)𝑒(𝑣) =
𝑑

𝑑𝑡
exp 𝑣𝑡(𝑝) |𝑡=0

(𝑑𝜋)𝑒 is a linear map. And 𝐾𝑒𝑟((𝑑𝜋)𝑒) = 0. Therefore (𝑑𝜋)𝑒 is an injective. Moreover,

the image of (𝑑𝜋)𝑒 is Killing field and (𝑑𝜋)𝑒 preserve the Lie bracket. This can be easily

checked by the definition.

Remark 1.1.39. In general, (𝑑𝜋𝑝0)𝑒 gives an isomorphism between 𝔭 and 𝑇𝑝0𝑀 and

(𝑑𝜋)𝑒 gives an isomorphism between 𝔤 and the Killing field of (𝑀, 𝑔).

(2) We have the following map

𝐺 × 𝑇𝑝0𝑀 → 𝑇𝑀

(𝑔, 𝑢) ↦→ 𝑔∗(𝑢)

If 𝑔1(𝑢1) = 𝑔2(𝑢2), then 𝑔1 = 𝑔2ℎ, then (𝑔2ℎ)∗(𝑢1) = (𝑔2)∗(𝑢2) and ℎ∗(𝑣1) = 𝑣2.

(3) Define the equivalent relation ∼ on 𝐺 × 𝑇𝑝0𝑀 by (𝑔ℎ, 𝑢) = (𝑔, ℎ∗(𝑢)). Then

[(𝐺 × 𝑇𝑝0𝑀)/∼] � 𝑇𝑀

(4)(Representation) Let 𝑢 ∈ 𝑇𝑝0𝑀. Then, there exists an unique 𝑣 ∈ 𝔭 such that

(𝑑𝜋𝑝0)𝑒(𝑣) = 𝑢. Let ℎ ∈ 𝐾. We have

ℎ∗(𝑢) = ℎ∗((𝑑𝜋𝑝0)𝑒(𝑣)) =
𝑑

𝑑𝑡
ℎ exp (𝑣𝑡) (𝑝0) |𝑡=0 =

𝑑

𝑑𝑡
ℎ exp (𝑣𝑡)ℎ−1(𝑝0) |𝑡=0

= (𝑑𝜋𝑝0)𝑒 [𝐴𝑑∗(ℎ) (𝑣)] |𝑝0

21



Chapter 1 Preliminary

Define the representation 𝜌0 : 𝐾 → 𝐺𝐿(𝑇𝑝0𝑀)

𝜌0(ℎ) (𝑢) = (𝑑𝜋𝑝0)𝑒 [𝐴𝑑∗(ℎ) ((𝑑𝜋𝑝0)−1
𝑒 ) (𝑢)]

Then the induced representation on Lie algebra 𝔩 is

𝜌0∗(𝑘) (𝑣) = (𝑑𝜋𝑝0)𝑒 [𝑎𝑑(ℎ) ((𝑑𝜋𝑝0)−1
𝑒 ) (𝑢)]

Moreover, we have ℎ∗(𝑢) = 𝜌0(ℎ) (𝑢).

(5)(Associative vector bundle) We can think of the tangent bundle as the associative

vector bundle

𝐺 ×𝜌0 𝑇𝑝0𝑀 � 𝑇𝑀

which is nothing but the homogeneous vector bundle on 𝑀

(6)(The lift section) Let 𝑓 ∈ 𝐶∞(𝑀,𝑇𝑀) be a global section. Then the lift of the

section 𝑓 is defined by

𝑓 : 𝐺 → 𝑇𝑝0𝑀

𝑔 ↦→ 𝑔−1
∗ ( 𝑓 (𝑝))

where 𝑔(𝑝) = 𝑝0.

Remark 1.1.40. Every global section can uniquely determine a lift by the above. In-

versely, for a function 𝑓 ∈ 𝐶∞(𝐺, 𝑇𝑝0𝑀) satisfying that 𝑓 (𝑔ℎ) = 𝜌0(ℎ−1) 𝑓 (𝑔) can

uniquely determine a global section as well. Moreover, we have 𝑓 (𝑝) = 𝑔∗( 𝑓 (𝑔)).

(7)(Push-forward) Let 𝑓 ∈ 𝐶∞(𝑀,𝑇𝑀) and 𝑓 ∈ 𝐶∞(𝐺, 𝑇𝑝0𝑀) be its lift. Then for
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ℎ, 𝑔 ∈ 𝐺 � 𝐼𝑆𝑂(𝑀) and 𝑝 = 𝑔(𝑝0), we have

�ℎ∗( 𝑓 ) (𝑔) =𝑔−1
∗ (ℎ∗( 𝑓 ) (𝑝)) = 𝑔−1

∗ ℎ∗( 𝑓 ) (𝑔−1(𝑝))

=𝑔−1
∗ ℎ∗( 𝑓 (ℎ−1𝑔𝑔−1) (𝑝)) = 𝑔−1

∗ ℎ∗( 𝑓 (ℎ−1𝑔) (𝑝0))

= 𝑓 (ℎ−1𝑔)

Actually, in the above process, we just make use of a fact that ℎ∗( 𝑓 ) (ℎ(𝑝)) = ℎ∗( 𝑓 (𝑝)).

(8)(Lie derivative) Let 𝑓 ∈ 𝐶∞(𝑀,𝑇𝑀) and 𝑣 ∈ 𝔭. Then by the definition of the Lie

derivative

L𝑑𝜋𝑒 (𝑣) 𝑓 |𝑝 =
𝑑

𝑑𝑡
(exp (−𝑣𝑡))∗ 𝑓 |𝑝

By the definition of the lift section,

𝑓 (𝑝) = 𝑔∗( 𝑓 (𝑔))

Therefore,

L𝑑𝜋𝑒 (𝑣) 𝑓 |𝑝 =
𝑑

𝑑𝑡
(exp (−𝑣𝑡))∗(exp (𝑣𝑡)𝑔)∗ 𝑓 (exp(𝑣𝑡)𝑔) |𝑡=0

=𝑔∗
𝑑

𝑑𝑡
𝑓 (exp (𝑣𝑡)𝑔) |𝑡=0 = 𝑔∗(𝑣|𝑔 ( 𝑓 ))

where 𝑔 ∈ 𝐺 satisfying that 𝑔(𝑝0) = 𝑝. Therefore,

�L𝑑𝜋𝑒 (𝑣) 𝑓 |𝑝 = 𝑑 𝑓 (𝑣) |𝑔

Remark 1.1.41. We see from (8) that the Lie derivative of this homogeneous vector

bundle is equivalent to the Lie derivative of the tangent bundle.
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For cotangent bundle, from the point of the representation, we only need to take the

dual representation of the representation corresponding to the tangent bundle.

Definition 1.1.42. (Dual representation) Let (𝜌, 𝑉) be a representation of a group 𝐺

on a finite vector space 𝑉, then the dual representation 𝜌∗ is defined over dual vector

space 𝑉∗ as follows

𝜌∗(𝑔) = 𝜌(𝑔−1)∗ 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝐺

where 𝜌(𝑔−1)∗ is the dual operator of 𝜌(𝑔−1) on the vector space 𝑉∗

Notice that the Riemannian metric 𝑔 on a Riemannian metric actually can be thought

of as a section on the tensor bundle 𝑇𝑀∗ ⊗ 𝑇𝑀∗. And Tensor bundle corresponds to the

tensor product representation.

Definition 1.1.43. (Tensor product representation) Let (𝜌1, 𝑉1), (𝜌2, 𝑉2) be two linear

representations of a group 𝐺. then their tensor product representation is a linear

representation 𝜌12 of 𝐺 on 𝑉1 ⊗ 𝑉2 defined as follow

𝜌12(𝑔) (𝑣1 ⊗ 𝑣2) = 𝜌1(𝑔) (𝑣1) ⊗ 𝜌2(𝑔) (𝑣2)

for 𝑔 ∈ 𝐺, 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2

Then, we will define a on the homogeneous vector bundle 𝐸 = 𝐺×𝜌 𝐸0 of noncompact

symmetric space (𝑀, 𝑔) = 𝐺/𝐾. This 𝐺 is the isometric group of (𝑀, 𝑔) and 𝐾 is the

isotropic group fixing a fixed point 𝑝0. Let 𝔤 be the Lie algebra of 𝐺. Then, by the

previous section, we have 𝔤 = 𝔭 ⊕ 𝔩, where 𝔩 is the Lie algebra of 𝐾 and 𝔤 is semisimple.

We will see that on the tangent bundle (Since tangent bundle can also be thought of as

a homogeneous vector bundle), this connection is the Levi-Civita connection.
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§1.1 Symmetric spaces and the semi-simple Lie algebra

Definition 1.1.44 ([12]). (Maurer-Cartan form) Let g � T𝑒𝐺 be the tangent space of

a Lie group 𝐺 at the identity (its Lie algebra as right invariant vector field). 𝐺 acts on

itself by left translation

𝐿 : 𝐺 × 𝐺 → 𝐺

such that for a given 𝑔 ∈ 𝐺 we have

𝐿𝑔 : 𝐺 → 𝐺 where 𝐿𝑔 (ℎ) = 𝑔ℎ

and this induces a map of the tangent bundle to itself:
(
𝐿𝑔

)
∗ : 𝑇ℎ𝐺 → 𝑇𝑔ℎ𝐺. A left-

invariant vector field is a section 𝑋 of T𝐺 such that

(
𝐿𝑔

)
∗ 𝑋 = 𝑋 ∀𝑔 ∈ 𝐺

The Maurer-Cartan form 𝜔 is a g-valued one-form on 𝐺 defined on vectors 𝑣 ∈ T𝑔𝐺

by the formula

𝜔𝑔 (𝑣) =
(
𝐿𝑔−1

)
∗
𝑣

Remark 1.1.45. If 𝑋 is a left-invariant vector field on 𝐺, then 𝜔(𝑋) is constant on 𝐺.

Furthermore, if 𝑋 and 𝑌 are both left-invariant, then

𝜔( [𝑋, 𝑌 ]) = [𝜔(𝑋), 𝜔(𝑌 )]

Moreover, we have Maurer-Cartan equation

𝑑𝜔(𝑋, 𝑌 ) + [𝜔(𝑋), 𝜔(𝑌 )] = 0

for any 𝑋, 𝑌 ∈ 𝑇𝐺.

Remark 1.1.46. Since every Lie algebra has a bilinear Lie bracket operation, the wedge
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product of two Lie algebra-valued forms can be composed with the bracket operation to

obtain another Lie algebra-valued form. This operation, denoted by [𝜔 ∧ 𝜂], is given

by: for 𝔤-valued 𝑝-form 𝜔 and 𝔤-valued 𝑞 -form 𝜂. Then, we can define

[𝜔 ∧ 𝜂]
(
𝑣1, · · · , 𝑣𝑝+𝑞

)
=

1
(𝑝 + 𝑞)!

∑︁
𝜎

sgn(𝜎)
[
𝜔

(
𝑣𝜎(1) , · · · , 𝑣𝜎(𝑝)

)
, 𝜂

(
𝑣𝜎(𝑝+1) , · · · , 𝑣𝜎(𝑝+𝑞)

) ]
.

Then, the Maurer-Cartan equation can also be written as

𝑑𝜔 + 1
2
𝜔 ∧ 𝜔 = 0

Moreover, by the Jacobi identity of Lie algebra, we have

𝜔 ∧ 𝜔 ∧ 𝜔 = 0

Definition 1.1.47 ([12]). (Principal connection) Let 𝜋 : 𝑃 → 𝑀 be a smooth principal

K-bundle over a smooth manifold 𝑀. Then a principal K-connection on 𝑃 is a differ-

ential 1-form 𝜃 ∈ Ω1(𝑃, 𝔩) � 𝐶∞ (𝑃, 𝑇∗𝑃 ⊗ 𝔩) on 𝑃 with values in the Lie algebra 𝔩 of 𝐾

satisfying that

1. Ad𝑔
(
𝑅∗𝑔𝜃

)
= 𝜃 where 𝑅𝑔 denotes right multiplication by 𝑔 and Ad𝑔 is the adjoint

representation on 𝔩 (explicitity, Ad𝑔 𝑋 = 𝑑
𝑑𝑡
𝑔 exp(𝑡𝑋)𝑔−1

��
𝑡=0 );

2. if 𝜉 ∈ 𝔩 and 𝑋𝜉 is the vector field on 𝑃 associated to 𝜉 by differentiating the 𝐺

action on 𝑃, then 𝜃
(
𝑋𝜉

)
= 𝜉 (identically on 𝑃 ).

Remark 1.1.48. A principal connection induces a connection on every associative

vector bundle 𝐸 = 𝐺 ×𝜌 𝐸0 by the following way. Let 𝑓 ∈ 𝐶∞(𝑀, 𝐸) be a section of 𝐸
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and consider its lift 𝑓 . Then we set for any 𝑣 ∈ 𝑇𝑝𝑀. Then,

˜∇𝐸
𝑣 𝑓 =

(
𝑑 𝑓 (𝑣′) + 𝜌∗𝜃 (𝑣′) 𝑓

)
where 𝑣′ ∈ 𝑇𝑝′𝐺 is any vector projectiong to 𝑣, i.e. 𝜋(𝑝′) = 𝑝 and 𝑑𝜋(𝑣′) = 𝑣.

Now, for symmetric space 𝑀 = 𝐺/𝐾 with Lie algebra of 𝐺, 𝔤 = 𝔭 ⊕ 𝔩. Then, 𝐺

can be thought of as a principal bundle of 𝑀 with structure group 𝐾. Consider the

Maurer-Cartan form on 𝐺 𝜔. Let 𝑋 ∈ 𝔤 be a Killing field. Then

𝜔(𝑋 (𝑔)) = 𝐴𝑑(𝑔−1) (𝑋) |𝑖𝑑

It is straightforward to check that

𝜃(𝑋 (𝑔)) = 𝜔(𝑋 (𝑔)) |𝔩

is a principal connection.

Let 𝑓 ∈ 𝐶∞(𝑀, 𝐸) be a section of a homogeneous vector bundle with lift 𝑓 ∈ 𝐶∞(𝐺, 𝐺 ×

𝐸0) and 𝑣 ∈ 𝔤. And we can define the covariant derivative (connection) as following

�∇(𝑑𝜋𝑒)𝑒 (𝑣) |𝑝 𝑓 = 𝑑 𝑓 (𝑑𝜋𝑒(𝑣)) |𝑔 + 𝜌0∗(𝐴𝑑(𝑔−1) (𝑣) |𝔩) ( 𝑓 )

where 𝑔 is an arbitrary element in 𝐺 such that 𝑔(𝑝0) = 𝑝 and |𝔩 means orthogonal

projection on 𝔩 with respect to Killing form on 𝔤. For the definition of 𝑑𝜋𝑒 and (𝑑𝜋𝑝0)𝑒,

see 1.3.4 (1). (See details in Kobayashi and SS.Chern, Foundation of Differential

Geometry.)
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1.1.5 Laplacian operator on the spherical coordinate

Next, we will write down the Laplacian operator on the symmetric space. Let 𝑣 = 𝑘𝑖 ∈ 𝔩

and 𝑝 = exp (𝑘𝑖𝑡) exp (𝑟𝑥0) (𝑝0) ∈ 𝑀where 𝑟 ≥ 0 and 𝑥0 ∈ 𝔞 (𝔞 is the Cartan subalgebra).

Then

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝 𝑓 =
𝑑

𝑑𝑡
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) + 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) ( 𝑓 )

=
𝑑

𝑑𝑡
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) + 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ( 𝑓 )

Therefore,

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0))

+ 2𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ( 𝑓 )

Now, let 𝑘𝑖 = 1√
2
(𝑥𝑖 + 𝑦𝑖), where 𝑥𝑖 is the positive root and 𝑦𝑖 = 𝜎(𝑥𝑖) is the negative

root. (See detail in the section of root system. )

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+ 2𝜌0(𝑐ℎ(−𝑟𝛼𝑖(𝑥0))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0(𝑐ℎ(−𝑟𝛼𝑖(𝑥0))𝑘𝑖) ( 𝑓 )

On the other hand,

�𝑑𝜋𝑒(𝑘𝑖) (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) =(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)

=(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ∈ 𝑇𝑝0𝑀
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Therefore,

�∇𝜋∗ (𝑘𝑖) |𝑝𝜋∗(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)

+ 𝜌0(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(𝑘𝑖𝑡))𝑘𝑖) [𝜋∗∗(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

at 𝑡 = 0,

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝𝑑𝜋𝑒(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖)

+ 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) [(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

=[𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖, 𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖]

=[𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)𝔭𝑖, 𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)𝑘𝑖]

=𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)𝑐ℎ(−𝛼𝑖(𝑥0)𝑟) (𝑑𝜋𝑝0)𝑒( [𝑝𝑖, 𝑘𝑖])

where 𝔭𝑖 =
1√
2
(𝑥𝑖 − 𝑦𝑖) and [𝔭𝑖, 𝑘𝑖] = [𝑥𝑖, 𝑦𝑖] =

∑𝑟
𝑗=1 𝛼𝑖(𝑝 𝑗)𝑝 𝑗. (𝑟 is the rank of the

symmetric space and 𝑝 𝑗 is the basis of the maximal abelian subalgebra. See details in

the section of root system). Therefore, for 𝑝 = exp (𝑟𝑥0) (𝑝0), we have
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Δ̃ 𝑓 |𝑝 =
𝑟∑︁
𝑗=1

�∇𝑑𝜋𝑒 (𝑝 𝑗)∇𝑑𝜋𝑒 (𝑝 𝑗) 𝑓

+ 1
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

[ 𝑛−𝑟∑︁
𝑖=1

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 −
𝑛−𝑟∑︁
𝑖=1

�∇∇𝑑𝜋𝑒 (𝑘𝑖 ) |𝑝𝑑𝜋𝑒 (𝑘𝑖) 𝑓
]

=

𝑟∑︁
𝑗=1

𝑑2

𝑑𝑡2
�̃� (exp(𝑡𝑝 𝑗) exp(𝑟𝑥0)) |𝑡=0

−
𝑛−𝑟∑︁
𝑖=1

𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)

𝑟∑︁
𝑗=1

𝛼𝑖(𝑝 𝑗)
𝑑

𝑑𝑡
�̃� (exp(𝑡𝑝 𝑗) exp(𝑟𝑥0))

+
𝑛−𝑟∑︁
𝑖=1

1
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝑑2

𝑑𝑡2
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛−𝑟∑︁
𝑖=1

2𝑐𝑜𝑡ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)

𝜌0∗(𝑘𝑖)
𝑑

𝑑𝑡
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛−𝑟∑︁
𝑖=1

𝑐ℎ2(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝜌2
0∗(𝑘𝑖) �̃�

Remark 1.1.49. We can see the above formula for Laplacian operator is only for the point

𝑝 = exp (𝑘𝑖𝑡) exp (𝑥0𝑟) (𝑝0). For the other point, we will use the spherical invariance of

Laplacian to get it.

Remark 1.1.50. We see the above discussions do not rely on the choice of the repre-

sentation 𝜌0. Therefore, the above results also holds for the general associative vector

bundle of the principal bundle 𝐺 → 𝐺/𝐾

Here, we use the same notation with the section of root system. Let 𝔪0 be 𝔩⊥0 in 𝔩.

That is to say 𝔩 � 𝔪0 ⊕ 𝔩0. (Moreover, we have [𝔪0,𝔪0] ∈ 𝔩0 and [𝔩0, 𝔩0] ∈ 𝔩0) The

Casmir operator is defined as follow

C(𝔪0, 𝜌0) = −
𝑛−𝑟∑︁
𝑖=1

𝜌2
0∗(𝑘𝑖)
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where {𝑘𝑖}𝑛𝑖=1 is orthonormal basis of 𝔪0 with respect to the Killing form < ., . >. This

operator does not depend on the choices of the basis {𝑘𝑖}𝑛𝑖=1.

Remark 1.1.51. One of important properties of the Casmir operator is that for 𝑣 ∈ 𝔩0,

[𝜌0∗(𝑣), C(𝔪0, 𝜌0∗)] = 0. In fact, let [𝑣, 𝑘𝑖] =
∑𝑛−𝑟

𝑗=1 𝑎𝑖 𝑗𝑘 𝑗. Then

< [𝑣, 𝑘𝑖], 𝑘𝑙 > + < 𝑘𝑖, [𝑣, 𝑘𝑙] >= 0

implies that 𝑎𝑖𝑙 + 𝑎𝑙𝑖 = 0. Moreover, we have

[𝜌0∗(𝑣), C(𝔪0, 𝜌0∗)] =
𝑛−𝑟∑︁
𝑖

[𝜌0∗(𝑣), 𝜌0∗(𝑘𝑖)]𝜌0∗(𝑘𝑖) + 𝜌0∗(𝑘𝑖) [𝜌0∗(𝑣), 𝜌0∗(𝑘𝑖)]

=

𝑛−𝑟∑︁
𝑖=1

𝑛−𝑟∑︁
𝑗=1

𝑎𝑖 𝑗𝜌0∗(𝑘 𝑗)𝜌0∗(𝑘𝑖) + 𝑎𝑖 𝑗𝜌0∗(𝑘𝑖)𝜌0∗(𝑘 𝑗) = 0

Let 𝑓 ∈ 𝐶∞(𝑀, 𝐸) be a section of homogeneous vector bundle 𝐸 = 𝐺 ×𝜌 𝐸0 on

noncompact (𝑀, 𝑔) with lift �̃� ∈ 𝐶∞(𝐺, 𝑇𝑝0𝑀). This 𝐺 is the isometric group of 𝑀 and

𝐾 is the isotropic group for a fixed point 𝑝0. 𝑓 is called the spherically invariant vector

field if �̃� (ℎ exp(𝑥0)) = 𝐴(exp(𝑥0))𝜌0(ℎ−1)𝑣, where 𝑣 ∈ 𝐸0 is a fixed vector, ℎ ∈ 𝐾,

𝑥0 ∈ 𝛼 (𝛼 is the maximal abelian subalgebra) and 𝐴(exp(𝑥0)) is a linear transformation

of 𝐸0. Therefore, the Laplacian operator on the spherical invariant vector field is as
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following

Δ̃ 𝑓 (exp(𝑟𝑥0)) |𝑝 =
𝑟∑︁
𝑗=1

𝑑2

𝑑𝑡2
(𝐴(exp(𝑡𝑝 𝑗) exp(𝑟𝑥0))𝑣)

+
𝑛−𝑟∑︁
𝑖=1

𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)

𝑟∑︁
𝑗=1

𝛼𝑖(𝑝 𝑗)
𝑑

𝑑𝑡
(𝐴(exp(𝑡𝑝 𝑗) exp(𝑟𝑥0))𝑣)

+
𝑛∑︁
𝑖=1

[ 1
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝐴(exp(𝑟𝑥0))𝜌2
0∗(𝑘𝑖)𝑣

− 2
𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝜌0∗(𝑘𝑖)𝐴(exp(𝑟𝑥0))𝜌0∗(𝑘𝑖)𝑣

+ 𝑐𝑜𝑡ℎ2(−𝛼𝑖(𝑥0)𝑟)𝜌2
0∗(𝑘𝑖)𝐴(exp(𝑟𝑥0))𝑣]

where 𝑝 = exp (𝑟𝑥0) (𝑝0). Moreover, we can rewrite the above formula as following

Δ̃ 𝑓 (exp(𝑟𝑥0)) =[
𝑟∑︁
𝑗=1

𝑑2

𝑑𝑡2
𝐴(exp(𝑡𝑝𝑖) exp(𝑥0)) +

𝑛−𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝛼𝑖(𝑝 𝑗)
𝑑

𝑑𝑡
𝐴(exp(𝑡𝑝 𝑗) exp(𝑟𝑥0))

− C(𝔪0, 𝜌0)𝐴(exp(𝑟𝑥0))]𝑣 + 𝐵(exp(𝑟𝑥0))𝑣

where 𝐵(exp(𝑟𝑥0)) is a higher order term with respect to | |𝑟𝑥0 | |.

1.1.6 The rank one cases

In this section, we are going to find a good coordinate of symmetric space which can

easy to see the underlying structure of it.

Real hyperbolic space

We see the hyperbolic space can be thought of as a quotient space ℍ𝑛+1 = SO(1, 𝑛 +

1)/SO(𝑛). Therefore, consider the Minkowski space (ℝ𝑛+2, 𝑔) with the pseudo Rie-

mannian metric

𝑔 = −2𝑑𝑥0𝑑𝑥𝑛+1 + |𝑑x|2
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where 𝑥0, 𝑥𝑛+1 ∈ ℝ, x ∈ ℝ𝑛 and |x|2 =
∑𝑛
𝑖=1 𝑑𝑥

2
𝑖
. Then it is easily to see that

ℍ𝑛+1 = {(𝑥0, x, 𝑥𝑛+1) ∈ ℝ𝑛+2 | − 2𝑥0𝑥𝑛+1 + |x|2 = −1} with the induced metric of 𝑔.

Therefore, we can consider the coordinate change

(𝑥0, x, 𝑥𝑛+1) → (𝛼, x′, 𝜌) 𝑤𝑖𝑡ℎ 𝛼 =
√︁

2𝑥0𝑥𝑛+1 − |x|2, 𝜌 = 𝛼/𝑥0, x′ = x/𝑥0

Therefore, we have the inverse change

𝑥0 =
𝛼

𝜌
, x =

𝛼

𝜌
x′, 𝑥𝑛+1 =

1
2
𝜌𝛼 + 1

2
𝛼

𝜌
|x′|2

Then, under the new coordinate (𝛼, x, 𝜌),

𝑔 = −𝑑𝛼2 + 𝛼2

𝜌2 [𝑑𝜌
2 + |𝑑x′|2]

Therefore, as 𝛼 = 1,

𝑔 =
1
𝜌2 [𝑑𝜌

2 + |𝑑x′|2]

Complex hyperbolic space

Let ℂ𝑛+1 = {(𝑧0, z, 𝑧𝑛+1) |𝑧0, 𝑧𝑛+1 ∈ ℂ 𝑎𝑛𝑑 z ∈ ℂ𝑛} be a Hermitian manifold with

natural complex structure and Hermitian form

𝐻 = −|𝑑𝑧0 |2 + |𝑑z|2 + |𝑑𝑧𝑛+1 |2

Obviously, U(1, 𝑛 + 1) is the group action which keeps this Hermitian form.

‘

Let ℂℙ𝑛+1 be the projective space with homogeneous coordinate {[𝑧0, z, 𝑧𝑛+1]}.

It is easy to see that for 𝐴 ∈ 𝑈 (1, 𝑛 + 1), 𝐴 ∈ U(1, 𝑛 + 1) can induce a transformation of
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ℂℙ𝑛+1 by the following way

𝐴 : ℂℙ𝑛+1 → ℂℙ𝑛+1 𝐴( [𝑧0, z, 𝑧𝑛+1]) = [𝐴(𝑧0, z, 𝑧𝑛+1)]

Moreover, this action is transitive on ℂℙ𝑛+1

We just want to find a proper Hermitian form on ℂℙ𝑛+1 such that the group action of

𝑈 (1, 𝑛 + 1) keep this Hermitian form.

The idea is fix the Hermitian form on [1, 0, 0] and use the group action to translate

this Hermitian form to every point. We are going to realize this idea step by step.

Step1: (Coordinate) Let 𝑈 = {[𝑧0, z, 𝑧𝑛+1] ∈ ℂℙ𝑛+1 |𝑧0 ≠ 0} be a coordinate chart

on ℂℙ𝑛+1 with coordinate function

𝜑 : 𝑈 → ℂ𝑛+1 𝜑( [𝑧0, z, 𝑧𝑛+1]) = ( z
𝑧0
,
𝑧𝑛+1
𝑧0

)

Suppose that at [1, 0, 0] the Hermitian form is 𝐻 ( [1, 0, 0]) = |𝑑z|2 + |𝑑𝑧𝑛+1 |2 under the

coordinate (𝑈, 𝜑).

Step2: (Group action) Consider the following matrix

𝐴 =


𝑐𝑜𝑠ℎ( |𝑡 |) 0 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |

𝑡

0 𝐼 0

𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡

0 𝑐𝑜𝑠ℎ( |𝑡 |)


where 𝑡 ∈ ℂ and 𝐼 is an 𝑛 × 𝑛 identity matrix. It is straightforward to check that

34



§1.1 Symmetric spaces and the semi-simple Lie algebra

𝐴 ∈ 𝑈 (1, 𝑛 + 1). Therefore 𝐴 can act on ℂℙ𝑛+1 by 𝐴( [𝑧0, z, 𝑧𝑛+1]) = [𝐴(𝑧0, z, 𝑧𝑛+1)].

Furthermore, in the coordinate (𝑈, 𝜑), we have

𝜑 ◦ 𝐴 ◦ 𝜑−1 : 𝑈 → 𝑈 (z, 𝑧𝑛+1) → (z′, 𝑧′𝑛+1)

where

z′ =
z

𝑐𝑜𝑠ℎ( |𝑡 |) + 𝑧𝑛+1𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |𝑡

𝑧′𝑛+1 =
𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |

𝑡
+ 𝑧𝑛+1𝑐𝑜𝑠ℎ( |𝑡 |)

𝑐𝑜𝑠ℎ( |𝑡 |) + 𝑧𝑛+1𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |𝑡

Then, at 𝐴( [1, 0, 0]) = [𝑐𝑜𝑠ℎ( |𝑡 |), 0, 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡
], we have

𝑑z′ =
1

𝑐𝑜𝑠ℎ( |𝑡 |) 𝑑z

𝑑𝑧′𝑛+1 =
1

𝑐𝑜𝑠ℎ2( |𝑡 |)
𝑑𝑧𝑛+1

Step3: (Hermitian form) Since at [1, 0, 0], the Hermitian form is 𝐻 ( [1, 0, 0]) =

|𝑑z|2 + |𝑑𝑧𝑛+1 |2 in the coordinate of (𝑈, 𝜑),

𝐻 ( [𝑐𝑜𝑠ℎ( |𝑡 |), 0, 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡
]) = 𝑐𝑜𝑠ℎ4( |𝑡 |) |𝑑𝑧′𝑛+1 |

2 + 𝑐𝑜𝑠ℎ2( |𝑡 |) |𝑑z′|2

in the coordinate of (𝑈, 𝜑). Now, since

[𝑐𝑜𝑠ℎ( |𝑡 |), 0, 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡
] = [1, 0, 𝑠𝑖𝑛ℎ( |𝑡 |)

𝑐𝑜𝑠ℎ( |𝑡 |) |𝑡 |
𝑡

]

Therefore,

𝜑[𝑐𝑜𝑠ℎ( |𝑡 |), 0, 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡
] = (0, 𝑠𝑖𝑛ℎ( |𝑡 |)

𝑐𝑜𝑠ℎ( |𝑡 |) |𝑡 |
𝑡

)
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which implies that 𝑧′
𝑛+1 =

𝑠𝑖𝑛ℎ( |𝑡 |)
𝑐𝑜𝑠ℎ( |𝑡 |) |𝑡 |

𝑡

. Therefore

𝑐𝑜𝑠ℎ( |𝑡 |) = 1√︁
1 − |𝑧′

𝑛+1 |

We have

𝐻 ( [𝑐𝑜𝑠ℎ( |𝑡 |), 0, 𝑠𝑖𝑛ℎ( |𝑡 |) |𝑡 |
𝑡
]) = 𝑐𝑜𝑠ℎ4( |𝑡 |) |𝑑𝑧′𝑛+1 |

2 + 𝑐𝑜𝑠ℎ2( |𝑡 |) |𝑑z′|2

=
1

(1 − |𝑧′
𝑛+1 |2)2 |𝑑𝑧

′
𝑛+1 | +

1
1 − |𝑧′

𝑛+1 |2
|𝑑z′|2

=
1

(1 − |𝑧′
𝑛+1 |2)2

(
(1 − |𝑧′𝑛+1 |

2) ( |𝑑z′|2 + |𝑑𝑧′𝑛+1 |
2) + |𝑧′𝑛+1 |

2 |𝑑𝑧′𝑛+1 |
2)

=
1

(1 − |𝑧′
𝑛+1 |2)2

(
(1 − |𝑧′𝑛+1 |

2) ( |𝑑z′|2 + |𝑑𝑧′𝑛+1 |
2) + ( �̄�′𝑛+1𝑑𝑧

′
𝑛+1) · (𝑧

′
𝑛+1𝑑�̄�

′
𝑛+1)

)
Step4: General Hermitian form Consider the following matrix

𝐶 =


1 0

0 𝐵


where 𝐵 ∈ U(𝑛 + 1). Therefore, 𝐶 ∈ 𝑈 (1, 𝑛 + 1), we see that


1 0

0 𝐵




1

0

𝑧′
𝑛+1


=


1

𝑧′′

𝑧′′
𝑛+1


We see that

1 − |𝑧′𝑛+1 |
2 = 1 − |𝑑z′′|2 − |𝑑𝑧′′𝑛+1 |

2

|𝑑z′|2 + |𝑑𝑧′𝑛+1 |
2 = |𝑑z′′|2 + |𝑑𝑧′′𝑛+1 |

2

( �̄�′𝑛+1𝑑𝑧
′
𝑛+1) = ( �̄�′′)𝑑𝑧′′ + ( �̄�′′𝑛+1𝑑𝑧

′′
𝑛+1)
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We get the general Hermitian form in the coordinate (𝑈, 𝜑)

𝐻 =
−1

< 𝑍, 𝑍 >2 𝑑𝑒𝑡


< 𝑍, 𝑍 > < 𝑍, 𝑑𝑍 >

< 𝑍, 𝑑𝑍 > < 𝑑𝑍, 𝑑𝑍 >


where 𝑍 = (1, z, 𝑧𝑛+1) and < . > is a Hermitian form on ℂ𝑛+2 such that the invari-

ant group of this Hermitian form is 𝑈 (1, 𝑛 + 1). This Hermitian form also called the

Bergman metric on (𝑈, 𝜑). □

Consider the Bergman metric on ℂℍ𝑛+1,

𝑔 =
−4

< 𝑍, 𝑍 >2 𝑑𝑒𝑡


< 𝑍, 𝑍 > < 𝑍, 𝑑𝑍 >

< 𝑍, 𝑑𝑍 > < 𝑑𝑍, 𝑑𝑍 >


where < ., . >= −𝑑𝑧0𝑑�̄�𝑛+1 − 𝑑𝑧𝑛+1𝑑�̄�0 + |𝑑z|2

Now, take 𝑧0 = 1 and let 𝜌2 = 𝑧𝑛+1 + �̄�𝑛+1 − |z|2 and 𝑣 = Im(𝑧𝑛+1). Then we can solve

𝑧𝑛+1 = 𝜌2 + |z|2 + 𝑖𝑣

Now, write down the Bergman metric under the coordinate (z, 𝜌, 𝑣). It is easy to get

𝑔 =
4|𝑑z|2
𝜌2 + 1

𝜌4 (4𝜌
2(𝑑𝜌)2 + 4(𝑑𝑣 + Im(z𝑑z))2)

which can see the contact form 𝑑𝑣 + Im(z𝑑z).

Then, we make use of the root system to find a frame of the symmetric space. And

then under this frame, we can write down the Laplacian operator in a beautiful form
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especially for the spherically invariant section. The reason we emphasis the spherically

invariant vector bundle is that the green function and heat kernel of the Laplacian

operator on the symmetric space is spherically invariant. Let (𝑀, 𝑔) = 𝐺/𝐾 be a simply

connected noncompact symmetric space of rank 1. This 𝐺 is the isometric group under

the metric 𝑔. 𝐾 is the isotropic group fixing a fixed point 𝑝0. Use the same notations in

the section of root system. we can do the following computation.

• Maximal Abelian subalgebra 𝛼 = 𝑆𝑝𝑎𝑛{𝑥0} with < 𝑥0, 𝑥0 >= 1

• < [𝑥𝑖, 𝑦𝑖], 𝑥0 >= 𝛼𝑖(𝑥0) = 𝜆 𝑖. Therefore, [𝑥𝑖, 𝑦𝑖] = 𝜆 𝑖𝑥0

• [𝑥0, 𝑘𝑖] = 1√
2
( [𝑥0, 𝑥𝑖] + [𝑥0, 𝑦𝑖]) = −𝜆 𝑖𝔭𝑖

• [𝑥0,𝔭𝑖] = 1√
2
( [𝑥0, 𝑥𝑖] − [𝑥0, 𝑦𝑖]) = −𝜆 𝑖𝑘𝑖

Therefore, we have

𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖 =𝑠ℎ(−𝑟𝜆 𝑖)𝔭𝑖

𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖 =𝑐ℎ(−𝑟𝜆 𝑖)𝑘𝑖

[𝔭𝑖, 𝑘𝑖] = [ 𝑥𝑖 + 𝑦𝑖√
2

,
𝑥𝑖 − 𝑦𝑖√

2
] =[𝑥𝑖, 𝑦𝑖] = 𝜆 𝑖𝑥0

where 𝜆 𝑖 = 𝛼𝑖(𝑥0).

Let (𝜌, 𝐸0) be a representation of 𝐾 on a finite linear space 𝐸0. Let 𝐸 = 𝐺 ×𝜌 𝐸0 be

the corresponding homogeneous vector bundle.

(1)(Covariant derivative) Let 𝑓 ∈ 𝐶∞(𝑀, 𝐸) be a section on homogeneous vector

bundle 𝐸 with lift 𝑓 ∈ 𝐶∞(𝐺, 𝐺 × 𝐸0) and 𝑣 ∈ 𝔤. And we can define the covariant
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derivative as following

�∇𝑑𝜋𝑒 (𝑣) |𝑝 𝑓 = 𝑣|𝑑 𝑓 (𝑣) |𝑔 + 𝜌0∗(𝐴𝑑(𝑔−1) (𝑣) |𝔩) ( 𝑓 )

where 𝑔 is an arbitrary element in 𝐺 such that 𝑔(𝑝0) = 𝑝 and |𝔩 means orthogonal

projection on 𝔩 with respect to Killing form on 𝔤. For the definition of 𝑑𝜋𝑒 and (𝑑𝜋𝑝0)𝑒,

see the 1.3.4 (1).

(2)(Laplacian Operator on the spherical coordinate) Now, let 𝑣 = 𝑘𝑖 ∈ 𝔩 and

𝑝 = exp (𝑘𝑖𝑡) exp (𝑟𝑥0) (𝑝0) ∈ 𝑀 where 𝑟 ≤ 0 and 𝑥0 ∈ 𝔞 is a normal vector with respect

to Killing form (𝔞 is the maximal abelian subalgebra). Then

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝 𝑓 =
𝑑

𝑑𝑡
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) + 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) ( 𝑓 )

Therefore,

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0))

+ 2𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) ( 𝑓 )

At 𝑡 = 0

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+ 2𝜌0∗(𝑐ℎ(−𝑟𝜆 𝑖))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0∗(𝑐ℎ(−𝑟𝜆 𝑖)𝑘𝑖) ( 𝑓 )
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On the other hand,

�𝑑𝜋𝑒(𝑘𝑖) (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) = (𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) ∈ 𝑇𝑝0𝑀.

Therefore,

∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝𝑑𝜋𝑒(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)

+ 𝜌′0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(𝑘𝑖𝑡))𝑘𝑖) [𝜋∗∗(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

where 𝜌′0∗ is the representation corresponding to the tangent bundle. At 𝑡 = 0,

∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝𝑑𝜋𝑒(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖)

+ 𝜌′0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) [𝜋∗∗(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

=[𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖, 𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖]

=[𝑠ℎ(−𝜆 𝑖𝑟)𝑝𝑖, 𝑐ℎ(−𝜆 𝑖𝑟)𝑘𝑖]

=𝑠ℎ(−𝜆 𝑖𝑟)𝑐ℎ(−𝜆 𝑖𝑟)𝜆 𝑖𝜋∗∗(𝑥0)

Therefore, for 𝑝 = exp (𝑟𝑥0) (𝑝0), we have
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Δ̃ 𝑓 |𝑝 = �∇𝑑𝜋𝑒 (𝑥0)∇𝑑𝜋𝑒 (𝑥0) 𝑓 +
1

𝑠ℎ2(−𝜆 𝑖𝑟)
[ 𝑛∑︁
𝑖=1

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 −
𝑛∑︁
𝑖=1

�∇∇𝑑𝜋𝑒 (𝑘𝑖 ) |𝑝𝑑𝜋𝑒 (𝑘𝑖) 𝑓
]

=
𝑑2

𝑑𝑟2 �̃� (exp(𝑟𝑥0)) −
𝑛∑︁
𝑖=1

𝑐ℎ(−𝜆 𝑖𝑟)
𝑠ℎ(−𝜆 𝑖𝑟)

𝜆 𝑖
𝑑

𝑑𝑟
�̃� (exp(𝑟𝑥0))

+
𝑛∑︁
𝑖=1

1
𝑠ℎ2(−𝜆 𝑖𝑟)

𝑑2

𝑑𝑡2
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛∑︁
𝑖=1

2𝑐𝑜𝑡ℎ(−𝜆 𝑖𝑟)
𝑠ℎ(−𝜆 𝑖𝑟)

𝜌0∗(𝑘𝑖)
𝑑

𝑑𝑡
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛∑︁
𝑖=1

𝑐ℎ2(−𝜆 𝑖𝑟)
𝑠ℎ2(−𝜆 𝑖𝑟)

𝜌2
0∗(𝑘𝑖) �̃�

Remark 1.1.52. We can see the above formula for Laplacian operator is only for the point

𝑝 = exp (𝑘𝑖𝑡) exp (𝑥0𝑟) (𝑝0). For the other point, we will use the spherical invariance of

Laplacian to get it. (See )

Remark 1.1.53. We see the above discussions do not rely on the choice of the repre-

sentation 𝜌0. Therefore, the above results also holds for the general associative vector

bundle of the principal bundle 𝐺 → 𝐺/𝐾

(3)(Spherically invariant section) Let 𝑓 ∈ 𝐶∞(𝑀, 𝐸) and �̃� ∈ 𝐶∞(𝐺, 𝐺 × 𝐸0). 𝑓 is

called the spherically invariant vector field if �̃� (ℎ exp(𝑟𝑥0)) = 𝐴(𝑟)𝜌0(ℎ−1)𝑣 where

𝑣 ∈ 𝑇𝑝0𝑀 is a fixed vector, ℎ ∈ 𝐾 and 𝐴(𝑟) is a linear transformation of 𝑇𝑝0𝑀. Therefore,
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the Laplacian operator on the spherical invariant vector field is as following

Δ̃ 𝑓 (exp(𝑟𝑥0)) =𝜕2
𝑟 (𝐴(𝑟)𝑣) + H (𝑟) (𝜕𝑟 (𝐴(𝑟)𝑣)

+
𝑛∑︁
𝑖=1

[ 1
𝑠ℎ2(−𝜆 𝑖𝑟)

𝐴(𝑟)𝜌2
0∗(𝑘𝑖)𝑣 − 2

𝑐ℎ(−𝜆 𝑖𝑟)
𝑠ℎ2(−𝜆 𝑖𝑟)

𝜌0∗(𝑘𝑖)𝐴(𝑟)𝜌0∗(𝑘𝑖)𝑣

+ 𝑐𝑜𝑡ℎ2(−𝜆 𝑖𝑟)𝜌2
0∗(𝑘𝑖)𝐴(𝑟)𝑣]

where 𝑝 = exp (𝑟𝑥0) and H(𝑟) =
∑𝑛
𝑖=1

𝑐ℎ(𝜆 𝑖𝑟)
𝑠ℎ(𝜆 𝑖𝑟) 𝜆 𝑖. Moreover, we can rewrite the above

formula as following

Δ̃ 𝑓 (exp(𝑟𝑥0)) =[𝜕2
𝑟 𝐴(𝑟) + H𝜕𝑟𝐴(𝑟) − C(𝔪0, 𝜌0)𝐴(𝑟)]𝑣 + 𝐵(𝑟)𝑣

where H =
∑𝑛
𝑖=1 𝜆 𝑖 and

𝐵(𝑟) =[H (𝑟) − H]𝜕𝑟𝐴(𝑟) +
𝑛∑︁
𝑖=1

[ 1
𝑠ℎ2(−𝜆 𝑖𝑟)

𝐴(𝑟)𝜌2
0∗(𝑘𝑖)𝑣

− 2
𝑐ℎ(−𝜆 𝑖𝑟)
𝑠ℎ2(−𝜆 𝑖𝑟)

𝜌0∗(𝑘𝑖)𝐴(𝑟)𝜌0∗(𝑘𝑖)𝑣 + (𝑐𝑜𝑡ℎ2(−𝜆 𝑖𝑟)𝜌2
0∗(𝑘𝑖) − 1)𝐴(𝑟)𝑣]

Therefore, |𝐵(𝑟) | = 𝑂(exp(−𝑟)) [|𝐴(𝑟) | + |𝜕𝑟𝐴(𝑟) |]

§ 1.2 Parabolic geometries and asymptotically

symmetric metrics

In this section, we introduce the parabolic geometry. The reason we introduce this

geometry is that the boundary geometry of rank 1 noncompact type symmetric space

is still a homogeneous space and can be thought of as the model space of a parabolic

geometry (Iwassawa Decomposition). Then, we can define the general parabolic geom-
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etry with this type. And it turns out that this kind of parabolic geometry is equivalent

to the infinitesimal flag structure. In particular, for the hyperbolic case, the boundary

parabolic geometry is conformal geometry and for the complex hyperbolic case, the

boundary parabolic geometry is strictly pseudoconvex partial integrable almost CR ge-

ometry.

In section 1.2.1, we define the boundary geometry of noncompact type of symmetric

space.

In section 1.2.2, we introduce the basic definition of Cartan geometry which is the

general case of parabolic geometry and define the parabolic geometry and show how

this geometry is characterized by the flag structure on the tangent space.

1.2.1 Geodesic compactifications of symmetric spaces

In this section, we will define the boundary of the noncompact symmetric space. We

will identity the boundary of the noncompact symmetric space with the geodesic classes.

Let 𝑀 be a noncompact symmetric space.

• The asymptotic ray [18] Two (unit speed) geodesics ray 𝜎, 𝜏 : [0, +∞) −→ 𝑀

are called asymptotic if the function 𝑡 ↦→ 𝑑(𝜎(𝑡), 𝜏(𝑡)) is bounded.

• Martin boundary [18] The boundary at infinity 𝜕∞𝑀 of 𝑀 is the set of equiva-

lence classes of rays for the equivalence relation "being asymptotic". The equiv-

alence class of a ray 𝜎 will be denoted 𝜎(∞).

• The topology of 𝜕∞𝑀 [18] Let 𝑈𝑥𝑀 ⊆ 𝑇𝑥𝑀 be the unit ball in 𝑇𝑥𝑀. Then the
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map Φ𝑥 : 𝑈𝑥𝑀 −→ 𝜕∞𝑀 is bĳective. Thus we can induce the topology of 𝑈𝑥𝑀

onto 𝜕∞𝑀.

Now, we see that the isometric group of the noncompact symmetric space can also

be acted on the Martin boundary of it. Furthermore, this action is transitive. Therefore,

the Martin boundary can also be thought of as a homogeneous space. And the isotropic

group is the so called Borel group.

• The group action on ‘𝜕∞𝑀‘ The isometric group of 𝑀, G, can transitively act on

the 𝜕∞𝑀.

• The geometry of the boundary Let 𝜉 ∈ 𝜕∞𝑀 and 𝐺𝜉 is the isotropic group at 𝜉.

Then 𝜕∞𝑀 = 𝐺/𝐺𝜉.

• Borel group [25] Borel group is a subgroup in 𝐺, consist of 𝐴𝑁+𝐿0, where

𝐴, 𝑁+, 𝐿0 is the Lie group corresponding to 𝔞, 𝔫+ and 𝔩0 respectively. (This

decomposition actually is Iwasawa decomposition)

– Borel group fix the Weyl chamber at infinity 𝜕∞.

– In particularly, for the rank 1 noncompact symmetric space, the Borel group

is the isotropic group of the infinity.

We will see from the point of the Cartan geometry, the boundary geometry is, in fact,

the model space of the parabolic geometry and its corresponding curvature. Moreover,

we will introduce the Liouville theorem, which says that the vanish of the curvature

implies that the geometry is locally model space(homogeneous space).

Definition 1.2.1 ([12], p.71). Let 𝐻 ⊆ 𝐺 be a Lie subgroup in a Lie group 𝐺, and let 𝔤

be the Lie algebra of 𝐺.A Cartan geometry of type (𝐺, 𝐻) on a manifold 𝑀 is a principal
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fiber bundle 𝑝 : P → 𝑀 with structure group 𝐻, which is endowed with a 𝔤−valued

one-form 𝜔 ∈ Ω1(P, 𝔤), called the Cartan connection, which means(
𝑟ℎ

)∗
𝜔 = Ad

(
ℎ−1) ◦ 𝜔 for all ℎ ∈ 𝐻

𝜔 (𝜁𝑋 (𝑢)) = 𝑋 for each 𝑋 ∈ 𝔥

𝜔(𝑢) : 𝑇𝑢P → 𝔤 is a linear isomorphism for all 𝑢 ∈ P

(1.2.1)

Actually, all the Cartan geometries will form a Category.

Definition 1.2.2 ([12], p.73). A morphism between two Cartan geometries (P → 𝑀, 𝜔)

and (P′ → 𝑀′, 𝜔′) of type (𝐺, 𝐻) is a principal bundle morphism 𝜙 : P → P′ such

that 𝜙∗𝜔′ = 𝜔.

Now, we can define the so-called model Cartan geometry. The homogeneous model

for Cartan geometries of type (𝐺, 𝐻) is the canonical bundle 𝑝 : 𝐺 → 𝐺/𝐻 endowed

with the left Maurer-Cartan form 𝜔𝐺 ∈ Ω1(𝐺, 𝔤), which can be thought of as the flat

case of Cartan geometry. We see that 𝑑𝜔𝐺 + [𝜔𝐺, 𝜔𝐺] = 0, which enlightens us to define

the general curvatureof the Cartan geometry.

Definition 1.2.3 ([12],p.71). The curvature form 𝐾 ∈ Ω2(P, 𝔤) of a Cartan geometry

(P → 𝑀, 𝜔) is defined by the srtructure equation 𝐾 (𝜉, 𝜂) := 𝑑𝜔(𝜉, 𝜂) + [𝜔(𝜉), 𝜔(𝜂)]

The most important things for the curvature is the Liouville Theorem which basically

says that the curvature of a Cartan geometry (𝑃 → 𝑀, 𝜔) vanishes identically if and only

if any point 𝑥 ∈ 𝑀 has an open neighborhood𝑈 such that the restriction
(
𝑝−1(𝑈) → 𝑈, 𝜔

)
is isomorphic to the restriction of the homogeneous model (𝐺 → 𝐺/𝐻, 𝜔𝐺) to an open

neighborhood of 𝑜.

Theorem 1.2.4 (Liouville Theorem, [12], p.73). Suppose that 𝐺/𝐻 is connected. Then
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any isomorphism between two restrictions of (𝐺 → 𝐺/𝐻, 𝜔𝐺) to connected open subsets

of 𝐺/𝐻 uniquely globalizes to an automorphism of the homogeneous model.

1.2.2 Parabolic geometries on the boundary

Now, we will define a special Cartan geometry, parabolic geometry. We will see that

the boundary homogeneous space of the symmetric space of the noncompact type is

such model space.

• The graded Lie algebra A Lie algebra 𝔤 is graded Lie algebra if there exist a

decomposition of 𝔤 = ⊕𝑘
𝑖=−𝑘𝔤𝑖 such that [𝔤𝑖, 𝔤 𝑗] ∈ 𝔤𝑖+ 𝑗 (𝔤𝑖 = 0 if |𝑖| > 𝑘) and the

subalgebra 𝔤− := 𝔤−𝑘 ⊕ · · · ⊕ 𝔤−1 can be generated by 𝔤−1

• The parabolic subgroup If 𝐺 is the Lie group with the graded Lie algebra, then

𝐾 < 𝐺 is the parabolic subgroup if the Lie algebra of 𝐾 is the ⊕𝑘
𝑖=0𝔤𝑖

• The parabolic geometry If 𝐺 is semisimple Lie algebra and K is the parabolic

subgroup of 𝐺. Then the Cartan geomerty (𝑃 → 𝑀, 𝜔) of the type (𝐺, 𝐾) is

called parabolic geometry.

– In particular, the Borel group is exactly the parabolic subgroup of 𝐺. Thus,

for the rank 1 case of symmetric space 𝑀, 𝜕∞𝑀 = 𝐺/𝑃 is the homogeneous

of parabolic geometry.

We see that the Borel group can not act on the tangent space. However, we see that

the subgroup of Borel group, Levi subgroup, can act on the tangent space. If 𝐺 is a Lie

group with the graded Lie algebra, then 𝐺0 < 𝐺 is the Levi subgroup if the Lie algebra
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of 𝐺0 is 𝔤0. By this Levi group, we can define the infinitesimal flag structure which will

be an alternative of the regular parabolic geometry.

Definition 1.2.5 (The infinitesimal flag structure, [12], Definition 3.1.6). An infinitesi-

mal flag structure of type (𝐺, 𝑃) on a smooth manifold 𝑀 is given by:

(1) A filtration 𝑇𝑀 = 𝑇−𝑘𝑀 ⊇ · · · ⊇ 𝑇−1𝑀 of the tangent bundle of 𝑀 such that the

rank of 𝑇 𝑖𝑀 equals the dimension of 𝔤𝑖/𝔭 for all 𝑖 = −𝑘, . . . ,−1.

(2) A principal 𝐺0−bundle 𝑝 : 𝐸 → 𝑀.

(3) A collection 𝜃 = (𝜃−𝑘, . . . , 𝜃−1) of smooth sections 𝜃𝑖 ∈ Γ
(
𝐿
(
𝑇 𝑖𝐸, 𝑔𝑖

) )
which

are 𝐺0−equivariant in the sense that (𝑟𝑔)∗ 𝜃𝑖 = Ad
(
𝑔−1) ◦ 𝜃𝑖 for all 𝑔 ∈ 𝐺0, and

such that for each 𝑢 ∈ 𝐸 and 𝑖 = −𝑘, . . . ,−1 the kernel of 𝜃𝑖(𝑢) : 𝑇 𝑖𝑢𝐸 → 𝔤𝑖 is

𝑇 𝑖+1
𝑢 𝐸 ⊆ 𝑇 𝑖𝑢𝐸. (𝔤𝑖 = ⊕𝑘

𝑗=𝑖
𝔤 𝑗 and 𝑇 𝑖𝐸 = 𝑑𝑝−1(𝑇 𝑖𝑀) 𝑖 < 0)

The infinitesimal flag structures also forms a category by the following definition.

We will see that if we add a regular condition of this infinitesimal flag structure, this

category can be corresponded to the normal regular parabolic geometry category in

some sense.

Definition 1.2.6 ([12], Definition 3.1.6). Let 𝑀 and �̃� be smooth manifolds endowed

with infinitesimal flag structrues
({
𝑇 𝑖𝑀

}
, 𝑝 : 𝐸 → 𝑀, 𝜃

)
and

({
𝑇 𝑖�̃�

}
, �̃� : �̃� → �̃�, �̃�

)
of type (𝐺, 𝑃). Then a morphism of infinitesimal flag structures is a principal bundle

homomorphism Φ : 𝐸 → �̃� which covers a local diffeomorphism 𝑓 : 𝑀 → �̃� such that

𝑇 𝑓 is filtration preserving and Φ∗�̃�𝑖 = 𝜃𝑖 for all 𝑖 = −𝑘, . . . ,−1.

Next, we will define the regular condition for the infinitesimal flag structure. Before

that, we need to introduce the filtered manifold. A filtered manifold is a smooth
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manifold 𝑀 together with a filtration 𝑇𝑀 = 𝑇−𝑘𝑀 ⊇ · · · ⊇ 𝑇−1𝑀 of its tangent bundle

by smooth subbundles, which is compatible with the Lie bracket in the sense that

[𝜉, 𝜂] ∈ Γ
(
𝑇 𝑖+ 𝑗𝑀

)
.

Definition 1.2.7 (The regular infinitesimal flag structure, [12], Proposition 3.1.7). Let({
𝑇 𝑖𝑀

}
, 𝑝 : 𝐸 → 𝑀, 𝜃

)
be an infinitesimal flag structure such that

(
𝑀,

{
𝑇 𝑖𝑀

})
is a

filtered manifold. Then the structure is regular if for all 𝑖, 𝑗 < 0 such that 𝑖 + 𝑗 ≥ −𝑘 and

all sections 𝜉 ∈ Γ
(
𝑇 𝑖𝐸

)
and 𝜂 ∈ Γ

(
𝑇 𝑗𝐸

)
we have

𝜃𝑖+ 𝑗( [𝜉, 𝜂]) =
[
𝜃𝑖(𝜉), 𝜃 𝑗(𝜂)

]
• Let 𝔤 = 𝔤−𝑘 ⊕ · · · ⊕ 𝔤𝑘 be |𝑘|− graded semisimple Lie algebra, 𝐺 a Lie group

with Lie algebra 𝔤, 𝑃 ⊆ 𝐺 a parabolic subgroup corresponding to the grading and

𝐺0 ⊆ 𝑃 the Levi subgroup. Then any regular infinitesimal flag structure of type

(𝐺, 𝑃) on a smooth manifold 𝑀 is induced by a normal parabolic geometry of

type (𝐺, 𝑃).

By the [Theorem 3.1.14] [12], the regular infinitesimal flag structure can be identified

as a normal regular parabolic geometry under some assumptions of the cohomology

space for the type (𝐺, 𝑃).

1.2.3 The conformal geometry and asymptotically hyperbolic

metrics

In this section, We will first review the traditional definition of the conformal manifolds

and show that this is, actually, a special parabolic geometry whose model space is the

boundary geometry of the hyperbolic space.
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Then, we will review the asymptotically hyperbolic manifolds whose boundary is,

in fact, a conformal manifold. Finally, we will introduce some basic properties of

asymptotically hyperbolic manifolds.

Traditionally, a conformal manifold is a Riemannian manifold equipped with an

equivalence class of metric tensors, in which two metrics 𝑔 and ℎ are equivalent if and

only if

ℎ = 𝜆2𝑔

where 𝜆 is a real-valued non zero function.

Then, we will show that there exists an infinitesimal flag structure corresponding to

this conformal manifold. First, it is easy to show that there exists a subbundle of a Frame

bundle 𝑝 : 𝐸 → 𝑀 such that the structure group is 𝐴 × SO(𝑛) where 𝐴 is the set of all

the non-zero scalar matrices. Now consider the

𝜃 : 𝑇𝐸 → 𝔤−1, (𝑝, 𝐴, 𝑣1, 𝑣2) → 𝐴−1𝑣1

where 𝑝 ∈ 𝑀, 𝐴 ∈ 𝐴 × SO(𝑛), 𝑣1 ∈ 𝑇𝑝𝑀, 𝑣2 ∈ Lie(𝐴 × SO(𝑛)) and the 𝔤−1 is an

Abelian Lie algebra. Moreover, we see that 𝔰𝔬(1, 𝑛+1) � 𝔤−1 ⊕𝔤0 ⊕𝔤+1. By the Propo-

sition 3.1.14 [12], the conformal manifold corresponds to a uniquely parabolic geometry.

Next, we will define the asymptotically hyperbolic manifold and identify its boundary

as a conformal manifold. Suppose that 𝑋𝑛+1 is a smooth manifold of dimension 𝑛 + 1

with smooth boundary 𝜕𝑋 = 𝑀𝑛. A defining function for the boundary 𝑀𝑛 in 𝑋𝑛+1 is a
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function 𝑥 on �̄�𝑛+1 such that 
𝑥 > 0 in X

𝑥 = 0 on M

𝑑𝑥 ≠ 0 on M

A Riemannian metric 𝑔+ on 𝑋𝑛+1 is conformally compact if ( �̄�𝑛+1, 𝑥2𝑔+) is a compact

Riemannian manifold with boundary𝑀𝑛 for a defining function 𝑥. Conformally compact

manifold (𝑋𝑛+1, 𝑔+) carries a well-defined conformal structure on the boundary 𝑀𝑛,

where each metric �̂� in the class is induced from �̄� = 𝑥2𝑔+ for a defining function 𝑥. We

call (M𝑛, [�̂�]) the conformal infinity of the conformally compact manifold (𝑋𝑛+1, 𝑔). It

can be computed that, given a defining function 𝑥,

𝑅𝛼𝛽𝛿𝛾 [𝑔] = −|𝑑𝑥 |2�̄�
(
𝑔𝛼𝛿𝑔𝛽𝛾 − 𝑔𝛼𝛾𝑔𝛽𝛿

)
+ 𝑂

(
𝑥2

)
in coordinate (0, 𝜖) × M𝑛 ⊆ X𝑛+1 Therefore, if we assume that 𝑔 is also asymptotically

locally hyperbolic, i.e. its sectional curvatures approach −1 at the infinity, then

|𝑑𝑥 |2�̄�
���
M
= 1

for any defining function 𝑥. Therefore an asymptotically hyperbolic (AH) manifold is a

conformally compact manifold in addition to being asymptotically local hyperbolic.

Definition 1.2.8. [31] For a smooth manifold 𝑋𝑛+1 with boundary 𝜕𝑋𝑛+1 = 𝑀𝑛, a

Riemannian metric 𝑔+ is said to be asymptotically hyperbolic Einstein (AHE) if it is AH

and it is Einstein

Ric
[
𝑔+

]
= −𝑛𝑔+

Given an AH manifold (𝑋𝑛+1, 𝑔+) and a representative �̂� in [�̂�] of the conformal

infinity Mn, there is a uniquely defining function 𝑥 such that, on 𝑀 × (0, 𝜖) in 𝑋 , 𝑔+ has
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§1.2 Parabolic geometries and asymptotically symmetric metrics

the normal form

𝑔 = 𝑥−2
(
𝑑𝑥2 + 𝑔𝑥

)
where 𝑔𝑥 is a 1-parameter family of metrics on 𝑀. This is because

Lemma 1.2.9. (Geodesic Defining function) Suppose that(𝑋𝑛+1, 𝑔+)is an AH manifold

with the conformal infinity (𝑀, [�̂�]). Then, for any �̂� ∈ [�̂�], there exists a unique defining

function 𝑥 such that

|𝑑𝑥 |2
𝑥2𝑔

= 1

in a neighborhood of the boundary [0, 𝜖) × 𝑀 for some 𝜖 > 0 and

𝑥2𝑔+
��
M = �̂�

Proof: Let 𝑥0 be any defining function for 𝑀𝑛 in 𝑋𝑛+1 and �̄�0 = 𝑥2
0𝑔. Then set

𝑥 = 𝑒𝜔𝑥0. Hence

|𝑑𝑥 |2
𝑥2𝑔

= |𝑑𝑥0 + 𝑥0𝑑𝑤|2
�̄�0 = |𝑑𝑥0 |2�̄�0 + 2𝑥0𝑑𝑤

(
∇�̄�0𝑥0

)
+ 𝑥2

0 |𝑑𝑤|2
�̄�0

Therefore the equation is

|𝑑𝑥 |2�̄� = 1

2𝑑𝑤
(
∇�̄�0𝑥0

)
+ 𝑥0 |𝑑𝑤|2

�̄�0 =
1 − |𝑑𝑥0 | �̄�0

𝑥0

This is a non-characteristic nonlinear first order partial differential equation for 𝜔. Thus

there exists a unique solution 𝜔 at least near the boundary 𝑀𝑛 with the given boundary

condition

𝑒2𝑤𝑥2
0𝑔 = �̂� on 𝑀𝑛

Given an AHE manifold (𝑋𝑛+1, 𝑔+), in the local coordinate (0, 𝜖)×𝑀𝑛 near the boundary
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where the metric takes the normal form (2.1), the Einstein equations turn into a second

order ordinary differential equations point-wisely on Mn with 𝑥 = 0 as a regular singular

point. We have, as an improvement of Theorem 1.6.1, from (1.26) (1.27) (1.28) the

following expansions of the metric.

Theorem 1.2.10. [20] Suppose that (𝑋𝑛+1, 𝑔) is a conformally compact Einstein mani-

fold with the conformal infinity (𝑀𝑛, [�̂�]). And suppose that 𝑥 is the geodesic defining

function associated with a metric �̂� ∈ [�̂�]. Then

𝑔𝑥 = �̂� + 𝑔(2)𝑥2 + (even powers of 𝑥)

+ 𝑔(𝑛−1)𝑥𝑛−1 + 𝑔(𝑛)𝑥𝑛 + · · ·

when 𝑛 is odd, and
𝑔𝑥 = �̂� + 𝑔(2)𝑥2 + (even powers of 𝑥)

+ 𝑔(𝑛)𝑥𝑛 + ℎ𝑥𝑛 log 𝑥 + · · ·

a) 𝑔(2𝑖) are determined by �̂� for 2𝑖 ≤ 𝑛;

b) 𝑔(𝑛) is traceless when 𝑛 is odd;

c) the trace part of 𝑔(𝑛) is determined by �̂� and ℎ is traceless and determined by �̂�

when 𝑛 is even;

d) the traceless part of 𝑔(𝑛) is divergence free;

e) the trace-free part of 𝑔(𝑛) is non-local and determined by the 𝑔+and �̂�;

f) the rest of power series is determined by �̂� and 𝑔(𝑛) when 𝑛 is odd and the rest in

the powers of 𝑟 and log 𝑟 is determined by �̂� and 𝑔(𝑛) when 𝑛 is even.
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§1.2 Parabolic geometries and asymptotically symmetric metrics

1.2.4 The CR geometry and asymptotically complex hyperbolic

metrics

In this section, we will first introduce the traditional definition of the pseudoconvex

partially integrable CR-structure and show that this structure is, actually, a special para-

blic geometry whose model space is the boundary geometry of the complex hyperbolic

space.

Then, we will introduce the asymptotically complex hyperbolic metric whose bound-

ary is, in fact, a pseudocovex partially integrable CR-structure.

Definition 1.2.11 (Partially integrable CR manifold, [13], Definition 1.7). Let 𝑀2𝑛+1

be a smooth compact orientable manifold endowed with a 2𝑛 dimensional distribution

𝐻 ⊆ 𝑇𝑀 and an almost complex structure 𝐽 on 𝐻. Then, (𝑀2𝑛+1, 𝐻2𝑛, 𝐽) is said to be

an partially integrable CR manifold if

1) 𝐻 is maximal non-integrable. (For any vector field 𝑣1 ≠ 𝑣2 ∈ 𝐻, [𝑣1, 𝑣2] ∉ 𝐻)

2) [𝐻1,0, 𝐻1,0] ∈ ℂ ⊗ 𝐻, where 𝐻1,0 is the holomorphic vector field of 𝐻 under the

almost complex structure 𝐽 and ℂ ⊗ 𝐻 is the complexification of the distribution

𝐻.

From the definition of partially integrable CR structure, we see there exists a con-

formal class of one form [𝜂] (𝑘𝑒𝑟𝜂 = 𝐻) such that for arbitrary 𝑣1 ∈ 𝐻 and 𝑣2 ∈ 𝐻,

𝑑 [𝜂] (𝐽 (𝑣1), 𝐽 (𝑣2)) = 𝑑 [𝜂] (𝑣1, 𝑣2) and 𝑑 [𝜂] (𝑣1, 𝐽 (𝑣2)) = 𝑑 [𝜂] (𝑣2, 𝐽 (𝑣1)) and A par-

tially integrable CR manifold is called pseudoconvex if −𝑑𝜂(., 𝐽.) is definite.

It is easy to construct a
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Definition 1.2.12. (Asymptotically Complex Hyperbolic Metric) Let �̄�2𝑛+2 be a mani-

fold with boundary 𝜕𝑀2𝑛+1. (𝜕𝑀, 𝐻, 𝐽) is a partially integrable CR contact structure on

𝜕𝑀. (𝑀, 𝑔+) is a complete Riemannian metric in the interior of 𝑀.

Then 𝑔+ is said to be a asymptotically complex hyperbolic metric, if there exist a

defining function 𝜌 (𝑖.𝑒 𝜌 > 0 in 𝑀, 𝜌 = 0 and 𝑑𝜌 ≠ 0 on 𝜕𝑀), an extension of 𝜂, �̃�

(𝑖.𝑒 𝜂 |𝑇𝜕𝑀 = 𝜂) and one forms {�̃�𝑖}2𝑛
𝑖=1 such that

1) 𝜌4𝑔+ ∈ 𝐶𝑘,𝛼(�̄�) and 𝜌4𝑔+ |𝑇𝜕𝑀 = 𝜂2

2) 𝜌2𝑔+ |�̄�,𝑘𝑒𝑟�̃� ∈ 𝐶𝑘,𝛼(�̄�) and 𝜌2𝑔+ | (𝜕𝑀,𝑘𝑒𝑟𝜂) = 1
4𝑑𝜂(., 𝐽.)

3) | 𝑑𝜌
𝜌
|𝑔+ ∈ 𝐶𝑘,𝛼(�̄�) and | 𝑑𝜌

𝜌
|𝑔+ |𝜕𝑀 = 1

4) {𝑑𝜌, �̃�𝑖, �̃�}2𝑛
𝑖=1 be a basis of 𝑇∗�̄� near the boundary.

And the metric 𝑔+ can be written as follow

𝑔+ = 𝑎00
(𝑑𝜌)2

𝜌2 + 𝑎0𝑖
𝑑𝜌⊗�̃�𝑖

𝜌2 + 𝑎𝑖0
�̃�𝑖⊗𝑑𝜌
𝜌2 + 𝑎𝑖 𝑗

�̃�𝑖⊗�̃� 𝑗

𝜌2 + 𝑎𝑖(2𝑛+1)
�̃�𝑖⊗�̃�
𝜌3 + 𝑎(2𝑛+1)𝑖

�̃�⊗�̃�𝑖

𝜌3 +

𝑎(2𝑛+1) (2𝑛+1)
(�̃�)2

𝜌4 + 𝑎0(2𝑛+1)
𝑑𝜌⊗�̃�
𝜌3 + 𝑎(2𝑛+1)0

�̃�⊗𝑑𝜌
𝜌3

where the matrix 𝐴 = {𝑎𝑖 𝑗}2𝑛+1
𝑖=0 ∈ 𝐶𝑘,𝛼(�̄�) is a positive definite matrix.

Remark 1.2.13. Actually, the definition of the ACH metric does not depend on the

choice of the defining function, the extension of 𝜂 in the interior and the choice of the

{�̃� 𝑗}2𝑛
𝑗=1. The following lemma will show this fact.
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Lemma 1.2.14. Let

𝑑𝜌1 = 𝑓 𝑑𝜌 + 𝜌𝑑 𝑓

𝛽𝑖 = 𝐴𝑖0𝑑𝜌 +
2𝑛∑︁
𝑗=1

𝐴𝑖𝑗�̃�
𝑗 + 𝐴2𝑛+1

𝑖 �̃�

𝜂1 = 𝐴2𝑛+1
0 𝑑𝜌 +

2𝑛∑︁
𝑗=1

𝐴2𝑛+1
𝑗 �̃� 𝑗 + 𝑓 �̃�

form a new basis of 𝑇∗𝑀 near the boundary with 𝐴2𝑛+1
0 |𝜕𝑀 = 𝐴2𝑛+1

𝑗
|𝜕𝑀 = 0 and 𝑓 ∈

𝐶∞(�̄�) is a positive function with 𝑓 = 1 on 𝜕𝑀. Then, (𝑀, 𝑔+) is still an ACH manifold

for the new defining function 𝜌1 = 𝑓 𝜌 and the new one-form basis {𝑑𝜌1, 𝛽 𝑗, 𝜂1}2𝑛
𝑗=1

Proof. Since 𝐴0
2𝑛+1 |𝜕𝑀 = 𝐴

𝑗

2𝑛+1 |𝜕𝑀 = 0, 𝑘𝑒𝑟�̃�1 |𝜕𝑀 = 𝑘𝑒𝑟�̃�|𝜕𝑀 . Therefore, item 1) and

item 2) of the definition of ACH metric is satisfied for 𝜌1 and �̃�1.

For the item 3), in fact,

| 𝑑𝜌1
𝜌1

|2𝑔∗+ = | 𝑑( 𝑓 𝜌)
𝑓 𝜌

|2𝑔∗+ = | ( 𝑓 𝑑𝜌) + (𝜌𝑑 𝑓 )
𝑓 𝜌

|2𝑔∗+ = | 𝑑𝜌
𝜌
|2𝑔∗+ + 2 < 𝑑𝜌, 𝑑 𝑓 >𝑔∗+ +

1
𝑓 2 |𝑑 𝑓 |

2
𝑔2
+

By the lemma 1.1, < 𝑑𝜌, 𝑑 𝑓 >𝑔∗+ |𝜕𝑀 = 1
𝑓 2 |𝑑 𝑓 |2𝑔∗+ |𝜕𝑀 = 0 on the boundary. Therefore, the

item 3) holds.

Suppose that {𝜕𝜌1 , 𝑢𝑖, �̃�1}2𝑛
𝑖=1 is the dual basis of {𝑑𝜌1, 𝛽 𝑗, 𝜂1}2𝑛

𝑗=1. Then, we see


𝑑𝜌1

𝛽𝑖

�̃�1


=


𝑓 0 0

𝐴𝑖0 𝐴𝑖
𝑗
𝐴2𝑛+1
𝑖

0 0 𝑓



𝑑𝜌

�̃� 𝑗

�̃�


(1.2.2)

on the boundary. Therefore,
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𝜕𝜌1

𝑢𝑖

�̃�1


=


𝑓−1 𝐵

𝑗

0 0

0 𝐵
𝑗

𝑖
0

0 𝐵
𝑗

2𝑛+1 𝑓−1



𝜕𝜌

𝑒𝑖

�̃�


(1.2.3)

where


𝑓−1 𝐵

𝑗

0 0

0 𝐵
𝑗

𝑖
0

0 𝐵
𝑗

2𝑛+1 𝑓−1



𝑇

=


𝑓 0 0

𝐴𝑖0 𝐴𝑖
𝑗
𝐴2𝑛+1
𝑖

0 0 𝑓



−1

Let 𝐴′ = {𝑎′
𝑖 𝑗
}2𝑛+1
𝑖=0, 𝑗=0, where 𝑎′00 = 𝜌2𝑔+(𝜕𝜌, 𝜕𝜌1), 𝑎′0𝑖 = 𝜌2𝑔+(𝜕𝜌1 , 𝑢𝑖), 𝑎′0(2𝑛+1) =

𝜌3𝑔+(𝜕𝜌1 , �̃�1), 𝑎′𝑖 𝑗 = 𝜌2𝑔+(𝑢𝑖, 𝑢 𝑗), 𝑎′𝑖(2𝑛+1) = 𝜌2𝑔+(𝑢𝑖, �̃�1) and 𝑎′(2𝑛+1) (2𝑛+1) = 𝜌4𝑔+(�̃�1, �̃�1).

Therefore, 𝐴′ satisfies the item 4) in the definition of the ACH.

□

□

1.2.5 Asymptotically symmetric manifolds and parabolic

geometries

§ 1.3 Microlocal analysis

In this section, we will show the meromorphic continuation of the Laplacian operator

for the AH manifolds 𝑀𝑛+1 which is the key for us to relate the resolvent of the Laplacian

operator to the heat operator. The meromorphic continuation theorem relies on some

priori knowledge of the spectrum of the Laplacian operator on the AH manifold.
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We will first introducee some classic result of the spectrum for the Laplacian operator

on the AH manifold. It follows from the H.P.Mckean [38] that the essential spectrum

of Laplacian operator on 𝑀𝑛+1 is [ 𝑛2

4 , +∞) and follows from Mazzeo [36] that there is

no embedded eigenvalues on the essential spectrum. And by the Mazzeo-Melrose [33],

there are at most finite eigenvalues in (0, 𝑛2

4 ), each with finite multiplicity. Therefore,

the resolvent (Δ𝑔 −𝜉(𝑛−𝜉))−1 is holomorphic for Re𝜉 > 𝑛
2 except for a finite number of

poles in ( 𝑛2 , 𝑛). The classic work of Mazzeo and Melrose [33] show that this resolvent

meromorphically continues to the whole complex plane with some discrete real points.

Later, C.Guillarmou [22], improve their result to show that for even AH manifold, the

resolvent (Δ𝑔 −𝜉(𝑛−𝜉))−1 can meromorphically continues to the whold complex plane

without exceptional points. Later, Vasy [48][47] use a different way to show a similar

meromorphic continuation result which is easier to be generalized into the tensor case

[10], since it is independent with the explicit formula for the resolvent of Laplacian on

the standard hyperbolic space ℍ𝑛+1.

1.3.1 The analytical Fredholm theorem

In this subsection, we will introduce the analytical Fredholem theorem which just tells

us that in order to show the meromorphical continuation of the resolvent it is sufficient

to show that (1) the original operator is Fredholm; (2) the original operator is invertible

at some point. First, let us start with the definition of the Fredholm operator.

Definition 1.3.1 (Fredholm operator, [14], Definition C.2). (i) A bounded linear operator

𝑃 : 𝑋1 → 𝑋2 is called a Fredholm operator if the kernel of 𝑃,

ker 𝑃 := {𝑢 ∈ 𝑋1 | 𝑃𝑢 = 0}
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and the cokernel of 𝑃,

coker 𝑃 := 𝑋2/𝑃𝑋1, where 𝑃𝑋1 := {𝑃𝑢 | 𝑢 ∈ 𝑋1}

are both finite dimensional. Here the cokernel of 𝑃 is defined algebraically, that is

a vector space of cosets, 𝑢 + 𝑃𝑋1, 𝑢 ∈ 𝑋2. (ii) The index of a Fredholm operator is

ind 𝑃 := dim ker 𝑃 − dim coker 𝑃.

Then, we will define the meromorphic family of a family of operators.

Definition 1.3.2 ([14], Definition C.6). Let Ω ⊆ ℂ be a connected open set. If 𝑋 and

𝑌 are Banach spaces then, 𝑧 ↦→ 𝐵(𝑧) ∈ L(𝑋, 𝑌 )∗ is holomorphic in Ω if for any 𝑥 ∈ 𝑋

and 𝑦∗ ∈ 𝑌 ∗ (the dual of 𝑌 ) , 𝑧 ↦→ 𝑦∗(𝐵(𝑧)𝑥) is a holomorphic function in Ω.

Definition 1.3.3 ([14], Definition C.7). We say that 𝑧 ↦→ 𝐵(𝑧) is a meromorphic family

of operators in Ω if for any 𝑧0 ∈ Ω there exist operators 𝐵 𝑗, 1 ≤ 𝑗 ≤ 𝐽, of finite rank∗∗

and a family of operators 𝑧 ↦→ 𝐵0(𝑧), holomorphic near 𝑧, such that

𝐵(𝑧) = 𝐵0(𝑧) +
𝐵1

𝑧 − 𝑧0
+ · · · 𝐵𝐽

(𝑧 − 𝑧0) 𝐽
, near 𝑧0

We say that 𝐵(𝑧) is a meromorphic family of Fredholm operators if for every 𝑧0, 𝐵0(𝑧)

is a Fredholm operator for 𝑧 near 𝑧0. For nonsingular 𝑧0, 𝐵0(𝑧) = 𝐵(𝑧)

The following theorem is key to the A.Vasy method, which relate the Fredholm

property to the meromorphic extension of the inverse operator.

Theorem 1.3.4 ([14], Theorem C.8 ). Suppose Ω ⊆ ℂ is a connected open set and

{𝐴(𝑧)}𝑧∈Ω is a holomorphic family of Fredholm operators. If 𝐴 (𝑧0)−1 exists at some
∗L(𝑋, 𝑌 ) is the set of the bounded operators from 𝑋 to 𝑌 .

∗∗A finite rank operator is a bounded operator between two Banach spaces with finite-dimensional
range
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point 𝑧0 ∈ Ω, then the family 𝑧 ↦→ 𝐴(𝑧)−1, 𝑧 ∈ Ω, is a meromorphic family of operators

with poles of finite rank.

1.3.2 The meromorphic continuation theorems of Mazzeo-Melrose

and Vasy

In this section, we will first introduce the meromorphic continuation theorms of Mazzeo-

Melrose. Then, we will introduce the C.Guillarmou‘s improvement for their result.

Finally, we will introduce the Vasy‘version of the meromorphic continuation theorem.

In the original version of the results of Mazzeo and Melrose [33], their result is as

following

Theorem 1.3.5 ([33], Theorem 7.1). Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic

manifold, Δ its Laplacian acting on functions and 𝜌 a boundary defining function on �̄�.

The modified resolvent

𝑅(𝜉) :=
(
Δ − 𝑛2

4
− 𝜉2

)−1

∈ M𝑒𝑟 𝑓

(
O0,L

(
𝐿2(𝑀)

))
with poles at points 𝜉 ∈ O0 such that ( 𝑛2

4 +𝜉2) ∈ 𝜎𝑝𝑝(𝑃), extends to a finite-meromorphic

family

𝑅(𝜉) ∈ M𝑒𝑟 𝑓

(
O𝑁\

(
𝑍1
+ ∪ 𝑍2

+

)
,L

(
𝜌𝑁𝐿2(𝑀), 𝜌−𝑁𝐿2(𝑀)

))
, ∀𝑁 ≥ 0

where

O𝑁 := {𝜉 ∈ ℂ;ℑ(𝜉) < 𝑁} , 𝑍𝑘± := ±𝚤
(
𝑘

2
+ ℕ0

)
⊆ ℂ

Then, C.Guillarmou [22] their result in setting of the even AH manifold. we will

first define the even asymptotically hyperbolic manifold. Suppose that �̄� is a compact
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manifold with boundary 𝜕�̄� ≠ ∅ of dimenison 𝑛 + 1. We denote 𝑀 by the interior of

�̄�. The Riemannian manifold (𝑀, 𝑔) is even asymptotically hyperbolic if there exists

functions 𝜌 ∈ 𝐶∞(�̄�) and 𝜌 ∈ 𝐶∞(�̄�, (0,∞)), 𝜌|𝜕�̄� = 0, 𝑑𝜌|𝜕�̄� ≠ 0, such that there

exists a diffeomorphism

𝜌−1( [0, 1]) → [0, 1] × 𝜕�̄�, 𝑝 ↦→ (𝜌(𝑝), 𝑖(𝑝)) where 𝑖(𝑝) ∈ 𝜕�̄� (1.3.1)

where

𝑖 : 𝑀 → 𝜕𝑀

is a smooth map. And near 𝜕�̄�, the metric has the form

𝑔 |𝜌≤1 =
1
𝜌2 (𝑑𝜌

2 + ℎ(𝜌2)) (1.3.2)

where [0, 1] ∋ 𝑡 ↦→ ℎ(𝑡), is a smooth family of Riemannian metrics on 𝜕�̄�.

Let Δ ≥ 0 be the Laplacian-Beltrami operator for the metric 𝑔. Since the spectrum

is contain in [0,∞) the operator Δ − ( 𝑛2

4 + 𝜁2) is invertible from 𝐻2(𝑀, 𝑑𝑣𝑜𝑙𝑔) to

𝐿2(𝑀, 𝑑𝑣𝑜𝑙𝑔) for Im(𝜁) < −𝑛
2 . Hence we can define

𝑅(𝜁) := (Δ − (𝑛
2

4
+ 𝜁2))−1 : 𝐿2(𝑀, 𝑑𝑣𝑜𝑙𝑔) → 𝐻2(𝑀, 𝑑𝑣𝑜𝑙𝑔), Im(𝜁) < −𝑛

2

We note that elliptic regularity shows that 𝑅(𝜁) : 𝐶∞
𝑐 (𝑀) → 𝐶∞(𝑀), Im(𝜁) < −𝑛

2 .

Theorem 1.3.6 ([33], [22]). Let (𝑀𝑛+1, 𝑔+) be an even asymptotically hyperbolic mani-

fold with Δ its Laplacian acting on functions and 𝜌 a boundary defining function on �̄�.
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The modified resolvent

𝑅(𝜁) :=
(
Δ − 𝑛2

4
− 𝜁2

)−1

∈ M𝑒𝑟 𝑓

(
O0,L

(
𝐿2(𝑀)

))
with poles at points 𝜉 ∈ O0 such that ( 𝑛2

4 +𝜁2) ∈ 𝜎𝑝𝑝(𝑃), extends to a finite-meromorphic

family

𝑅(𝜁) ∈ M𝑒𝑟 𝑓

(
O𝑁 ,L

(
𝜌𝑁𝐿2(𝑀), 𝜌−𝑁𝐿2(𝑀)

))
, ∀𝑁 ≥ 0

where

O𝑁 := {𝜁 ∈ ℂ; Im(𝜁) < 𝑁}

Actually, Vasy‘version of the above result is a little bit weaker, it only shows the

following result.

Theorem 1.3.7. Let
(
𝑀𝑛+1, 𝑔+

)
be even asymptotically hyperbolic manifold. Then the

inverse of

𝑃(𝜁) := Δ − 𝑛2

4
− 𝜁2 acting on 𝐿2 (𝑀)

written 𝑅(𝜁) has a meromorphic continuation from Im(𝜉) ≪ −𝑛
2 to ℂ,

𝑅(𝜁) : 𝐶∞
𝑐 (𝑀) → 𝜌𝚤𝜁+

𝑛
2𝐶∞

even
(
�̄�

)
with finite rank poles.

we can show this result can be induced from theorem 1.3.6.

1.3.3 Vasy‘s approach

In this section, we will present the main ideal of the theorem 1.3.7 by the method of Vasy

[48] [47]. First, we will make use of the eveness to convert the noncompact problem into
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a compact problem by defining new manifold and new operator. Then, the meromorphic

continuation of the orginal operator is equivalent to the meromorphic continuation of

the new operator. Next, we will show the new operator is Fredholm operator in some

space and it is invertible at some point. Then, by the analytical Fredholm theorem,

the resolvent of this new operator can be meromorphic continue to the whole complex

plane.

We will first introduce some basic result of the spectrum of the Laplacian operator

for tensor which we will use in the proof of the meromorphic continuation theorem for

the spectrum of the tensor case. For function case and the differential form case, we

have the result of the [36]. For the symmetric two tensor case, we have the following

results

Theorem 1.3.8 ([15] and [31]). On an n+1-dimensional asymptotically hyperbolic

manifold with 𝑛 > 1, the essential spectrum of the Lichnerowicz Laplacian acting on

trace free symmetric covariant two tensors is the ray[
𝑛(𝑛 − 8)

4
, +∞

]
For the hyperbolic space, this is the spectrum.

Theorem 1.3.9 ([16]). For 𝑛 ≥ 1, let us consider (𝑁, �̂�) an 𝑛 + 1-dimensional compact

Einstein manifold. Let 𝑀 = (0, +∞) × 𝑁 equipped with an asymptotically hyperbolic

metric 𝑔 = 𝑑𝑟2 + 𝑓 2(𝑟) �̂�. Then there are no 𝐿2 TT-eigentensors of the Lichnerow-

icz Laplacian Δ𝐿 with eigenvalue embedded in the essential spectrum. For the real

hyperbolic space, there are no 𝐿2 eigentensors of Δ𝐿

Remark 1.3.10. TT-eigentensors refers to trace free and divergent free symmetric two
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tensor.

Next, we will define the new operator.

Let 𝑀 be an even asymptotically hyperbolic manifold with defining function 𝜌 and

�̄� ⊆ 𝜕�̄� be an open subset on 𝜕�̄�. Let

𝜑 : �̄� → ℝ𝑛, �̂� ↦→ (𝜃1( �̂�), · · · , 𝜃𝑛( �̂�))

be a local coordinate of the open set �̄�. Then, by the diffeomrophism of (1.3.1), we have

a boundary coordinate of �̄� as

𝜌−1( [0, 1]) ∩ 𝑖−1(�̄�) → [0, 1] ×ℝ𝑛, 𝑝 ↦→ (𝜌(𝑝), 𝜃1(𝑖(𝑝)), 𝜃𝑛(𝑖(𝑝))) (1.3.3)

Moreover, the asymptotically hyperbolic metric is

𝑔 |𝜌≥1 =
1
𝜌2 (𝑑𝜌

2 + ℎ𝑖 𝑗(𝜌2, 𝜃)𝑑𝜃𝑖𝑑𝜃 𝑗)

where ℎ𝑖 𝑗(𝜌2, 𝜃) is a family of the metric on 𝜕�̄�. Then, in this coordinate, the Laplacian

operator Δ can be written as

Δ = − 𝜌2𝜕2
𝜌 + (𝑛 − 1)𝜌𝜕𝜌 −

1
2
𝜌2(𝜕𝜌(𝛾(𝜌2, 𝜃)) · 𝜕𝜌 + 𝜌2Δℎ

where 𝛾(𝜌2, 𝜃) = ln(
√︁

det(ℎ(𝜌2, 𝜃)))).

In the following section, we will show that the unique 𝐿2 solutions to the equation

(Δ − 𝑛2

4
− 𝜁2) = 𝑓 ∈ 𝐶∞

𝑐 (𝑀), Im(𝜁) < −𝑛
2
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satisfies

𝑢 = 𝜌𝚤𝜁+
𝑛
2𝐶∞(�̄�) and 𝜌−𝚤𝜁−

𝑛
2𝑢|𝜌<1 = 𝐹(𝜌2, 𝜃), 𝐹 ∈ 𝐶∞( [0, 1] × 𝜕�̄�) (1.3.4)

Eventually we will show that the meromorphc continuation of the resolvent provides

solutions of this form for all 𝜁 ∈ ℂ except the poles.

This suggests two things:

• To reduce the investigation to the study of smooth solutions we should conjugate

(Δ − 𝑛2

4 − 𝜁2) by the weight 𝜌𝚤𝜁.

• The desired smoothness properties should be stronger in the sense that the func-

tions should be smooth in (𝜌2, 𝜃)

Let 𝑃(𝜁) = Δ − 𝑛2

4 − 𝜁2. Then, by direct computation, we have that

𝑃2(𝜁) := 𝜌−𝚤𝜁−
𝑛
2 𝑃(𝜁)𝜌𝚤𝜁+ 𝑛

2 = − 𝜌2𝜕2
𝜌 + (𝑛 − 1)𝜌𝜕𝜌 −

1
2
𝜌2ℎ𝑖 𝑗(𝜕𝜌𝛾)𝜕𝜌 + 𝜌2Δℎ

− 2(𝚤𝜁 + 𝑛

2
)𝜌𝜕𝜌 𝑓 −

1
2
(𝚤𝜁 + 𝑛

2
)𝜌(𝜕𝜌𝛾)

where 𝛾 = 𝜕𝜌(ln(
√︁

det(ℎ))).

Now, by the (1.3.4), let 𝑦 = 𝜌2. Then, by direct computation, we have that

𝑃2(𝜁) =𝑦(4𝑦𝐷2
𝑦 − 4(𝚤 − 𝜁)𝐷𝑦 − 𝚤𝛾(𝑦) (𝜁 − 𝚤

𝑛

2
+ 2𝑦𝐷𝑦) + Δℎ)

where 𝛾(𝑦) = 𝜕𝑦 (ln(
√︁

det(ℎ))) and 𝐷𝑦 = −𝚤𝜕𝑦 . Now, let

𝑃1(𝜁) := 4𝑦𝐷2
𝑦 − 4(𝚤 − 𝜁)𝐷𝑦 − 𝚤𝛾(𝑦) (𝜁 − 𝚤

𝑛

2
+ 2𝑦𝐷𝑦) + Δℎ (1.3.5)
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The relation of the three operators 𝑃(𝜁), 𝑃1(𝜁) and 𝑃2(𝜁) is

𝑃1(𝜁) =𝜌−𝚤𝜁−
𝑛
2−2𝑃(𝜁)𝜌𝚤𝜁+ 𝑛

2 = 𝑦−𝚤
𝜁
2−

𝑛
4−1𝑃(𝜁)𝑦 𝚤

𝜁
2+

𝑛
4

𝑃2(𝜁) =𝜌−𝚤𝜁−
𝑛
2 𝑃(𝜁)𝜌𝚤𝜁+ 𝑛

2 = 𝑦−𝚤
𝜁
2−

𝑛
4 𝑃(𝜁)𝑦 𝚤

𝜁
2+

𝑛
4

(1.3.6)

To define the operator 𝑃1(𝜁) geometrically we introduce a new manifold using coor-

dinate of the (1.3.3), (𝜌, 𝜃1, · · · , 𝜃𝑛). Let 𝑦 = 𝜌2 and consider the following manifold

𝑋 := ( [−1, 1] 𝑦 × 𝜕𝑀) ⊔ (𝑀\𝜌−1((0, 1)))

Then, we can extend 𝑦 ↦→ ℎ(𝑦)𝑖 𝑗 to a family of smooth non-degenerate metric on [−1, 1] 𝑦

which provide a natural extension of 𝛾(𝑦, 𝜃) = 𝜕𝜌(ln(
√︁

det(ℎ))) and the operator Δℎ.

We notice that the asymptotically hyperbolic space (𝑀, 𝑔) is diffeomorphic to 𝑋1 :=

𝑋 ∩ {𝑦 > 0}. However, �̄�1 and �̄� have different smooth structure. They have different

boundary coordinate which are not diffeomorphic. In fact, the boundary coordinate for

�̄�1 is

(𝑦, 𝜃1, · · · , 𝜃𝑛) (1.3.7)

while the boundary coordinate for �̄� is

(𝜌, 𝜃1, · · · , 𝜃𝑛). (1.3.8)

They are not diffeomorphic, since 𝑦 = 𝜌2. The operator 𝑃1(𝜁) defined in the (1.3.5)

can be naturally extended into an operator on 𝑋 . Consider the following the volume

form on 𝑋

𝑑𝜇 =
√︁

det(ℎ)𝑑𝑦 ∧ 𝑑𝜃1 ∧ · · · ∧ 𝑑𝜃𝑛
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Then, we can show that

𝑃1(𝜁)∗ = 𝑃1(�̄�)

We can now define spaces on which 𝑃(𝜁) is a Fredholm operator. For that, we denote

�̄�𝑠(𝑋◦) the space of restrictions of elements of 𝐻𝑠 on an extension of 𝑋 across the

boundary to the interior of 𝑋- See Section B.2 in [26]. In fact, for a smooth compact

manifold, 𝑋 , with boundary, we follow the section B.2 in [26] and define Sobolev

spaces of extendible distributions, �̄�𝑠( �̄�) and of supported distributions ¤𝐻𝑠(𝑋). Here

𝑋 = 𝑋◦ ∪ 𝜕𝑋 and 𝑋◦ is the interior of 𝑋 . These are modeled on the case of 𝑋 = ℝ̄𝑛
+,

ℝ𝑛
+ := {𝑥 ∈ ℝ𝑛 : 𝑦 > 0} in which case

�̄�𝑠(ℝ𝑛
+) :={𝑢 : ∃ 𝑈 ∈ 𝐻𝑠(ℝ𝑛), 𝑢 = 𝑈 | 𝑦>0} (1.3.9)

¤𝐻𝑠(ℝ̄𝑛
+) :={𝑢 ∈ 𝐻𝑠(ℝ𝑛) : supp(𝑢) ⊆ ℝ̄𝑛

+} (1.3.10)

Then, put

𝒴
𝑠 := �̄�𝑠 (𝑋) , 𝒳

𝑠 :=
{
𝑢 ∈ 𝒴

𝑠+1 : 𝑃1(0)𝑢 ∈ 𝒴
𝑠
}
.

The norm on 𝒳
𝑠 is defined as the graph norm, that is

∥𝑢∥𝐺 := ∥𝑢∥ �̄�𝑠+1 (𝑋) + ∥𝑃1(0)𝑢∥ �̄�𝑠 (𝑋)

Since the dependence on 𝜁 in 𝑃(𝜁) occurs only in lower order terms we can replace

𝑃(0) by 𝑃(𝜁) in the definition of 𝒳. Then, we will show that Then, we can show that

Then, we can show that
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Theorem 1.3.11 (Theorem 2, [50]). For −Im(𝜁) > −𝑠 − 1
2 the operator

𝑃1(𝜁) : (𝒳𝑠, ∥.∥𝐺) → (𝒴𝑠, ∥.∥ �̄�𝑠 (𝑋))

has the Fredholm property, that is

dim{𝑢 ∈ 𝒳
𝑠 : 𝑃(𝜁)𝑢 = 0} < ∞, dim(𝒴𝑠\𝑃(𝜁)𝒳𝑠) < ∞

and 𝑃1(𝜁)𝒳𝑠 is closed.

Then, we can show that

Theorem 1.3.12 (Theorem 3, [50]). For Im(𝜁) < 0, 𝜁2 + ( 𝑛2 )
2) ∉ Spec(Δ𝑔) and

𝑠 > Im(𝜁) − 1
2 ,

𝑃1(𝜁) : (𝒳𝑠, ∥.∥𝐺) → (𝒴𝑠, ∥.∥ �̄�𝑠 (𝑋))

is invertible. Hence, for 𝑠 ∈ ℝ and −Im(𝜁) > −𝑠 − 1
2 ,

𝜁 ↦→ 𝑃1(𝜁)−1 : (𝒴𝑠, ∥.∥ �̄�𝑠 (𝑋)) → (𝒳𝑠, ∥.∥𝐺)

is meromorphic family of operators with poles of finite rank.

Now, fix 𝑠 ∈ ℝ and let −Im(𝜁) > −𝑠 − 1
2 . By the above theorem we can define

𝑅1(𝜁) := 𝑃1(𝜁)−1 : (𝒴𝑠, ∥.∥ �̄�𝑠 (𝑋)) → (𝒳𝑠, ∥.∥𝐺)

which is a meromorphic family of operators with poles of finite rank. Then, we restrict

the operator 𝑅1(𝜁) onto 𝐶∞
𝑐 (𝑋1). We can define

𝑅′1(𝜁) : 𝐶∞
𝑐 (𝑋1) → 𝐶∞( �̄�1), 𝑓 ↦→ 𝑅1(𝜁) ( 𝑓 ) |𝑋1
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Now, by the (1.3.6), we see that

𝑓 = 𝑃1(𝜁)𝑅′1(𝜁) 𝑓 = 𝑦−𝚤
𝜁
2−

𝑛
2−1𝑃(𝜁)𝑦 𝚤

𝜁
2+

𝑛
2 𝑅1(𝜁) 𝑓 , for any 𝑓 ∈ 𝐶∞

𝑐 (𝑋1)

which implies that

𝑦 𝚤
𝜁
2+

𝑛
2+1 𝑓 = 𝑃(𝜁)𝑦 𝚤

𝜁
2+

𝑛
2 𝑅1(𝜁)𝑦−𝚤

𝜁
2−

𝑛
2−1𝑦 𝚤

𝜁
2+

𝑛
2+1 𝑓 , for any 𝑓 ∈ 𝐶∞

𝑐 (𝑋1)

Therefore, we define

𝑅(𝜁) := 𝑦 𝚤
𝜁
2+

𝑛
2 𝑅1(𝜁)𝑦−𝚤

𝜁
2−

𝑛
2−1 : 𝐶∞

𝑐 (𝑋1) → 𝑦 𝚤
𝜁
2+

𝑛
2𝐶∞( �̄�1)

The Theorem 1.3.7 follows.

§ 1.4 Linear and non-linear functional analysis

In this section, we will review the spectrum theory for the self-adjoint operator.

1.4.1 From the resolvent to the heat operator

In this section we will introuce the spectrum theorem which can relate the heat operator

to the resolvent of the Laplacian operator. Therefore, we can relate the parabolic problem

to the elliptic problem and make use of the estimate of Schwartz kernel of the resolvent

to estimate the heat kernel. Once we have the estimate for the heat kernel, we can use it

to show the stability of the solution to this heat equation.

Theorem 1.4.1 (Spectrum Theorem, Theorem A.14, [7]). For A an self-adjoint operator

on a separable Hilbert spaceH , there exists a measure space (Ω, 𝜇),where Ω is a union

of copies of ℝ, and a unitary map 𝑊 : 𝐿2(Ω, 𝑑𝜇) → H , and a real-valued measurable
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§1.4 Linear and non-linear functional analysis

function a on Ω such that

𝑊−1𝐴𝑊 𝑓 (𝑥) = 𝑎(𝑥) 𝑓 (𝑥)

for 𝑓 ∈ 𝑊−1D(𝐴), which is equivalent to the condition that 𝑎 𝑓 ∈ 𝐿2(Ω, 𝑑𝜇)

Remark 1.4.2. The spectral theorem gives us a functional calculus for operators: given

a Borel measurable function ℎ : ℝ → ℝ, we can define

ℎ(𝐴) :=𝑊ℎ(𝑎(𝑥))𝑊−1

This functional calculus admits an explicit formulation in terms of the resolvent.

Theorem 1.4.3 (Resolvent Functional Calculus, Corollary A.15 [7]). If A is a self-

adjoint operator on H , then for ℎ : ℝ → ℂ bounded and continuous,

ℎ(𝐴) =
∫ ∞

−∞
ℎ(𝜆)𝑑Π(𝜆)

where dII is the operator-valued measure on ℝ given by

𝑑Π(𝜆) :=
1

2𝜋𝑖
lim
𝜀→0

[
(𝐴 − 𝜆 − 𝑖𝜀)−1 − (𝐴 − 𝜆 + 𝑖𝜀)−1] 𝑑𝜆

with the limit taken in the operator topology.

Definition 1.4.4. Define the projection operator 𝑃(𝑆) = 𝑊𝜒𝑆 (𝑎(𝑥))𝑊−1 where 𝜒𝑆 is a

characteristic function of 𝑆 ⊆ ℝ.

Theorem 1.4.5 (Stone‘s Formula, Corollary A.16, [7]). The spectral projectors asso-

ciated with a self-adjoint operator A are expressed in terms of the resolvent by,

1
2

(
𝑃[𝛼,𝛽] + 𝑃(𝛼,𝛽)

)
=

∫ 𝛽

𝛼

𝑑Π(𝜆)

where 𝑑Π is the operator valued measure in corollary 1.4.3.
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Chapter 1 Preliminary

Corollary 1.4.6. Let 𝐴 be a self-adjoint operator on H . And let ℎ : ℝ → ℂ bounded

and continuous. Then

1
2

(
𝜒[𝑎,𝑏] (𝐴) ◦ ℎ(𝐴) + 𝜒(𝑎,𝑏) (𝐴) ◦ ℎ(𝐴)

)
=

∫ 𝑏

𝑎

ℎ(𝜆)𝑑Π(𝜆)

where dII is the operator-valued measure on ℝ given by

𝑑Π(𝜆) :=
1

2𝜋𝑖
lim
𝜀→0

[
(𝐴 − 𝜆 − 𝑖𝜀)−1 − (𝐴 − 𝜆 + 𝑖𝜀)−1] 𝑑𝜆

with the limit taken in the operator topology.

Now, Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic manifold. If 𝐴 is a operator on

Sym2(𝑇∗𝑀) with all its spectrum in [ 𝑛2

4 ,∞) and no eigenvalue at 𝑛2

4 . Then, consider

the operator 𝐵 = 𝐴 − 𝑛2

4 . And take ℎ(𝑥) = 𝑒−𝑡𝑥 . Then consider the following operator

ℎ(𝐵) = lim
𝜀→0

∫ ∞

−∞
ℎ(𝜆)𝑑Π(𝜆) = lim

𝜀→0

∫ ∞

0
𝑒−𝑡𝜆𝑑Π(𝜆)

where

𝑑Π(𝜆) :=
1

2𝜋𝑖
lim
𝜀→0

[
(𝐵 − 𝜆 − 𝑖𝜀)−1 − (𝐵 − 𝜆 + 𝑖𝜀)−1] 𝑑𝜆

Let 𝜆 = 𝑠2 and 𝑠 = 𝑎 + 𝑏𝑖

𝑑Π
(
𝑎2

)
= 𝑑Π

(
Re

(
𝑠2

))
=

1
2𝜋𝑖

lim
𝑏→0

[(
𝐵 − 𝑠2

)−1
−

(
𝐵 − 𝑠2

)−1
]

2𝑎𝑑𝑎

𝑑Π
(
𝑎2

)
=

1
2𝜋𝑖

lim
𝑏→0

[𝑅(𝑠) − 𝑅(𝑠)] 2𝑎𝑑𝑎 =
1

2𝜋𝑖
lim
𝑏→0

[𝑅(𝑎 + 𝑏𝑖) − 𝑅(𝑎 − 𝑏𝑖)] 2𝑎𝑑𝑎
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§1.4 Linear and non-linear functional analysis

where 𝑅(𝑠) = (𝐵 − 𝑠2)−1. Therefore,

ℎ(𝐵) = lim
𝜀→0

∫ ∞

−∞
ℎ(𝜆)𝑑Π(𝜆) = lim

𝜀→0

∫ ∞

0
𝑒−𝑡𝜆𝑑Π(𝜆)

= lim
𝑏→0+

∫ ∞

0
𝑒−𝑡𝑎

2
𝑑Π(𝑎2)

= lim
𝑏→0+

1
2𝜋𝑖

∫ ∞

0
𝑒−𝑡𝑎

2 [𝑅(𝑎 + 𝑏𝑖) − 𝑅(𝑎 − 𝑏𝑖)] 2𝑎𝑑𝑎

= lim
𝑏→0+

1
2𝜋𝑖

∫ ∞

0
𝑒−𝑡𝑎

2 [𝑅(𝑎 + 𝑏𝑖) − 𝑅(𝑎 − 𝑏𝑖)] 2𝑎𝑑𝑎

= lim
𝑏→0+

− 1
2𝜋𝑖

∫ ∞

−∞
𝑒−𝑡𝑎

2 [𝑅(𝑎 − 𝑏𝑖)] 2𝑎𝑑𝑎

Therefore,

ℎ(𝐴) =ℎ(𝐵 + 𝑛2

4
) = lim

𝜀→0

∫ ∞

0
𝑒−𝑡(𝜆+

𝑛2
4 )𝑑Π(𝜆) = lim

𝜀→0
𝑒−𝑡

𝑛2
4

∫ ∞

0
𝑒−𝑡𝜆𝑑Π(𝜆) = 𝑒−𝑡

𝑛2
4 ℎ(𝐵)

=𝑒
−𝑛2

4 𝑡 lim
𝑏→0+

− 1
2𝜋𝑖

∫ ∞

−∞
𝑒−𝑡𝑎

2 [𝑅(𝑎 − 𝑏𝑖)] 2𝑎𝑑𝑎

Moreover, we can show that

𝑑

𝑑𝑡
ℎ(𝐴) (𝑢) = 𝐴ℎ(𝐴)𝑢

It is sufficient to show that

lim
𝜀→0

1
𝜀
𝑊 (𝑒−(𝑡+𝜀)𝑎(𝑥) + 𝑎(𝑥)𝑒−𝑡𝑎(𝑥))𝑊−1𝑢 → 0 in the sense of 𝐿2(Ω, 𝑑𝜇)

where 𝑥 ∈ Ω. In fact,

∥ 1
𝜀
𝑊 (𝑒−(𝑡+𝜀)𝑎(𝑥) + 𝑎(𝑥)𝑒−𝑡𝑎(𝑥))𝑊−1𝑢∥ ≤ | 1

𝜀(𝑒−(𝑡+𝜀)𝑎(𝑥) − 𝑎(𝑥)𝑒𝑡𝑎(𝑥))
| · ∥𝑊−1𝑢∥𝐿2 (Ω,𝑑𝜇)

It is 𝐿2(Ω, 𝑑𝜇) convergent.
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Chapter 1 Preliminary

1.4.2 The semi-group theory

In this section, we will introduce some basic concept of the semigroup and its generator,

which is another way to relate the parabolic problem and the elliptic problem which is

not as explicit as the previous section. For more detail, refers to [31].

Definition 1.4.7 (Semigroup). 𝑆(𝑡) is called the semi-group if it satisfies that

• {𝑆(𝑡)}𝑡≥0 is a family of bounded linear mapping from the Banach space 𝑋 to 𝑋

• 𝑆(0) = 𝐼𝑑𝑋

• 𝑆(𝑡 + 𝑠) = 𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑠)𝑆(𝑡)

• 𝑡 ↦→ 𝑆(𝑡)𝑢 is continuous from [0,∞) to 𝑋

Definition 1.4.8 (Generator of semigroup). Write

𝐷(𝐴) :=
{
𝑢 ∈ 𝑋 | lim

𝑡→0+

𝑆(𝑡)𝑢 − 𝑢

𝑡
exists in 𝑋

}
and

𝐴𝑢 := lim
𝑡→0+

𝑆(𝑡)𝑢 − 𝑢

𝑡
(𝑢 ∈ 𝐷(𝐴))

We call 𝐴 : 𝐷(𝐴) → 𝑋 the (infinitesimal) generator of the semigroup {𝑆(𝑡)}𝑡≥0; 𝐷(𝐴)

is the domain of 𝐴.

There are some basic properties about the semigroup and its generator.

Theorem 1.4.9. Assume 𝑢 ∈ 𝐷(𝐴). Then

1) 𝑆(𝑡)𝑢 ∈ 𝐷(𝐴) for each 𝑡 ≥ 0.

2) 𝐴𝑆(𝑡)𝑢 = 𝑆(𝑡)𝐴𝑢 for each 𝑡 ≥ 0.
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§1.4 Linear and non-linear functional analysis

3) The mapping 𝑡 ↦→ 𝑆(𝑡)𝑢 is differentiable for each 𝑡 > 0.

4) 𝑑
𝑑𝑡
𝑆(𝑡)𝑢 = 𝐴𝑆(𝑡)𝑢 (𝑡 > 0).

Proof : See 7.4.1 Theorem 1 in [17]. □

Definition 1.4.10 (Resolvent set). We say a real number 𝜆 belongs to 𝜌(𝐴), the resolvent

set of 𝐴, provided the operator

𝜆𝐼 − 𝐴 :→ 𝑋

is on to one and onto. And if 𝜆 ∈ 𝜌(𝐴), the resolvent operator 𝑅𝜆 : 𝑋 → 𝑋 is defined

by 𝑅𝜆𝑢 := (𝜆𝐼 − 𝐴)−1𝑢

Remark 1.4.11. According to the Closed Graph Theorem, 𝑅𝜆 : 𝑋 → 𝐷(𝐴) ⊆ 𝑋 is

bounded linear operator.

Theorem 1.4.12 (Hille-Yosida-Phillips). Let 𝐴 be a closed, densely defined linear

operator on 𝑋 . Then 𝐴 is the generator of a semigroup {𝑆(𝑡)}𝑡≥0 if and only if

(𝑐,∞) ⊆ 𝜌(𝐴) and ∥𝑅𝜆 ∥ ≤ 1
𝜆 − 𝑐

for 𝜆 > 0

Moreover, we have | |𝑆(𝑡) | | ≤ 𝑒−𝑐𝑡

Proof : See 7.4.2 Theorem 4 in [17]. □

Now, let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic manifold and take

𝑋 = 𝐶
0,𝛼
𝛿

(𝑆𝑦𝑚2𝑇∗𝑀𝑛+1)

with 𝛿 ∈ (0, 𝑛) and trivial 𝐿2 kernel of 𝑃 on 𝑆𝑦𝑚2𝑇∗𝑀𝑛+1. By the lemma 3.7 of [31],
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the 𝑃 = Δ𝐿 + 2𝑛𝐼𝑑 is an isomorphism from 𝐶
2,𝛼
𝛿

to 𝐶0,𝛼
𝛿

. Then we have

| |𝑃𝑢| |
𝐶

0,𝛼
𝛿

≥ 𝑐| |𝑢| |
𝐶

0,𝛼
𝛿

where 𝑐 > 0. And for 𝑐 ≥ −𝜆, we have

| |𝑃𝑢 + 𝜆𝑢| |
𝐶

0,𝛼
𝛿

≥ (𝜆 + 𝑐) | |𝑢| |
𝐶

0,𝛼
𝛿

Therefore,

(−𝑐,∞) ⊆ 𝜌(𝐴) and ∥𝑅𝜆 ∥ ≤ 1
𝜆 + 𝑐 for 𝜆 > 0

Therefore, 𝑃 is a generator of a semigroup 𝑆(𝑡) with |𝑆(𝑡) | ≤ 𝑒−𝑐𝑡

1.4.3 The Newton’s method for non-linear equations

The next theorem is a way to convert the existence of the solution to the nonlinear

problem into the invertibility of a linear operator.

Theorem 1.4.13 ([4], Lemma I.4.13). LEMMA I.4.13. Let Φ : 𝐸 → 𝐹 be 𝑎𝐶2 mapping

between Banach spaces, such that Φ(0) = 0 and 𝑑0Φ is invertible. If 𝜁 and 𝜀 are chosen

such that
𝜁
(𝑑0Φ)−1 sup

𝐵𝜁

𝑑2Φ
 < 1

2

𝜀
(𝑑0Φ)−1 < 𝜁

2
(4.9)

then for 𝑦 ∈ 𝐹 satisfying ∥𝑦 |< 𝜀, the equation Φ(𝑥) = 𝑦 has a unique solution with

∥𝑥∥ < 𝜁.
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The existences of the asymptotically symmetric

Einstein metrics

In this chapter, we shall introduce two methods to show the existence of the AH Einstein

manifolds with a given conformal boundary which is sufficiently close to a conformal

boundary of an AH Einstein manifold. There are two ways to deal with this problem.

One is the elliptic way and another is the parabolic way. Furthermore, we shall introduce

the O.Biquard‘s work [4] about the existence of the Asymptotically symmetric Einstein

metric.

For the elliptic way, it is developed by the J. Lee and R. Graham [30] and [21]. In [21],

C.Graham and J.Lee show that every conformal structure on 𝕊𝑛 sufficiently close to that

of the round metric is the conformal infinity of an Einstein metric close to the hyperbolic

metric. Later, J.Lee generalize this result into nondegenerate asymptotically hyperbolic

Einstein manifold case ([Theorem A] [30]). The idea is to show that the existence of the

corresponding Einstein equation. The Einstein equation is a non-linear equation. By the

newton‘s method, the existence of the solution for a non-linear equation is pretty much

equivalent to construct the a initial metric such that the initial metric has the required
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Chapter 2 The existences of the asymptotically symmetric Einstein metrics

conformal infinity, is closed to the Einstein metric and the linearization of the Einstein

equation at this initial metric is invertible in the weighted space 𝐶2,𝛼
𝛿

for 𝛿 > 2. (The

reason for 𝐶2,𝛼
𝛿

is that we hope the solution has an infinite-order asymptotic expansion

in powers of 𝜌 and log 𝜌 and in fact it is smooth when 𝑛 is odd. See [9]).

It is straightforward to verify that the linearization of the Einstein equation is not a

strictly elliptic operator. In order to make use of the knowledge about elliptic operators,

we need to consider the gauge Einstein equation whose linearization is the so called

Lichnerowicz operator plus a translation which is strictly elliptic. This consideration is

reasonable, since the existence of the solution for gauge Einstein equation is equivalent

to the existence of the solution for the Einstein equation in our settings.

Furthermore, by the Fredholm theorem, we can show that the invertibility of the

translated Lichnorwicz operator on the weighted space 𝐶𝑘,𝛼
𝛿

for |𝛿−𝑛/2| < 𝑅 is invertible

if and only if this operator has a trivial 𝐿2 kernel. This indicate that for the invertibility,

we only need to care about the 𝐿2 space.

The idea to construct the required initial metric is to glue the boundary part and

interior part together. For the boundary part, we need to make use of the result of

C.Fefferman and C.R.Graham about the expansions of the asymptotically hyperbolic

metric at boundary ([20]) which can ensure that the boundary part metric is close to

the given asymptotically hyperbolic Einstein metric in 𝐶2 and close to Einstein metric

(∥𝑅𝑖𝑐−(𝑛−1)𝑔+gauge term∥
𝐶

2,𝛼
𝛿

small enough) in 𝐶2,𝛼
𝛿

. For the interior part, we directly

use the interior of the given asymptotically hyperbolic metric. Glue the interior and

boundary parts together by an cut-off function. Then, we can show this metric satisfies

the requirement of the Newton‘s method.

For the proof of the Fredholm theorem, there are two ways to prove it. One is from J.
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Lee [30] another is from O.Biquard [4]. Both of them first show the invertibility of the

translated operator is actually invertibility on standard hyperbolic space and then, use

the Mobius coordinates to show the Fredholm theorem on the asymptotically hyperbolic

manifold. Their difference is the way they show the invertibility on hyperbolic space.

For the J.Lee‘s method, he first make use of the N.Koiso‘s eigenvalue estimate to show

the existence of the Green function. Then, he make use of the result of regular-singular

equation to find the decay of the Green function. Then, by an interesting inequality

(Lemma 5.4 [30]), he get the invertiblity of the Laplacian operator on weighted space.

For the method of O.Biquard, he make use of the expression of the Laplacian operator

on the spherical coordinate to first convert the equation satisfied by the Green function

into sort of ordinary equation. Then, he make use of the result about ordinary equation

to show the decay of the Green function. Then, he can construct a translated scalar

Laplacian operator such that Green function for the translated scalar Laplacian operator

has the same exponential decay rate with the tensor Laplacian operator, which make

it is possible to use the scalar Green function to control the tensor Green function.

Therefore, we only need to show that the invertiblity of the translated scalar Laplacian

operator, which depends on the 𝐿2 eigenvalue estimate (Lemma I.2.3 [4]). By the

method O.Biquard, we can skip the the inequality [4], which seems to make this way

more easier to apply on the the general Symmetric space.

For the parabolic method, it is originally from the J.Qing, Y.Shi and J.Wu [42]. They

recover the existence result [31] (Theorem A) for dimension 𝑛 ≥ 5. Basically, they

make use of the fact that the if the normalized Ricci flow converge, then the limit metric

should be an Einstein metric. Therefore, the key is to show the long time existence,

convergence of the normalized Ricci flow and the flow does not change the conformal
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Chapter 2 The existences of the asymptotically symmetric Einstein metrics

infinity. See more detail in the section

This chapter is organized as following. In the section 2.1, we will first introduce the

definition of Mobius coordinates, weighted spaces. Then, we will show the invertibility

of the Lichnorwicz operator on the standard hyperbolic space. Next, we will make use of

the invertibility of the Lichnorwicz operator on the standard hyperbolic space together

with the Mobius coordinates to induce the Fredholm theorem. In the section 2.2, we will

first introduce the gauge Einstein equation and then make use of the Newton‘s method

to get the existence of the conformally compact Einstein with given boudnary. In the

section 2.3, we will introduce the O.Biquard‘s work [4] on the Asymptotically symmetric

metrics where he show the existence for the asymptotically symmetric Einstein metrics

of rank 1 cases.

§ 2.1 The analysis on AH manifolds and AH Einstein

metrics

In this section, we will first introduce the definition of Mobius coordinates, weighted

spaces. Then, we will show the invertibility of the Lichnorwicz operator on the standard

hyperbolic space. Next, we will make use of the invertibility of the Lichnorwicz operator

on the standard hyperbolic space together with the Mobius coordinates to induce the

Fredholm theorem.
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§2.1 The analysis on AH manifolds and AH Einstein metrics

2.1.1 Mobius coordinates

In this section, we will introduce the asymptotically hyperbolic manifolds and Mobius

chart. In the Mobius chart of asymptotically hyperbolic manifolds, the metric can be

uniformly bounded (See Lemma 2.1.5) and approaching the standard hyperbolic metric

as approaching the boundary. Therefore, we can get a pretty good globally elliptic and

parabolic estimate. Most content of this section is from [30].

In order to define the asymptotically hyperbolic manifolds, we need to first introduce

the conformally compact manifold. Defining function is the key in these concepts.

Definition 2.1.1 (Defining function). Let �̄� be a smooth, compact, (𝑛+1) -dimensional

manifold-with-boundary, 𝑛 ≥ 1, and 𝑀 its interior. A defining function will mean a

function 𝜌 : �̄� → ℝ of class at least 𝐶1 that is positive in 𝑀, vanishes on 𝜕𝑀, and has

nonvanishing differential everywhere on 𝜕𝑀.

Definition 2.1.2 (Conformal compactness). A Riemannian metric 𝑔 on 𝑀 is said to be

conformally compact of class 𝐶 𝑙,𝛽 for a nonnegative integer 𝑙 and 0 ≤ 𝛽 < 1 if for any

smooth defining function 𝜌, the conformally rescaled metric 𝜌2𝑔 has a 𝐶 𝑙,𝛽 extension,

denoted by �̄�, to a positive definite tensor field on �̄�.

Remark 2.1.3. For such a metric 𝑔, the induced boundary metric �̂� := �̄� |𝑇𝜕𝑀 is a 𝐶 𝑙,𝛽

Riemannian metric on 𝜕𝑀 whose conformal class [�̂�] is independent of the choice of

smooth defining function 𝜌; this conformal class is called the conformal infinity of 𝑔.

Definition 2.1.4 (Asymptotically hyperbolic manifolds). If 𝑔 is conformally compact

of class 𝐶 𝑙,𝛽 with 𝑙 ≥ 2, and |𝑑𝜌|2�̄� = 1 on 𝜕𝑀, we say 𝑔 is asymptotically hyper-

bolic of class 𝐶 𝑙,𝛽 and the corresponding manifold is called asymptotically hyperbolic

manifold.
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We begin by choosing a covering of a neighborhood of 𝜕𝑀 in �̄� by finitely many

smooth coordinate charts (Ω,Θ), where each coordinate map Θ is of the form Θ =

(𝜃, 𝜌) =
(
𝜃1, . . . , 𝜃𝑛, 𝜌

)
and extends to a neighborhood of Ω̄ in �̄�. Throughout this

monograph, we will use the Einstein summation convention, with Roman indices

𝑖, 𝑗, 𝑘, . . . running from 1 to 𝑛 + 1 and Greek indices 𝛼, 𝛽, 𝛾, . . . running from 1 to

𝑛. Therefore, we can write
(
𝜃1, . . . , 𝜃𝑛, 𝜌

)
as 𝜃𝑖 if we think of 𝜌 as 𝜃𝑛+1.

We fix once and for all finitely many such charts covering a neighborhood 𝑊 of 𝜕𝑀

in �̄�. We will call any of these charts "background coordinates" for �̄�. Take a local

background coordinate (𝜃, 𝜌). Define 𝐻𝑐 (𝑝) as the following set

𝑍𝑐 (𝑝)
Δ
= {(𝜃, 𝜌) : |𝜃 − 𝜃(𝑝) | < 𝑐, 0 ≤ 𝜌 < 𝑐}

And define the set 𝐴𝑐 as following

𝐴𝑐
Δ
= {𝑝 ∈ 𝑊 : ∃ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑑 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑐ℎ𝑎𝑟𝑡 (𝑈, 𝜃𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑍𝑐 (𝑝) ⊆ 𝑈}

We see that for 𝑐1 ≤ 𝑐2, we have 𝐴𝑐2 ⊆ 𝐴𝑐1 . And by the compactness �̄�, there exist

𝑐0 such that 𝐴𝑐0 forms a neighborhood of 𝜕𝑀. Now, we will define the Mobius charts

based on these background coordinates and the standard coordinate of hyperbolic space.

In the upper half-space model, we regard hyperbolic space as the open upper half-

space

ℍ = ℍ𝑛+1 Δ
= {(𝑥1, · · · , 𝑥𝑛, 𝑦) ⊆ ℝ𝑛+1 : 𝑦 > 0}

endowed with the hyperbolic metric �̆� = 𝑦−2 ∑
𝑖

(
𝑑𝑥 𝑖

)2
.

80



§2.1 The analysis on AH manifolds and AH Einstein metrics

For any 𝑟 > 0, we let 𝐵𝑟 ⊆ ℍ denote the hyperbolic geodesic ball of radius 𝑟 about

the point(𝑥, 𝑦) = (0, 1)

𝐵𝑟 =
{
(𝑥, 𝑦) ∈ ℍ : 𝑑�̆� ((𝑥, 𝑦), (0, 1)) < 𝑟

}
Then

𝐵𝑟 ⊆ {(𝑥, 𝑦) : |𝑥 | < sinh 𝑟, 𝑒−𝑟 < 𝑦 < 𝑒𝑟}

where |𝑥 | denotes the Euclidean norm of 𝑥 ∈ ℝ𝑛.

If 𝑝0 is any point in 𝐴𝑐0/8, choose such a background chart containing 𝑝0, and

{(𝜃, 𝜌) : |𝜃 − 𝜃(𝑝0) | ≤ 𝑐0, 0 < 𝜌 < 𝑐0} and define a map Φ𝑝0 : 𝐵2 → 𝑀, called a

Möbius chart centered at 𝑝0, by

(𝜃, 𝜌) = Φ𝑝0 (𝑥, 𝑦) = (𝜃0 + 𝜌0𝑥, 𝜌0𝑦)

where (𝜃0, 𝜌0) are the background coordinates of 𝑝0. Therefore, we see that

|𝜃 − 𝜃0 | ≤ 𝜌0𝑥 ≤ 𝜌0 sinh(2) ≤ 4𝜌0 𝜌 ≤ 𝜌0𝑒
2 ≤ 8𝜌0

Since 𝑝0 ∈ 𝐴𝑐0/8, 𝜌0 ≤ 𝑐0/8. Therefore,

Φ(𝐵2) ⊆ {(𝜃, 𝜌) : |𝜃 − 𝜃(𝑝) | ≤ 𝑐0, 0 < 𝜌 < 𝑐0}

is still contained in the same background local coordinate.

We also choose finitely many smooth coordinate charts Φ𝑖 : 𝐵2 → 𝑀 such that the

sets {Φ𝑖 (𝐵2)} cover a neighborhood of 𝑀\𝐴𝑐0/8,. For consistency, we will also call
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these “Mobius charts.” Therefore, we have a Mobius charts covering

{Φ𝑖(𝐵2),Φ𝑖}𝑁𝑖=1 ∪ {Φ𝑝0 (𝐵2),Φ𝑝0}𝑝0∈𝐴𝑐0/8

For simplicity, we just write is as

{Φ𝑝𝑖 (𝐵2),Φ𝑝𝑖}𝑝𝑖∈𝑀

where Φ𝑝𝑖 (0, 1) = 𝑝𝑖.

The following lemma shows the uniformly bounded of the Mobius coordinate.

Lemma 2.1.5 (Lemma 2.1 [30]). There exists a constant 𝐶 > 0 such that if Φ𝑝0 : 𝐵2 →

𝑀 is any 𝑦, Möbius chart, Φ∗
𝑝0𝑔 − �̆�


𝐶 𝑙,𝛽 (𝐵2)

≤ 𝐶

sup
𝐵2

����(Φ∗
𝑝0𝑔

)−1
�̆�

���� ≤ 𝐶

(The Hölder and sup norms in this estimate are the usual norms applied to the com-

ponents of a tensor in coordinates; since �̄�2 is compact, these are equivalent to the

intrinsic Hölder and sup norms on tensors with respect to the hyperbolic metric.

2.1.2 Weighted spaces

In this section, we will define the weighted Holder space on the asymptotically hyper-

bolic manifolds by the Mobius coordinate. Most of the content of this section is from

[31].

Throughout this section, we assume �̄� is a connected smooth (𝑛 + 1) -manifold, 𝑔 is
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a metric on 𝑀 that is asymptotically hyperbolic of class 𝐶 𝑙,𝛽, with 𝑙 ≥ 2 and 0 ≤ 𝛽 < 1,

and 𝜌 is a fixed smooth defining function for 𝜕𝑀. (It is easy to verify that choosing

another smooth defining function will replace the norms we define below by equivalent

ones, and will leave the function spaces unchanged.)

A geometric tensor bundle over �̄� is a subbundle 𝐸 of some tensor bundle 𝑇 𝑟1𝑟2 �̄�

(tensors of covariant rank 𝑟1 and contravariant rank 𝑟2) associated to a direct summand

(not necessarily irreducible) of the standard representation of O(𝑛 + 1) (or SO(𝑛 + 1) if

𝑀 is oriented ) on tensors of type
©«
𝑟1

𝑟2

ª®®¬ over ℝ𝑛+1. We will also use the same symbol

𝐸 to denote the restriction of this bundle to 𝑀.

Definition 2.1.6 (Holder space). Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic manifold

with boundary regularity 𝐶 𝑙,𝛽, 𝑙 ≥ 2. Let 𝛼 be a real number such that 0 ≤ 𝛼 < 1, and

let 𝑘 be a nonnegative integer such that 𝑘 + 𝛼 ≤ 𝑙 + 𝛽. For any tensor field 𝑢 with locally

𝐶𝑘,𝛼 coefficients, define the norm ∥𝑢∥𝑘,𝛼 by

∥𝑢∥𝑘,𝛼 := sup
Φ

∥Φ∗𝑢∥𝐶𝑘,𝛼 (𝐵2)

where ∥𝑣∥𝐶𝑘,𝛼 (𝐵2) is just the usual Euclidean Hölder norm of the components of 𝑣 on

𝐵2 ⊆ ℍ, and the supremum is over all Möbius charts defined on 𝐵2. Let 𝐶𝑘,𝛼(𝑀; 𝐸) be

the space of sections of 𝐸 for which this norm is finite. This space is called Holder

space.

Definition 2.1.7 (Weighted Holder spaces). The Weighted Hölder spaces are defined

for 𝛿 ∈ ℝ by

𝐶
𝑘,𝛼

𝛿
(𝑀; 𝐸) := 𝜌𝛿𝐶𝑘,𝛼(𝑀; 𝐸) =

{
𝜌𝛿𝑢 : 𝑢 ∈ 𝐶𝑘,𝛼(𝑀; 𝐸)

}
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with norms

∥𝑢∥𝑘,𝛼,𝛿 :=
𝜌−𝛿𝑢

𝑘,𝛼

Remark 2.1.8. If 𝑈 ⊆ 𝑀 is a subset, the restricted norms are denoted by ∥ · ∥𝑘,𝛼,𝛿;𝑈 , and

the space 𝐶𝑘,𝛼
𝛿

(𝑈; 𝐸) are the spaces of sections over 𝑈 for which these norms are finite.

The following lemma just show that the above Holder norm actually is equivalent to

the usual intrinsic 𝐶𝑘 norm
∑

0≤𝑖≤𝑘 sup𝑀 |∇𝑖𝑢| for 0 ≤ 𝑘 ≤ 𝑙.

Lemma 2.1.9 (Lemma 3.4 [30]). Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic manifold

with boundary regularity 𝐶 𝑙,𝛽, 𝑙 ≥ 2. Let 𝑢 be a locally integrable section of a tensor

bundle 𝐸 over an open subset 𝑈 ⊆ 𝑀 If 0 ≤ 𝛼 < 1 and 0 < 𝑘 + 𝛼 ≤ 𝑙 + 𝛽, 𝑢 ∈ 𝐶𝑘,𝛼
𝛿

(𝑈; 𝐸)

if and only if 𝜌−𝛿∇ 𝑗𝑢 ∈ 𝐶0,𝛼 (
𝑈; 𝐸 ⊗ 𝑇 𝑗𝑀

)
for 0 ≤ 𝑗 ≤ 𝑘, and the 𝐶𝑘,𝛼

𝛿
norm is equivalent

to ∑︁
0≤ 𝑗≤𝑘

sup
𝑈

��𝜌−𝛿∇ 𝑗𝑢
�� + 𝜌−𝛿∇𝑘𝑢


0,𝛼;𝑈

Given a Mobius charts {Φ𝑝𝑖 (𝐵2),Φ𝑝𝑖}𝑝𝑖∈𝑀 , we will see the transition function and its

derivative is uniformly bounded.

Lemma 2.1.10. Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic manifold with boundary

regularity 𝐶 𝑙,𝛽, 𝑙 ≥ 2. Given a Mobius charts covering {Φ𝑝𝑖 (𝐵2),Φ𝑝𝑖}𝑝𝑖∈𝑀 , there exists

a constant 𝐶 such that

∥Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 ∥𝐶 𝑙,𝛽 (𝑈) ≤ 𝐶

where 𝑈 = 𝐵2 − Φ−1
𝑝𝑖
(Φ𝑝𝑖 (𝐵2) ∩ Φ𝑝 𝑗 (𝐵2)).

Proof : The transition map can be written down as

Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 : Φ−1
𝑝 𝑗
(Φ𝑝𝑖 (𝐵2) ∩ Φ𝑝 𝑗 (𝐵2)) → Φ−1

𝑝 𝑗
(Φ𝑝𝑖 (𝐵2) ∩ Φ𝑝 𝑗 (𝐵2))

x ↦→ y
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where x, y ∈ 𝐵2 ⊆ ℍ𝑛+1. We can thought this as

Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 : Γ(𝑈, 𝑇𝑀) → Γ(𝑈, 𝑇𝑀)

Where Γ(𝑈, 𝑇𝑀) is the section of the tangent bundle on 𝑈. Then we have

Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 =

𝑛+1∑︁
𝑡=1

𝜕

𝜕𝑥𝑡
⊗ 𝑑𝑥 𝑖 ∈ 𝑇𝑀 ⊗ 𝑇∗𝑀

Moreover

∥Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 ∥ = 𝑘 + 1 𝑎𝑛𝑑 ∇Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 = 0

By Lemma 2.1.9, we have

∥Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 ∥𝐶 𝑙,𝛽 (𝑈) ≤ 𝐶

□

Lemma 2.1.11 (Lemma 3.5 [30]). Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic man-

ifold with boundary regularity 𝐶 𝑙,𝛽, 𝑙 ≥ 2. Let 𝑢 be a global section of a tensor bundle

𝐸 and 𝑢 ∈ 𝐶
𝑘,𝛼

𝛿
(𝑀; 𝐸) with 0 ≤ 𝛼 < 1 and 0 < 𝑘 + 𝛼 ≤ 𝑙 + 𝛽. Fix arbitrary 0 ≤ 𝜖 ≤ 2.

Suppose that {Φ𝑝𝑖 (𝐵2),Φ𝑝𝑖} is a Mobius charts covering of 𝑀 satisfying that

∪𝑝𝑖Φ𝑝𝑖 (𝐵𝑟) = 𝑀 𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝜖 ≤ 𝑟 ≤ 2

Then we have the following norm equivalence

𝐶−1 sup
𝑖

𝜌 (𝑝𝑖)−𝛿
Φ∗

𝑖 𝑢

𝑘,𝛼;𝐵𝑟

≤ ∥𝑢∥𝑘,𝛼,𝛿 ≤ 𝐶 sup
𝑖

𝜌 (𝑝𝑖)−𝛿
Φ∗

𝑖 𝑢

𝑘,𝛼;𝐵𝑟

.

Proof : Then first inequality is obvious. Because the ∥.∥𝑘,𝛼,𝛿 is defined in the

Mobius chart in 𝐵2. For the second inequality, we can make use of Lemma 2.1.9 to
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show it. In fact, we only need to show that

∥Φ∗
𝑝𝑖
𝑢∥𝐶𝑘,𝛼 (𝐵2) ≤ 𝐶 sup

𝑗

∥Φ∗
𝑝 𝑗
𝑢∥𝐶𝑘,𝛼 (𝐵𝑟)

Consider all the 𝑝 𝑗 such that Φ𝑝𝑖 (𝐵2) ∩ Φ𝑝 𝑗 (𝐵𝑟) ≠ ∅. Then from lemma 2.1.9, we have

∥Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 ∥𝐶 𝑙,𝛽 (𝑈 𝑗) ≤ 𝐶

where 𝑈 𝑗 = 𝐵2 − Φ−1
𝑝𝑖
(Φ𝑝𝑖 (𝐵2) ∩ Φ𝑝 𝑗 (𝐵𝑟)). Then

∥Φ∗
𝑝𝑖
𝑢∥𝐶𝑘,𝛼 (𝐵2) ≤ ∥Φ∗

𝑝𝑖
𝑢∥𝐶𝑘,𝛼 (𝐵𝑟) + ∥Φ∗

𝑝𝑖
𝑢∥𝐶𝑘,𝛼 (𝐵2−𝐵𝑟)

≤ ∥Φ∗
𝑝𝑖
𝑢∥𝐶𝑘,𝛼 (𝐵𝑟) + sup

𝑝 𝑗

∥Φ−1
𝑝 𝑗

◦ Φ𝑝𝑖 ∥𝐶𝑘,𝛼 (𝑈 𝑗) × ∥Φ∗
𝑝 𝑗
𝑢∥𝐶𝑘,𝛼 (𝐵𝑟)

□

2.1.3 The elliptic estimates

In this section, we will mainly talk about the invertibility of the Lichnerowicz operator

on the standard Hyperbolic space. By the estimate of the Green function and a special

inequality, we can easily get this kind of invertibility.

For the purposes of this section, we will use the Poincaré ball model, identifying

hyperbolic space with the unit ball 𝔹 ⊆ ℝ𝑛+1, with coordinates
(
𝜉1, . . . , 𝜉𝑛+1) , and with

the hyperbolic metric �̆� = 4(1 − |𝜉|)−2 ∑
𝑖

(
𝑑𝜉𝑖

)2. The hyperbolic distance function can

be written in terms of the Euclidean norm and dot product as

𝑑�̆� (𝜉, 𝜂) = cosh−1
(
1 + |𝜉|2

) (
1 + |𝜂|2

)
− 4𝜉 · 𝜂(

1 − |𝜉|2
) (

1 − |𝜂|2
)
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§2.1 The analysis on AH manifolds and AH Einstein metrics

It will be convenient to use

𝜌(𝜉) = 1
cosh 𝑑�̆� (𝜉, 0)

=
1 − |𝜉|2
1 + |𝜉|2

as a defining function for the ball, where 0 = (0, . . . , 0) denotes the origin in 𝔹 ⊆ ℝ𝑛+1.

Throughout this chapter, 𝐸 will be a geometric tensor bundle of weight 𝑟 over 𝔹, and

𝑃 : 𝐶∞(𝔹; 𝐸) → 𝐶∞(𝔹; 𝐸) will be a formally self-adjoint geometric elliptic operator of

order 𝑚. The fact that 𝑃 is geometric implies that it is isometry invariant: If 𝜑 is any

orientation-preserving hyperbolic isometry and 𝑢 is any section of 𝐸, then

𝜑∗(𝑃𝑢) = 𝑃 (𝜑∗𝑢)

We will assume that 𝑃 satisfies (1.4). Then by Lemma 4.10, 𝑃 : 𝐻𝑚,2(𝔹; 𝐸) → 𝐿2(𝔹; 𝐸)

is Fredholm. The next lemma shows that this is equivalent to being an isomorphism.

Proposition 2.1.12 (Proposition 5.2, [31]). PROPOSITION 5.2. Let 𝑃 : 𝐶∞(𝔹; 𝐸) →

𝐶∞(𝔹; 𝐸) be a formally self-adjoint geometric elliptic operator of order 𝑚 satisfying

(1.4). Then 𝑃 has positive indicial radius 𝑅, and for any 𝜀 > 0 there is a constant 𝐶

such that

|𝐾 (𝜉, 𝜂) | ≤ 𝐶𝜌(𝜉, 𝜂)𝑛/2+𝑅−𝜀

whenever 𝑑�̆� (𝜉, 𝜂) ≥ 1. (The norm here is the pointwise operator norm on Hom
(
𝐸𝜂, 𝐸𝜉

)
with respect to the hyperbolic metric.)

In order to do the convolution, we need the following inequality.

Proposition 2.1.13 (LEMMA 5.4, [31]). Suppose 𝑎 and 𝑏 are real numbers such that

𝑎 + 𝑏 > 𝑛 and 𝑎 > 𝑏. There exists a constant 𝐶 depending only on 𝑛, 𝑎, 𝑏 such that the
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following estimate holds for all 𝜉, 𝜁 ∈ 𝔹 :∫
𝔹

𝜌(𝜉, 𝜂)𝑎𝜌(𝜂, 𝜁)𝑏𝑑𝑉�̆� (𝜂) ≤ 𝐶𝜌(𝜉, 𝜁)𝑏.

By the above two results, we have that

Proposition 2.1.14 (Proposition 5.6, [31]). If 1 < 𝑝 < ∞, 𝑘 ≥ 𝑚, and |𝛿+𝑛/𝑝−𝑛/2| < 𝑅,

then there exists a constant 𝐶 such that

∥𝑢∥𝑘,𝑝,𝛿 ≤ 𝐶∥𝑃𝑢∥𝑘−𝑚,𝑝,𝛿

for all 𝑢 ∈ 𝐻
𝑘,𝑝

𝛿
(𝔹; 𝐸).

PROOF. Using Lemma 4.8, it suffices to prove that

∥𝑢∥0,𝑝,𝛿 ≤ 𝐶∥𝑃𝑢∥0,𝑝,𝛿

for all 𝑢 ∈ 𝐻
𝑘,𝑝

𝛿
(𝔹; 𝐸). Because 𝐶∞

𝑐 (𝔹; 𝐸) is dense in 𝐻
𝑘,𝑝

𝛿
(𝔹; 𝐸), it suffices to prove

this inequality for 𝑢 ∈ 𝐶∞
𝑐 (𝔹; 𝐸). Since 𝑢 = 𝑃−1(𝑃𝑢) in that case, it suffices to prove the

estimate 𝑃−1 𝑓


0,𝑝,𝛿 ≤ 𝐶∥ 𝑓 ∥0,𝑝,𝛿 for all 𝑓 ∈ 𝐶∞
𝑐 (𝔹; 𝐸).

Put
𝑝∗ =

𝑝

𝑝 − 1

𝑎 =
1
𝑝∗

(
𝛿 + 𝑛

𝑝

)
so that

𝑛

2
− 𝑅 < 𝑎𝑝∗ <

𝑛

2
+ 𝑅

𝑛

2
− 𝑅 < 𝑎𝑝 − 𝛿𝑝 <

𝑛

2
+ 𝑅.
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By Hölder’s inequality and Lemma 5.5, we estimate��𝑃−1 𝑓 (𝜉)
��
�̆�
≤

∫
𝔹

|𝐾 (𝜉, 𝜂) | | 𝑓 (𝜂) | �̆�𝑑𝑉�̆� (𝜂)

=

∫
𝔹

(
|𝐾 (𝜉, 𝜂) |1/𝑝𝜌(𝜂)−𝑎 | 𝑓 (𝜂) | �̆�

) (
|𝐾 (𝜉, 𝜂) |1/𝑝∗𝜌(𝜂)𝑎

)
𝑑𝑉�̆� (𝜂)

≤
(∫

𝔹

|𝐾 (𝜉, 𝜂) |𝜌(𝜂)−𝑎𝑝 | 𝑓 (𝜂) |𝑝
�̆�
𝑑𝑉�̆� (𝜂)

)1/𝑝
×(∫

𝔹

|𝐾 (𝜉, 𝜂) |𝜌(𝜂)𝑎𝑝∗𝑑𝑉�̆� (𝜂)
)1/𝑝∗

≤ 𝐶𝜌(𝜉)𝑎
(∫

𝔹

|𝐾 (𝜉, 𝜂) |𝜌(𝜂)−𝑎𝑝 | 𝑓 (𝜂) |𝑝
�̆�
𝑑𝑉�̆� (𝜂)

)1/𝑝

Therefore,𝑃−1 𝑓
𝑝

0,𝑝,𝛿 =

∫
𝔹

𝜌(𝜉)−𝛿𝑝
��𝑃−1 𝑓 (𝜉)

��𝑝
�̆�
𝑑𝑉�̆� (𝜉)

≤ 𝐶 𝑝
∫
𝔹

∫
𝔹

𝜌(𝜉)𝑎𝑝−𝛿𝑝 |𝐾 (𝜉, 𝜂) |𝜌(𝜂)−𝑎𝑝 | 𝑓 (𝜂) |𝑝
�̆�
𝑑𝑉�̆� (𝜂)𝑑𝑉�̆� (𝜉).

By Lemma 5.5 again, we can evaluate the 𝜉 integral first to obtain𝑃−1 𝑓
𝑝

0,𝑝,𝛿 ≤ 𝐶′
∫
𝔹

𝜌(𝜂)𝑎𝑝−𝛿𝑝𝜌(𝜂)−𝑎𝑝 | 𝑓 (𝜂) |𝑝𝑔𝑑𝑉�̆� (𝜂)

= 𝐶′∥ 𝑓 ∥ 𝑝0,𝑝,𝛿

□

Theorem 2.1.15 (THEOREM 5.7, [31]). Let 𝑃 : 𝐶∞(𝔹; 𝐸) → 𝐶∞(𝔹; 𝐸) be a formally

self-adjoint geometric elliptic operator of order𝑚 satisfying (1.4). If 𝑘 ≥ 𝑚, 1 < 𝑝 < ∞,

and |𝛿 + 𝑛/𝑝 − 𝑛/2| < 𝑅, then the natural extension 𝑃 : 𝐻𝑘,𝑝

𝛿
(𝔹; 𝐸) → 𝐻

𝑘−𝑚,𝑝
𝛿

(𝔹; 𝐸) is

an isomorphism.

Proposition 2.1.16 (Proposition 5.8, [31]). If |𝛿 − 𝑛/2| < 𝑅, there exists a constant 𝐶

such that
𝑃−1 𝑓


0,0,𝛿 ≤ 𝐶∥ 𝑓 ∥0,0,𝛿 (5.18) for all 𝑓 ∈ 𝐶0,0

𝛿
(𝔹; 𝐸).
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PROOF. By Lemma 2.1.11,��𝑃−1 𝑓 (𝜉)
��
�̆�
≤

∫
𝔹

|𝐾 (𝜉, 𝜂) | | 𝑓 (𝜂) | �̆�𝑑𝑉�̆� (𝜂)

≤ 𝐶

∫
𝔹

|𝐾 (𝜉, 𝜂) |𝜌(𝜂)𝛿∥ 𝑓 ∥0,0,𝛿𝑑𝑉�̆� (𝜂)

≤ 𝐶′𝜌(𝜉)𝛿∥ 𝑓 ∥0,0,𝛿

which implies 𝑃−1 𝑓


0,0,𝛿 = sup
𝜉∈𝔹

(
𝜌(𝜉)−𝛿

��𝑃−1 𝑓 (𝜉)
�� �̆�) ≤ 𝐶′∥ 𝑓 ∥0,0,𝛿.

Theorem 2.1.17 (THEOREM 5.9, [31]). Let 𝑃 : 𝐶∞(𝔹; 𝐸) → 𝐶∞(𝔹; 𝐸) be a formally

self-adjoint geometric elliptic operator of order 𝑚 satisfying (1.4). If 0 < 𝛼 < 1, 𝑘 ≥ 𝑚,

and |𝛿 − 𝑛/2| < 𝑅, then the natural extension 𝑃 : 𝐶𝑘,𝛼
𝛿

(𝔹; 𝐸) → 𝐶
𝑘−𝑚,𝛼
𝛿

(𝔹; 𝐸) is an

isomorphism.

2.1.4 The Fredholm theory

In this section, we will patch the interior and the boundary for AH manifold together.

We will construct a parametrix for the Lichnerowicz operator and show that its error

term is in fact a compact operator. To make use of the discussions in the previous

section on the analysis of elliptic operator on hyperbolic space we like to introduce the

boundary Möbius coordinate charts. The boundary Möbius coordinate chart is built

based on the half space model for hyperbolic space again. For a point 𝑝 ∈ 𝜕X𝑛+1 = M𝑛,

consider a boundary coordinate chart
(
𝑥1, 𝑥2, · · · , 𝑥𝑛, 𝑥𝑛+1) for X𝑛+1 around 𝑝 so that

it is a normal coordinate with respect to the compact metric �̄� for a geodesic defining

function 𝑥 = 𝑥𝑛+1, where

𝜙𝑝 : �̄� ⊆ ℝ𝑛+1
+ → X𝑛+1
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Let

𝕐ℍ =
{
(𝑧, 𝑧𝑛+1) ∈ ℝ𝑛+1

+ : |𝑧 | < 1 and 𝑧𝑛+1 ∈ (0, 1)
}

and (𝑥, 𝑥𝑛+1) = (𝑠𝑧, 𝑠𝑧𝑛+1), where

𝜓𝑝,𝑠 : 𝕐ℍ → ℤ𝑝,𝑠 ⊆ X𝑛+1

is said to be a boundary Möbius coordinate chart.

Lemma 2.1.18. Suppose that 𝜓𝑝,𝑠 is a boundary Möbius coordinate chart around a

boundary point 𝑝 ∈ M𝑛 of an AH manifold
(
X𝑛+1, 𝑔+

)
of regularity 𝐶 𝑙,𝛽. Then𝜓∗

𝑝,𝑠𝑔
+ − 𝑔ℍ


𝑙,𝛽,𝕐ℍ ≤ 𝐶𝑠.

Furthermore in a boundary Möbius chart one can easily verify that

Lemma 2.1.19. Suppose that 𝜓𝑝,𝑠 is a boundary Möbius coordinate chart around a

boundary point 𝑝 ∈ M𝑛 of an 𝐴𝐻 manifold
(
X𝑛+1, 𝑔+

)
. Then, there is a constant 𝐶 such

that
𝐶−1𝑠−𝛿

𝜓∗
𝑝,𝑠𝑢


𝑘,𝛼,𝛿,𝕐ℍ ≤ ∥𝑢∥𝑘,𝛼,𝛿,ℤ𝑝,𝑠

≤ 𝐶𝑠−𝛿
𝜓∗

𝑝,𝑠𝑢

𝑘,𝛼,𝛿,𝕐ℍ

𝐶−1𝑠−𝛿
𝜓∗

𝑝,𝑠𝑢

𝑘,𝑝,𝛿,𝕐ℍ ≤ ∥𝑢∥𝑘,𝑝,𝛿,ℤ𝑝,𝑠

≤ 𝐶𝑠−𝛿
𝜓∗

𝑝,𝑠𝑢

𝑘,𝑝,𝛿,𝕐 𝐻

Suppose that {𝜙} is a partition of unity associated with the above covering. Le.

𝐺𝑠(𝑢) =
∑︁ (

𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1
𝜓∗
𝑝,𝑠

(
𝜙𝑝,𝑠𝑢

)
𝑆𝑠(𝑢) =

∑︁ (
𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1 (
𝑃𝑝,𝑠 − 𝑃ℍ

)
𝜓∗
𝑝,𝑠

(
𝜙𝑝,𝑠𝑢

)
and

𝐶𝑠(𝑢) =
∑︁ (

𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1
𝜓∗
𝑝,𝑠

( [
𝜙𝑝,𝑠, 𝑃

]
𝑢
)
.
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This is because we have

𝐺𝑠𝑃𝑢 =
∑︁ (

𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1
𝜓∗
𝑝,𝑠

(
𝜙𝑝,𝑠𝑃𝑢

)
=

∑︁ (
𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1
𝜓∗
𝑝,𝑠

(
𝑃𝜙𝑝,𝑠𝑢

)
+ 𝐶𝑠(𝑢)

=
∑︁ (

𝜓−1
𝑝,𝑠

)∗ (
𝑃ℍ

)−1
𝑃ℍ𝜓∗

𝑝,𝑠

(
𝜙𝑝,𝑠𝑢

)
+ 𝑆𝑠(𝑢) + 𝐶𝑠(𝑢)

= 𝑢 + 𝑆𝑠(𝑢) + 𝐶𝑠(𝑢).

Equivalently we may write

(Id + 𝑆𝑠)−1 𝐺𝑠𝑃𝑢 = 𝑢 + (Id + 𝑆𝑠)−1 𝐶𝑠(𝑢)

when Id + 𝑆𝑠 is invertible. More precisely

Theorem 2.1.20. Suppose that 𝑃 is a formally self-adjoint geometric differential oper-

ator of order 𝑚 on a tensor bundle of hyperbolic space ℍ𝑛+1 and that

𝑃ℍ : 𝐻𝑚,2
(
ℍ𝑛+1,E

)
→ 𝐿2

(
ℍ𝑛+1,E

)
is Fredholm. Let the indicial radius of 𝑃 be 𝑅 > 0. Then, for 𝑝 ∈ (1,∞) and���𝛿 + 𝑛

𝑝
− 𝑛

2

��� < 𝑅,

𝐺𝑠 : 𝐻𝑘,𝑝

𝛿

(
X𝑛+1,E

)
→ 𝐻

𝑘+𝑚,𝑝
𝛿

(
X𝑛+1,E

)
𝑆𝑠 : 𝐻𝑘,𝑝

𝛿

(
X𝑛+1,E

)
→ 𝐻

𝑘,𝑝

𝛿

(
X𝑛+1,E

)
and

𝐶𝑠 : 𝐻𝑘,𝑝

𝛿

(
X𝑛+1,E

)
→ 𝐻

𝑘+1,𝑝
𝜃

(
X𝑛+1,E

)
are all bounded, for any 𝜃 ∈ (𝛿, 𝛿+1] and

���𝜃 − 𝑛
2 + 𝑛

𝑝

��� < 𝑅. Moreover there is a constant

𝐶 such that

∥𝑆𝑠(𝑢)∥𝑘,𝑝,𝛿 ≤ 𝐶𝑠∥𝑢∥𝑘,𝑝,𝛿.
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Analogously, for 𝛼 ∈ (0, 1) and
��𝛿 − 𝑛

2
�� < 𝑅,

𝐺𝑠 : 𝐶𝑘,𝛼
𝛿

(
X𝑛+1,E

)
→ 𝐶

𝑘+𝑚,𝛼
𝛿

(
X𝑛+1,E

)
𝑆𝑠 : 𝐶𝑘,𝛼

𝛿

(
X𝑛+1,E

)
→ 𝐶

𝑘,𝛼

𝛿

(
X𝑛+1,E

)
and

𝐶𝑠 : 𝐶𝑘,𝛼
𝛿

(
X𝑛+1,E

)
→ 𝐶

𝑘+1,𝛼
𝜃

(
X𝑛+1,E

)
are all bounded, for any 𝜃 ∈ (𝛿, 𝛿+1] and

���𝜃 − 𝑛
2 + 𝑛

𝑝

��� < 𝑅. Moreover there is a constant

𝐶 such that

∥𝑆𝑠(𝑢)∥𝑘,𝛼,𝛿 ≤ 𝐶𝑠∥𝑢∥𝑘,𝛼,𝛿.

Theorem 2.1.21 ([31]). Suppose that 𝑃 is a formally self-adjoint geometric differential

operator of order 𝑚 on a tensor bundle of an 𝐴𝐻 manifold
(
X𝑛+1, 𝑔+

)
and that

𝑃ℍ : 𝐻𝑚,2
(
ℍ𝑛+1,E

)
→ 𝐿2

(
ℍ𝑛+1,E

)
is Fredholm. And suppose that the so-called 𝐿2-kernel Z is trivial. Assume that

the indicial radius is 𝑅 > 0. Then - 𝑃 : 𝐻
𝑘,𝑝

𝛿

(
X𝑛+1,E

)
→ 𝐻

𝑘−𝑚,𝑝
𝛿

(
X𝑛+1,E

)
is an

isomorphism for all
���𝛿 − 𝑛

2 + 𝑛
𝑝

��� < 𝑅 and - 𝑃 : 𝐶𝑘,𝛼
𝛿

(
X𝑛+1,E

)
→ 𝐶

𝑘−𝑚,𝛼
𝛿

(
X𝑛+1,E

)
is an

isomorphism for all
��𝛿 − 𝑛

2
�� < 𝑅.

Corollary 2.1.22. Suppose that
(
X𝑛+1, 𝑔+

)
is conformally compact Einstein manifold

and that ℙE is the linearization of Einstein equations. Assume that ℙE has no 𝐿2-kernel

on
(
X𝑛+1, 𝑔+

)
.Then

ℙE : 𝐶2,𝛼
𝛿

(
X𝑛+1,𝕊2

)
→ 𝐶

0,𝛼
𝛿

(
X𝑛+1,𝕊2

)
is an isomorphism for 𝛿 ∈ (0, 𝑛), where 𝕊2 is the bundle of symmetric 2-tensors.
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§ 2.2 The existence of the AHE

In this subsection we will first formulate the appropriate analytic problem for solving

conformally compact Einstein metrics. Then, based on the previous discussions we build

the functional analysis framework and a version of implicit function theorem (Lemma

3.6.3). To apply the linear theory we have developed we will need to construct asymptotic

solution to Einstein equations on a given manifold X𝑛+1 with a prescribed conformal

infinity (M𝑛, [�̂�]) near the conformal infinity (M𝑛, [�̂�0]) of a given conformally compact

Einstein metric 𝑔+0 .

2.2.1 The gauge Einstein equation

Let us first work out the appropriate analytic problem. To eliminate the obvious degen-

eracy of diffeomorphism one needs to choose a gauge (coordinate) to set the Einstein

Equations. Hence we recall the so-call De Turck’s trick first. For a symmetric 2-tensor

𝑡 on a Riemannian manifold
(
X𝑛+1, 𝑔

)
we define

(
𝐺𝑔𝑡

)
𝑖 𝑗
≜ 𝑡𝑖 𝑗 −

1
2
𝑡𝑘𝑙𝑔

𝑘𝑙𝑔𝑖 𝑗

and the divergence (
𝛿𝑔𝑡

)
𝑖
= −𝑡𝑖 𝑗,𝑘𝑔 𝑗𝑘.

The formal adjoint operator takes an 1-form 𝜔 to a symmetric 2-tensor as follows:(
𝛿∗𝑔𝜔

)
𝑖 𝑗
=

1
2

(
𝜔𝑖, 𝑗 + 𝜔 𝑗,𝑖

)
.
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Due to Bianchi identity we know that

𝛿𝑔𝐺𝑔𝑅𝑖𝑐[𝑔] = 0

for any Riemannian metric 𝑔. Recall the deformation of Ricci curvature at 𝑔

(𝐷𝑅𝑖𝑐)ℎ =
1
2

(
∇∗∇ + 2

◦
𝑅𝑐 −𝑅𝑚◦ − 2𝛿∗𝛿𝐺

)
ℎ,

where the last term represents the degeneracy. To cancel the last term, by De Turck’s

trick, we add a term and instead consider

𝑄(𝑔, 𝑡) = Ric[𝑔] + 𝑛𝑔 − 𝛿∗𝑔𝑡−1𝛿𝐺(𝑡)

for a metric 𝑔 and a symmetric 2 -tensor 𝑡. In fact, when 𝑡 is also a metric, one

may verify that 𝜏 = 𝑔𝑡−1𝛿𝐺(𝑡) is exactly the dual form of the so-called tension field

of the identity map Id :
(
X𝑛+1, 𝑔

)
→

(
X𝑛+1, 𝑡

)
with respect to the usual Dirichlet

energy, that is, Id is a harmonic map from
(
X𝑛+1, 𝑔

)
to

(
X𝑛+1, 𝑡

)
when 𝜏 = 0. Recall,

for a map 𝑢 :
(
X𝑛+1, 𝑔

)
→

(
X𝑛+1, 𝑡

)
, the dual tension field in local coordinates is

𝜏𝜃 = −𝑔𝜃𝛾𝑔𝛼𝛽𝑢𝛾𝛼,𝛽 = −𝑔𝜃𝛾𝑔𝛼𝛽
(
𝜕𝛽𝑢

𝛾
𝛼 − 𝑢

𝛾

𝜉

(
Γ𝑔

)𝜉
𝛼𝛽

+ 𝑢𝜁𝛼 (Γ𝑡)𝛾𝜁𝜉 𝑢
𝜉

𝛽

)
. Hence, for the identity

map, 𝑢𝛾𝛼 = 𝛿
𝛾
𝛼, we have

𝜏𝜃 = 𝑔𝜃𝛾𝑔
𝛼𝛽

( (
Γ𝑔

)𝛾
𝛼𝛽

− (Γ𝑡)𝛾𝛼𝛽
)
.

It is easier to verify that 𝜏 = 𝑔𝑡−1𝛿𝐺(𝑡) if one uses the normal coordinate at each arbitrary

given point. The De Turck’s trick consists of the following two steps. First one has

Lemma 2.2.1. Suppose that
(
X𝑛+1, 𝑔+

)
is an AH manifold that satisfies 𝑄 (𝑔+, 𝑡) = 0 for

a given AH metric 𝑡. And suppose that 𝑔+has a strictly negative Ricci curvature. Then

the identity map Id :
(
X𝑛+1, 𝑔+

)
→

(
X𝑛+1, 𝑡

)
is harmonic and 𝑔+is Einstein.

95



Chapter 2 The existences of the asymptotically symmetric Einstein metrics

Lemma 2.2.2. Suppose that
(
X𝑛+1, 𝑔+

)
is conformally compact Einstein manifold. Then

the linearization with respect to the first variable (metric) of 𝑄 at 𝑔 = 𝑡 = 𝑔+is given as

follows:

𝐷𝑔𝑄
(
𝑔+, 𝑔+

)
= 𝐷𝑔𝑄(𝑔, 𝑡)

��
𝑔=𝑡=𝑔+ =

1
2
ℙE.

2.2.2 A general perturbational existence theorem

Let us first work out the appropriate analytic problem. To eliminate the obvious degen-

eracy of diffeomorphism one needs to choose a gauge (coordinate) to set the Einstein

Equations. Hence we recall the so-call De Turck’s trick first. For a symmetric 2-tensor

𝑡 on a Riemannian manifold
(
X𝑛+1, 𝑔

)
we define

(
𝐺𝑔𝑡

)
𝑖 𝑗
≜ 𝑡𝑖 𝑗 −

1
2
𝑡𝑘𝑙𝑔

𝑘𝑙𝑔𝑖 𝑗

and the divergence (
𝛿𝑔𝑡

)
𝑖
= −𝑡𝑖 𝑗,𝑘𝑔 𝑗𝑘.

The formal adjoint operator takes an 1-form 𝜔 to a symmetric 2-tensor as follows:(
𝛿∗𝑔𝜔

)
𝑖 𝑗
=

1
2

(
𝜔𝑖, 𝑗 + 𝜔 𝑗,𝑖

)
.

Due to Bianchi identity we know that

𝛿𝑔𝐺𝑔𝑅𝑖𝑐[𝑔] = 0

for any Riemannian metric 𝑔. Recall the deformation of Ricci curvature at 𝑔

(𝐷𝑅𝑖𝑐)ℎ =
1
2

(
∇∗∇ + 2

◦
𝑅𝑐 −𝑅𝑚◦ − 2𝛿∗𝛿𝐺

)
ℎ,
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where the last term represents the degeneracy. To cancel the last term, by De Turck’s

trick, we add a term and instead consider

𝑄(𝑔, 𝑡) = Ric[𝑔] + 𝑛𝑔 − 𝛿∗𝑔𝑡−1𝛿𝐺(𝑡)

for a metric 𝑔 and a symmetric 2 -tensor 𝑡. In fact, when 𝑡 is also a metric, one

may verify that 𝜏 = 𝑔𝑡−1𝛿𝐺(𝑡) is exactly the dual form of the so-called tension field

of the identity map Id :
(
X𝑛+1, 𝑔

)
→

(
X𝑛+1, 𝑡

)
with respect to the usual Dirichlet

energy, that is, Id is a harmonic map from
(
X𝑛+1, 𝑔

)
to

(
X𝑛+1, 𝑡

)
when 𝜏 = 0. Recall,

for a map 𝑢 :
(
X𝑛+1, 𝑔

)
→

(
X𝑛+1, 𝑡

)
, the dual tension field in local coordinates is

𝜏𝜃 = −𝑔𝜃𝛾𝑔𝛼𝛽𝑢𝛾𝛼,𝛽 = −𝑔𝜃𝛾𝑔𝛼𝛽
(
𝜕𝛽𝑢

𝛾
𝛼 − 𝑢

𝛾

𝜉

(
Γ𝑔

)𝜉
𝛼𝛽

+ 𝑢𝜁𝛼 (Γ𝑡)𝛾𝜁𝜉 𝑢
𝜉

𝛽

)
. Hence, for the identity

map, 𝑢𝛾𝛼 = 𝛿
𝛾
𝛼, we have

𝜏𝜃 = 𝑔𝜃𝛾𝑔
𝛼𝛽

( (
Γ𝑔

)𝛾
𝛼𝛽

− (Γ𝑡)𝛾𝛼𝛽
)
.

It is easier to verify that 𝜏 = 𝑔𝑡−1𝛿𝐺(𝑡) if one uses the normal coordinate at each arbitrary

given point. The De Turck’s trick consists of the following two steps. First one has

Lemma 2.2.3. Suppose that
(
X𝑛+1, 𝑔+

)
is an AH manifold that satisfies 𝑄 (𝑔+, 𝑡) = 0 for

a given AH metric 𝑡. And suppose that 𝑔+has a strictly negative Ricci curvature. Then

the identity map Id :
(
X𝑛+1, 𝑔+

)
→

(
X𝑛+1, 𝑡

)
is harmonic and 𝑔+is Einstein.

Lemma 2.2.4. Suppose that
(
X𝑛+1, 𝑔+

)
is conformally compact Einstein manifold. Then

the linearization with respect to the first variable (metric) of 𝑄 at 𝑔 = 𝑡 = 𝑔+is given as

follows:

𝐷𝑔𝑄
(
𝑔+, 𝑔+

)
= 𝐷𝑔𝑄(𝑔, 𝑡)

��
𝑔=𝑡=𝑔+ =

1
2
ℙE.

Then, by the Newton‘s method, we can get that

Theorem 2.2.5 ([31]). Suppose that
(
X𝑛+1, 𝑔+

)
is a conformally compact Einstein man-
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ifold with the conformal infinity (M𝑛, [�̂�]). And suppose that the linearized operator ℙE

of gauged Einstein equations has no nontrivial 𝐿2-kernel. Then for any conformal class

[�̂�𝜖] that is sufficiently close to [�̂�] there exists a unique polyhomogeneously smooth

conformally compact Einstein metric 𝑔+𝜖whose conformal infinity is [�̂�𝜖].

2.2.3 Examples

§ 2.3 Asymptotically symmetric Einstein metrics of

rank 1 cases

In this section, we will introduce the generalization result of the last section into the

setting of the asymptotically symmetric Einstein metrics. The ideas are pretty much

same and from O.Biquard [7]. In order to shw the existence of the ASE metric on

the setting of the boundary perturbation. We need to consider the the gauge Einstein

equation. And its linearization is again a Lichnerowicz operator which can be shown

to be invertible on the standard symmetric space. And there also exists the Mobius

coordinate covering which satisfies the same result as it in the AH case. Therefore,

we can still show the Fredholm properties in the AS metrics. Finally, by the newton‘s

method, we can show the existence of the ASE metric.

However, there are something which is different from the AH metric. First of all, the

Green function estimate is different. Second, we do not have the inequality.
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§2.3 Asymptotically symmetric Einstein metrics of rank 1 cases

2.3.1 Definitions

First, let us introduce the definition of AS manifold, which is pretty much derive from

the cartan geometry for the model geometry on the boundary of the standard symmetric

space.

Definition 2.3.1 (Definition A, [7]). Let 𝐻 = 𝑈𝑚−1, 𝑆𝑝𝑚−1𝑆𝑝1 or Spin 7, corresponding

to the complex, quaternionic or octonionic cases, respectively. Let 𝑆𝑛−1 be a manifold

with a contact 1-form 𝜂 with values in ℝ,ℝ3 or ℝ7, respectively, and let 𝑉 = ker 𝜂. A

Carnot-Carathéodory 𝐻-metric compatible with 𝑑𝜂 is defined to be a metric 𝛾 on 𝑉 such

that

• in the complex case, the restriction to 𝑉 of 𝑑𝜂 is a symplectic form compatible

with 𝑔 (that is, 𝑑𝜂(·, ·) = 𝛾(𝐼·, ·) where 𝐼 is an almost complex structure on 𝑉 );

• in the quaternionic case, the three 2-forms (𝑑𝜂1, 𝑑𝜂2, 𝑑𝜂3) on 𝑉 provide a quater-

nionic structure compatible with 𝛾 (that is, 𝑑𝜂𝑖(·, ·) = 𝛾 (𝐼𝑖, ·) for almost complex

structures 𝐼𝑖 satisfying the quaternionic commutation relations);

• in the octonionic case, the seven 2-forms (𝑑𝜂1, . . . , 𝑑𝜂7) on 𝑉 provide a Spinn

structure compatible with 𝛾 (that is, 𝑑𝜂𝑖(·, ·) = 𝛾 (𝐼𝑖·, ·) for almost complex struc-

tures 𝐼𝑖 satisfying the octonionic commutation relations).

2.3.2 The perturbation existences

In this section, we will introduce the mainly perturbation result for the ASE metric from

O.biquard.
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Chapter 2 The existences of the asymptotically symmetric Einstein metrics

Theorem 2.3.2 (THEOREM I.4.14. [7]). Suppose 𝕂 = ℍ or 𝕆 and 𝐻 = 𝑆𝑝𝑚−1𝑆𝑝1 or

Spin 7; suppose the manifold 𝑀 is of dimension 4𝑚 or 16 , with boundary 𝑆, and has an

asymptotically symmetric Einstein metric 𝑔0 such that 𝐿2𝑯1 (𝑔0) = 0; suppose 𝑔𝑉 is a

Carnot-Carathéodory 𝐻-metric on 𝑆 with 𝐶2,𝛼 regularity, close to the conformal infinity

of 𝑔0, and let 𝑔 be an asymptotically symmetric metric associated via (4.7), then there

exists a metric ℎ such that

Ricℎ = −𝜆ℎ; ℎ − 𝑔 ∈ 𝐶2,𝛼
1 .

Locally, the metric ℎ is unique modulo the action of diffeomorphisms inducing the

identity on the boundary.

First, we need to introduce the precise definition of the weighted space on asymptot-

ically symmetric manifolds. Just like what we did for the hyperbolic space. First, we

introduce the definition of asymptotically symmetric manifold

Definition 2.3.3. An asymptotically symmetric metric is a metric which can be written

as 𝑔 + ℎ near infinity, where 𝑔 is defined by (3.1), with 𝑔𝑉 having 𝐶2,𝛼 local regularity,

and ℎ ∈ 𝐶2,𝛼
1 .

Then, we need to introduce the Holder space. Hölder norms. For a metric such as 𝑔,

the geometry is uniform at infinity, which is translated, in particular, by the fact that the

sectional curvature is bounded above and the injectivity radius 𝑟inj is bounded below.

Consequently, following proposition 6.4.6 of [BK81], there exists a radius 𝑟cony such

that in a ball of radius 𝑟conv , two points 𝑥 and 𝑦 are linked by a unique minimizing

geodesic.

Let us verify that the 𝐶𝛼 tensor norm, used earlier, has a natural definition. Let us
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fix a parameter 𝜌 < 𝑟conv , and for 𝑥, 𝑦 such that 𝑑(𝑥, 𝑦) < 𝜌, let 𝑝𝑥→𝑦 denote the

parallel transportation along the minimizing geodesic joining 𝑥 to 𝑦. The Hölder norm

is defined by

∥𝑢∥𝐶𝛼 = sup |𝑢| + sup
𝑑(𝑥,𝑦)<𝜌

��𝑝𝑥→𝑦 (𝑢(𝑥)) − 𝑢(𝑦)
��

𝑑(𝑥, 𝑦)𝛼

The 𝐶𝑘,𝛼 norm is then naturally defined by

∥𝑢∥𝐶𝑘,𝛼 (𝑔) =
𝑘−1∑︁

0
sup

��∇𝑖𝑢
�� + ∇𝑘𝑢


𝐶𝛼

and the Hölder weighted norm by

∥𝑢∥
𝐶
𝑘,𝛼
𝛿

(𝑔) =
cosh(𝑟)𝛿𝑢


𝐶𝑘,𝛼 (𝑔)

Harmonic coordinates. In order to deal with problems relating to local elliptic regularity,

we need coordinates on our balls for which the metric is controlled. In principle, this

does not raise a problem because of the uniform geometry at infinity, but there are a

number of subtleties associated with the use of metrics with 𝐶2,𝛼 regularity.

If the metric 𝑔𝑉 on 𝑆 is smooth, the curvature of 𝑔 is completely controlled by the

calculation (1.7) and, in geodesic coordinates, the metric 𝑔 will be uniformly close to

the flat metric, for example in 𝐶2, 𝛼. Adding a perturbation tending to 0 at infinity,

ℎ ∈ 𝐶
2,𝛼
𝛿

, changes nothing. The same is true for a smooth asymptotically symmetric

metric. In this situation, Proposition I. 3.2 below is of no use.

On the other hand, if the metric 𝑔𝑉 has only 𝐶2,𝛼 regularity, the above reasoning

does not work, since the geodesic coordinates lead to loss of the regularity. To remedy

this problem, we shall instead use the existence of harmonic coordinates, which are of

maximum regularity. The following proposition will suffice for us.
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Chapter 2 The existences of the asymptotically symmetric Einstein metrics

Proposition 2.3.4. Let 𝑄 > 1, if ∥Ric𝑔∥𝐶𝑘−2,𝛼 ≤ 𝐶 and 𝑟inj ≥ 𝑖, then there exists

𝑟harm, depending only on 𝑄, 𝐶, 𝑖 and 𝑘 + 𝛼, such that any ball 𝐵𝑟harm (𝑥) has harmonic

coordinates in which the coefficients 𝑔𝑖 𝑗 of the metric satisfy

𝑄−1 (
𝛿𝑖 𝑗

)
≤

(
𝑔𝑖 𝑗

)
≤ 𝑄

(
𝛿𝑖 𝑗

)
∑︁

1≤|𝛽 |≤𝑘
𝑟
|𝛽 |
harm sup

��𝜕𝛽𝑔𝑖 𝑗�� + ∑︁
|𝛽 |=𝑘

𝑟𝑘+𝛼harm sup
��𝜕𝛽𝑔𝑖 𝑗(𝑦) − 𝜕𝛽𝑔𝑖 𝑗(𝑥)

��
|𝑥 − 𝑦 |𝛼 ≤ 𝑄

2.3.3 Main ideals of the proofs

In this section, the manifold is always the rank 1 symmetric space and the Laplacian

operator refers to the Laplacian operator with respect to the standard metric on symmetric

space. We refer [30] to show that the Laplacian operator is a Fredholm operator on so

called weight space with zero index.

The infinity behavior of the Green function

(1)(Geometric invariance for the Laplacian operator) Geometric invariance for the

Laplacian operator refers to the fact that Laplacian operator satisfies the following

commutative diagram.

𝐶∞(𝑀,𝑇𝑀) 𝐶∞(𝑀,𝑇𝑀)

𝐶∞(𝑀,𝑇𝑀) 𝐶∞(𝑀,𝑇𝑀)

Δ

ℎ∗ ℎ∗

Δ

where ℎ ∈ 𝐺 � 𝐼𝑆𝑂(𝑀). Therefore,

(Δ 𝑓 ) (ℎ(𝑝)) = ℎ∗(Δ(ℎ−1
∗ ( 𝑓 )) (𝑝))

(2)(The definition of Green function) The Green function 𝐺𝜉𝑝0
(𝑥) ∈ Hom(𝐸𝑝0 , 𝐸𝑥)
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§2.3 Asymptotically symmetric Einstein metrics of rank 1 cases

is section satisfying that

Δ𝐺𝜉𝑝0
= 𝛿𝑝0𝜉𝑝0

where 𝛿𝑝0 is the Dirac function at 𝑝0 ∈ 𝑀 and 𝜉𝑝0 ∈ 𝐸𝑝0 .

(3)(The linearality of the Green function)

𝑎𝐺𝜉𝑝0
+ 𝑏𝐺𝜂𝑝0

= 𝐺(𝑎𝜉𝑝0+𝜂𝑝0 )

where 𝜉𝑝0 , 𝜂𝑝0 ∈ 𝑇𝑝0𝑀 and 𝑎, 𝑏 are constants. Then, the green function can be thought

of as a linear map as following

𝐺(𝑝) : 𝑇𝑝0𝑀 → 𝑇𝑝𝑀

𝜉𝑝0 ↦→ 𝐺𝜉𝑝0
(𝑝)

The lift of 𝐺𝜉𝑝0
can be also thought of as a linear map as following

𝐺(𝑔) : 𝑇𝑝0𝑀 → 𝑇𝑝0𝑀

𝜉𝑝0 ↦→ 𝐺𝜉𝑝0
(𝑔)

where 𝑔 ∈ 𝐺.

(4)(The geometric invariance for the Green function) The geometric invariance

for the Green function refers to

ℎ∗(𝐺𝜉𝑝0
) = 𝐺ℎ∗𝜉𝑝0

where ℎ ∈ 𝐾 ⊆ 𝐺. In fact, by the geometric invariance for the Laplacian operator, we
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have

Δ(ℎ∗𝐺𝜉𝑝0
) = ℎ∗(Δ𝐺𝜉𝑝0

) = 𝛿𝑥ℎ∗(𝜉𝑝0)

(5)(The Green function is a spherically invariant vector field) From 1.2.1 (3) (6),

we have 𝐺ℎ∗𝜉𝑝0
(𝑔) = �ℎ∗𝐺𝜉𝑝0

(𝑔) = 𝐺𝜉𝑝0
(ℎ−1𝑔). Suppose that 𝐺(exp (𝑟𝑥0)) = 𝐴(𝑟) is the

transformation of 𝑇𝑝0𝑀, then

𝐺𝜉𝑝0
(exp (𝑟𝑥0)) = 𝐴(𝑟)𝜉𝑝0

And from 1.2.2 (3),

𝐺𝜉𝑝0
(ℎ exp (𝑟𝑥0)) = 𝐺ℎ−1

∗ 𝜉𝑝0
(exp (𝑟𝑥0)) = 𝐴(𝑟)𝜉𝑝0 = 𝐴(𝑟)ℎ−1

∗ (𝜉𝑝0) = 𝐴(𝑟)𝜌0(ℎ−1) (𝜉𝑝0)

where ℎ ∈ 𝐺. By the definition of spherically invariant vector field in 1.2.1 (11), 𝐺𝜉𝑝0
is

spherically invariant vector field.

(6)

Lemma 2.3.5. For the above linear transformation 𝐴(𝑟), we have

𝜌0(ℎ)𝐴(𝑟)𝜌0(ℎ−1) = 𝐴(𝑟)

where ℎ = exp(𝑣𝑡) with 𝑣 ∈ 𝔩0 and 𝑡 > 0.

Proof: Since ℎ = exp (𝔩0𝑡), ℎ(exp(𝔩0𝑡) exp(𝑟𝑥0) (𝑝0)) = exp(𝑟𝑥0) (𝑝0). Therefore, we

have �ℎ∗( 𝑓 ) (exp (𝑟𝑥0)) = 𝜌0(ℎ) ( �̃� (exp(𝑟𝑥0))). Therefore,

�ℎ∗𝐺𝜉𝑝0
(exp(𝑟𝑥0)) = 𝜌0(ℎ) (𝐺𝜉𝑝0

(exp(𝑟𝑥0))) = 𝜌0(ℎ)𝐴(𝑟) (𝜉𝑝0)

On the other hand, from 1.2.2 (4), (5) �ℎ∗(𝐺𝜉𝑝0
) (exp (𝑟𝑥0)) = �𝐺ℎ∗𝜉𝑝0

(exp(𝑟𝑥0)) =
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𝐴(𝑟)𝜌0(ℎ) (𝜉𝑝0). Therefore, we have

𝜌0(ℎ)𝐴(𝑟) = 𝐴(𝑟)𝜌0(ℎ)

(7) We can decompose the 𝑇𝑝0𝑀 into the irreduciable invariant subspace 𝐸1 ⊕ · · · ⊕ 𝐸𝑙

for the group 𝐾0 which is generated by the lie algebra 𝔩0. Since 𝜌0(ℎ)𝐴(𝑟) = 𝐴(𝑟)𝜌0(ℎ),

𝐴(𝑟) |𝐸𝑖 = 𝑓𝑖(𝑟)𝑖𝑑𝐸𝑖 . From 1.2.1 (10), C(𝔪0, 𝜌0) |𝐸𝑖 = 𝜇𝑖𝑖𝑑𝐸𝑖 . Therefore, for 𝑣 ∈ 𝐸𝑖, as in

the 1.2.1 (12), we have

Δ̃𝐺𝑣(exp(𝑟𝑥0)) = 𝜕2
𝑟 𝑓𝑖(𝑟)𝑣 + H𝜕𝑟 𝑓𝑖(𝑟)𝑣 − 𝜇𝑖 𝑓𝑖(𝑟)𝑣 + 𝐵(𝑟)𝑣

(8)(The equivalence of the norm) Since

𝐺𝑣(exp(𝑟𝑥0)) = 𝐴(𝑟)𝑣 𝐺𝑣(ℎ exp(𝑟𝑥0)) = 𝐴(𝑟)𝜌0(ℎ−1)𝑣

for ℎ ∈ 𝐾 ⊆ 𝐺 � 𝐼𝑆𝑂(𝑀) and 𝑣 ∈ 𝑇𝑝0𝑀, then we can easily get

|𝐺𝑣 | =|𝐺𝑣(exp(𝑟𝑥0)) | ≤ 𝐶1 |𝐴(𝑟) | · |𝑣|

|𝐺𝑣 | =|𝐺𝑣(exp(𝑟𝑥0)) | ≥ 𝐶2 |𝐴(𝑟) | · |𝑣|

Therefore, |𝜕𝑚𝑟 𝐺𝑣 | is equivalent to |𝜕𝑚𝑟 𝐴(𝑟) | · |𝑣| for 𝑚 ≥ 0. Moreover, we have

| |𝜕𝑚𝑟 𝐺𝑣 | |𝐿2 =

∫ +∞

0
< 𝜕𝑚𝑟 𝐴(𝑟)𝑣, 𝜕𝑚𝑟 𝐴(𝑟)𝑣 > exp (H𝑟)𝑑𝑟

(9)(The elliptic estimate) For the elliptic equation Δ𝐺𝑣 = 0, if 𝐺𝑣 ∈ 𝐿2(𝑀), then by

the elliptic regularity,

𝜕𝑟𝐺𝑣 ∈ 𝐿2(𝑀) 𝜕2
𝑟𝐺𝑣 ∈ 𝐿2(𝑀)
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Then, we have

|𝐺𝑣(exp(𝑟𝑥0)) |2 = < 𝐴(𝑟)𝑣, 𝐴(𝑟)𝑣 >

= −
∫ +∞

𝑟

exp (−H𝜏)2 < 𝜕𝜏𝐴(𝜏)𝑣, 𝐴(𝜏)𝑣 > exp(H𝜏)𝑑𝜏

≤ exp(−H𝑟) [
∫
𝑀

|𝜕𝜏𝐴(𝜏)𝑣|2𝑑𝑉 +
∫
𝑀

|𝐴(𝜏)𝑣|2𝑑𝑉]

Therefore, we have

|𝐺𝑣(exp(𝑟𝑥0)) | ≤ 𝑂(exp(−H
2
𝑟)) · |𝑣|

Similarly, we have

|𝜕𝑟𝐺𝑣(exp(𝑟𝑥0)) | ≤ 𝑂(exp(−H
2
𝑟)) · |𝑣|

Therefore, from the 1.2.2 (8), we have

|𝐴(𝑟) | ≤ 𝑂(exp(−H
2
𝑟)) |𝜕𝑟𝐴(𝑟) | ≤ 𝑂(exp(−H

2
𝑟))

Remark 2.3.6. We will explain why 𝐺 ∈ 𝐿2(𝑀). First, 𝐺(𝑥, 𝑦) satisfying the equation

Δ𝑥𝐺(𝑥, 𝑦) = 0 if 𝑥 ≠ 𝑦

Then, fix 𝑦 ∈ 𝑀

∥𝐺(𝑥, 𝑦)∥𝐿2 (𝑀) = ∥𝐺(𝑥, 𝑦)∥𝐿2 (𝑀−𝐵𝛿 (𝑦)) + ∥𝐺(𝑥, 𝑦)∥𝐿2 (𝐵𝛿 (𝑦)) (2.3.1)

For the first part, consider the following function

𝐺1(𝑥, 𝑦) =

𝐺(𝑥, 𝑦) if 𝑥 ∈ 𝑀 − 𝐵𝛿(𝑦)

𝑓 (𝑥, 𝑦) if 𝑥 ∈ 𝐵𝛿(𝑦)

where 𝑓 ∈ 𝐶∞(𝐵𝛿(𝑦)) such that the second derivative of 𝐺1 existence. Then, by the
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elliptic estimate on Hyperbolic space (Lemma 4.8 in [30]), we have that

∥𝐺1(𝑥, 𝑦)∥𝐿2 (𝑀) ≤ 𝐶∥Δ𝑥 𝑓 (𝑥, 𝑦)∥𝐿2 (𝑀) ≤ 𝐶.

While for the secon part of (2.3.1), it can be controlled by the green function in ℝ𝑛+1

(Newtonian potential), which implies that

∥𝐺(𝑥, 𝑦)∥𝐿2 (𝐵𝛿 (𝑦)) ≤ 𝐶.

Therefore, 𝐺(𝑥, 𝑦) ∈ 𝐿2(𝑀)

(10) For the equation in 1.2.2 (7)

Δ̃𝐺𝑣(exp(𝑟𝑥0)) = 𝜕2
𝑟 𝑓𝑖(𝑟)𝑣 + H𝜕𝑟 𝑓𝑖(𝑟)𝑣 − 𝜇𝑖 𝑓𝑖(𝑟)𝑣 + 𝐵(𝑟)𝑣

From 1.2.1 (12) and 1.2.2 (9), we have

|𝐵(𝑟) | = 𝑂(exp(−𝑟)) [|𝐴(𝑟) | + |𝜕𝑟𝐴(𝑟) |] ≤ 𝑂(exp(−H
2
𝑟 − 𝑟))

(11)(A result of ODE)

Lemma 2.3.7. For constant coefficients ODE,

𝜕2
𝑟 𝑓 + 𝑎1𝜕𝑟 𝑓 + 𝑎0 𝑓 = 𝑔(𝑟) (2.3.2)

with |𝑔(𝑟) | ∼ exp(𝑘𝑟) as 𝑟 goes to infinity and 𝑎1, 𝑎0 constant. The solution, 𝑓 (𝑟), of the

above ODE satisfies

| 𝑓 (𝑟) | ≤ 𝐶1 exp(𝑘𝑟) + 𝐶2 exp(𝜆1𝑟) + 𝐶3 exp(𝜆2𝑟) (2.3.3)

where 𝐶1, 𝐶2 and 𝐶3 are constants and 𝜆1 and 𝜆2 are two distinct solution of the

characteristic equation 𝜆2 + 𝑎1𝜆 + 𝑎0 = 0
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𝑃𝑟𝑜𝑜 𝑓 . By the variation of the constant method, the generation of the equation (2.3.2),

is

𝐺(𝑟) = 𝐶1𝐺1(𝑟) + 𝐶2𝐺2(𝑟) +
∫ 𝑟

𝑟0

𝐺1(𝜏)𝐺2(𝑟) − 𝐺1(𝑟)𝐺2(𝜏)
𝐺1(𝜏)𝐺′

2(𝜏) − 𝐺′
1(𝜏)𝐺2(𝜏)

𝑔(𝜏)𝑑𝜏

where 𝐺1(𝑟) and 𝐺(𝑟) are two linearly independent solution of the corresponding ho-

mogeneous solution. Therefore,

𝐺1(𝑟) = 𝑒𝜆1𝑟 and 𝐺2(𝑟) = 𝑒𝜆2𝑟

Therefore, we have

𝐺(𝑟) = 𝐶1𝑒
𝜆1𝑟 + 𝐶2𝑒

𝜆2𝑟 + 𝑒𝜆2𝑟

𝜆2 − 𝜆1

∫ 𝑟

𝑟0

𝑒−𝜆2𝜏𝑔(𝜏)𝑑𝜏 − 𝑒𝜆1𝑟

𝜆2 − 𝜆1

∫ 𝑟

𝑟0

𝑒−𝜆1𝜏𝑔(𝜏)𝑑𝜏

Then, the (2.3.3) follows. □

(12)(The infinity behavior of the Green function)

Theorem 2.3.8. As 𝑟 goes to infinity, the Green function 𝐺𝑣 for the Laplacian operator

satisfies

|𝐺𝑣 | ∼ 𝑂(exp(−(H
2

+
√︂

H2

4
+ 𝜇)𝑟)) · |𝑣|

where 𝜇 is the smallest eigenvalue of the Casmir operator C(𝔪0, 𝜌0)

Proof: From 1.2.2 (8), we only need to show that

|𝐴(𝑟) | ∼ 𝑂(exp(−(H
2

+
√︂

H2

4
+ 𝜇)𝑟))

Step1 Assume that

|𝐴(𝑟) | ∼ 𝑂(exp(−(H
2

+ 𝜆)𝑟))
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where 0 ≤ 𝜆 <

√︃
H2

4 + 𝜇. Then, by the interior Holder estimate, we have

|𝜕𝑟𝐴(𝑟) | ≤ 𝑂(exp(−(H
2

+ 𝜆)𝑟))

Therefore, we have

|𝐵(𝑟) | ≤ 𝑂(exp(−(H
2

+ 𝜆 + 1)𝑟))

Therefore, if we consider the equation

𝜕2
𝑟 𝐴(𝑟)𝑣 + H𝜕𝑟𝐴(𝑟)𝑣 − C(𝔪0, 𝜌0)𝐴(𝑟)𝑣 = −𝐵(𝑟)𝑣

in each irreduciable subspace of 𝑇𝑝0𝑀, then the above will induce some ODEs as in

1.2.2 (7)

𝜕2
𝑟 𝑓𝑖(𝑟)𝑣 + H𝜕𝑟 𝑓𝑖(𝑟)𝑣 − 𝜇𝑖 𝑓𝑖(𝑟)𝑣 = −𝐵(𝑟)𝑣

Then, Combining the result of ODE in 1.2.2 (11), we have

|𝐴(𝑟) | ≤ 𝑂(exp(−(H
2

+ 𝜆 + 1)𝑟)) + 𝑂(exp(−(H
2

+
√︂

H2

4
+ 𝜇)𝑟))

which contradict to our assumption.

Step2 Assume that the 𝜆 in step1 is

𝜆 >

√︂
H2

4
+ 𝜇

Again, by the Holder interior estimate, we have

|𝜕𝑚𝑟 𝐴(𝑟) | ≤ 𝑂(exp(−(H
2

+ 𝜆)𝑟)) 𝑓 𝑜𝑟 𝑚 ≥ 0 (2.3.4)
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and

|𝐵(𝑟) | ≤ 𝑂(exp(−(H
2

+ 𝜆 + 1)𝑟))

Suppose that the 𝑓 (𝑟) is the eigenvalue of 𝐴(𝑟) such that the corresponding eigenspace

𝐸𝑖 corresponds to 𝜇. Then, we have

𝑓 (𝑟) ∼ 𝑂(exp(−(H
2

+ 𝜆)𝑟))

Suppose that

𝑓 (𝑟) = 𝑔(𝑟) exp(−(H
2

+ 𝜆)𝑟),

Then,

|𝑔(𝑟) | ∼ 𝑂(1).

And by the 𝐻 ¥𝑜𝑙𝑑𝑒𝑟 estimate (2.3.4), we have

|𝜕𝑚𝑟 𝑓 (𝑟) | = |
𝑚∑︁
𝑖=0

𝐶𝑖𝜕
𝑖
𝑟𝑔(𝑟) ·

(
𝜕𝑚−𝑖𝑟 exp(−(H

2
+ 𝜆)𝑟)

)
| ∼ 𝑂(exp(−(H

2
+ 𝜆)𝑟)),

which implies that

|𝜕𝑖𝑟𝑔(𝑟) | ≤ 𝑂(1)
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Then,

𝜕2
𝑟 𝑓 ( 𝑓 ) + H𝜕𝑟 𝑓 (𝑟) − 𝜇 𝑓 (𝑟)

=

(
𝜕2
𝑟 𝑔(𝑟) − (H

2
+ 𝜆)𝜕𝑟𝑔(𝑟) + H𝜕𝑟𝑔(𝑟)

)
exp(−(H

2
+ 𝜆)𝑟)

+
(
(H

2
+ 𝜆)2 −H(H

2
+ 𝜆) − 𝜇

)
exp(−(H

2
+ 𝜆)𝑟)

=

(
𝜕2
𝑟 𝑔(𝑟) − (H

2
+ 𝜆)𝜕𝑟𝑔(𝑟) + H𝜕𝑟𝑔(𝑟) + (H

2
+ 𝜆)2 −H(H

2
+ 𝜆) − 𝜇

)
exp(−(H

2
+ 𝜆)𝑟)

On the other hand, we have

|𝜕2
𝑟 𝑓 (𝑟) + H𝜕𝑟 𝑓 (𝑟) − 𝜇 𝑓 (𝑟) | = | − 𝐵(𝑟) | ∼ 𝑂(exp(−(H

2
+ 𝜆 + 1)𝑟))

Therefore,

𝜕2
𝑟 𝑔(𝑟) − (H

2
+ 𝜆)𝜕𝑟𝑔(𝑟) + H𝜕𝑟𝑔(𝑟) + (H

2
+ 𝜆)2 −H(H

2
+ 𝜆) − 𝜇 = 0,

which implies that

𝜕2
𝑟 𝑓 (𝑟) + H𝜕𝑟 𝑓 (𝑟) − 𝜇 𝑓 (𝑟) = 0

Therefore,

𝑓 (𝑟) = 𝐶 exp(−(H
2

+
√︂

H2

4
+ 𝜇)),

which contradicts that

𝑓 (𝑟) ∼ 𝑂(exp(−(H
2

+ 𝜆)𝑟))

Therefore, 𝜆 =

√︃
H2

4 + 𝜇
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The eigenvalue estimate for scalar Laplacian operator

(1)(The weighted space)

Definition 2.3.9. We define the weighted Holder space 𝐶𝑘,𝛼
𝛿

for the sections 𝑓 of an

associative vector bundle of the principal bundle 𝐺 → 𝐺/𝐾 by requiring that

(cosh 𝑟)𝛿𝜎 ∈ 𝐶𝑘,𝛼

where 𝐶𝑘,𝛼
𝛿

refers to the local regularity of the section.

We see that these are then sections with local 𝐶𝑘,𝛼
𝛿

regularity which decrease at infinity

in exp(−𝛿𝑟).

Definition 2.3.10. We define the weighted Soblve space for the sections 𝑓 of an asso-

ciative vector bundle of the principal bundle 𝐺 → 𝐺/𝐾 by

𝑊
𝑘,𝑝

𝛿
= { 𝑓 | exp((𝛿 − H

𝑝
)𝑟)𝜕𝑘 𝑓 ∈ 𝐿𝑝(𝑀) |}

(2)(The eigenvalue estimate for scalar Laplacian operator on the weighted space)

Consider the operator

𝑃 = Δ0 − 𝜇

where Δ0 stands for the scalar Laplacian operator and 𝜇 is the smallest eigenvalue of the

Casmir operator C(𝔪0, 𝜌0).

Lemma 2.3.11. For compact supported smooth function 𝑓 , we have

∥𝑒−𝛾𝑟𝑃 𝑓 ∥𝐿2 (𝑀) ≥
(
H2

4
− 𝛾2 + 𝜇

)
∥𝑒−𝛾𝑟 𝑓 ∥𝐿2 (𝑀)
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Proof: For compact supported smooth function 𝑓 ∈ 𝐶∞
𝑐 (𝑀),∫

𝐵𝑅

< 𝑑∗𝑑 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 =

∫
𝐵𝑅

|𝑑 𝑓 |2𝑒−2𝛾𝑟 − 2𝛾 𝑓 (𝜕𝑟 𝑓 )𝑒−2𝛾𝑟

≥
∫
𝐵𝑅

(𝜕𝑟 𝑓 )2𝑒−2𝛾𝑟 − 2𝛾 𝑓 (𝜕𝑟 𝑓 )𝑒−2𝛾𝑟
(2.3.5)

where 𝑠𝑢𝑝𝑝( 𝑓 ) ⊆ 𝐵𝑅 and 𝐵𝑅 is a geodesic ball with radius 𝑅 and center 𝑝0. And since

− 𝑓 · (𝜕𝑟 𝑓 ) ≤
1
2
(𝑎−1(𝜕𝑟 𝑓 )2 + 𝑎 𝑓 2)

together with (2.3.5), we have∫
𝐵𝑅

< 𝑑∗𝑑 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 ≥
∫
𝐵𝑅

(𝜕𝑟 𝑓 )2𝑒−2𝛾𝑟 − 2𝛾 𝑓 (𝜕𝑟 𝑓 )𝑒−2𝛾𝑟

≥
∫
𝐵𝑅

(−2𝑎 𝑓 · (𝜕𝑟 𝑓 ) − 𝑎2 𝑓 2 − 2𝛾 · (𝜕𝑟 𝑓 ) · 𝑓 )𝑒−2𝛾𝑟

=

∫
𝐵𝑅

(−2(𝑎 + 𝛾) 𝑓 · 𝜕𝑟 𝑓 − 𝑎2 𝑓 2)𝑒−2𝛾𝑟

(2.3.6)

If we take a spherical coordinate in 𝐵𝑅, then we have∫
𝐵𝑅

− 𝑓 · (𝜕𝑟 𝑓 ) · 𝑒−2𝛾𝑟 =

∫
𝜕𝐵𝑅

∫ 𝑅

0
− 𝑓 · (𝜕𝑟 𝑓 ) · 𝑒−2𝛾𝑟𝜔𝑛(𝑟)𝑑𝑟 (2.3.7)

where 𝜔𝑛(𝑟) is the volume of the n-dimensional unit sphere. Then, by the integration

by parts, we have∫
𝜕𝐵𝑅

∫ 𝑅

0
− 𝑓 · (𝜕𝑟 𝑓 ) · 𝑒−2𝛾𝑟𝜔𝑛(𝑟)𝑑𝑟 ≥

1
2

∫
𝜕𝐵𝑅

∫ 𝑅

0
𝑓 2 · 𝑒−2𝛾𝑟 · (𝜕𝑟𝜔𝑛(𝑟))𝑑𝑟

−
∫
𝜕𝐵𝑅

∫ 𝑅

0
𝛾 · 𝑓 2 · 𝑒−2𝛾𝑟𝜔𝑛(𝑟)𝑑𝑟 =

1
2

∫
𝜕𝐵𝑅

∫ 𝑅

0
𝑓 2 · 𝑒−2𝛾𝑟 · 𝜕𝑟𝜔(𝑟)

𝜔𝑛(𝑟)
𝜔𝑛(𝑟)𝑑𝑟

−
∫
𝜕𝐵𝑅

∫ 𝑅

0
𝛾 · 𝑓 2 · 𝑒−2𝛾𝑟𝜔𝑛(𝑟)𝑑𝑟

(2.3.8)
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Since H =
𝜕𝑟𝜔(𝑟)
𝜔𝑛 (𝑟) , ∫

𝐵𝑅

− 𝑓 · (𝜕𝑟 𝑓 ) · 𝑒−2𝛾𝑟 ≥
∫
𝐵𝑅

(H (𝑟)
2

− 𝛾) · 𝑓 2 · 𝑒−2𝛾𝑟 (2.3.9)

Then, combine (2) and (5), we have∫
𝐵𝑅

< 𝑑∗𝑑 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 ≥
∫
𝐵𝑅

[2(𝑎 + 𝛾) (H (𝑟)
2

− 𝛾) − 𝑎2] 𝑓 2 · 𝑒−2𝛾𝑟 (2.3.10)

Take 𝑎 = H(𝑟)
2 − 𝛾. Then we have∫

𝐵𝑅

< −Δ 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 ≥ (H
2

4
− 𝛾2)

∫
𝐵𝑅

𝑓 2 · 𝑒−2𝛾𝑟

Therefore,∫
𝐵𝑅

< −Δ 𝑓 + 𝜇 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 ≥ (H
2

4
− 𝛾2 + 𝜇)

∫
𝐵𝑅

𝑓 2 · 𝑒−2𝛾𝑟 (2.3.11)

By the Cauchy-Schwartz inequality, we have

∥𝑒−𝛾𝑟𝑃 𝑓 ∥𝐿2 (𝑀) ≥
(
H2

4
− 𝛾2 + 𝜇

)
∥𝑒−𝛾𝑟 𝑓 ∥𝐿2 (𝑀)

Isomorphism theorems

Theorem 2.3.12. The scalar operator

𝑃 = Δ0 − 𝜇

where Δ0 stands for the scalar Laplacian operator and 𝜇 is the smallest eigenvalue of

the Casmir operator C(𝔪0, 𝜌0), is an isomorphism, provided that

H
2

−
√︂

H2

4
+ 𝜇 < 𝛿 <

H
2

+
√︂

H2

4
+ 𝜇
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Proof: Obviously, 𝑃 is an injective by the lemma 1.3. We only need to show that 𝑃

is surjective. Since we have∫
𝐵𝑅

< −Δ 𝑓 + 𝜇 𝑓 , 𝑓 > 𝑒−2𝛾𝑟 ≥ (H
2

4
− 𝛾2 + 𝜇)

∫
𝐵𝑅

𝑓 2 · 𝑒−2𝛾𝑟

then, by the Lax-Milgram theorem, we can get the existence of the weak solution for

the equation

𝑃𝑢 = 𝑓

for 𝑓 ∈ 𝐻𝑘
𝛿
. Then by the interior Soblve elliptic estimate

| |𝑢| |𝐻2
𝛿
≤ 𝐶( | |𝑢| |𝐿2

𝛿
+ || 𝑓 | |𝐿2

𝛿
)

We see this weak solution 𝑢 ∈ 𝐿
2,𝑘+2
𝛿

. Therefore, 𝑃 is also a surjective. □

Lemma 2.3.13. If 𝑢 ∈ 𝐿
𝑝

𝛿
(𝑀), then

1) | |𝑢| |𝐿2
𝛿1
≤ 𝐶(𝑝, 𝛿, 𝛿1) | |𝑢| |𝐿𝑝

𝛿
for 2 < 𝑝 < +∞ and 𝛿1 < 𝛿;

2) | |𝑢| |𝐿2
𝛿1
≤ 𝐶(𝑝, 𝛿, 𝛿1) | |𝑢| |𝐿𝑝

𝛿
for 1 ≤ 𝑝 < 2 and 𝛿1 > 𝛿;

Proof: 𝑢 ∈ 𝐿
𝑝

𝛿
implies that

𝑒
(𝛿−H

𝑝
)𝑟
𝑢 ∈ 𝐿𝑝

Therefore, by the Holder inequality, we have

| |𝑢| |2
𝐿2
𝛿1
=

∫
𝑀

(𝑒2(𝛿1−H
2 )𝑟𝑢2) =

∫
𝑀

𝑒2(𝛿1−𝛿)𝑟 · 𝑒2𝛿𝑟𝑢2𝑒−H𝑟𝑑𝑉𝑀

≤
( ∫

𝑀

𝑒2(𝛿1−𝛿)𝑟𝑞∗𝑒−H𝑟𝑑𝑉𝑀
) 1
𝑞∗

( ∫
𝑀

(𝑒𝛿𝑟𝑢)2𝑞𝑒−H𝑟𝑑𝑉𝑀
) 1
𝑞
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where 1
𝑞∗
+ 1

𝑞
= 1. Then, take 𝑞 = 𝑝

2 and 𝑞∗ = 𝑝

𝑝−2 . Then, we have

| |𝑢| |2
𝐿2
𝛿1
≤

( ∫
𝑀

𝑒
2𝑝
𝑝−2 (𝛿1−𝛿)𝑟𝑞∗𝑒−H𝑟𝑑𝑉𝑀

) 𝑝−2
𝑝 · | |𝑢| |2

𝐿
𝑝

𝛿

Then, we can get the result. □

Lemma 2.3.14. The scalar operator 𝑃 : 𝑊2,𝑝
𝛿

→ 𝐿𝑝 (which is another extension of the

operator in Theorem 1.2) is an isomorphism, provided

H
2

−
√︂

H2

4
+ 𝜇 < 𝛿 <

H
2

+
√︂

H2

4
+ 𝜇

Proof: For injective, if 𝑃𝑢 = 0 and 𝑢 ∈ 𝑊2,𝑝
𝛿

. Then by Lemma 1.4, there exists a 𝛿1

which can be as close to 𝛿 as you want, such that | |𝑢| |𝐿2
𝛿1
≤ 𝐶(𝑝, 𝛿, 𝛿1) | |𝑢| |𝐿𝑝

𝛿
. Therefore,

H
2

−
√︂

H2

4
+ 𝜇 < 𝛿1 <

H
2

+
√︂

H2

4
+ 𝜇

From the lemma 1.2, we see that 𝑢 ∈ 𝐿2
𝛿1

. Therefore, 𝑢 ≡ 0. For surjective, consider

the transpose operator of 𝑃 : 𝑊2,𝑝
𝛿

→ 𝐿𝑝, 𝑃∗ : 𝑊2,𝑝∗
𝛿∗ → 𝐿

𝑝∗
𝛿∗

. Since 𝛿∗ = H − 𝛿 and
1
𝑝∗
+ 1

𝑝
= 1, we have

H
2

−
√︂

H2

4
+ 𝜇 < 𝛿∗ <

H
2

+
√︂

H2

4
+ 𝜇

Therefore, 𝑃∗ : 𝑊2,𝑝∗
𝛿∗ → 𝐿

𝑝∗
𝛿∗

is also injective which implies that cokernel of 𝑃 is trivial.

Therefore, 𝑃 is surjective. □

Theorem 2.3.15. The scalar operator 𝑃 : Δ0 + 𝜇 is an isomorphism as the map 𝑃 :

𝐶
2,𝛼
𝛿

→ 𝐶
0,𝛼
𝛿
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Proof: For injective, by the Holder interior estimate, we have

| |𝑢| |
𝐶

2,𝛼
𝛿

(𝐵1) ≤ 𝐶( | |𝑢| |𝐶0
𝛿
(𝐵2) + ||𝑃𝑢| |

𝐶
0,𝛼
𝛿

(𝐵2))

where C is a constant which does not depends on the center of the concentric ball 𝐵1

and 𝐵2. Therefore, we have the globally Holder estimate,

| |𝑢| |
𝐶

2,𝛼
𝛿

(𝑀) ≤ 𝐶( | |𝑢| |𝐶0
𝛿
((𝑀) + ||𝑃𝑢| |

𝐶
0,𝛼
𝛿

(𝑀))

Therefore, if 𝑃𝑢 ≡ 0, then we have

| |𝑢| |
𝐶

2,𝛼
𝛿

(𝑀) ≤ 𝐶 | |𝑢| |𝐶0
𝛿
(𝑀)

Since | |𝑢| |𝐿𝑝
𝛿1
(𝑀) ≤ 𝐶(𝑝, 𝛿1, 𝛿) | |𝑢| |𝐶0

𝛿
(𝑀) for 𝛿1 ≤ 𝛿, 𝑢 ∈ 𝐿𝛿1 . And moreover, we can

always take
H
2

−
√︂

H2

4
+ 𝜇 < 𝛿1 <

H
2

+
√︂

H2

4
+ 𝜇

Therefore, from Theorem 1.5, we have 𝑢 ≡ 0 which implies that 𝑃 : 𝐶2,𝛼
𝛿

(𝑀) → 𝐶
0,𝛼
𝛿

(𝑀)

is injective.

For surjective, let 𝑓 ∈ 𝐶0,𝛼
𝛿

(𝑀), we shall show that there exists a function 𝑢 ∈ 𝐶2,𝛼
𝛿

(𝑀)

such that 𝑃𝑢 = 𝑓 . Since ∥ 𝑓 ∥𝐿𝑝
𝛿1
(𝑀) ≤ 𝐶 (𝑝, 𝛿1, 𝛿) ∥ 𝑓 ∥𝐶0

𝛿
, 𝑓 ∈ 𝐿

𝑝

𝛿1
(𝑀). Then, by theorem

1.5, there exists 𝑢 ∈ 𝐿
𝑝

𝛿1
(𝑀) such that 𝑃𝑢 = 𝑓 and

| |𝑢| |
𝑊

2,𝑝
𝛿1

(𝑀) ≤ 𝐶( | | 𝑓 | |𝐿𝑝
𝛿1
(𝑀))

By Morrey inequality, we have

| |𝑒(𝛿1−H
𝑝
)𝑟
𝑢| |𝐶0 (𝐵1) ≤ 𝐶 | |𝑢| |

𝑊
2,𝑝
𝛿1

(𝐵1)

where, by the homogenity of the symmetric space, the constant 𝐶 does not reply on the
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center of the ball 𝐵1. Therefore, we have

| |𝑢| |𝐶0
𝛿1−

H
𝑝

(𝑀) ≤ 𝐶 | |𝑢| |
𝑊

2,𝑝
𝛿1

(𝑀)

Then, by the Holder interior estimate,

| |𝑢| |
𝐶

2,𝛼
𝛿1−

H
𝑝

(𝑀) ≤𝐶( | |𝑢| |𝐶0
𝛿1−

H
𝑝

(𝑀) + ||𝑃𝑢| |
𝐶

0,𝛼
𝛿1−

H
𝑝

(𝑀))

≤𝐶( | |𝑢| |
𝑊

2,𝑝
𝛿1

(𝑀) + ||𝑃𝑢| |
𝐶

0,𝛼
𝛿1−

H
𝑝

(𝑀))

≤𝐶( | |𝑃𝑢| |𝐿𝑝
𝛿1
(𝑀) + ||𝑃𝑢| |

𝐶
0,𝛼
𝛿1−

H
𝑝

(𝑀))

≤𝐶 | |𝑃𝑢| |
𝐶

0,𝛼
𝛿

(𝑀) ≤ 𝐶 | | 𝑓 | |
𝐶

0,𝛼
𝛿

(𝑀)

which implies that 𝑢 ∈ 𝐶2,𝛼
𝛿1−H

𝑝

(𝑀).

We shall improve the weight 𝛿1 − H
𝑝

to 𝛿 by maximal principal. Let Φ = 𝑒𝛿𝑟𝑢. Then,

we have the following equation

𝑒𝛿𝑟 (𝑃𝑢) = ΔΦ − 2𝛿(𝜕𝑟Φ) + (𝛿2 −H(𝑟)𝛿 − 𝜇)Φ

Take 𝑅 sufficiently large such that for 𝑟 > 𝑅, we always have (𝛿2 − H(𝑟)𝛿 − 𝜇) ≤
1
2 (𝛿

2 −H𝛿 − 𝜇) < 0

Then, by maximal principal, we have

sup
𝑟≥𝑅

Φ ≤𝐶 sup
(
sup
𝑟=𝑅

Φ, 2(𝛿2 −H𝛿 − 𝜇)−1sup
𝑟≥𝑅

(𝑒𝛿𝑟𝑃𝑢)
)

min
𝑟≥𝑅

Φ ≤𝐶 min
(
min
𝑟=𝑅

Φ, 2(𝛿2 −H𝛿 − 𝜇)−1min
𝑟≥𝑅

(𝑒𝛿𝑟𝑃𝑢)
)

Therefore, we have

| |Φ | |𝐶0 (𝑀−𝐵𝑅) ≤ 𝐶( | |Φ | |𝐶0 (𝜕𝐵𝑅) + ||𝑃𝑢| |
𝐶

0,𝛼
𝛿

(𝑀))
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Moreover, we have

| |Φ | |𝐶0 (𝐵𝑅) = | |𝑒𝛿𝑟𝑢| |𝐶0 (𝐵𝑅) ≤ 𝐶(𝑅, 𝑝0) | |𝑢| |𝐶2,𝛼
𝛿1−

H
𝑝

(𝑀) ≤ 𝐶(𝑅, 𝑝0) | | 𝑓 | |𝐶0,𝛼
𝛿

(𝑀)

Therefore, we have

| |𝑢| |𝐶0
𝛿
(𝑀) ≤ 𝐶 | |𝑃𝑢| |

𝐶
0,𝛼
𝛿

(𝑀) ≤ 𝐶 | | 𝑓 | |
𝐶

0,𝛼
𝛿

(𝑀)

Then, by the Holder estimate, we have 𝑢 ∈ 𝐶2,𝛼
𝛿

(𝑀) which implies that 𝑃 : 𝐶2,𝛼
𝛿

→ 𝐶
0,𝛼
𝛿

is surjective. □

Theorem 2.3.16. If H
2 −

√︃
H2

4 + 𝜇 < 𝛿 < H
2 +

√︃
H2

4 + 𝜇, the operator 𝑃 on scalars is

an isomorphism 𝐶
𝑘+2,𝛼
𝛿

→ 𝐶
𝑘,𝛼

𝛿
.

Proof: Because the 𝑘𝑒𝑟(𝑃) does not rely the choice of the weighted space. Therefore,

this 𝑃 : 𝐶𝑘+2,𝛼
𝛿

→ 𝐶
𝑘,𝛼

𝛿
is also injective. We just need to show that 𝑃 : 𝐶𝑘+2,𝛼

𝛿
→ 𝐶

𝑘,𝛼

𝛿
is

surjective.

Theorem 2.3.17. For the Green function of 𝐺0 for the scalar operator 𝑃𝐺0 = 𝛿𝑝0

satisfies the following properties

𝐺0(𝑟) ∼ constant · 𝑒−(ℋ+
√

ℋ2+𝜇)𝑟,, 𝑟 → ∞

𝐺0(𝑟) ∼ 𝜔𝑛

𝑟𝑛−2 , 𝑟 → 0

𝐺0(𝑟) > 0

(2.3.12)

Therefore, the green function of homogeneous vector bundle, 𝐺𝜉𝑝0
, can be controlled

in the following way,

|𝐺𝜉𝑝0
| ≤ 𝐶𝐺0

Theorem 2.3.18. Let 𝐸 be a homogeneous bundle associated with the representation

𝜌0, 𝑃 = Δ which satisfies that (𝑃𝑢, 𝑢) ≥ 𝑐(𝑢, 𝑢). If 𝜇 is the smallest eigenvalue of
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C(𝔪0, 𝜌0), then

𝑃 : 𝐶𝑘+2,𝛼
𝛿

→ 𝐶
𝑘,𝛼

𝛿

is an isomorphism, provided that

H
2

−
√︂

H2

4
+ 𝜇 < 𝛿 <

H
2

+
√︂

H2

4
+ 𝜇

Proof: Let us consider the equation 𝑃 𝑓 = 𝑔, hence

𝑓 (𝑥) =
∫

𝐺(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦

| 𝑓 (𝑥) | ≤ 𝑐

∫
𝐺0(𝑥, 𝑦) |𝑔(𝑦) |𝑑𝑦 = 𝑐 𝑓0(𝑥)

Therefore, by the theorem 1.3 we can get the result. □

Remark 2.3.19. For the Lichnerowicz operator Δ𝐿 − 2(𝑛) on hyperbolic space. 𝛿 ∈

(0, 𝑛).

2.3.4 Remark

For the minimal regularity that an asymptotically symmetric should have to ensure the

its metric is polyhomogeneous near the boundary, there are some results about real and

complex case.

Theorem 2.3.20 ([9]). Let 𝑔 be a Riemannian metric on 𝑀. Suppose that dim 𝑀 =

𝑛 + 1 ≥ 3; 𝑔 is Einstein with Ric (𝑔) = −𝑛𝑔; 𝑔 is conformally compact of class 𝐶2; and

the representative 𝛾 = 𝜌2𝑔
��
𝜕𝑀

of the conformal infinity of 𝑔 is smooth. Let �̃� be any

smooth representative of the conformal class [𝛾]. Then for any 0 < 𝜆 < 1, there exists

𝑅 > 0 and a 𝐶1,𝜆 collar diffeomorphism Φ : �̄�𝑅 → �̄� such that Φ∗𝑔 can be written in

the form (1.1) Φ∗𝑔 = 𝜌−2 (
𝑑𝜌2 + 𝐺(𝜌)

)
, where {𝐺(𝜌) : 0 < 𝜌 ≤ 𝑅} is a one-parameter
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family of smooth Riemannian metrics on 𝑌, 𝑑𝜌2 + 𝐺(𝜌) has a continuous extension to

�̄�𝑅 with 𝐺(0) = �̃�, and has the following regularity: (a) If dim 𝑀 is even or equal to 3

, then 𝑑𝜌2 + 𝐺(𝜌) extends smoothly to �̄�𝑅, so Φ∗𝑔 is conformally compact of class 𝐶∞.

(b) If dim 𝑀 is odd and greater than 3 , then 𝐺 can be written in the form

𝐺(𝜌) = 𝜑 (𝜌, 𝜌𝑛 log 𝜌)

with 𝜑(𝜌, 𝑧) a two-parameter family of Riemannian metrics on 𝑌 that is smooth in all of

its arguments as a function on 𝑌× [0, 𝑅] × [𝑅𝑛 log 𝑅, 0] . Furthermore, Φ∗𝑔 is smoothly

conformally compact if and only if 𝜕𝑧𝜑(0, 0) vanishes identically on 𝜕𝑀.

and

Theorem 2.3.21 ([6]). Either half a ball

𝑀 =


{
𝑥2

1 + · · · + 𝑥2
𝑛 < 1, 𝑥1 > 0

}
in the real case,{

𝑥2
1 + 𝑥

2
2 +

(
𝑥2

3+···+𝑥
2
𝑛

2

)2
< 1, 𝑥1 > 0

}
in the complex case

and 𝛾 a smooth metric on 𝜕∞𝑀 = {𝑥1 = 0} ∩ �̄�, resp. 𝜂 a smooth contact structure

and 𝐽 a smooth almost complex structure in 𝐻 = 𝐾 er 𝜂 on 𝜕∞𝑀 such that 𝛾 = 𝑑𝜂(., 𝐽.)

is defined positive.

If 𝑔 is an asymptotically hyperbolic Einstein metric, resp. complex, in the sense that

𝑔 − 𝑔0(𝛾) ∈ 𝐶
1,𝛼
𝜀 for 𝛼 ∈ [0, 1] and 𝜖 > 0, then there is a half ball 𝑁 included in 𝑀, a

diffeomorphism Φ of �̄� inducing identity on 𝜕𝑁 ∪ 𝜕∞𝑁, 𝑎 sequence of asymptotically

hyperbolic metrics 𝑔𝑘 on 𝑁, with finite polyhomogeneous development, and a couple

(𝛿, 𝜂) of strictly positive reals such that

∀𝑘 ∈ ℕ, Φ∗𝑔 − 𝑔𝑘 ∈ 𝐶∞
𝜇++𝑎𝑘+𝛿,𝜂 (𝑁)

In addition, the same estimate is valid for all the transverse derivatives.
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Chapter 3

The stability of AHE manifolds under Ricci

flow

In this chapter, we shall mainly talk about the stability of the AHE manifold with some

addition restrictions on its conformal boundary. In the section 3.1, we shall review the

stability for compact quotients of hyperbolic space following the paper of R.Ye [49] and

that for the hyperbolic spaces following the paper [29] of H.Li and H.Yin, the paper

[43] of OC.Schnürer, F.Schulze, and M.Simon and the paper [2] of R.Bamler. In the

section 3.2, we shall review the stability result for the hyperbolic space following the

paper [2] of R.Bamler to see the relations between the heat kernel estimate and the

stability of Einstein manifolds. In fact, based on [2], in order to obtain the stability

result for more general AH Einstein manifolds, it suffices to give the corresponding heat

kernel estimate (See lemma 3.2.2). In the section 3.4, we shall talk about this kind of

heat kernel estimate following the method of X.Chen and A.Hassell [10], by which they

obtain the scalar heat kernel estimate on more general AH manifolds. In the light of

their result, we can see that the corresponding heat kernel estimate is determined by

the meromorphic continuation of the resolvent of the modified Laplacian (the result of
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R.Mazzeo and R.Melrose in [33] or the result of A.Vasy in [48]) and the high energy

resolvent estimates in strips around the real axis via a parametrix construction (the result

of AS.Barreto, A.Vasy and R.Melrose in [44]). Therefore, in order to obtain a similar

heat kernel estimate for the symmetric two tensor, we need to generalize the above two

scalar results into tensor case. C.Hadfield generalized the meromorphic continuation

result into the tensor case in [24]. The high energy estimate for the tensor case is still

open.

§ 3.1 The stability for hyperbolic spaces

Let �̄� be a (𝑛 + 1)−dimensional compact manifold with boundary 𝜕𝑀. Suppose that

there is a complete Riemannian metric �̃� in the interior of �̄� denoted it 𝑀, and there

is a defining function 𝜌 on �̄�, (i.e. 𝜌 > 0 on 𝑀; 𝜌 = 0 on 𝜕𝑀; 𝑑𝜌 ≠ 0 on 𝜕𝑀) such

that 𝜌2�̃� can be extended into a smooth Riemannian metric on �̄�. Since for different

defining functions 𝜌1 and 𝜌2 on �̄�, there exists a positive function 𝑓 such that 𝜌1 = 𝑓 𝜌2,

the interior Riemannian metric �̃� uniquely determine a conformal structure on boundary

𝜕𝑀. We call (𝑀𝑛+1, �̃�) an asymptotically hyperbolic manifold with conformal boundary

𝜌2�̃� |𝜕𝑀 .

Moreover, we call asymptotically hyperbolic manifold (𝑀, �̃�) asymptotically hyper-

bolic Einstein manifold if (𝑀, �̃�) is also an Einstein manifold. The asymptotically

hyperbolic Einstein manifold (𝑀, �̃�) is a fixed point of the normalized Ricci flow equa-

tion
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Chapter 3 The stability of AHE manifolds under Ricci flow

𝜕𝑡𝑔𝑡 = −2Ric𝑔𝑡 + 2𝜆𝑔𝑡 (3.1.1)

where 𝜆 is the Einstein constant of (𝑀, �̃�), (i.e. Ric = 𝜆𝑔). We can always normalize

the equation into the standard case 𝜆 = −𝑛.

In this notes, we want to prove stabality result for asymptotically hyperbolic Einstein

metric �̃�, (i.e. we will show that every sufficiently small perturbation 𝑔0 = �̃� + ℎ flow

back to �̃� under the normalized Ricci flow as 𝑡 → ∞).

If (𝑀, �̃�) is an hyperbolic space, then we have the result of R. Bamler [2]

Theorem 3.1.1 ([2]). Let (𝑀, �̃�) ℍ𝑛+1 for 𝑛 ≥ 2, choose a basepoint 𝑥0 ∈ 𝑀 and let

𝑟 = 𝑑 (·, 𝑥0) denote the radial distance function.

There is an 𝜀1 > 0 and for every 𝑞 < ∞ an 𝜀2 = 𝜀2(𝑞) > 0 such that the following

holds: If 𝑔0 = �̃� + ℎ and ℎ = ℎ1 + ℎ2 satisfies

|ℎ1 | <
𝜀1
𝑟 + 1

and sup
𝑀

|ℎ2 | +
(∫

𝑀

|ℎ2 |𝑞 𝑑𝑥
)1/𝑞

< 𝜀2

then the normalized Ricci flow exists for all time and we have convergence 𝑔𝑡 −→ �̄� in

the pointed Cheeger-Gromov sense.

We just want to generalize the above result into the case of asymptotically hyperbolic

Einstein manifold in the interior of 𝑛 + 1 dimensional ball such that the conformal

boundary of this asymptotically hyperbolic Einstein manifold is a perturbation of the

conformal structure on the standard 𝑛 dimensional sphere.
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manifolds

Theorem 3.1.2 (Our Goal). Let 𝑀 = 𝐵𝑛+1 be a ball wiht 𝑛 ≥ 3 and ℎ̂ the standard

metric on the sphere 𝑆𝑛 and 𝑔ℍ be the standard hyperbolic metric on 𝐵𝑛+1. For any

asymptotically hyperbolic Einstein manifold (𝑀, 𝑔) with nonpositive sectional curvature

and a defining function 𝜌 such that �̂� = 𝜌2𝑔 |𝜕𝑀 is sufficiently close to ℎ̂ in 𝐶2,𝛼 norm,

for some 0 < 𝛼 < 1 and 𝑔 is sufficiently close to 𝑔ℍ in the sense of 𝐶0. And choose a

basepoint 𝑥0 ∈ 𝑀 and let 𝑟 = 𝑑(., 𝑥0) denote the radial distance function.

There is an 𝜖 > 0 such that the following holds: If 𝑔0 = 𝑔 + ℎ satisfies

|ℎ| < 𝜖

𝑟 + 1

then the normalized Ricci flow exists for all time and we have convergence 𝑔𝑡 → 𝑔 in

the pointed Cheeger-Gromov sense.

The existence of such asymptotically hyperbolic manifolds is by the result of R. Gra-

ham and J. Lee (Theorem A. [21]).

§ 3.2 The heat kernel estimate and stability of

asymptotically hyperbolic Einstein manifolds

In order to prove the long time existence of the Ricci flow, we need some estimates for

heat kernel

𝜕𝑡𝑘𝑡 = Δ𝑘𝑡 + 𝑅(𝑘𝑡) 𝑎𝑛𝑑 𝑘𝑡 → 𝛿𝑝0 𝑖𝑑𝐸𝑝0
𝑎𝑠 𝑡 → 0 (3.2.1)
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where (𝑘𝑡)0<𝑡<𝑇 ∈ 𝐶∞(𝑀; 𝐸) ⊗ 𝐸𝑝0 and 𝐸 = 𝑆𝑦𝑚2𝑇∗𝑀 and 𝑅(ℎ)𝑖𝑙 = �̃� 𝑗𝑘1 �̃�𝑖1𝑖2 �̃�𝑖𝑖2 𝑙 𝑗ℎ𝑘1𝑖1 .

Lemma 3.2.1. Let (𝑀, 𝑔) be an asymptotically hyperbolic Einstein manifold of theorem

3.1.2. Choose a basepoint 𝑥0 ∈ 𝑀 and consider the radius distance function 𝑟 = 𝑑 (·, 𝑥0).

If the heat kernel 𝑘𝑡 defined by (3.2.1) satisfying that: For all 𝑥1 ∈ 𝑀 and 𝑟1 = 𝑟(𝑥1),

𝑡 ≥ 0 ∫
𝑀

|𝑘𝑡 | (𝑥1, 𝑥) |ℎ| (𝑥)𝑑𝑥 <
𝐶(𝜔)

(𝑟1 + 1 + 𝑎 + 𝑡)𝑤

provided that ℎ ∈ 𝐶∞ (
𝑀; Sym2 𝑇

∗𝑀
)

and that

|ℎ| (𝑥) < 1
(𝑟(𝑥) + 1 + 𝑎)𝑤

for some 𝑎 ≥ 0. The the result of theorem 3.1.2 holds.

By the argument of lemma 6.3, lemma 6.4 in [2], the result of lemma 3.2.1 is

determined by

∥𝑘𝑡∥𝐿1 (𝑀) ≤ 𝐶 ∥𝑘𝑡∥𝐿2 (𝑀) ≤ 𝐶 exp (𝜆𝐵𝑡) for 𝑡 > 0

Lemma 3.2.2. Let (𝑀, 𝑔) be an asymptotically hyperbolic Einstein manifold of theorem

3.1.2. If the heat kernel satisfies that

∥𝑘𝑡∥𝐿1 (𝑀) ≤ 𝐶 ∥𝑘𝑡∥𝐿2 (𝑀) ≤ 𝐶 exp (𝜆𝐵𝑡) for 𝑡 > 0

Then the assumption of lemma 3.2.1 holds.

3.2.1 Ingredients of the proof of the heat kernel estimate

In [2], R. Bamler have given the 𝐿1 boundedness and 𝐿2 decay of the heat kernel on

ℍ𝑛+1 for 𝑛 ≥ 3 and ℂℍ2(𝑛+1) for 𝑛 ≥ 2. In this section, we will derive the same result
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on ℍ𝑛+1 directly from the equivalent formula of the result of Davies-Mandouvalos.

Theorem 3.2.3 (𝐿1 Integration). Let ℍ𝑛+1 be a hyperbolic space. Then the heat kernel

of the Laplacian operator on ℍ𝑛+1, 𝐻 (𝑡, 𝑧, 𝑧′), satisfies that

∥𝐻∥𝐿1 (ℍ𝑛+1) ≤ 𝐶 𝑓 𝑜𝑟 𝑡 > 0

where 𝐶 = 𝐶(𝑛).

𝑃𝑟𝑜𝑜 𝑓 . From the result of Davies and Mandouvalos, we only need to show the

following integral is uniformly bounded.∫ ∞

0
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
− 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟) sinh𝑛(𝑟)𝑑𝑟

By the fact that

sinh𝑛(𝑟) → exp(𝑛𝑟) as 𝑟 → ∞ 𝑎𝑛𝑑 sinh𝑛(𝑟) → 𝑟𝑛 as 𝑟 → 0

we only need to show that∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟 < +∞ (3.2.2)

and ∫ 1

0
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
− 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑟𝑛𝑑𝑟 < +∞ (3.2.3)

Then, we can discuss the case that 0 < 𝑡 ≤ 2 and the case that 𝑡 > 2 respectively.

Case 1.1 (𝑛 ≥ 2) : If 0 < 𝑡 ≤ 2, then for (1)
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∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟

≤
∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡
+ 𝑛𝑟

2

)
· (3 + 𝑟)𝑛/2−1(1 + 𝑟)𝑑𝑟

≤𝐶
∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡
+ 𝑛𝑟

2

)
𝑟𝑛/2𝑑𝑟

where we use the fact that (𝑎 + 𝑟)𝑘 ≤ 𝐶(𝑎) (1 + 𝑟𝑘). Then, we have∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡
+ 𝑛𝑟

2

)
𝑟𝑛/2𝑑𝑟

=

∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡
− [ 𝑟

2

8𝑡
− 𝑛𝑟

2
]
)
𝑟𝑛/2𝑑𝑟

≤
∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡
+ 𝑛2𝑡

2

)
𝑟𝑛/2𝑑𝑟

≤ exp
(
𝑛2𝑡

2

) ∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
𝑟𝑛/2𝑑𝑟

≤ exp
(
𝑛2𝑡

2

) ∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
𝑟𝑛𝑑𝑟

≤ exp
(
𝑛2𝑡

2

)
8 𝑛

2+
1
2

2

∫ ∞

1
exp

(
− 𝑟

2

8𝑡

) (
𝑟2

8𝑡

) 𝑛
2−

1
2

𝑑( 𝑟
2

8𝑡
)

≤ exp
(
𝑛2𝑡

2

)
8 𝑛

2+
1
2

2

∫ ∞

1
8𝑡

exp (−𝑥) (𝑥)
𝑛
2−

1
2 𝑑𝑥

≤ exp
(
𝑛2𝑡

2

)
8 𝑛

2+
1
2

2

∫ ∞

0
exp (−𝑥) (𝑥)

𝑛
2−

1
2 𝑑𝑥 ≤ exp

(
𝑛2𝑡

2

)
8 𝑛

2+
1
2

2
Γ(𝑛

2
+ 1

2
) ≤ +∞
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And for (2), ∫ 1

0
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
− 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑟𝑛𝑑𝑟

≤𝐶
∫ 1

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡

)
𝑟𝑛𝑑𝑟

≤𝐶2𝑛
∫ 1

0
exp

(
− 𝑟

2

4𝑡

) (
𝑟2

4𝑡

) 𝑛
2−

1
2

𝑑

(
𝑟2

4𝑡

)
≤𝐶2𝑛

∫ 1
8𝑡

0
exp(−𝑥) (𝑥) 𝑛2− 1

2 𝑑𝑥 ≤ 𝐶2𝑛Γ(𝑛
2
+ 1

2
) ≤ +∞

Case 1.2 (𝑛 ≥ 2) : If 𝑡 > 2, for (1), we have∫ ∞

1
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟

=

[∫ 𝑡

1
+
∫ ∞

𝑡

]
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟

Then, for the first part, we have∫ 𝑡

1
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟

≤ exp
(
− (𝑛2 − 2𝑛)𝑡

4

)
(1 + 2𝑡) (𝑛/2)−1(1 + 𝑡)

∫ 𝑡

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡

)
𝑑𝑟

≤ exp
(
− (𝑛2 − 2𝑛)𝑡 − 𝜀

4

) ∫ 𝑡

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

4𝑡

)
𝑑𝑟

≤2𝑛 exp
(
− (𝑛2 − 2𝑛)𝑡 − 𝜀

4

) ∫ 𝑡

1
exp

(
− 𝑟

2

4𝑡

) (
𝑟2

4𝑡

) 𝑛
2−

1
2

𝑑

(
𝑟2

4𝑡

)
≤2𝑛 exp

(
− (𝑛2 − 2𝑛)𝑡 − 𝜀

4

) ∫ 4𝑡

1
4𝑡

exp(−𝑥) (𝑥) 𝑛2− 1
2 𝑑𝑥

≤2𝑛 exp
(
− (𝑛2 − 2𝑛)𝑡 − 𝜀

4

)
Γ(𝑛

2
+ 1

2
).
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and for the second part, we have∫ ∞

𝑡

𝑡−(𝑛+1)/2 exp
(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
+ 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑑𝑟

≤𝐶 exp
(
−𝑛

2𝑡

4

)
𝑡−(𝑛+1)/2

∫ ∞

𝑡

exp
(
− 𝑟

2

4𝑡
+ 𝑛𝑟

2

)
· 𝑟𝑛/2𝑑𝑟

≤𝐶 exp
(
−𝑛

2𝑡

4

)
𝑡−(𝑛+1)/2

∫ ∞

𝑡

exp
(
− 1

4𝑡
(𝑟 − 𝑛𝑡)2 + 𝑛2𝑡

4

)
· 𝑟𝑛/2𝑑𝑟

≤𝐶𝑡−(𝑛+1)/2
∫ ∞

𝑡

exp
(
− 1

4𝑡
(𝑟 − 𝑛𝑡)2

)
· 𝑟𝑛/2𝑑𝑟

≤𝐶𝑡−(𝑛+1)/2
[∫ 𝑛𝑡

𝑡

exp
(
− 1

4𝑡
(𝑟 − 𝑛𝑡)2

)
· 𝑟𝑛/2𝑑𝑟 +

∫ ∞

𝑛𝑡

exp
(
− 1

4𝑡
(𝑟 − 𝑛𝑡)2

)
· 𝑟𝑛/2𝑑𝑟

]
≤𝐶𝑡−(𝑛+1)/2

[∫ (𝑛−1)𝑡

0
exp

(
−𝑥

2

4𝑡

)
· (𝑛𝑡 − 𝑥)𝑛/2𝑑𝑥 +

∫ ∞

0
exp

(
−𝑥

2

4𝑡

)
· (𝑥 + 𝑛𝑡)𝑛/2𝑑𝑥

]
≤𝐶2𝑡−(𝑛+1)/2

∫ ∞

0
exp

(
−𝑥

2

4𝑡

)
· (𝑥 + 𝑛𝑡)𝑛/2𝑑𝑥

≤𝐶2𝑛𝑛/2𝑡−(𝑛+1)/2
∫ ∞

0
exp

(
−𝑥

2

4𝑡

)
(
√
𝑥 +

√
𝑛𝑡)𝑛𝑑𝑥

≤𝐶2𝑛𝑛/2𝑡−(𝑛+1)/2
𝑛∑︁
𝑘=0

∫ ∞

0
exp

(
−𝑥

2

4𝑡

) √
𝑥
𝑘√
𝑛𝑡

𝑛−𝑘
𝑑𝑥

≤2𝐶
𝑛∑︁
𝑘=0

𝑛𝑛−
𝑘
2 𝑡−

𝑘+1
2

∫ ∞

0
exp

(
−𝑥

2

4𝑡

)
𝑥𝑘/2𝑑𝑥

≤2𝐶
𝑛∑︁
𝑘=0

𝑛𝑛−
𝑘
2 𝑡−

𝑘+1
2 𝑡

𝑘
4+

1
2 2𝑘/2

∫ ∞

0
exp

(
−𝑥

2

4𝑡

) (
𝑥2

4𝑡

)𝑘/4

𝑑

(
𝑥2

4𝑡

)
≤2𝑘/2+1𝐶

𝑛∑︁
𝑘=0

𝑛𝑛−
𝑘
2 𝑡−

𝑘
4 Γ( 𝑘

4
+ 1) ≤ +∞

Remark 3.2.4. Actually, we can not expect the integral (1) decay as t goes to infinity.

The above estimate is sharp.
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And for (2), we have∫ 1

0
𝑡−(𝑛+1)/2 exp

(
−𝑛

2𝑡

4
− 𝑟2

4𝑡
− 𝑛𝑟

2

)
· (1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)𝑟𝑛𝑑𝑟

≤𝐶𝑡−3/2
∫ 1

0
exp

(
− 𝑟

2

4𝑡

)
𝑑𝑟 ≤ 𝐶𝑡−1

Case 2.1 (𝑛 = 1) : If 0 < 𝑡 ≤ 2, for (1), we have∫ ∞

1
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟 + 𝑡)−1/2(1 + 𝑟)𝑑𝑟

≤
∫ ∞

1
𝑡−1 exp

(
− 𝑟

2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟)−1/2(1 + 𝑟)𝑑𝑟

≤𝐶
∫ ∞

1
𝑡−1 exp

(
− 𝑟

2

4𝑡
+ 𝑟

2

)
𝑟1/2𝑑𝑟

≤ exp
( 𝑡
2

) ∫ ∞

1
𝑡−1 exp

(
− 𝑟

2

8𝑡

)
𝑟1/2𝑑𝑟

≤ exp
( 𝑡
2

) ∫ ∞

1
𝑡−1 exp

(
− 𝑟

2

8𝑡

)
𝑟𝑑𝑟

≤ exp
( 𝑡
2

)
4
∫ ∞

1
exp

(
− 𝑟

2

8𝑡

)
𝑑( 𝑟

2

8𝑡
)

≤ exp
( 𝑡
2

)
4
∫ ∞

1
8𝑡

exp (−𝑥) 𝑑𝑥 ≤ exp
( 𝑡
2

)
4Γ(1) ≤ +∞

and for (2) ∫ 1

0
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
− 𝑟

2

)
· (1 + 𝑟 + 𝑡)−1/2(1 + 𝑟)𝑟𝑛𝑑𝑟

≤𝐶
∫ 1

0
𝑡−1 exp

(
− 𝑟

2

4𝑡

)
𝑟𝑑𝑟

≤𝐶2
∫ 1

0
exp

(
− 𝑟

2

4𝑡

)
𝑑

(
𝑟2

4𝑡

)
≤𝐶2𝑛

∫ 1
8𝑡

0
exp(−𝑥)𝑑𝑥 ≤ 𝐶2Γ(1) ≤ +∞
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Case 2.2 (𝑛 = 1) : If 𝑛 = 1 and 𝑡 > 2, then for (1), we have∫ ∞

1
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟 + 𝑡)−1/2(1 + 𝑟)𝑑𝑟

=

[∫ 𝑡

1
+
∫ ∞

𝑡

]
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟 + 𝑡)−1/2(1 + 𝑟)𝑑𝑟

Then, for the first part, we have∫ 𝑡

1
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟 + 𝑡)−1/2(1 + 𝑟)𝑑𝑟

≤ exp
(
− 𝑡

4

) 𝐶

𝑡3/2

∫ 𝑡

1
exp

(
− 𝑟

2

4𝑡
+ 𝑟

2

)
𝑟𝑑𝑟

≤ exp
(
− 𝑡

4

) 𝐶

𝑡3/2

∫ 𝑡

1
exp

(
− 1

4𝑡
(𝑟 − 𝑡)2 + 𝑡

4

)
𝑟𝑑𝑟

≤ 𝐶

𝑡3/2

∫ 𝑡

1
exp

(
− 1

4𝑡
(𝑟 − 𝑡)2

)
𝑟𝑑𝑟

≤ 𝐶

𝑡3/2

∫ 𝑡−1

0
exp

(
− 𝑦

2

4𝑡

)
(𝑡 − 𝑦)𝑑𝑦

≤ 𝐶

𝑡3/2

[
𝑡

∫ 𝑡−1

0
exp

(
− 𝑦

2

4𝑡

)
𝑑𝑦 −

∫ 𝑡−1

0
exp

(
− 𝑦

2

4𝑡

)
𝑦𝑑𝑦

]
≤𝐶

[
𝐶Γ(1

2
) + 𝑡−1/2Γ(1)

]
≤ +∞
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and for the second part, we have∫ ∞

𝑡

𝑡−1 exp
(
− 𝑡

4
− 𝑟2

4𝑡
+ 𝑟

2

)
· (1 + 𝑟 + 𝑡)− 1

2 (1 + 𝑟)𝑑𝑟

≤
∫ ∞

𝑡

𝑡−1 exp
(
− 1

4𝑡
(𝑟 − 𝑡)2

)
· (1 + 𝑟 + 𝑡)− 1

2 (1 + 𝑟)𝑑𝑟

≤
∫ ∞

𝑡

𝑡−
3
2 exp

(
− 1

4𝑡
(𝑟 − 𝑡)2

)
· (1 + 𝑟)𝑑𝑟

≤𝑡− 3
2

∫ ∞

𝑡

exp
(
− 1

4𝑡
(𝑟 − 𝑡)2

)
· 𝑟𝑑𝑟

≤𝑡−3/2
∫ ∞

0
exp

(
−𝑥

2

4𝑡

)
· (𝑥 + 𝑡)𝑑𝑥

≤𝑡−3/2
[
2
𝑡

∫ ∞

0
𝑒−𝑥𝑑𝑥 + 𝑡3/2

∫ ∞

0
exp

(
−𝑥2

)
𝑑𝑥

]
≤ +∞

And for (2), we have∫ 1

0
𝑡−1 exp

(
− 𝑡

4
− 𝑟2

4𝑡
− 𝑟

2

)
· (1 + 𝑟 + 𝑡)− 1

2 (1 + 𝑟)𝑟𝑑𝑟

≤𝐶𝑡−3/2
∫ 1

0
exp

(
− 𝑟

2

4𝑡

)
𝑑𝑟 ≤ 𝐶𝑡−1

□

Theorem 3.2.5 (𝐿2 Integrability). Let ℍ𝑛+1 be a hyperbolic space with 𝑛 ≥ 2. Then the

heat kernel of the Laplacian operator on ℍ𝑛+1, 𝐻 (𝑡, 𝑧, 𝑧′) , satisfies that

∥𝐻∥𝐿2(H𝑛+1) ≤ 𝐶 exp(𝜆𝐵𝑡) for 𝑡 > 0

where 𝐶 = 𝐶(𝑛)

𝑃𝑟𝑜𝑜 𝑓 . From the result of Davies and Mandouvalos, we only need to show the

following integral is uniformly bounded.∫ ∞

0
𝑡−(𝑛+1) exp

(
−𝑛

2𝑡

2
− 𝑟2

2𝑡
− 𝑛𝑟

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2 sinh𝑛(𝑟)𝑑𝑟
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By the fact thatsinh𝑛(𝑟) → exp(𝑛𝑟) as 𝑟 → ∞ and sinh𝑛(𝑟) → 𝑟𝑛 as 𝑟 → 0 we

only need to show that∫ ∞

1
𝑡−(𝑛+1) exp

(
−𝑛

2𝑡

2
− 𝑟2

2𝑡

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑑𝑟 < +∞

and ∫ 1

0
𝑡−(𝑛+1) exp

(
−𝑛

2𝑡

2
− 𝑟2

2𝑡
− 𝑛𝑟

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑟𝑛𝑑𝑟 < +∞

∫ ∞

1
𝑡−(𝑛+1) exp

(
−𝑛

2𝑡

2
− 𝑟2

2𝑡

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑑𝑟

≤ exp
(
−𝑛

2𝑡

2

) ∫ ∞

1
𝑡−(𝑛+1) exp

(
− 𝑟

2

2𝑡

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑑𝑟

≤𝐶(𝑛)
𝑛−2∑︁
𝑘=0

exp
(
−𝑛

2𝑡

2

) ∫ ∞

1
𝑡−(𝑛+1) exp

(
− 𝑟

2

2𝑡

)
· 𝑟𝑛−𝑘𝑡𝑘𝑑𝑟

≤𝐶(𝑛)
𝑛−2∑︁
𝑘=0

exp
(
−𝑛

2𝑡

2

) ∫ ∞

1
𝑡−(𝑛+1−𝑘) exp

(
− 𝑟

2

2𝑡

)
· 𝑟2(𝑛−𝑘)+1𝑑𝑟

≤𝐶(𝑛)
𝑛−2∑︁
𝑘=0

exp
(
−𝑛

2𝑡

2

)
Γ(𝑛 + 1 − 𝑘)

≤𝐶(𝑛) exp
(
−𝑛

2𝑡

2

)
and ∫ 1

0
𝑡−(𝑛+1) exp

(
−𝑛

2𝑡

2
− 𝑟2

2𝑡
− 𝑛𝑟

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑟𝑛𝑑𝑟

≤ exp
(
−𝑛

2𝑡

2

) ∫ 1

0
𝑡−(𝑛+1) exp

(
− 𝑟

2

2𝑡

)
· (1 + 𝑟 + 𝑡)𝑛−2(1 + 𝑟)2𝑑𝑟

≤𝐶(𝑛) exp
(
−𝑛

2𝑡

2

)
The last step is from the

∫ ∞
1 .
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Remark 3.2.6. For 𝑛 = 1, actually the heat kernel of ∥𝐻∥𝐿2 (𝑀) (𝑡) → ∞ as 𝑡 → 0.

Case 2 : (n=1) Then, we have∫ ∞

1
𝑡−2 exp

(
− 𝑡

2
− 𝑟2

2𝑡

)
· (1 + 𝑟 + 𝑡)−1(1 + 𝑟)2𝑑𝑟

≤𝐶
∫ ∞

1
𝑡−3 exp

(
− 𝑡

2
− 𝑟2

2𝑡

)
· 𝑟4𝑑𝑟

≤𝐶 exp
(
− 𝑡

2

) ∫ ∞

1
𝑡−3 exp

(
− 𝑟

2

2𝑡

)
· 𝑟4𝑑𝑟

≤𝐶 exp
(
− 𝑡

2

)
Γ(3)

and ∫ 1

0
𝑡−2 exp

(
− 𝑡

2
− 𝑟2

2𝑡
− 𝑟

)
· (1 + 𝑟 + 𝑡)−1(1 + 𝑟)2𝑟𝑑𝑟

≥𝐶
exp

(
− 𝑡

2
)

(2 + 𝑡)𝑡2

∫ 1

0
exp

(
− 𝑟

2

2𝑡

)
𝑟𝑑𝑟

≥𝐶
exp

(
− 𝑡

2
)

(2 + 𝑡)𝑡2

∫ 1
2𝑡

0
exp(−𝑦2)𝑦− 1

2
√
𝑡𝑑 𝑦 → +∞ 𝑎𝑠 𝑡 → 0

□

Theorem 3.2.7 (Short time convolution). Let ℍ𝑛+1 be a hyperbolic space with 𝑛 ≥ 2.

And let 𝐻 (𝑡, 𝑧, 𝑧′) be the heat kernel of the Laplacian operator on ℍ𝑛+1. Then, for every

0 ≤ 𝑡 ≤ 𝑇 , we have∫
𝑀

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 ≤ 𝐶(𝑛, 𝑇, 𝜔) 1

[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

where 𝑎 ≥ 0, 𝜔 ≥ 0 and 𝐶(𝑛, 𝑇, 𝜔) is a constant only depending on 𝑛, 𝑇 and 𝜔.

𝑃𝑟𝑜𝑜 𝑓 . First, by the heat kernel estimate of [11] in the complete manifold and the
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symmetry of the hyperbolic space, we have

𝐻 (𝑧, 𝑧′, 𝑡) ≤ 𝐶(𝑇, 𝑛)𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
Therefore, ∫

𝑀

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

=

∫
𝑀

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

Let 𝑑 = 𝑟(𝑧′, 𝑧0). Then, we have∫
𝑀

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

=

[∫
𝑀\𝐵𝑑 (𝑧′)

+
∫
𝐵𝑑 (𝑧′)

]
𝑡−(𝑛+1)/2 exp

(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

For the first part, by the triangle inequality, we have∫
𝑀\𝐵𝑑 (𝑧′)

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 (3.2.4)

≤
∫
𝑀\𝐵𝑑 (𝑧′)

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧′) − 𝑑 + 1 + 𝑎]𝜔 𝑑𝑧 (3.2.5)

≤
∫ ∞

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟 (3.2.6)

For the second part, by the triangle inequality, we have∫
𝐵𝑑 (𝑧′)

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 (3.2.7)

≤
∫
𝐵𝑑 (𝑧′)

𝑡−(𝑛+1)/2 exp
(
−𝑟

2 (𝑧, 𝑧′)
8𝑡

)
1

[𝑑 − 𝑟(𝑧, 𝑧′) + 1 + 𝑎]𝜔 𝑑𝑧 (3.2.8)

≤
∫ 𝑑

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟 (3.2.9)
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Case 1 : (𝑑 ≥ 2) For the (5), we have

∫ ∞

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟 (3.2.10)

≤𝐶
∫ 2𝑑

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟 (3.2.11)

+ 𝐶
∫ ∞

2𝑑
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟 (3.2.12)

Then, for (10), we have∫ 2𝑑

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟

≤𝐶 exp(4𝑛2𝑡) 1
[1 + 𝑎]𝜔

∫ 2𝑑

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟2

16𝑡

)
𝑑𝑟

=𝐶 exp(4𝑛2𝑡)𝑑 1
[1 + 𝑎]𝜔

∫ 2

1
𝑡−(𝑛+1)/2 exp

(
−𝑑

2𝑥2

16𝑡

)
𝑑𝑥

=𝐶 exp(4𝑛2𝑡)𝑑 1
[1 + 𝑎]𝜔𝑇

𝛽/2
∫ 2

1
𝑡−(𝑛+𝛽+1)/2 exp

(
−𝑑

2𝑥2

16𝑡

)
𝑑𝑥

≤𝐶 exp(4𝑛2𝑡)𝑑𝑇 𝛽/2 1
[1 + 𝑎]𝜔

∫ 2

1
exp

(
−𝑑

2𝑥2

16𝑡

)
·
(
𝑥2

𝑡

) (𝑛+𝛽−1)
2

𝑑

(
𝑥2

𝑡

)
≤𝐶 exp(4𝑛2𝑡)𝑇 𝛽/2 1

[1 + 𝑎]𝜔
4(𝑛+𝛽+1)

𝑑 (𝑛+𝛽)
Γ(𝑛 + 𝛽 + 1

2
) ≤ 𝐶(𝑛, 𝑇, 𝛽) 1

[1 + 𝑎]𝜔
1

𝑑𝑛+𝛽

≤ 𝐶(𝑛, 𝑇, 𝜔)
[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

Remark 3.2.8. Here, we just use the fact that

(𝑑 + 1 + 𝑎)𝜔
(1 + 𝑎)𝜔𝑑𝜔 ≤ 𝐶 𝑎𝑛𝑑 𝑓 𝑜𝑟 𝑑 ≥ 2, 𝑎 > 0

where 𝐶 = 𝐶(𝜔) is a constant only relying on 𝜔.
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Then, for (11), we have∫ ∞

2𝑑
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟

≤ 1
[𝑑 + 1 + 𝑎]𝜔

∫ ∞

2𝑑
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡
+ 𝑛𝑟

)
𝑑𝑟

≤ 𝐶 exp(4𝑛2𝑡)
[𝑑 + 1 + 𝑎]𝜔

∫ ∞

2𝑑
𝑡−(𝑛+1)/2 exp

(
− 𝑟2

16𝑡

)
𝑑𝑟

≤ 𝐶 exp(4𝑛2𝑡)
[𝑑 + 1 + 𝑎]𝜔

∫ ∞

2𝑑
𝑡−(𝑛+1)/2 exp

(
− 𝑟2

16𝑡

)
𝑟𝑛𝑑𝑟

≤𝐶 exp(4𝑛2𝑡)4𝑛+1

[𝑑 + 1 + 𝑎]𝜔
∫ ∞

2𝑑
exp

(
− 𝑟2

16𝑡

)
·
(
𝑟2

16𝑡

) (𝑛−1)
2

𝑑

(
𝑟2

16𝑡

)
≤𝐶 exp(4𝑛2𝑡)4𝑛+1

[𝑑 + 1 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝑇, 𝜔)
[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

For (8), we have∫ 𝑑

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟 (3.2.13)

≤𝐶
∫ 1

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 𝑟
𝑛𝑑𝑟 (3.2.14)

+ 𝐶
∫ 𝑑

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟 (3.2.15)
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For (13), we have∫ 1

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 𝑟
𝑛𝑑𝑟

≤ 1
[𝑑 + 𝑎]𝜔

∫ 1

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
𝑟𝑛𝑑𝑟

≤ 1
[𝑑 + 𝑎]𝜔

∫ 1

0
exp

(
− 𝑟

2

8𝑡

)
·
(
𝑟2

𝑡

) 𝑛−1
2

𝑑

(
𝑟2

𝑡

)
≤ 8 𝑛+1

2

[𝑑 + 𝑎]𝜔
∫ 1

0
exp

(
− 𝑟

2

8𝑡

)
·
(
𝑟2

8𝑡

) 𝑛−1
2

𝑑

(
𝑟2

8𝑡

)
≤ 8 𝑛+1

2

[𝑑 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝜔) 1
[𝑑 + 1 + 𝑎]𝜔 ≤ 𝐶(𝑛, 𝜔) 1

[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

Then for (14), we have∫ 𝑑

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟

=

[∫ 𝑑
2

1
+
∫ 𝑑

𝑑
2

]
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟
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∫ 𝑑
2

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟

≤ 1
[ 𝑑2 + 1 + 𝑎]𝜔

∫ 𝑑
2

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡
+ 𝑛𝑟

)
𝑑𝑟

≤𝐶(𝜔) exp(4𝑛2𝑡)
[𝑑 + 1 + 𝑎]𝜔

∫ 𝑑
2

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟2

16𝑡

)
𝑑𝑟

≤𝐶(𝜔) exp(4𝑛2𝑡)
[𝑑 + 1 + 𝑎]𝜔

∫ 𝑑
2

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟2

16𝑡

)
𝑟𝑛𝑑𝑟

≤𝐶(𝜔) exp(4𝑛2𝑡)4𝑛+1

[𝑑 + 1 + 𝑎]𝜔
∫ 𝑑

2

1
exp

(
− 𝑟2

16𝑡

) (
𝑟2

16𝑡

) 𝑛−1
2

𝑑

(
𝑟2

16𝑡

)
≤𝐶(𝜔) exp(4𝑛2𝑡)4𝑛+1

[𝑑 + 1 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝑇, 𝜔) 1
[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

Remark 3.2.9. Here, we just use the fact that

(𝑑 + 1 + 𝑎)𝜔

( 𝑑2 + 1 + 𝑎)𝜔
≤ 2𝜔 𝑓 𝑜𝑟 𝑑 ≥ 2, 𝑎 > 0.
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∫ 𝑑

𝑑
2

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 exp(𝑛𝑟)𝑑𝑟

≤ 1
[1 + 𝑎]𝜔

∫ 𝑑

𝑑
2

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡
+ 𝑛𝑟

)
𝑑𝑟

≤𝐶 exp(4𝑛2𝑡)
[1 + 𝑎]𝜔

∫ 𝑑

𝑑
2

𝑡−(𝑛+1)/2 exp
(
− 𝑟2

16𝑡

)
𝑑𝑟

≤𝐶 exp(4𝑛2𝑡)𝑇 𝛽/2

[1 + 𝑎]𝜔
∫ 𝑑

𝑑
2

𝑡−(𝑛+𝛽+1)/2 exp
(
− 𝑟2

16𝑡

) ( 𝑟
𝑑

)𝑛+𝛽
𝑑𝑟

≤𝐶 exp(4𝑛2𝑡)𝑇 𝛽/2

[1 + 𝑎]𝜔
1

𝑑𝑛+𝛽

∫ 𝑑

𝑑
2

𝑡−(𝑛+𝛽+1)/2 exp
(
− 𝑟2

16𝑡

)
𝑟𝑛+𝛽𝑑𝑟

≤𝐶 exp(4𝑛2𝑡)𝑇 𝛽/24
𝑛+𝛽+1

2

[1 + 𝑎]𝜔
1

𝑑𝑛+𝛽
Γ(𝑛 + 𝛽 + 1

2
)

≤𝐶(𝑛, 𝑇, 𝜔) 1
[𝑟(𝑧′, 𝑧0) + 1 + 𝑎]𝜔

Case 2 : (1 ≤ 𝑑 < 2) We only need to show that (5) and (8) are both bounded. For (5),

we have ∫ ∞

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡

)
1

[𝑟 − 𝑑 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟

≤ 𝐶(𝜔)
[1 + 𝑎]𝜔

∫ ∞

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟

2

8𝑡
+ 𝑛𝑟

)
𝑑𝑟

≤𝐶(𝜔) exp(4𝑛2𝑡)
[1 + 𝑎]𝜔

∫ ∞

𝑑

𝑡−(𝑛+1)/2 exp
(
− 𝑟2

16𝑡

)
𝑟𝑛𝑑𝑟

≤𝐶(𝜔) exp(4𝑛2𝑡)4𝑛+1

[1 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝑇, 𝜔)
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For (8), we have∫ 𝑑

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟

=

[∫ 1

0
+
∫ 𝑑

1

]
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 sinh𝑛(𝑟)𝑑𝑟

∫ 1

0
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 𝑟
𝑛𝑑𝑟

≤𝐶(𝜔)8
𝑛+1

2

[1 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝑇, 𝜔)

∫ 𝑑

1
𝑡−(𝑛+1)/2 exp

(
− 𝑟

2

8𝑡

)
1

[𝑑 − 𝑟 + 1 + 𝑎]𝜔 𝑟
𝑛𝑑𝑟

≤𝐶(𝜔)8
𝑛+1

2

[1 + 𝑎]𝜔 Γ(𝑛 + 1
2

) ≤ 𝐶(𝑛, 𝑇, 𝜔)

Case 3 : (0 ≤ 𝑑 < 1) This case is almost same with the case 2. We just omit it. □

3.2.2 The spectrum results

Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic manifolds with defining function 𝜌. In the

following sections, we will talk about some results about the spectrum of the Laplacian

operator of (𝑀𝑛+1, 𝑔) and the behavior of its modified resolvent after meromorphic

continuation.

The first result is about the spectrum of the asymptotically hyperbolic manifold. The

q-form result is originally from the R. Mazzeo [35]. And later, it is reproved by the J.

Lee [30].

Theorem 3.2.10 (Theorem 1.3, [35]; Proposition F, [30]). Let (𝑀𝑛+1, 𝑔) be an asymp-

totically hyperbolic space. The Laplace-Beltrami operator on 𝑀 acting on 𝑞 - forms
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satisfies that

(a) When 0 ≤ 𝑞 < 𝑛/2, with 𝑅 = 𝑛/2 − 𝑞.

(b) When 𝑛/2 + 1 < 𝑞 ≤ 𝑛 + 1, with 𝑅 = 𝑞 − 𝑛/2 − 1.

In each case, the essential 𝐿2 spectrum of Δ is
[
𝑅2,∞

)
.

For the symmetric two tensor result is from J.Lee [30] and E.Delay [15].

Theorem 3.2.11 (Main theorem, [15], Proposition D, [30]). Let (𝑀𝑛+1, 𝑔) be an asymp-

totically hyperbolic manifold. The Lichnerowicz operator ΔL acting on symmetric 2

-tensors has the essential 𝐿2 spectrum, ΔL is
[
𝑛2/4 − 2𝑛,∞

)
.

Then, R. Mazzeo [36] show that there is no embedded eigenvalue into the essential

spectrum.

Theorem 3.2.12 (Theorem 16, [36]). Let (𝑀𝑛+1, 𝑔) be an asymptotically hyperbolic

manifold. The Laplace-Beltrami operator on 𝑀 acting on function satisfies that there

is no eigenvalue embedded into the essential spectrum [ 𝑛2

4 − 2𝑛,∞).

Then, E.Delay prove a corresponding symmetric two tensor case.

Theorem 3.2.13 ([16]). For 𝑛 ≥ 2, let us consider (𝑁, �̂�) an 𝑛−dimensional compact

Einstein manifold. Let 𝑀 = (0,∞) × 𝑁 equipped with an asymptotically hyperbolic

metric

𝑔 = (𝑑𝑟)2 + 𝑓 2(𝑟) �̂�

Then there are no 𝐿2 TT-eigentensors (Trace-free and divergent free symmetric two

tensor) of the Lichnerowicz Laplacian Δ𝐿 with eigenvalue embedded in the essential

spectrum. For the real hyperbolic space, there are no 𝐿2 eigentensors of Δ𝐿.
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Moreover, we call asymptotically hyperbolic manifold (𝑀, �̃�) asymptotically hyper-

bolic Einstein manifold if (𝑀, �̃�) is also an Einstein manifold. The asymptotically

hyperbolic Einstein manifold (𝑀, �̃�) is a fixed point of the normalized Ricci flow equa-

tion

𝜕𝑡𝑔𝑡 = −2Ric𝑔𝑡 + 2𝜆𝑔𝑡 (3.2.16)

where 𝜆 is the Einstein constant of (𝑀, �̃�), (i.e. Ric = 𝜆𝑔). We can always normalize

the equation into the standard case 𝜆 = −𝑛.

§ 3.3 Heat kernel estimates of R.Bamler

Theorem 3.3.1 (Long time convolution). Let ℍ𝑛+1 be a hypebolic space with 𝑛 ≥ 2.

And let 𝐻 (𝑡, 𝑧, 𝑧′) be the heat kernel of the Laplacian operator on this hyperbolic space.

Then, there exists a constant 𝐶(𝑛, 𝜔), such that∫
𝑀

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟 (𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 ≤ 𝐶(𝑛, 𝜔) 1

[𝑟 (𝑧′, 𝑧0) + 𝑡 + 1 + 𝑎]𝜔

where 𝑎 ≤ 0 and 𝜔 > 0.

Before we proving this theorem, first we need to introduce a property hyperbolic

space which have been used in the [2] (Lemma 6.3).

Lemma 3.3.2. Let 𝑀 = ℍ𝑛+1 or ℂℍ2(𝑛+1) . There are constants 𝐶 < ∞ and 𝜇 > 0 such

that:
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Consider two distinct points 𝑧0, 𝑧
′ ∈ 𝑀 and let 𝑟0 > 0, 0 < 𝛼 < 𝜋

2 . Let 𝑣 ∈ 𝑇𝑧′𝑀 be

the vector pointing towards 𝑧0 and define the sector

𝑆𝑣,𝛼 =
{
exp𝑧′ (𝑢) : 𝑢 ∈ 𝑇𝑧′𝑀, <𝑧′ (𝑢, 𝑣) ≤ 𝛼

}
Then for 𝑑 = 𝑑 (𝑧0, 𝑧

′) − 𝑟0 we have

vol
(
𝐵𝑟0 (𝑧0) \𝑆𝑣,𝛼

)
≤ 𝐶𝑒−𝜇𝑑𝛼−2(𝑛−1) .

𝑃𝑟𝑜𝑜 𝑓 . By rescaling we can assume that the sectional curvature are less than −1. By

the graph, we see that

𝐵𝑟0 (𝑧0) \ 𝑆𝑣,𝛼 ⊆ 𝐵𝑎 (𝑧′)

We know the law of cosines in ℍ2 is

cosh(𝑟0) = cosh(𝑟0 + 𝑑) cosh(𝑎) − sinh(𝑟0 + 𝑑) sinh(𝑎) cos𝛼

By the Rauch comparison theorem, in the ℍ𝑛+1 or ℂℍ2(𝑛+1) , we have

cosh(𝑟0) ≥ cosh(𝑟0 + 𝑑) cosh(𝑎) − sinh(𝑟0 + 𝑑) sinh(𝑎) cos𝛼

Since

cosh(𝑟0) = cosh(𝑟0 + 𝑑) cosh(𝑑) − sinh(𝑟0 + 𝑑) sinh(𝑑),
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we have

cosh(𝑟0 + 𝑑) cosh(𝑑) − sinh(𝑟0 + 𝑑) sinh(𝑑)

≥ cosh(𝑟0 + 𝑑) cosh(𝑎) − sinh(𝑟0 + 𝑑) sinh(𝑎) cos𝛼

sinh(𝑟0 + 𝑑) sinh(𝑎) − sinh(𝑟0 + 𝑑) sinh(𝑑)

≥ cosh(𝑟0 + 𝑑) cosh(𝑎) − cos𝛼 cosh(𝑟0 + 𝑑) cosh(𝑑)

sinh(𝑟0 + 𝑑) [sinh(𝑎) cos𝛼 − sinh(𝑑)] ≥ cosh(𝑟0 + 𝑑) [cosh(𝑎) − cosh(𝑑)]

and

sinh(𝑎) cos𝛼 − sinh(𝑑) ≥ cosh(𝑎) − cosh(𝑑)

cosh(𝑑) − sinh(𝑑) ≥ cosh(𝑎) − sinh(𝑎) cos𝛼

𝑒−𝑑 ≥ sinh(𝑎) (1 − cos𝛼)

Therefore, we have

sinh(𝑎) ≤ 𝑒−𝑑 (1 − cos𝛼)−1

Then, we have

vol
(
𝐵𝑟0 (𝑧0) \ 𝑆𝑣,𝛼

)
≤ vol (𝐵𝑎(𝑧′)) ≤ 𝐶 sinh𝑛(𝑎) ≤ 𝐶𝑒−𝑛𝑑 (1 − cos𝛼)−𝑛 ≤ 𝐶𝑒−𝑛𝑑𝛼−2𝑛

□

𝑃𝑟𝑜𝑜 𝑓 𝑜 𝑓 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.3.1. For small times 𝑡 > 1, the estimate follows with the help

of the Theorem 3.2.7. So we assume that 𝑡 > 1. Let 𝑟2, 𝑘1, · · · , 𝑘6, 𝑘7 be some positive

constants to be determined.
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Case 1 : (𝑟1 + 𝑘1𝑡 ≤ 1 + 𝑎) By the 𝐿1 boundedness of 𝐻 (𝑡, 𝑧, 𝑧′), we have∫
𝑀

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 ≤

𝐶(𝑛, 𝜔)
[1 + 𝑎]𝜔 ≤ 𝐶(𝑛, 𝜔, 𝑘1)

[𝑟1 + 1 + 𝑎 + 𝑡]𝜔 .

Case 2 : (𝑟1 + 𝑘1𝑡 > 1 + 𝑎) Then we have∫
𝑀

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

=

[∫
𝑀\𝐵𝑟2 (𝑧0)

+
∫
𝐵𝑟2 (𝑧0)

]
𝐻 (𝑡, 𝑧, 𝑧′) 1

[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧

For the first part, we have∫
𝑀\𝐵𝑟2 (𝑧0)

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 ≤

𝐶(𝑘1)
[𝑟2 + 1 + 𝑎]𝜔 (3.3.1)

For the second part, we have∫
𝐵𝑟2 (𝑧0)

𝐻 (𝑡, 𝑧, 𝑧′) 1
[𝑟(𝑧, 𝑧0) + 1 + 𝑎]𝜔 𝑑𝑧 ≤

1
[1 + 𝑎]𝜔 [

∫
𝐵𝑟2 (𝑧0)\𝑆𝑣,𝛼

+
∫
𝐵𝑟2 (𝑧0)∩𝑆𝑣,𝛼

] (3.3.2)

By the 𝐿1 integrability and the 𝐿2 exponential decay of the heat kernel

∥𝐻∥𝐿1 (𝑀) (𝑡) ≤ 𝐶(𝑛) 𝑎𝑛𝑑 ∥𝐻∥𝐿2 (𝑡) ≤ 𝐶(𝑛) exp(−𝜆𝐵𝑡),

together with Lemma 3.3.2, we have∫
𝐵𝑟2 (𝑧0)\𝑆𝑣,𝛼

≤ 𝐶(𝑛) exp(𝑛(𝑟2 − 𝑟1) − 𝜆𝐵𝑡)𝛼−2𝑛

and ∫
𝐵𝑟2∩𝑆𝑣,𝛼

≤ 𝐶(𝑛)𝛼𝑛 This is because that the 𝐿1 integrability of 𝐻
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Therefore, we just need to find some proper 𝛼 and 𝑟2 such that

exp(𝑛(𝑟2 − 𝑟1) − 𝜆𝐵𝑡)𝛼−2𝑛 ≤ 𝐶(𝑛, 𝜔)
[𝑟1 + 1 + 𝑎 + 𝑡]𝜔 𝑎𝑛𝑑 𝛼𝑛 ≤ 𝐶(𝑛, 𝜔)

[𝑟1 + 1 + 𝑎 + 𝑡]𝜔

Let 𝑟2 − 𝑟1 = −𝑘2𝑟1 + 𝑘3𝑡 + 𝑘4(1 + 𝑎). In order to guarantee that 𝑟2 > 0, we need

(1 − 𝑘2)𝑟1 + 𝑘3𝑡 + 𝑘4(1 + 𝑎) > 0

By the assumption that 𝑟1 + 𝑘1𝑡 ≥ 𝑎 + 1, we can just simply set

𝑟2 := (1 − 𝑘2) (𝑟1 + 𝑘1𝑡 − (1 + 𝑎)) 0 < 𝑘2 < 1

On the other hand, in order to guarantee that

𝛼𝑛 ≤ 𝐶(𝑛, 𝜔)
[𝑟1 + 1 + 𝑎 + 𝑡]𝜔 ,

we set

𝛼 := exp(−𝑘5𝑟1 − 𝑘6𝑡 − 𝑘7(1 + 𝑎)).

Together with the requirement

exp(𝑛(𝑟2 − 𝑟1) − 𝜆𝐵𝑡)𝛼−2𝑛 ≤ 𝐶(𝑛, 𝜔)
[𝑟1 + 1 + 𝑎 + 𝑡]𝜔 ,

we need to require that

exp(𝑛(𝑟2 − 𝑟1) − 𝜆𝐵𝑡)𝛼−2𝑛

= exp(−𝑛𝑘2𝑟1 + 𝑛(1 − 𝑘2)𝑘1𝑡 − 𝑛(1 − 𝑘2) (1 + 𝑎) − 𝜆𝐵𝑡 + 2𝑛𝑘5𝑟1 + 2𝑛𝑘6𝑡 + 2𝑛𝑘7(1 + 𝑎))

= exp(−𝑛(𝑘2 − 2𝑘5)𝑟1 − (𝜆𝐵 − 𝑛(1 − 𝑘2)𝑘1 − 2𝑛𝑘6)𝑡 − 𝑛(1 − 𝑘2 − 2𝑘7) (1 + 𝑎))

Take proper 𝑘1, · · · , 𝑘7 such that the coefficients of the above formula are all positive.
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We can take 𝑘1 = 1, 𝑘2 = 1
2 , 𝑘5 = 1

8 , 𝑘6 =
𝜆𝐵
𝑛
− 3

4 and 𝑘7 = 1
8 . Then we have (𝑘2−2𝑘5) = 1

4 ,

(𝜆𝐵 − 𝑛(1 − 𝑘2)𝑘1 − 2𝑛𝑘6) = 1
4 and (1 − 𝑘2 − 2𝑘7) = 1

4 which satisfies the requirement.

□

3.3.1 The spherical coordinates and the Casimir operators

Now, let 𝑣 = 𝑘𝑖 ∈ 𝔩 and 𝑝 = exp (𝑘𝑖𝑡) exp (𝑟𝑥0) (𝑝0) ∈ 𝑀 where 𝑟 ≥ 0 and 𝑥0 ∈ 𝔞 (𝔞 is

the Cartan subalgebra). Then

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝 𝑓 =
𝑑

𝑑𝑡
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) + 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖) ( 𝑓 )

=
𝑑

𝑑𝑡
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) + 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ( 𝑓 )

Therefore,

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0))

+ 2𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ( 𝑓 )

Now, let 𝑘𝑖 = 1√
2
(𝑥𝑖 + 𝑦𝑖), where 𝑥𝑖 is the positive root and 𝑦𝑖 = 𝜎(𝑥𝑖) is the negative

root. (See detail in the section of root system. )

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 =
𝑑2

𝑑𝑡2
𝑓 (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+ 2𝜌0(𝑐ℎ(−𝑟𝛼𝑖(𝑥0))𝑘𝑖) (
𝑑

𝑑𝑡
𝑓 )

+ 𝜌2
0(𝑐ℎ(−𝑟𝛼𝑖(𝑥0))𝑘𝑖) ( 𝑓 )
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On the other hand,

�𝑑𝜋𝑒(𝑘𝑖) (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) =(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)

=(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) ∈ 𝑇𝑝0𝑀

Therefore,

�∇𝜋∗ (𝑘𝑖) |𝑝𝜋∗(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)

+ 𝜌0(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(𝑘𝑖𝑡))𝑘𝑖) [𝜋∗∗(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

At 𝑡 = 0,

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝𝑑𝜋𝑒(𝑘𝑖) =
𝑑

𝑑𝑡
(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖)

+ 𝜌0∗(𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖) [(𝑑𝜋𝑝0)𝑒(𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝐴𝑑(exp(−𝑘𝑖𝑡))𝑘𝑖)]

=[𝑠ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖, 𝑐ℎ(𝑎𝑑(−𝑟𝑥0))𝑘𝑖]

=[𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)𝔭𝑖, 𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)𝑘𝑖]

=𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)𝑐ℎ(−𝛼𝑖(𝑥0)𝑟) (𝑑𝜋𝑝0)𝑒( [𝑝𝑖, 𝑘𝑖])

where 𝔭𝑖 =
1√
2
(𝑥𝑖 − 𝑦𝑖) and [𝔭𝑖, 𝑘𝑖] = [𝑥𝑖, 𝑦𝑖] =

∑𝑟
𝑗=1 𝛼𝑖(𝑝 𝑗)𝑝 𝑗. (𝑟 is the rank of the

symmetric space and 𝑝 𝑗 is the basis of the maximal abelian subalgebra. See details in

the section of root system). Therefore, for 𝑝 = exp (𝑟𝑥0) (𝑝0), we have
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Δ̃ 𝑓 |𝑝 =
𝑟∑︁
𝑗=1

�∇𝑑𝜋𝑒 (𝑝 𝑗)∇𝑑𝜋𝑒 (𝑝 𝑗) 𝑓

+ 1
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

[ 𝑛−𝑟∑︁
𝑖=1

�∇𝑑𝜋𝑒 (𝑘𝑖) |𝑝∇𝑑𝜋𝑒 (𝑘𝑖) 𝑓 −
𝑛−𝑟∑︁
𝑖=1

�∇∇𝑑𝜋𝑒 (𝑘𝑖 ) |𝑝𝑑𝜋𝑒 (𝑘𝑖) 𝑓
]

=

𝑟∑︁
𝑗=1

𝑑2

𝑑𝑡2
�̃� (exp(𝑡𝑝 𝑗) exp(𝑟𝑥0)) |𝑡=0

−
𝑛−𝑟∑︁
𝑖=1

𝑐ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)

𝑟∑︁
𝑗=1

𝛼𝑖(𝑝 𝑗)
𝑑

𝑑𝑡
�̃� (exp(𝑡𝑝 𝑗) exp(𝑟𝑥0))

+
𝑛∑︁
𝑖=1

1
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝑑2

𝑑𝑡2
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛∑︁
𝑖=1

2𝑐𝑜𝑡ℎ(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ(−𝛼𝑖(𝑥0)𝑟)

𝜌0∗(𝑘𝑖)
𝑑

𝑑𝑡
�̃� (exp(𝑘𝑖𝑡) exp(𝑟𝑥0)) |𝑡=0

+
𝑛∑︁
𝑖=1

𝑐ℎ2(−𝛼𝑖(𝑥0)𝑟)
𝑠ℎ2(−𝛼𝑖(𝑥0)𝑟)

𝜌2
0∗(𝑘𝑖) �̃�

Remark 3.3.3. We can see the above formula for Laplacian operator is only for the point

𝑝 = exp (𝑘𝑖𝑡) exp (𝑥0𝑟) (𝑝0). For the other point, we will use the spherical invariance of

Laplacian to get it. (See )

Remark 3.3.4. We see the above discussions do not rely on the choice of the repre-

sentation 𝜌0. Therefore, the above results also holds for the general associative vector

bundle of the principal bundle 𝐺 → 𝐺/𝐾
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3.3.2 The maximal principle

Lemma 3.3.5. For every 𝑡 > 0 and 𝑣 ∈ 𝔞 denote by 𝐾𝑡 (𝑣) (min) resp. 𝐾𝑡 (𝑣) (max) the

minimal resp. maximal eigenvalue of the endomorphism 𝐾𝑡 (𝑣). Then

0 < 𝐾𝑡 (𝑣) (min) ≤ 𝐾𝑡 (𝑣) (max) ≤ 𝐾◦
𝑡 (𝑣)

Moreover, 𝐾𝑡 (𝑣) (max) is a subsolution to the heat operator 𝜕𝑡 + 𝐿◦ in the following

sense: If (𝐺𝑡)𝑡≥𝑡0 ∈ 𝐶∞(𝔞) is a solution to the equation 𝜕𝑡𝐺𝑡 = −𝐿◦𝐺𝑡 and a spherical

model at all times, then 𝐾𝑡0 (𝑣) (max) ≤ 𝐺𝑡0 implies 𝐾𝑡 (𝑣) (max) ≤ 𝐺𝑡 for all 𝑡 ≥ 𝑡0.

Proof. The proof makes use of the maximum principle. We will first establish the

bound 𝐾𝑡 (𝑣) (min) > 0. If the inequality was not true then, by the local behavior of the

heat kernel for small times, we would find some 𝜀 > 0 and some first time 𝑡′ > 0 such

that there are 𝑣′ ∈ 𝔞 and 𝑒′ ∈ 𝐸0 with |𝑒′| = 1 such that

⟨𝐾𝑡 (𝑣)𝑒, 𝑒⟩ ≥ −𝜀

holds for all 𝑡 ≤ 𝑡′, 𝑣 ∈ 𝔞 and 𝑒 ∈ 𝐸0 with |𝑒| = 1 with equality for 𝑡 = 𝑡′, 𝑣 = 𝑣′ and

𝑒 = 𝑒′. This implies 𝐾𝑡′ (𝑣′) 𝑒′ = 𝐾𝑡′ (𝑣′) (min)𝑒′ = −𝜀𝑒′ and

⟨𝜕𝑡𝐾𝑡′ (𝑣′) 𝑒′, 𝑒′⟩ ≤ 0

as well as ⟨𝜕𝑢𝐾𝑡′ (𝑣′) 𝑒′, 𝑒′⟩ = 0 for any direction 𝑢 ∈ 𝔞 and ⟨△𝐾𝑡′ (𝑣′) 𝑒′, 𝑒′⟩ ≥ 0. As for

the zero order terms we compute (note that due to the invariance of ⟨·, ·⟩ on 𝐸0 under the

action of 𝐾, we have ⟨𝑘𝑖 · 𝑒1, 𝑒2⟩+ ⟨𝑒1, 𝑘𝑖 · 𝑒2⟩ = 0 for any 𝑖 = 1, . . . , 𝑛−𝑟 and 𝑒1, 𝑒2 ∈ 𝐸0)

⟨𝐾𝑡′ (𝑣′) (𝑘𝑖 · 𝑘𝑖 · 𝑒′) , 𝑒′⟩ = ⟨𝐾𝑡′ (𝑣′) (𝑒′) , 𝑘𝑖 · 𝑘𝑖 · 𝑒′⟩
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= 𝐾𝑡′ (𝑣′) (min) ⟨𝑘𝑖 · 𝑘𝑖 · 𝑒′, 𝑒′⟩ = 𝜀 ⟨𝑘𝑖 · 𝑒′, 𝑘𝑖 · 𝑒′⟩

and

⟨𝑘𝑖 · (𝐾𝑡′ (𝑣′) (𝑘𝑖 · 𝑒′)) , 𝑒′⟩ = − ⟨𝐾𝑡′ (𝑣′) (𝑘𝑖 · 𝑒′) , 𝑘𝑖 · 𝑒′⟩ ≤ 𝜀 ⟨𝑘𝑖 · 𝑒′, 𝑘𝑖 · 𝑒′⟩

So

⟨𝜕𝑡𝐾𝑡 (𝑣′) 𝑒′, 𝑒′⟩ ≥
𝑛−𝑟∑︁
𝑖=1

〈
1

sh2 𝛼𝑖 (𝑣′)
𝐾𝑡′ (𝑣′) (𝑘𝑖 · 𝑘𝑖 · 𝑒′) +

ch2 𝛼𝑖 (𝑣′)
sh2 𝛼𝑖 (𝑣′)

𝑘𝑖 · 𝑘𝑖 · 𝐾𝑡′ (𝑣′) (𝑒′)

−2
ch𝛼𝑖 (𝑣′)
sh2 𝛼𝑖 (𝑣′)

𝑘𝑖 · (𝐾𝑡′ (𝑣′) (𝑘𝑖 · 𝑒′)) , 𝑒′
〉

≥𝜀
𝑛−𝑟∑︁
𝑖=1

(
1 − ch𝛼𝑖 (𝑣′)

sh𝛼𝑖 (𝑣′)

)2
|𝑘𝑖 · 𝑒′|2 > 0

3.3.3 A remark about the result of O.Biquard and R.Bamler

Combine the result of R.Bamler and O.Biquard for the quaternion hyperbolic space and

octonions hyperbolic space, we can deduce a very strange result.

Definition 3.3.6 (Definition A, [7]). Let 𝐻 = 𝑈𝑚−1, 𝑆𝑝𝑚−1𝑆𝑝1 or Spin 7, corresponding

to the complex, quaternionic or octonionic cases, respectively. Let 𝑆𝑛−1 be a manifold

with a contact 1-form 𝜂 with values in ℝ,ℝ3 or ℝ7, respectively, and let 𝑉 = ker 𝜂. A

Carnot-Carathéodory 𝐻-metric compatible with 𝑑𝜂 is defined to be a metric 𝛾 on 𝑉 such

that

• in the complex case, the restriction to 𝑉 of 𝑑𝜂 is a symplectic form compatible

with 𝑔 (that is, 𝑑𝜂(·, ·) = 𝛾(𝐼·, ·) where 𝐼 is an almost complex structure on 𝑉 );

• in the quaternionic case, the three 2-forms (𝑑𝜂1, 𝑑𝜂2, 𝑑𝜂3) on 𝑉 provide a quater-

nionic structure compatible with 𝛾 (that is, 𝑑𝜂𝑖(·, ·) = 𝛾 (𝐼𝑖, ·) for almost complex
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structures 𝐼𝑖 satisfying the quaternionic commutation relations);

• in the octonionic case, the seven 2-forms (𝑑𝜂1, . . . , 𝑑𝜂7) on 𝑉 provide a Spinn

structure compatible with 𝛾 (that is, 𝑑𝜂𝑖(·, ·) = 𝛾 (𝐼𝑖·, ·) for almost complex struc-

tures 𝐼𝑖 satisfying the octonionic commutation relations).

Theorem 3.3.7 ([2]). Let (𝑀, �̄�) be either ℍ𝑛 for 𝑛 ≥ 3 or ℂℍ2𝑛 for 𝑛 ≥ 2, choose a

basepoint 𝑥0 ∈ 𝑀 and let 𝑟 = 𝑑 (·, 𝑥0) denote the radial distance function. There is an

𝜀1 > 0 and for every 𝑞 < ∞ an 𝜀2 = 𝜀2(𝑞) > 0 such that the following holds: If 𝑔0 = �̄�+ℎ

and ℎ = ℎ1 + ℎ2 satisfies

|ℎ1 | <
𝜀1
𝑟 + 1

and sup
𝑀

|ℎ2 | +
(∫

𝑀

|ℎ2 |𝑞 𝑑𝑥
)1/𝑞

< 𝜀2,

then Ricci flow (1.1) exists for all time and we have convergence 𝑔𝑡 −→ �̄� in the pointed

Cheeger-Gromov sense.

§ 3.4 Heat kernel estimates of X.Chen and A.Hassell

he basic strategy for analyzing the heat kernel is to express it in terms of the spectral

measure

𝑒−𝑡(Δ𝑋 ) = 𝑒−𝑡𝑛
2/4𝑒−𝑡(Δ𝑋−𝑛2/4) = 𝑒−𝑡𝑛

2/4
∫ ∞

0
𝑒−𝑡𝜎𝑑𝐸(Δ𝑋−𝑛2/4) (𝜎)𝑑𝜎

and then, via Stone’s formula, in terms of the resolvent:

𝑒−𝑡(Δ𝑋 ) =
𝚤

2𝜋
𝑒−𝑡𝑛

2/4
∫ ∞

−∞
𝑒−𝑡𝜆

2
𝑅(𝜆 − 𝚤0)2𝜆𝑑𝜆, 𝜎 = 𝜆2

Theorem 3.4.1 ([10]). Suppose (𝑋, 𝑔) is an 𝑛+1 -dimensional asymptotically hyperbolic

CartanHadamard manifold with no resonance at the bottom of the continuous spectrum
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and denote the operator
√︃(

Δ𝑋 − 𝑛2/4
)
+ by 𝑃. The Schwartz kernel of the spectral

measure 𝑑𝐸𝑃 (𝜆) satisfies bounds

|𝑑𝐸𝑃 (𝜆) (𝑧, 𝑧′) | ≤

𝐶𝜆2, if 𝜆 ≤ 1

𝐶𝜆𝑛 if 𝜆 ≥ 1

Theorem 3.4.2. Assume that (𝑋, 𝑔) is an asymptotically hyperbolic Cartan-Hadamard

manifold with no eigenvalues and no resonance at the bottom of the spectrum. Let 𝑟

denote geodesic distance on 𝑋 × 𝑋. Then the resolvent, 𝑅(𝜆) :=
(
Δ𝑋 − 𝑛2/4 − 𝜆2)−1 is

analytic in a neighbourhood of the closed lower half plane Im 𝜆 ≤ 0, and satisfies in

this region of the 𝜆-plane and for 𝑟(1 + |𝜆 |) ≥ 1 (the ’off-digaonal regime’) (2.7)

𝑅(𝜆) (𝑧, 𝑧′) = 𝑒−𝑖𝜆𝑟𝑅𝑜𝑑 (𝜆) (𝑧, 𝑧′) , 𝑟 = 𝑑 (𝑧, 𝑧′)

where

• for |𝜆 | ≤ 1, 𝑅od(𝜆)is an element of (𝜌𝐿𝜌𝑅)𝑛/2 A0
(
𝑋2

0

)
• for |𝜆 | ≥ 1, 𝑅od (𝜆) is of the form

𝜌
𝑛/2
L 𝜌

𝑛/2
R 𝜌

−𝑛/2+1
A 𝜌−𝑛+1

S A0
(
𝑋2

0 ×1 [0, 1)ℎ
)

In particular, 𝑅𝑜𝑑 (𝜆) is a kernel bounded pointwise by a multiple of

(𝑟(1 + |𝜆 |))𝑛/2−1𝑟−𝑛+1 = 𝑟−𝑛/2(1 + |𝜆 |)𝑛/2−1

for 𝑟 ≤ 𝐶, and

𝑒−𝑛𝑟/2(1 + |𝜆 |)𝑛/2−1

for 𝑟 ≥ 𝐶.
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This result is from the result of Melrose-Barreto-Vasy [44] [40]. [10] obtain a

semiclassical resolvent

�̃�(ℎ, 𝜎) =
(
ℎ2Δ𝑋 − ℎ2𝑛2/4 − 𝜎2

)−1
with |𝜎| = 1, Im 𝜎 ≤ 0 and ℎ ∈ [0, 1)

through the parametrix 𝐺(ℎ, 𝜎) constructed by Melrose, Sà Barreto and Vasy. Then

the properties of the resolvent 𝑅(𝜆) in Theorem 2.2 follow from the counterparts for

�̃�(ℎ, 𝜎). Their idea is from [36] [33]. Let (𝑋, 𝑔) be a 𝑛 + 1 dimensional asymptotically

hyperbolic manifold. They construct 0−double space (i.e. blow up of double space 𝑋2).

Then, introduce the 0−calculus. By this way, they construct the resolvent for Laplacian

operator.

3.4.1 The heat kernel estimate for function case

In this section, we will introdue the idea of X. Chen and A. Hassell to do the heat

kernel estimate. Basically, first they use the spectrum theorem to covert the heat kernel

estimate to the Schwartz kernel estimate of Laplacian operator. Then they make use of

the high frequecy estimate for Schwartz on Asymptotically hyperbolic manifold to get

the corresponding heat kernel estimate.

Theorem 3.4.3 ([10]). Let 𝑋 be an 𝑛+1-dimensional asymptotically hyperbolic Cartan-

Hadamard manifold with no eigenvalues and no resonance at the bottom of the spectrum.

Then the heat kernel obeys

𝑒−𝑡Δ𝑋 (𝑧, 𝑧′) ≤ 𝐶𝑡−(𝑛+1)/2𝑒−𝑛
2𝑡/4−𝑟2/(4𝑡)−𝑛𝑟/2(1 + 𝑟 + 𝑡)𝑛/2−1(1 + 𝑟)

where 𝑟 is the geodesic distance between 𝑧 and 𝑧′
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We see the heat kernel can be write like

ℎ(𝑡, 𝑧, 𝑧′) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡

𝑖

2𝜋

∫ ∞

−∞
𝑒−𝑡𝜆

2
𝑅(𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

By the theorem 3.4.2, we see that if 𝑟(1 + |𝜆 |2 + 𝜀2) ≥ 1, we have

𝑅(𝜆) (𝑧, 𝑧′) = 𝑒−𝑖𝜆𝑟𝑅𝑜𝑑 (𝜆) (𝑧, 𝑧′)

Now, suppose that 𝑟 ≥ 1. Then, Obviously, 𝑟(1 + |𝜆 |2 + 𝜀2) ≥ 1. Therefore,

ℎ(𝑡, 𝑧, 𝑧′) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡

𝑖

2𝜋

∫ ∞

−∞
𝑒−𝑡𝜆

2
𝑅(𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

= lim
𝜀→0

𝑒−
𝑛2
4 𝑡

𝑖

2𝜋

∫ ∞

−∞
𝑒−𝑡𝜆

2
𝑒−𝑖(𝜆−𝑖𝜀)𝑟𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

= lim
𝜀→0

𝑒−
𝑛2
4 𝑡

𝑖

2𝜋

∫ ∞

−∞
𝑒−𝑡𝜆

2
𝑒−𝑖𝜆𝑟𝑒−𝜀𝑟𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

Since

𝑒−𝑡𝜆
2
𝑒−𝑖𝜆𝑟 = 𝑒

−𝑡(𝜆2+𝑖 𝜆𝑟
𝑡
− 𝑟2

4𝑡2
+ 𝑟2

4𝑡2
)
= 𝑒−𝑡(𝜆+

𝑖𝑟
2𝜆 )

2− 𝑟2
4𝑡

Therefore

ℎ(𝑡, 𝑧, 𝑧′) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑒−𝜀𝑟

𝑖

2𝜋

∫ ∞

−∞
𝑒−𝑡(𝜆+

𝑖𝑟
2𝑡 )

2
𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

Therefore, we have that

ℎ(𝑡, 𝑟(𝑧, 𝑧′)) = 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

𝑖

2𝜋
lim
𝜀→0

∫ ∞

−∞
𝑒𝑡(𝜆+

𝑖𝑟
2𝑡 )

2
𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)2𝜆𝑑𝜆

Now, let 𝜔 = 𝜆 + 𝑖𝑟
2𝑡 . Then, we have

ℎ(𝑡, 𝑟(𝑧, 𝑧′)) = 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

𝑖

2𝜋
lim
𝜀→0

∫
ℑ(𝜔)= 𝑟

2𝑡

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔
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Again, by the theorem 3.4.2, we have the kernel of 𝑅𝑜𝑑 (𝜆) bounded pointwisely by

multiple of

𝑒−𝑛𝑟/2(1 + |𝜆 |)𝑛/2−1

Then, we have

|ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤ 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

𝑖

2𝜋

∫
ℑ(𝜔)= 𝑟

2𝑡

𝑒−𝑡𝜔
2
𝑒−

𝑛𝑟
2 (1 + |𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀|) 𝑛2−12(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

The shift of the integral contour: We want to show that∫
ℑ(𝜔)= 𝑡

2𝑟

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 =

∫
ℝ

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

Consider the following integral∫
𝑃3

=

∫
ℑ(𝜔)= 𝑡

2𝑟

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

Now, define ∫
𝑃1

=

∫ 𝑅2

−𝑅1

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

and ∫
𝑃2

=

∫
ℜ(𝜔)=𝑅2, 0≤ℑ(𝜔)≤ 𝑟

2𝑡

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

Let 𝜔 = 𝑅2 + 𝑖𝑏. Then∫
𝑃2

=

∫ 𝑟
2𝑡

0
𝑒−𝑡(𝑅2+𝑖𝑏)2

𝑅𝑜𝑑 (𝑅2 + 𝑖𝑏 −
𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝑅2 + 𝑖𝑏 −

𝑖𝑟

2𝑡
)𝑖𝑑𝑏
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Then, similarly, define∫
𝑃4

=

∫
ℜ(𝜔)=−𝑅1, 0≤ℑ(𝜔)≤ 𝑟

2𝑡

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔.

By letting 𝜔 = −𝑅1 + 𝑖𝑏, we can write
∫
𝑃4

as∫
𝑃4

=

∫ 𝑟
2𝑡

0
𝑒−𝑡(−𝑅1+𝑖𝑏)2

𝑅𝑜𝑑 (−𝑅1 + 𝑖𝑏 −
𝑖𝑟

2𝑡
− 𝑖𝜀)2(−𝑅1 + 𝑖𝑏 −

𝑖𝑟

2𝑡
)𝑖𝑑𝑏

Then, since 𝑅𝑜𝑑 is analytic in the domain

ℑ(𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀) ≤ 0 ⇒ ℑ(𝜔) ≤ 𝑟

2𝑡
+ 𝜀

Therefore, we have that ∫
𝑃3

= lim
𝑅1→∞ 𝑅2→∞

∫
𝑃2

+
∫
𝑃1

−
∫
𝑃4

For
∫
𝑃2

, by the theorem 3.4.2, we have that

|
∫
𝑃2

| ≤ 𝐶

∫ 𝑟
2𝑡

0
𝑒−𝑡𝑅

2
2𝑒−2𝑖𝑡𝑏𝑅2𝑒𝑡𝑏

2
𝑒−

𝑛𝑟
2 (1 +

√︂
𝑅2

2 + (𝑏 − 𝑟

2𝑡
− 𝜀)2) 𝑛2−1(

√︂
𝑅2

2 + (𝑏 − 𝑟

2𝑡
)2)𝑑𝑏

By the existence of the term 𝑒−𝑡𝑅
2
2 , we can see that

lim
𝑅2→∞

∫
𝑃2

= 0

Similarly, we can get that

lim
𝑅1→∞

= 0

Therefore, we have that ∫
𝑃3

= lim
𝑅1→∞, 𝑅2→∞

∫
𝑃1
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Therefore, ∫
ℑ(𝜔)= 𝑡

2𝑟

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

=

∫
ℝ

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

Exchange the order of the limit and integral: We are going to show that

lim
𝜀→0

∫
ℝ

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

=

∫
ℝ

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

First, we change the variables. Let 𝜔 = 𝜂 + 𝑖𝜀. Then∫
ℝ

𝑒𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
− 𝑖𝜀)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 (3.4.1)

=

∫
ℑ(𝜂)=−𝜀

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)2(𝜂 − 𝑖𝑟

2𝑡
+ 𝑖𝜀)𝑑𝜂 (3.4.2)

=

∫
ℑ(𝜂)=−𝜀

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)2(𝜂 − 𝑖𝑟

2𝑡
)𝑑𝜂 (3.4.3)

+ 2𝑖𝜀
∫
ℑ(𝜂)=−𝜀

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)𝑑𝜂 (3.4.4)

First, by the previous section, we see that

(3.4.3) =
∫
ℝ

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)2(𝜂 − 𝑖𝑟

2𝑡
)𝑑𝜂

(3.4.4) = 2𝑖𝜀
∫
ℝ

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)𝑑𝜂

For (3.4.4), by the theorem 3.4.2, we have

| (3.4.4) | ≤ 2𝜀
∫
ℝ

𝑒𝑡𝜂
2
𝑒𝑡𝜀

2 |𝑒−2𝑖𝑡𝜂𝜀 | · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1𝑑𝜂

The integral is bounded by the existence of the term 𝑒𝑡𝜂
2 . Therefore, (3.4.4)→ 0 as
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𝜀 → 0.

For (3.4.3), consider the difference

| (3.4.3) −
∫
ℝ

𝑒−𝑡(𝜂+𝑖𝜀)
2
𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
)2(𝜂 − 𝑖𝑟

2𝑡
)𝑑𝜂|

≤2
∫
ℝ

|𝑒𝑡(𝜂+𝑖𝜀)2 − 𝑒𝑡𝜂
2 | · |𝑅𝑜𝑑 (𝜂 −

𝑖𝑟

2𝑡
) | · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

≤2
∫
ℝ

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · |𝑅𝑜𝑑 (𝜂 −
𝑖𝑟

2𝑡
) |𝑐𝑑𝑜𝑡 |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

Then, by the theorem 3.4.2, we have

2
∫
ℝ

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · |𝑅𝑜𝑑 (𝜂 −
𝑖𝑟

2𝑡
) | · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

≤2
∫
ℝ

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

=2
∫
|𝜂|≤𝛿

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

+ 2
∫
|𝜂|>𝛿

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂.

And

2
∫
|𝜂|>𝛿

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

≤4
∫
|𝜂|>𝛿

𝑒−𝑡𝜂
2 · 𝑒− 𝑛𝑟

2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

Therefore, take large enough 𝛿, this term is going be small enough. And

2
∫
|𝜂|≤𝛿

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂

≤2
∫
|𝜂|≤𝛿

𝑒−𝑡𝜂
2 |𝑒𝑡𝜀2

𝑒−2𝑖𝑡𝜂𝜀 − 1| · 𝑒− 𝑛𝑟
2 (1 + |𝜂 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜂 − 𝑖𝑟

2𝑡
|𝑑𝜂
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fix 𝛿, we see that

|𝑒𝑡𝜀2
𝑒−2𝑖𝑡𝜂𝜀 − 1| → 0

uniformly, as 𝜀 → 0.

The estimate of the heat kernel: Now, we have that the heat kernel

ℎ(𝑡, 𝑟(𝑧, 𝑧′)) = 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

𝑖

2𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔.

Then, by the theorem 3.4.2, for 𝑟 ≥ 1 we have that

|𝑅𝑜𝑑 (𝜆) | ≤ 𝐶𝑒−
𝑛𝑟
2 (1 + |𝜆 |) 𝑛2−1

Therefore, we have that

|ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

∫
ℝ

𝑒−𝑡𝜔
2 |𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
) | · |𝜔 − 𝑖𝑟

2𝑡
|𝑑𝜔

≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑒−

𝑛𝑟
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 + |𝜔 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜔 − 𝑖𝑟

2𝑡
|𝑑𝜔

≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑒−

𝑛𝑟
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 +

√︂
𝜔2 + 𝑟2

4𝑡2
) 𝑛2−1 ·

√︂
𝜔2 + 𝑟2

4𝑡2
𝑑𝜔

Then, we will make use the following formula

𝐶1( |𝑎| + |𝑏|) ≤
√︁
𝑎2 + 𝑏2 ≤ |𝑎| + |𝑏|

𝐶3( |𝑎|𝑘 + |𝑏|𝑘) ≤ (𝑎 + 𝑏)𝑘 ≤ 𝐶4( |𝑎|𝑘 + |𝑏|𝑘)
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for 𝑘 ≥ 0. By the above inequalities, we have that

|ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑒−

𝑛𝑟
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 +

√︂
𝜔2 + 𝑟2

4𝑡2
) 𝑛2−1 ·

√︂
𝜔2 + 𝑟2

4𝑡2
𝑑𝜔

∼𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑒−

𝑛𝑟
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 + (|𝜔 | + 𝑟

2𝑡
) 𝑛2−1) ( |𝜔 | + 𝑟

2𝑡
)𝑑𝜔

Therefore,

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑒

𝑛𝑟
2 |ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤

∫
ℝ

𝑒−𝑡𝜔
2 (1 + (|𝜔 | + 𝑟

2𝑡
) 𝑛2−1) ( |𝜔 | + 𝑟

2𝑡
)𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [( |𝜔 | + 𝑟

2𝑡
) + (|𝜔 | + 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [( |𝜔 | + 𝑟

2𝑡
) + (|𝜔 | 1

2 + ( 𝑟
2𝑡
) 1

2 )𝑛]𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [|𝜔 | + 𝑟

2𝑡
+ |𝜔 | 𝑛2 + ( 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔

Then, by the fact that∫
ℝ

𝑒−𝑡𝜔
2 |𝜔 |𝑛 = 2

∫ ∞

0
𝑒−𝑦

1
𝑡
𝑛+1

2
𝑦
𝑛−1

2
1
2
𝑑𝑦 =

1
𝑡
𝑛+1

2
Γ(𝑛 + 1

2
),

Then, we have that

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑒

𝑛𝑟
2 |ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤

∫
ℝ

𝑒−𝑡𝜔
2 [|𝜔 | + 𝑟

2𝑡
+ |𝜔 | 𝑛2 + ( 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔 (3.4.5)

∼1
𝑡
+ 𝑟

2𝑡 3
2
+ 1
𝑡
𝑛+2

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
(3.4.6)
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On the other hand, for the heat kernel of hyperbolic space, we have that

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑒

𝑛𝑟
2 ℎℍ𝑛+1 (𝑡, 𝑟(𝑧, 𝑧′)) (3.4.7)

∼ 1
𝑡
𝑛+1

2
(1 + 𝑟 + 𝑡) 𝑛2−1(1 + 𝑟) (3.4.8)

∼ 1
𝑡
𝑛+1

2
(1 + (𝑟 + 𝑡) 𝑛2−1) (1 + 𝑟)∗ (3.4.9)

∼ 1
𝑡
𝑛+1

2
(1 + (

√
𝑟 +

√
𝑡)𝑛−2) (1 + 𝑟) (3.4.10)

∼ 1
𝑡
𝑛+1

2
(1 + 𝑟 𝑛−2

2 + 𝑡 𝑛−2
2 ) (1 + 𝑟) (3.4.11)

∼ 𝑟

𝑡
𝑛+1

2
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2

(3.4.12)

∼ 𝑟
𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2

(3.4.13)

The last step is because that for 𝑟 ≥ 0,

𝑛∑︁
𝑖=1

𝑟𝑖 ∼ 𝑟𝑛.

We see that if we fix 𝑟, then, as 𝑡 → ∞, the formula (3.4.6) can not be controlled by the

formula (3.4.13). (The bad term is 1
𝑡
)

(1) (The region for 2 ≤ 2
√
𝑡 ≤ 𝑟) However, if we require that 1 ≤

√
𝑡 ≤ 𝑟, then,

(3.4.13) ∼ 𝑟
𝑛
2

𝑡
𝑛+1

2
+ 𝑟

2𝑡 3
2
+ 1

2𝑡

≥𝐶 [1
𝑡
+ 𝑟

2𝑡 3
2
+ 1
𝑡
𝑛+2

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
] ∼ (3.4.6)

Moreover, if 0 ≤ 𝑡 ≤ 1, we see that

(3.4.6) = 1
𝑡
+ 𝑟

2𝑡 3
2
+ 1
𝑡
𝑛+2

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
∼ 𝑟

𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2
= (3.4.13)
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Figure 3.1: Regions for the proof of the upper bound

(2) (The region for 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑟 ≤ 2) We have

(3.4.6) = 1
𝑡
+ 𝑟

2𝑡 3
2
+ 1
𝑡
𝑛+2

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
∼ 𝑟

𝑛
2

𝑡
𝑛+1

2

and

(3.4.13) = 𝑟
𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2
∼ 𝑟

𝑛
2

𝑡
𝑛+1

2

Therefore, there exists a constant 𝐶, such that

(3.4.6) ≤ 𝐶(3.4.13)

(3) The region for 1 ≤ 𝑟 ≤ 2
√
𝑡 We start with the formula for heat kernel

ℎ(𝑡, 𝑟(𝑧, 𝑧′)) = 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

𝑖

2𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)2(𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔.
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And for the standard hyperbolic space, from (3.4.13), its heat kernel is

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑒

𝑛𝑟
2 ℎℍ𝑛+1 (𝑡, 𝑟(𝑧, 𝑧′)) (3.4.14)

∼𝑒− 𝑛𝑟
2 ( 𝑟

𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2
) (3.4.15)

Then, we consider

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 ℎ(𝑡, 𝑟(𝑧, 𝑧′)) = 𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
) (𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 (3.4.16)

=
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 − 𝑖𝑟

2𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 (3.4.17)

The second term of the (3.4.17): By the theorem 3.4.2, we have

| 𝑖𝑟
2𝑡

𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 | ≤ 𝐶

𝑟

2𝑡

∫
ℝ

𝑒𝑡𝜔
2
𝑒−

𝑛𝑟
2 (1 + |𝜔 + 𝑖𝑟

2𝑡
|) 𝑛2−1

≤𝐶 𝑟

2𝑡
𝑒−

𝑛𝑟
2

(
1
𝑡

1
2
+ 1
𝑡
𝑛
4
+ 𝑟

𝑛
2−1

𝑡
𝑛−1

2

)
≤𝐶𝑒− 𝑛𝑟

2

(
𝑟

𝑡
3
2
+ 𝑟

𝑡
𝑛+4

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2

)
∼𝐶𝑒− 𝑛𝑟

2

(
𝑟

𝑡
3
2
+ 𝑟

𝑛
2

𝑡
𝑛+1

2

)
∼ (3.4.15)

The first term of the (3.4.17):∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 (3.4.18)

=

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 +

∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 (3.4.19)
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Then, for the second term of (3.4.19), by the theorem 3.4.2, we have

|
∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 | ≤

∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2
𝑒−

𝑛𝑟
2 (1 + |𝜔 + 𝑖𝑟

2𝑡
|) 𝑛2−1 |𝜔 |𝑑𝜔

∼𝑒− 𝑛𝑟
2

∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2 (1 + |𝜔 | 𝑛2−1 + ( 𝑟

2𝑡
) 𝑛2−1) |𝜔 |𝑑𝜔

≤𝑒− 𝑛𝑟
2 𝐶(𝛿, 𝜀)𝑒−𝑡(𝛿2−𝜀) (1 + 𝑟 𝑛2−1) ≤ (3.4.15)

where 𝜀 can be any number in (0, 𝛿2). The last inequality above needs the following

remark.

Remark 3.4.4. In this remark, we are going to show that∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2 |𝜔 |𝑛 ≤ 𝐶(𝛿)𝑒−𝑡(𝛿2−𝜀)

First, we have ∫
|𝜔 |>𝛿

𝑒−𝑡𝜔
2 |𝜔 |𝑛 = 2

∫ ∞

𝛿

𝑒−𝑡𝜔
2
𝜔𝑛𝑑𝜔

Let 𝑦 = 𝑡𝜔2 and 𝜔 =

√︃
𝑦

𝑡
. Then, we have that∫

|𝜔 |>𝛿
𝑒−𝑡𝜔

2 |𝜔 |𝑛 = 2
∫ ∞

𝛿

𝑒−𝑡𝜔
2
𝜔𝑛𝑑𝜔 =

∫ ∞

𝑡𝛿2
𝑒−𝑦

1
𝑡
𝑛+1

2
𝑦
𝑛−1

2 𝑑𝑦

Let 𝑧 = 𝑦 − 𝑡𝛿2. Then, we have that∫ ∞

𝑡𝛿2
𝑒−𝑦

1
𝑡
𝑛+1

2
𝑦
𝑛−1

2 𝑑𝑦 =
1
𝑡
𝑛+1

2

∫ ∞

0
𝑒−𝑡𝛿

2
𝑒−𝑧 (𝑧 + 𝑡𝛿2) 𝑛−1

2 𝑑𝑧

∼ 1
𝑡
𝑛+1

2

∫ ∞

0
𝑒−𝑡𝛿

2
𝑒−𝑧 (𝑧 𝑛−1

2 + (𝑡𝛿2) 𝑛−1
2 )𝑑𝑧

=
𝑒−𝑡𝛿

2

𝑡
𝑛+1

2

∫ ∞

0
𝑒−𝑧𝑧

𝑛−1
2 𝑑𝑧 + 𝑒−𝑡𝛿

2
𝛿𝑛−1

𝑡

∫ ∞

0
𝑒−𝑧𝑑𝑧 ≤ 𝐶(𝛿, 𝜀)𝑒−𝑡(𝛿2−𝜀)

where 𝜀 can be any number in (0, 𝛿2).
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For the first term of the (3.4.19), we have∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝜔𝑑𝜔 =

∫
|𝜔 |≤𝛿

− 1
2𝑡
(𝜕𝜔𝑒−𝑡𝜔

2)𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔

By the integration by parts, we have that∫
|𝜔 |≤𝛿

− 1
2𝑡
(𝜕𝜔𝑒−𝑡𝜔

2)𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)𝑑𝜔 (3.4.20)

= − 1
2𝑡

∫
|𝜔 |≤𝛿

𝜕𝜔

(
𝑒−𝑡𝜔

2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)
)
𝑑𝜔 − 1

2𝑡

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2
𝜕𝜔 (𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
))𝑑𝜔

(3.4.21)

For the first term of the (3.4.21), we have that

| 1
2𝑡

∫
|𝜔 |≤𝛿

𝜕𝜔

(
𝑒−𝑡𝜔

2
𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)
)
𝑑𝜔 | ≤ 1

2𝑡
𝑒−𝑡𝛿

2 |𝑅𝑜𝑑 (𝛿 −
𝑖𝑟

2𝑡
) − 𝑅𝑜𝑑 (−𝛿 −

𝑖𝑟

2𝑡
) |

Then, by the theorem 3.4.2, we have that

1
2𝑡
𝑒−𝑡𝛿

2
(
𝑅𝑜𝑑 (𝛿 −

𝑖𝑟

2𝑡
) − 𝑅𝑜𝑑 (−𝛿 −

𝑖𝑟

2𝑡
)
)

≤𝐶
𝑡
𝑒−𝑡𝛿

2
𝑒−

𝑛𝑟
2 | (1 + |𝛿 − 𝑖𝑟

2𝑡
|) 𝑛2−1 − (1 + | − 𝛿 − 𝑖𝑟

2𝑡
|) 𝑛2−1 |

∼1
𝑡
𝑒−𝑡𝛿

2
𝑒−

𝑛𝑟
2 (1 + 𝛿 𝑛

2−1 + ( 𝑟
2𝑡
) 𝑛2−1)

∼𝑒− 𝑛𝑟
2

(
𝑒−𝑡𝛿

2

𝑡
+ 𝑒−𝑡𝛿

2
𝑟
𝑛
2−1

𝑡
𝑛
2−1

)
≤ 𝑒−

𝑛𝑟
2 𝐶(𝛿, 𝜀)𝑒−𝑡(𝛿2−𝜀) (1 + 𝑟 𝑛2−1) ≤ (3.4.15)

where 𝜀 can be any number in (0, 𝛿2).

For the second term of the (3.4.21),

1
2𝑡

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2
𝜕𝜔 (𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
))𝑑𝜔, (3.4.22)
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we need to estimate the term

𝜕𝜔𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
)

We see that 𝑅𝑜𝑑 (𝜆) is analytic in a neighborhood of 𝜆 = 0. Therefore, we can take small

enough 𝛿, such that the Ball, 𝐵𝛿(𝜔 − 𝑖𝑟
2𝑡 ) ⊆ ℂ, is always in the analytic domain of 𝑅𝑜𝑑 ,

provided |𝜔 | ≤ 𝛿. Then we make use of the Cauchy integral formula:

𝜕𝜆𝑅𝑜𝑑 (𝜆) |𝜆=𝑎 =
1

2𝜋𝑖

∫
𝜕𝐵𝛿 (𝑎)

𝑅𝑜𝑑 (𝜆)
(𝜆 − 𝑎)2 𝑑𝜆

where 𝑎 = 𝜔 − 𝑖𝑟
2𝑡 Then we have that

|𝜕𝜔𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
) | ≤ 𝐶

𝛿
sup

𝜆∈𝜕𝐵𝛿 (𝑎)
|𝑅𝑜𝑑 (𝜆) |

By the theorem 3.4.2, we have that

|𝜕𝜔𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
) | ≤ 𝐶

𝛿
sup

𝜆∈𝜕𝐵𝛿 (𝑎)
|𝑅𝑜𝑑 (𝜆) | ≤

𝐶

𝛿
𝑒−

𝑛𝑟
2 (1 + |𝜆 |) 𝑛2−1 (3.4.23)

≤𝐶
𝛿
𝑒−

𝑛𝑟
2 (1 + |𝜔 | + 𝑟

2𝑡
+ 𝛿) 𝑛2−1 (3.4.24)
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Then, plug (3.4.24) into (3.4.22), we have that

| 1
2𝑡

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2
𝜕𝜔 (𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
))𝑑𝜔 |

≤ 1
2𝑡

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2 𝐶

𝛿
𝑒−

𝑛𝑟
2 (1 + |𝜔 | + 𝑟

2𝑡
+ 𝛿) 𝑛2−1

∼𝐶𝛿
−1

𝑡
𝑒−

𝑛𝑟
2

∫
|𝜔 |≤𝛿

𝑒−𝑡𝜔
2 (1 + |𝜔 | 𝑛2−1 + ( 𝑟

2𝑡
) 𝑛2−1 + 𝛿 𝑛

2−1)

∼𝛿
−1

𝑡
𝑒−

𝑛𝑟
2

(
1
𝑡

1
2
+ 1
𝑡
𝑛
4
+ 𝑟

𝑛
2−1

𝑡
𝑛−1

2

)
∼𝛿−1𝑒−

𝑛𝑟
2

(
1
𝑡

3
2
+ 1
𝑡
𝑛+4

4
+ 𝑟

𝑛
2−1

𝑡
𝑛+1

2

)
∼𝛿−1𝑒−

𝑛𝑟
2

(
1
𝑡

3
2
+ 𝑟

𝑛
2−1

𝑡
𝑛+1

2

)
≤ (3.4.15)

Therefore, in this region, we have that

ℎ(𝑡, 𝑟) ≤ ℎℍ(𝑡, 𝑟).

(4) (The region for 0 ≤ 𝑟 ≤ 2
√
𝑡 ≤ 2) We will make use of the following theorem

Theorem 3.4.5 ((Cheng-Li-Yau). Let 𝑀 be a complete non-compact Riemannian man-

ifold whose sectional curvature is bounded from below and above. For any constant

𝐶 > 4, there exists 𝐶1 depending on 𝐶, 𝑇, 𝑧 ∈ 𝑀, the bounds of the curvature of 𝑀 so

that for all 𝑡 ∈ [0, 𝑇] the heat kernel 𝐻 (𝑡, 𝑧, 𝑧′) obeys

ℎ (𝑡, 𝑟(𝑧, 𝑧′)) ≤ 𝐶1(𝐶, 𝑇, 𝑧)���𝐵√𝑡 (𝑧)��� exp
(
−𝑟

2 (𝑧, 𝑧′)
𝐶𝑡

)
where 𝑟 (𝑧, 𝑧′) is the geodesic distance on 𝑀.

Form the above theorem, we see that in our asymptotically hyperbolic manifold
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(𝑋𝑛+1, 𝑔+), its heat kernel, in this region, has the following estimate

ℎ(𝑡, 𝑟(𝑧, 𝑧′)) ≤ 𝐶

𝑡
𝑛+1

2
≤ ℎℍ𝑛+1 (𝑡, 𝑟)

where

ℎℍ𝑛+1 (𝑡, 𝑟) ∼ 1
𝑡
𝑛+1

2
𝑒−

𝑛2
4 𝑡𝑒−

𝑛𝑟
2 𝑒

𝑟2
4𝑡 (1 + 𝑟 + 𝑡) 𝑛2−1(1 + 𝑟)

(5) (The region for 0 ≤ 2
√
𝑡 ≤ 𝑟 ≤ 2) We go back to the original formula for the

heat kernel

ℎ(𝑡, 𝑟) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜆
2
𝑅(𝜆 − 𝑖𝜀)𝑑𝜆

If we can shift the integral contour to ℑ(𝜆) = −𝑖𝑟
2𝑡 , then,

ℎ(𝑡, 𝑟) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡(𝜔−
𝑖𝑟
2𝑡 )

2
𝑅(𝜆 − 𝑖𝜀)𝜆𝑑𝜆

= lim
𝜀→0

𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑒𝑖𝜆𝑟𝑅(𝜆 − 𝑖𝜀)𝜆𝑑𝜆.

At this time we see that

|𝜆 | ≥ 𝑟

2𝑡
⇒ 𝑟 |𝜆 | ≥ 𝑟2

2𝑡
≥ 2 ⇒ 𝑟(1 + |𝜆 |) > 1.

Therefore, we can make use of the theorem 3.4.2. We have that

ℎ(𝑡, 𝑟) = lim
𝜀→0

𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)𝜆𝑑𝜆

By the section of the exchange the order of the limit and integral, we see that

ℎ(𝑡, 𝑟) = 𝑒−
𝑛2
4 𝑡𝑒−

𝑟2
4𝑡
𝑖

𝜋

∫
ℝ

𝑒−𝑡𝜔
2
𝑅𝑜𝑑 (𝜆 − 𝑖𝜀)𝜆𝑑𝜆
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Then, by the theorem 3.4.2,

|𝑅𝑜𝑑 (𝜆) | ≤ 𝑟−
𝑛
2 (1 + 𝜆) 𝑛2−1

Therefore, we have that

|ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡

∫
ℝ

𝑒−𝑡𝜔
2 |𝑅𝑜𝑑 (𝜔 − 𝑖𝑟

2𝑡
) | · |𝜔 − 𝑖𝑟

2𝑡
|𝑑𝜔

≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑟−

𝑛
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 + |𝜔 − 𝑖𝑟

2𝑡
|) 𝑛2−1 · |𝜔 − 𝑖𝑟

2𝑡
|𝑑𝜔

≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑟−

𝑛
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 +

√︂
𝜔2 + 𝑟2

4𝑡2
) 𝑛2−1 ·

√︂
𝜔2 + 𝑟2

4𝑡2
𝑑𝜔

Then, we will make use the following formula

𝐶1( |𝑎| + |𝑏|) ≤
√︁
𝑎2 + 𝑏2 ≤ |𝑎| + |𝑏|

𝐶3( |𝑎|𝑘 + |𝑏|𝑘) ≤ (𝑎 + 𝑏)𝑘 ≤ 𝐶4( |𝑎|𝑘 + |𝑏|𝑘)

for 𝑘 ≥ 0. By the above inequalities, we have that

|ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑟−

𝑛
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 +

√︂
𝜔2 + 𝑟2

4𝑡2
) 𝑛2−1 ·

√︂
𝜔2 + 𝑟2

4𝑡2
𝑑𝜔

∼𝐶𝑒− 𝑛2
4 𝑡𝑒−

𝑟2
4𝑡 𝑟−

𝑛
2

∫
ℝ

𝑒−𝑡𝜔
2 (1 + (|𝜔 | + 𝑟

2𝑡
) 𝑛2−1) ( |𝜔 | + 𝑟

2𝑡
)𝑑𝜔

Therefore,

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑟

𝑛
2 |ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤

∫
ℝ

𝑒−𝑡𝜔
2 (1 + (|𝜔 | + 𝑟

2𝑡
) 𝑛2−1) ( |𝜔 | + 𝑟

2𝑡
)𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [( |𝜔 | + 𝑟

2𝑡
) + (|𝜔 | + 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [( |𝜔 | + 𝑟

2𝑡
) + (|𝜔 | 1

2 + ( 𝑟
2𝑡
) 1

2 )𝑛]𝑑𝜔

≤
∫
ℝ

𝑒−𝑡𝜔
2 [|𝜔 | + 𝑟

2𝑡
+ |𝜔 | 𝑛2 + ( 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔
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Then, by the fact that∫
ℝ

𝑒−𝑡𝜔
2 |𝜔 |𝑛 = 2

∫ ∞

0
𝑒−𝑦

1
𝑡
𝑛+1

2
𝑦
𝑛−1

2
1
2
𝑑𝑦 =

1
𝑡
𝑛+1

2
Γ(𝑛 + 1

2
),

Then, we have that

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 𝑟−

𝑛
2 |ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ≤

∫
ℝ

𝑒−𝑡𝜔
2 [|𝜔 | + 𝑟

2𝑡
+ |𝜔 | 𝑛2 + ( 𝑟

2𝑡
) 𝑛2 ]𝑑𝜔 (3.4.25)

∼1
𝑡
+ 𝑟

2𝑡 3
2
+ 1
𝑡
𝑛+2

4
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
(3.4.26)

Therefore,

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 |ℎ(𝑡, 𝑟(𝑧, 𝑧′)) | ∼𝑟

𝑛
2+1

𝑡
+ 𝑟

𝑛
2+1

2𝑡 3
2
+ 𝑟

𝑛
2

𝑡
𝑛+2

4
+ 𝑟𝑛

𝑡
𝑛+1

2

∼𝑟
𝑛
2+1

2𝑡 3
2
+ 𝑟

𝑛
2

𝑡
𝑛+2

4
+ 𝑟𝑛

𝑡
𝑛+1

2
≤ 𝐶

𝑟
𝑛
2

𝑡
𝑛+1

2

On the other hand, for the heat kernel of hyperbolic space, we have that

𝑒
𝑛2
4 𝑡𝑒

𝑟2
4𝑡 ℎℍ𝑛+1 (𝑡, 𝑟(𝑧, 𝑧′))

∼ 1
𝑡
𝑛+1

2
(1 + 𝑟 + 𝑡) 𝑛2−1(1 + 𝑟)

∼ 1
𝑡
𝑛+1

2
(1 + (𝑟 + 𝑡) 𝑛2−1) (1 + 𝑟)∗

∼ 1
𝑡
𝑛+1

2
(1 + (

√
𝑟 +

√
𝑡)𝑛−2) (1 + 𝑟)

∼ 1
𝑡
𝑛+1

2
(1 + 𝑟 𝑛−2

2 + 𝑡 𝑛−2
2 ) (1 + 𝑟)

∼ 𝑟

𝑡
𝑛+1

2
+ 𝑟

𝑛
2

𝑡
𝑛+1

2
+ 𝑟

𝑡
3
2

Therefore, in this region, we have that

ℎ(𝑡, 𝑟) ≤ 𝐶ℎℍ𝑛+1 (𝑡, 𝑟)
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(6) (The region for 𝑡 ≥ 1, 0 ≤ 𝑟 ≤ 2) We start with the formula for the heat kernel

ℎ(𝑡, 𝑟) = 𝑒−𝑡(Δ𝑋−
𝑛2
4 ) = 𝑒

𝑛2
4 𝑡

∫ ∞

0
𝑒−𝑡𝜆𝐸

Δ𝑋− 𝑛2
4
(𝑑𝜆)

where 𝐸
Δ𝑋− 𝑛2

4
is the spectrum for the operator Δ𝑋 − 𝑛2

4 . By the fact that

𝐸
Δ𝑋− 𝑛2

4
= 𝐸√︃

Δ𝑋− 𝑛2
4

,

we have that

ℎ(𝑡, 𝑟) = 𝑒−𝑡(
√︃
Δ𝑋− 𝑛2

4 )2
= 𝑒

𝑛2
4 𝑡

∫ ∞

0
𝑒−𝑡𝜆

2
𝐸√︃

Δ𝑋− 𝑛2
4

(𝑑𝜆)

By the theorem 3.4.1, we have that∫ ∞

0
𝑒−𝑡𝜆

2
𝑑𝐸√

Δ𝑋−𝑛2/4(𝜆) ≤ 𝐶

∫ 1

0
𝑒−𝑡𝜆

2
𝜆2𝑑𝜆 + 𝐶

∫ ∞

1
𝑒−𝑡𝜆

2
𝜆𝑛𝑑𝜆 ≤ 𝐶𝑡−3/2

On the other hand, in this region,

ℎℍ𝑛+1 (𝑡, 𝑟) ∼ 1
𝑡
𝑛+1

2
𝑒−

𝑛2
4 𝑡𝑒−

𝑛𝑟
2 𝑒

𝑟2
4𝑡 (1 + 𝑟 + 𝑡) 𝑛2−1(1 + 𝑟) ∼ 𝑒−

𝑛2
4 𝑡

1
𝑡

3
2

Therefore, we have that

|ℎ(𝑡, 𝑟) | ≤ 𝐶 |ℎℍ𝑛+1 (𝑡, 𝑟) |

Therefore, we finish the estimate for the upper bound of the heat kernel.

3.4.2 The Vasy’s approach for tensor cases

Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic space with the conformal boundary 𝜕𝑀

and defining function 𝜌. The resolvent (Definition 6.1 [7]) of Δ is defined for 𝑅𝑒(𝑠) > 𝑛
2 ,
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𝑠 ∉ [ 𝑛2 , 𝑛], by

𝑅𝑀 (𝑠) := (Δ − 𝑠(𝑛 − 𝑠))−1

Let 𝑈 ⊆ ℂ be a open subset.

M𝑒𝑟(𝑈,L(H))

stands for the set of meromorphic functions on 𝑈 with values in L(H) where L(H) is

the bounded linear operator on H .

Our goal is to finitely meromorphically extend the resolvent 𝑅𝑀 (𝑠) from the above

region to the complex plane ℂ. For function we have the classical result of Melrose and

Mazzeo which is as following

Theorem 3.4.6 (Theorem 7.1 in [33]). Theorem 1.1. Let (𝑀𝑛+1, 𝑔+) be an asymptotically

hyperbolic manifold, Δ its Laplacian acting on functions and 𝜌 a boundary defining

function on �̄�. The modified resolvent

𝑅(𝑠) := (Δ − 𝑠(𝑛 − 𝑠))−1 ∈ M𝑒𝑟 𝑓

(
O0,L

(
𝐿2(𝑀)

))
with poles at points 𝜆 ∈ O0 such that 𝜆 (𝑛−𝜆) ∈ 𝜎𝑝𝑝(𝑃), extends to a finite-meromorphic

family

𝑅(𝑠) ∈ M𝑒𝑟 𝑓

(
O𝑁\

(
𝑍1
− ∪ 𝑍2

−

)
,L

(
𝜌𝑁𝐿2(𝑀), 𝜌−𝑁𝐿2(𝑀)

))
, ∀𝑁 ≥ 0

where

O𝑁 :=
{
𝜆 ∈ ℂ; 𝑅𝑒(𝜆) > 𝑛

2
− 𝑁

}
, 𝑍𝑘± :=

𝑛

2
±

(
𝑘

2
+ ℕ0

)
⊆ ℂ

While Colin Guillarmou modified the above result by adding an extra condition-

evenness
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Definition 3.4.7 (Definition 1.2 in [22]). Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic

manifold and 𝑘 ∈ ℕ∪{∞}. We say that 𝑔+ is even modulo𝑂
(
𝜌2𝑘+1) if there exists 𝜖 > 0,

a boundary defining function 𝜌 and some tensors(ℎ2𝑖) 𝑖=0,...,𝑘 on 𝜕𝑀 such that

𝜙∗
(
𝜌2𝑔

)
= 𝑑𝑡2 +

𝑘∑︁
𝑖=0

ℎ2𝑖𝑡
2𝑖 + 𝑂

(
𝑡2𝑘+1

)
where 𝜙 is the diffeomorphism induced by the flow 𝜙𝑡 of the gradient grad𝜌2𝑔 (𝜌)

Theorem 3.4.8 (Proposition 1.3 in [22]). Under the assumptions of Theorem 3.4.6, the

modified resolvent extends to a finite-meromorphic family

𝑅(𝑠) ∈ M𝑒𝑟 𝑓

(
O𝑁\𝑍1

−,L
(
𝜌𝑁𝐿2(𝑀), 𝜌−𝑁𝐿2(𝑀)

))
, ∀𝑁 ≥ 0

and if 𝑔 is even modulo 𝑂
(
𝑥2𝑘+1) , this extension satisfies

𝑅(𝑠) ∈ M𝑒𝑟
(
O𝑁 ,L

(
𝜌𝑁𝐿2(𝑀), 𝜌−𝑁𝐿2(𝑀)

))
, ∀𝑁 ∈

[
0, 𝑘 + 1

2

)
(∗)

Conversely if (∗) holds true for 𝑘 ≥ 2 then 𝑔 is even modulo 𝑂
(
𝜌2𝑘−1) .

3.4.3 The High Frequency Result for the tensor

In this section, we will introduce the High Frequency result of the tensor from the [24].

Theorem 3.4.9 ([24]). Let
(
𝑋𝑛+1, 𝑔

)
be even asymptotically hyperbolic and Einstein.

Then the inverse of Δ− 𝑛(𝑛−8)
4 + 𝜆2 acting on 𝐿2

(
𝑋 ; E (2)

)
∩ ker Λ∩ ker 𝛿 written R𝜆 has

a meromorphic continuation from Re 𝜆 ≫ 1 to ℂ,

R𝜆 : 𝐶∞
𝑐

(
𝑋 ; E (2)

)
∩ ker Λ ∩ ker 𝛿 → 𝜌𝜆+

𝑛
2−2𝐶∞

even

(
�̄� ; E (2)

)
∩ ker Λ ∩ ker 𝛿

with finite rank poles.

176



§3.4 Heat kernel estimates of X.Chen and A.Hassell

Theorem 3.4.10 ([24]). Suppose that 𝑋 is an even asymptotically hyperbolic manifold

which is non-trapping. Then the meromorphic continuation, written Q−1
𝜆

of the inverse

of Q𝜆 initially acting on 𝐿2
𝑠 (𝑋 ; E) has non-trapping estimates holding in every strip

| Re 𝜆 | < 𝐶, | Im 𝜆 | ≫ 0 : for 𝑠 > 1
2 + 𝐶𝜌−𝜆− 𝑛

2+𝑚Q−1
𝜆 𝑓


𝐻𝑠
|𝜆 |−1 (𝑋 ;E)

≤ 𝐶 |𝜆 |−1
𝜌−𝜆− 𝑛

2+𝑚−2 𝑓

𝐻𝑠−1
|𝜆 |−1 (𝑋 ;E)

If 𝑋 is furthermore Einstein, then restricting to symmetric 2-cotensors, the meromorphic

continuation R𝜆 of the inverse of

Δ − 𝑛(𝑛 − 8)
4

+ 𝜆2

initially acting on 𝐿2
(
𝑋 ; E (2)

)
∩ ker Λ ∩ ker 𝛿 has non-trapping estimates holding in

every strip | Re 𝜆 | < 𝐶, | Im 𝜆 | ≫ 0 : for 𝑠 > 1
2 + 𝐶𝜌−𝜆− 𝑛

2+2R𝜆 𝑓


𝐻𝑠
|𝜆 |−1(𝑋 ;E (2))

≤ 𝐶 |𝜆 |−1
𝜌−𝜆− 𝑛

2 𝑓


𝐻𝑠−1

|𝜆 | |−1 (𝑋 ;E (2))
.

Remark 3.4.11. The above theorem is not enough to prove the heat kernel estimate for

the Lichnerowicz operator. We need a more precise high frequency like theorem 3.4.2.

I am still working on this.
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Main results

In this section, I will introduce my research about the long time existence and conver-

gence of the normalized Ricci flow starting with an asymptotically hyperbolic manifolds.

Our study demonstrates that the normalized Ricci flow exists globally and converges

to an Einstein metric, provided that the initial metric is non-degenerate and sufficiently

Ricci pinched. Notably, this result holds under weaker conditions compared to the cor-

responding outcome in [42]. Subsequently, we obtain the corresponding stability result

of the conformally compact Einstein metric under the normalized Ricci DeTurck flow.

Furthermore, the normalized Ricci flow enables us to partially recover the existence

results in [21], [30], and [3]. Specifically, we consider conformally compact Einstein

metrics with conformal infinities, which are perturbations of the given non-degenerate

conformally compact Einstein metric.
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§ 4.1 Introduction

In this section, we study the normalized Ricci flows on asymptotically hyperbolic

manifolds and use normalized Ricci flows to construct conformally compact Einstein

metrics. We recall that Ricci flow starting from a metric 𝑔0 on a manifold 𝑀𝑛 is a family

of metrics 𝑔(𝑡) that satisfies the following:
𝑑

𝑑𝑡
𝑔(𝑡) = −2 Ric𝑔(𝑡)

𝑔(0) = 𝑔0

We then consider the normalized Ricci flow as follows:
𝑑

𝑑𝑡
𝑔(𝑡) = −2

(
Ric𝑔(𝑡) +𝑛𝑔(𝑡)

)
𝑔(0) = 𝑔0

It is easily seen that the above two equations are equivalent. In fact explicitly

𝑔𝑁 (𝑡) = 𝑒−2𝑛𝑡𝑔

(
1

2𝑛

(
𝑒2𝑛𝑡 − 1

))
solves the second equation if and only if g(t) solves the first equation.

Naturally one initial step is to study normalized Ricci flows starting from metrics

that are close to be Einstein. Such questions on compact manifolds were studied in

[49], where it was observed that the normalized Ricci flow exists globally and converges

exponentially to an Einstein metric if the initial metric 𝑔0 is sufficiently close to Einstein

metric and non-degenerate.

To be more precise, suppose that (𝑀𝑛+1, 𝑔) is a Riemannian manifold. We say a
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metric 𝑔 on 𝑀 is 𝜀-Einstein if

∥ℎ𝑔∥𝐶0 ≤ 𝜀

on 𝑀, where ℎ𝑔 = 𝑅𝑖𝑐𝑔 + 𝑛𝑔 is called Ricci pinching curvature. The non-degeneracy

of the metric 𝑔 is defined to be the first 𝐿2 eigenvalue of the linearization of the Ricci

pinching curvature tensor ℎ𝑔 as follows:

𝜆 = inf

∫
M

〈
(Δ𝐿 + 2(𝑛 − 1)) 𝑢𝑖 𝑗, 𝑢𝑖 𝑗

〉∫
M |𝑢|2

where the infimum is taken among symmetric 2 -tensors 𝑢 such that∫
M

(
|∇𝑢|2 + |𝑢|2

)
𝑑𝑣 < ∞

and Δ𝐿 is Lichnerowicz Laplacian on symmetric 2-tensors.

Theorem 4.1.1 ([49]). Let (𝑀, 𝑔) be a closed Riemannian manifold of dimension 𝑛 ≥ 3

with non-degeneracy 𝜆 > 0 and the pinching condition∫
𝑀

|ℎ𝑔 |2𝑑𝑣 < 𝜀(𝑛, ∥𝑅𝑚∥𝐶0 , 𝑑);

for some positive number 𝜀 depending on the 𝐶0 norm Riemannian curvature , ∥𝑅𝑚∥𝐶0 ,

the diameter 𝑑 and the dimension, 𝑛. Then 𝑔 can be deformed to an Einstein metric

through the normalized Ricci flow. In particular, 𝑀 supports Einstein metrics.

In the primary literature of [49], the definition of the Ricci flow varies slightly from

our own. Nevertheless, the outcome and approach remain same.

There are also several works in the non-compact cases. In [29], the stability of the

hyperbolic space under the normalized Ricci flow was established. This stability result
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on the hyperbolic space in [29] later is improved and extended in [2] [1] [43] [45]. In the

light of [29], [42] gives a more general long time existence result about the normalized

Ricci flow on asymptotically hyperbolic manifolds.

Prior to presenting the findings of [42], it is imperative to first provide an introduction

to fundamental concepts. Suppose that 𝑀 (𝑛+1) is a smooth manifold with boundary

𝜕𝑀𝑛. A defining function of the boundary is a smooth function 𝑥 : 𝑀 → 𝑅+ such

that, 1) 𝑥 > 0 in 𝑀; 2) 𝑥 = 0 on 𝜕𝑀; 3) 𝑑𝑥 ≠ 0 on 𝜕𝑀. A metric 𝑔 on 𝑀 is said to be

conformally compact if 𝑥2𝑔 is a Riemannian metric on 𝑀 for a defining function 𝑥.

The metric 𝑔 is said to be conformally compact of regularity 𝐶𝑘,𝛼 if 𝑥2𝑔 is a 𝐶𝑘,𝛼 metric

on M. The metric �̄� = 𝑥2𝑔 induces a conformal class of metric [�̂�] on the boundary

𝜕M when defining functions vary. The conformal manifold (𝜕𝑀, [�̂�]) is called the

conformal infinity of the conformally compact manifold (𝑀, 𝑔). Furthermore, (𝑀, 𝑔)

is said to be asymptotically hyperbolic if it is conformally compact and the sectional

curvature of 𝑔 goes to -1 approaching the boundary at the infinity and (𝑀, 𝑔) is said to

be a conformally compact Einstein manifold if 𝑅𝑖𝑐𝑔 = −𝑛𝑔.

In addition, we say a metric g on a manifold 𝑀𝑛+1 is 𝜖-Einstein of order 𝛿 if

|ℎ𝑔 | (𝑥) ≤ 𝜖𝑒𝛿𝑑(𝑥0,𝑥)

on 𝑀𝑛+1, where 𝑑(𝑥, 𝑥0) is the distance to a fixed point 𝑥0 ∈ 𝑀𝑛+1.

Theorem 4.1.2 ([42]). Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic manifold with

non-degeneracy 𝜆 > 0, 𝑛 ≥ 2, ∥∇𝑅𝑚∥𝐶0 < 𝑘1 for some positive number 𝑘1 and pinching
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condition

|ℎ𝑔+ | (𝑥) < 𝜀𝑒−𝛾𝑑(𝑥,𝑥0)

for a fixed point 𝑥0 ∈ 𝑀, some 𝛾 > 0 satifying

𝛾 +
√
𝜆 >

𝑛

2

and 𝜀 depending on 𝑛, 𝜆, 𝑘1, 𝛾, ∥𝑅𝑚∥𝐶0 , 𝑣0, and 𝐶0, where

𝑣0 = inf
𝑥∈𝑀

(𝑣𝑜𝑙(𝐵𝑔+ (𝑥, 1))

and

𝐶0 = sup
𝑥0∈𝑀

(
∫
𝑀

𝑒𝑥 𝑝(−𝑛𝑑(𝑥, 𝑥0))𝑑𝑥).

Then, the normalized Ricci flow starting from a metric 𝑔+ exists for all the time and

converges exponentially to an Einstein metric in the sense of 𝐶∞.

It is apparent that the prerequisites for the results presented in [42] and [49] share a

significant resemblance. However, the key difference lies in the pinching conditions.

Specifically, [49] stipulates that ∫
𝑀

|ℎ𝑔 |2𝑑𝑣𝑔 < 𝜀.

allowing for the exponential decay of ∥ℎ𝑔∥𝐿2 (𝑀) in the time direction to be easily obtained

using non-degeneracy. Once the exponential decay of ∥ℎ𝑔∥𝐿2 (𝑀) with respect to time

is established, the exponential decay of ∥ℎ𝑔∥𝐶0 with respect to time can be derived by

the De Giorgi-Nash-Moser theorem. A contradiction argument can then be employed

to achieve the desired long-term existence and convergence outcome.
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While, [42] requires that

|ℎ𝑔 | (𝑥) < 𝜀𝑒−𝛾𝑑(𝑥,𝑥0)

It is worth noting that when 𝛾 ≤ 𝑛/2, such a condition precludes the possibility of

achieving exponential decay of ∥ℎ𝑔∥𝐿2 (𝑀) in relation to time. Consequently, the author

of [42] utilizes an auxiliary function constructed in [29] to acquire local 𝐿2 exponential

decay of ℎ𝑔, which still suffices to achieve the exponential decay of |ℎ𝑔 |𝐶0 with respect

to time through the De Giorgi-Nash-Moser theorem. Specifically, the authors consider

the following auxiliary function

𝜉(𝑥, 𝑦, 𝑡, 𝑠) = −
𝑑2

0 (𝑥, 𝑦)
(2 + 𝐶0𝜀) (𝑡 − 𝑠)

where 𝑑0(𝑥, 𝑦) is the distance from 𝑦 ∈ 𝑀 to the geodesic ball 𝐵0(
√︁
𝑟/2, 𝑥)) with respect

to the initial metric and 𝐶0 is chosen so that

𝜉𝑠 +
1
2
|∇𝜉|2 ≤ 0

Subsequently, they set

𝐽 (𝑥, 𝑡, 𝑠) =
∫
𝑀

exp(𝜉(𝑥, 𝑦, 𝑡, 𝑠)) · |ℎ𝑔 |2(𝑦, 𝑠)𝑑𝑦

It is evident that

𝐽 (𝑥, 𝑡, 𝑠) ≤ exp(−2(𝜆 − 𝜀)𝑠)𝐽 (𝑥, 𝑡, 0)

and

∥ℎ𝑔∥2
𝐿2 (𝐵0 (

√
𝑟/2,𝑥)))

(𝑠) ≤ 𝐽 (𝑥, 𝑡, 𝑠)
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Thus, through the De Giorgi-Nash-Moser theorem

∥ℎℎ∥2
𝐶0 ((𝑡−𝑟/2)×𝐵0 (

√
𝑟/2,𝑥))

≤ 𝐶(𝑛, 𝑣0, 𝑘1, 𝑟)
∫ 𝑡

𝑡−𝑟

∫
𝐵0 (

√
𝑟/2,𝑥))

|ℎ𝑔 |2(𝑦, 𝑠)𝑑𝑦𝑑𝑠,

the following local estimate can be derived

∥ℎℎ∥2
𝐶0 ((𝑡−𝑟/2)×𝐵0 (

√
𝑟/2
, 𝑥) ≤ 𝐶(𝑛, 𝑣0, 𝑘1, 𝑟) exp(−2(𝜆 − 𝜀)𝑡)𝐽 (𝑥, 𝑡, 0)

=𝐶 exp(−2(𝜆 − 𝜀)𝑡)
∫
𝑀

exp(−
𝑑2

0 (𝑥, 𝑦)
(2 + 𝐶0𝜀)𝑡

) · |ℎ𝑔 |2(𝑦, 0)𝑑𝑦

≤𝐶 exp(−2(𝜆 − 𝜆0 − 𝜀)𝑡)
∫
𝑀

exp(−2

√︄
2𝜆0

2 + 𝐶0𝜀
𝑑0(𝑥, 𝑦)) · 𝜀𝑒𝑥 𝑝(−2𝛾𝑑0(𝑦, 𝑥0))𝑑𝑦

To obtain a uniformly bounded last integral, the additional constraint

𝛾 +
√
𝜆 >

𝑛

2
,

is imposed by the following lemma

Lemma 4.1.3 (lemma 6.1 in [30]). Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic

manifold. Then ∫
𝑀

exp(−𝛼𝑑(𝑥, 𝑥0))𝑑𝑣𝑜𝑙𝑔+ ≤ 𝐶

for any constant 𝛼 > 𝑛, where 𝐶 is independent of 𝑥0 ∈ 𝑀.

Then, by applying the same contradiction argument as in [49], [42] still achieve the

long-time existence and convergence theorem. It is worth noting that for hyperbolic

space ℍ𝑛+1, 𝜆 = 𝑛2

4 and the above additional condition always holds if 𝛾 > 0.

Drawing on the method presented in [49] and [42] and taking into account the obser-

vation that the Rayleigh quotient tends towards 𝑛2

4 as the function’s support approaches
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infinity,

Lemma 4.1.4 (Lemma 7.16 in [30]). The following asymptotic estimate holds for any

smooth, compactly supported, trace-free symmetric 2-tensor 𝑢 :

(𝑢, (Δ𝐿 + 2𝑛)𝑢) ≳ 𝑛2

4
∥𝑢∥2

we derive the ensuing enhanced global existence and convergence theorem. This

theorem effectively demonstrates that the aforementioned supplementary constraint is

unnecessary.

Theorem 4.1.5. Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic manifold with non-

degeneracy 𝜆 > 0, 𝑛 ≥ 3, ∥𝑅𝑚∥𝐶5 < 𝑘 for some positive number 𝑘 > 0. Suppose the

metric 𝑔+ also satisfies the pinching condition

|ℎ𝑔+ | (𝑥) < 𝜀𝑒−𝛾𝑑(𝑥,𝑥0)

for a fixed point 𝑥0 ∈ 𝑀, some 𝛾 > 0 and 𝜀 depending on 𝑛, 𝜆, 𝑘𝑙, 𝛾, and 𝐶0, where

𝑣0 = inf
𝑥∈𝑀

(𝑣𝑜𝑙(𝐵𝑔+ (𝑥, 1))

and

𝐶0 = sup
𝑥0∈𝑀

(
∫
𝑀

𝑒𝑥 𝑝(−𝑛𝑑(𝑥, 𝑥0))𝑑𝑥.

Then, the normalized Ricci flow starting from a metric 𝑔+ exists for all the time and

converges exponentially to an Einstein metric in the sense of 𝐶∞.

After obtaining the aforementioned improved long time existence result, we can apply

theorem 4.5 in [42] to obtain the following theorem, which states that the normalized
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Ricci flow also preserves conformal infinity as time goes to infinity:

Theorem 4.1.6. Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic manifold of regularity

𝐶2 with non-degeneracy 𝜆 > 0, 𝑛 ≥ 3 and ∥𝑅𝑚∥𝐶5 < 𝑘 for some positive number 𝑘 > 0

and the pinching condition

|ℎ𝑔+ | (𝑥) < 𝜀𝑒−𝛾𝑑(𝑥,𝑥0) , |∇ℎ𝑔+ | (𝑥) < 𝐶𝑒−𝛾𝑑(𝑥,𝑥0)

for a fixed point 𝑥0 ∈ 𝑀, some 𝐶 > 0, some 𝛾 > 0 satisfying

𝛾 ∈ (𝑛
2
−

√︂
𝑛2

4
− 2,

𝑛

2
+

√︂
𝑛2

4
− 2)

and 𝜀 depending on 𝑛, 𝜆, 𝑘, 𝛾, and 𝐶0, where

𝑣0 = inf
𝑥∈𝑀

(𝑣𝑜𝑙(𝐵𝑔+ (𝑥, 1))

and

𝐶0 = sup
𝑥0∈𝑀

(
∫
𝑀

𝑒𝑥 𝑝(−𝑛𝑑(𝑥, 𝑥0))𝑑𝑥.

Then, the normalized Ricci flow 𝑔(𝑡) starting from a metric 𝑔+ exists for all the time and

converges exponentially to an Einstein metric 𝑔∞ in the following sense

lim
𝑡→∞

∥𝑒𝛾𝑑0 (𝑥,𝑥0) (𝑔(𝑡) − 𝑔∞)∥𝐶0 = 0

In particular, 𝑔∞ is an asymptotically hyperbolic Einstein metric if 𝛾 > 2

It is worth noting that if 𝑛 = 3, the 𝛾 can not reach 2.

The theorem 4.1.6 can be regarded as a generalization of the theorem 4.1 in the paper
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[42]. In the latter reference, the condition is imposed on the weight 𝛾 as follows:

𝛾 ∈
(
𝑛

2
− min

{
√
𝜆,

√︂
𝑛2

4
− 2

}
,
𝑛

2
+

√︂
𝑛2

4
− 2

)
where 𝜆 is the non-degeneracy of 𝑔+. However, with the aid of the theorem 4.1.5, the

above condition can be weakened to the following

𝛾 ∈
(
𝑛

2
−

√︂
𝑛2

4
− 2,

𝑛

2
+

√︂
𝑛2

4
− 2

)
Moreover, once we have the long time existence and convergence of normalized

Ricci flow, we can derive the following stability theorem of asymptotically hyperbolic

manifolds.

Theorem 4.1.7. Let (𝑀𝑛+1, 𝑔+) be an asymptotically hyperbolic Einstein manifold with

nondegeneracy 𝜆 > 0, regularity 𝐶2,𝛼 and 𝑛 ≥ 4. Let 𝑔 be another asymptotically

hyperbolic metric on 𝑀𝑛+1. Then, for any 𝛾 > 0, there exists 𝜖0(𝜆, 𝛾) > 0, such that if

|𝑔 − 𝑔+ |𝑔+ (𝑥) ≤ 𝜖0𝑒
−𝛾𝑑(𝑥0,𝑥) , Then the normalized Ricci DeTurck flow with the initial 𝑔

has the long time existence and

lim
𝑡→∞

∥𝑒𝛾𝑑(𝑥,𝑥0) (𝑔(𝑡) − 𝑔+)∥𝐶0 = 0

For the stability result of hyperbolic space𝑀𝑛+1 = ℍ𝑛+1, Schulze, Schnurer and Simon

([43]) have shown stability of 𝑛 ≥ 3 for every perturbation |𝑔 − 𝑔ℍ𝑛+1 |𝐿∞ is bounded by

a small constant depending on ∥𝑔 − 𝑔ℍ𝑛+1 ∥𝐿2 .

While Li and Yin ([29]) have shown a stability result of 𝑛 ≥ 2 if

∥𝑔+ − 𝑔ℍ𝑛+1 ∥𝐶0 ≤ 𝜀 |𝑅𝑖𝑐𝑔+ + 𝑛𝑔+ | (𝑥) ≤ 𝜀𝑒𝛾𝑑(𝑥,𝑥0)

for small enough 𝜀.
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Furthermore, Bamler ([2]) have shown stability of 𝑛 ≥ 2 for the perturbation |𝑔 −

𝑔ℍ𝑛+1 | = ℎ1 + ℎ2 for which

|ℎ1 | (𝑥) ≤
𝜖1

𝑑(𝑥0, 𝑥) + 1
𝑎𝑛𝑑 sup

𝑀

|ℎ2 | +
(∫

𝑀

|ℎ2 |𝑞
) 1
𝑞

≤ 𝜖2

for every 𝑞 < ∞.

It easy to see that the stability result of [2] just implies that the stability result of [43].

For the theorem 4.1.7, if we take 𝑔+ is the standard hyperbolic metric, then this sta-

bility result is implied by the stability result of [2].

In addition, by the theorem 4.1.6, we can partially recover the perturbation existence

results in [21] [30] [3]. The idea is to construct an asymptotically hyperbolic metric

with prescribed boundary satisfying the condition of theorem 4.1.6.

Theorem 4.1.8. Let (𝑀𝑛+1, 𝑔+), be a conformally compact Einstein manifold of regu-

larity 𝐶2 with a smooth conformal infinity (𝜕𝑀, [�̂�]) and 𝑛 ≥ 4. And suppose that the

non-degeneracy of 𝑔 satisfies

𝜆 > 0

Then, for any smooth metric ℎ̂ on 𝜕𝑀, which is sufficiently 𝐶2,𝛼 close to some �̂� ∈ [�̂�]

for any 𝛼 ∈ (0, 1), there is a conformally compact Einstein metric on 𝑀 which is of 𝐶2

regularity and with the conformal infinity [ℎ̂].
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4.1.1 Curvature flow and its linearization

Let 𝑔(𝑡) be a family of metrics on the same manifolds 𝑀𝑛+1 satisfying the normalized

Ricci flow 
𝜕

𝜕𝑡
𝑔(𝑡) = −2

(
Ric𝑔(𝑡) +𝑛𝑔(𝑡)

)
𝑔(0) = 𝑔+

Let ℎ(𝑡) = 𝑅𝑖𝑐𝑔(𝑡) + 𝑛𝑔(𝑡). Then, we can get the evolution equation of ℎ(𝑡) as following

𝜕

𝜕𝑡
ℎ𝑖𝑙 = Δ𝐿ℎ𝑖𝑙 − 2𝑛ℎ𝑖𝑙

where Δ𝐿 is the Lichnerowicz Laplacian operator defining as following

Δ𝐿ℎ𝑖𝑙 = Δℎ𝑖𝑙 − 𝑔 𝑗𝑘1𝑅𝑙 𝑗ℎ𝑘1𝑖 − 𝑔 𝑗𝑘1𝑅𝑖 𝑗ℎ𝑘1 𝑙 + 2𝑔 𝑗𝑘1𝑔𝑖1𝑖2𝑅𝑖𝑖2 𝑙 𝑗ℎ𝑘1𝑖1

Moreover, we can also write the above as

𝜕

𝜕𝑡
ℎ𝑖𝑙 = Δ𝐿(𝑔(𝑡−𝑙))ℎ𝑖𝑙 − 2𝑛ℎ𝑖𝑙 + 𝑄

where

𝑄 =[Δ𝐿(𝑔(𝑡)) − Δ𝐿(𝑔(𝑡−𝑙))]ℎ𝑖𝑙

=𝑔(𝑡) ∗ 𝑔(𝑡 − 𝑙) ∗ [∇̃𝑔(𝑡) ∗ ∇̃𝑔(𝑡) + 𝑔(𝑡) ∗ (∇̃2𝑔(𝑡) + 𝑅(𝑔(𝑡 − 𝑙)))] ∗ ℎ

+ 𝑔(𝑡) ∗ 𝑔(𝑡 − 𝑙) ∗ [∇̃𝑔(𝑡)] ∗ ∇̃ℎ

where ∇̃ is with respect to 𝑔(𝑡 − 𝑙).

The following metric flow is called the normalized Ricci-DeTurck flow

𝜕

𝜕𝑡
𝑔𝑖 𝑗 = −2𝑅𝑖 𝑗(𝑔(𝑡)) + ∇𝑖𝑊 𝑗 + ∇ 𝑗𝑊𝑖 − 2(𝑛 − 1)𝑔𝑖 𝑗
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where𝑊 𝑗 = 𝑔𝑙𝑙1𝑔 𝑗𝑘(Γ𝑘𝑙𝑙1 (𝑔(𝑡)) − Γ𝑘
𝑙𝑙1
(𝑔(0))) and ∇ is the covariant derivative with respect

to 𝑔(𝑡).

Linearization : Let ℎ𝑖 𝑗(𝑡, 𝑥) = 𝑔𝑖 𝑗(𝑡, 𝑥) − 𝑔𝑖 𝑗(0, 𝑥). Then the Ricci-DeTurck flow is

equivalent to the following flow

𝜕

𝜕𝑡
ℎ𝑖 𝑗 = Δ̃𝐿ℎ𝑖 𝑗 − 2(𝑛 − 1)ℎ𝑖 𝑗 − 2(�̃�𝑖 𝑗 + (𝑛 − 1) �̃�𝑖 𝑗) + 𝑄′

𝑖 𝑗(𝑡, 𝑥)

where Δ̃𝐿 and �̃� are the Lichnerowicz Laplacian operator and Ricci curvature with

respect to 𝑔(0) = �̃� and the high order term 𝑄 is

𝑄′
𝑖 𝑗(𝑡, 𝑥) = 𝑔 ∗ 𝑔−1 ∗ �̃� ∗ �̃�−1 ∗ ∇̃ℎ ∗ ∇̃ℎ + 𝑔 ∗ 𝑔−1 ∗ �̃� ∗ �̃�−1 ∗ ∇̃2ℎ ∗ ℎ

§ 4.2 Long time existences

In the ensuing section, we shall present a formal proof of Theorem 4.1.5. Firstly, we will

provide a comprehensive review of the proof of the long time existence of the normalized

Ricci flow for the compact case in section 3.1, as expounded in [49]. Subsequently,

in section 3.2, we will examine the approach adopted in [42] for the asymptotically

hyperbolic manifolds. Finally, we will proffer a proof of Theorem 4.1.5, utilizing the

principles outlined in [49] and [42].

4.2.1 The compact case

The idea of [49] comprises three steps. The first step involves demonstrating that the

norm of ℎ𝑔(𝑡) in the 𝐿2(𝑀) space exhibits exponential decay over time, subject to certain
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specified conditions pertaining to the flow 𝑔(𝑡). The second step employs the De Giorgi-

Nash-Moser estimate to establish that ∥ℎ𝑔(𝑡) ∥𝐶2 also undergoes exponential decay over

time, given the aforementioned conditions about the flow 𝑔(𝑡). Finally, Ye’s argument

in [49] relies on a contradiction approach to deduce the existence of a solution over a

long time interval. Let us start with the 𝐿2 estimate.

Lemma 4.2.1 (𝐿2 estimate). For any 𝑇 > 0, let (𝑀𝑛, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇], be a normalized

Ricci flow of closed Riemannian manifolds with 𝑛 ≥ 2 satisfying that

1) ∥𝑔(𝑡) − 𝑔(0)∥𝐶0 (𝑀,𝑔(0)) < 𝜀;

2) the nondegeneracy 𝜆 (𝑔(𝑡)) > 𝜆0 for some 𝜆0 > 0;

3) ∥𝑅𝑚𝑔(𝑡) ∥(𝑡)𝐶0 ≤ 𝑘0 for some 𝑘0 > 0;

4) the diameter 𝑑(𝑔(𝑡)) ≤ 𝐶0 for some 𝐶0 > 0

where 𝜀 depends on 𝑛, 𝜆0, 𝑘0 and 𝐶0. Then, for any (𝑥, 𝑡) ∈ 𝑀 × [0, 𝑇], we have∫
𝑀

|ℎ𝑔 (𝑡) |2(𝑥, 𝑡)𝑑𝑥 ≤ 𝐶𝑒−(2𝜆0−𝐶𝜀)𝑡
∫
𝑀

|ℎ𝑔 | (𝑥, 0)𝑑𝑥

where 𝐶1 is a postive constant depending on 𝑛, 𝜆0, 𝑘0 and 𝐶0.

The proof of the lemma 4.2.1 is straightforward. The above exponential decay is

derived by the equation of
∫
𝑀
|ℎ𝑔 (𝑡) |2(𝑥, 𝑡)𝑑𝑥,

𝜕𝑡

∫
𝑀

|ℎ𝑔 (𝑡) |2(𝑥, 𝑡)𝑑𝑥 ≤ −2
∫
𝑀

((Δ𝐿 + 2𝑛)ℎ𝑔(𝑡) , ℎ𝑔(𝑡)) + 𝐶𝜀
∫
𝑀

|ℎ𝑔(𝑡) |2(𝑥, 𝑡)𝑑𝑥

≤ −(2𝜆0 − 𝐶𝜀)
∫
𝑀

|ℎ𝑔(𝑡) |2(𝑥, 𝑡)𝑑𝑥

Then, by the De Giorgi-Nash-Moser estimate, the following 𝐶2 estimate is derived.

Lemma 4.2.2 (𝐶2 estimate). For any 𝑇 > 0, let (𝑀𝑛, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇], be a normalized

Ricci flow of closed Riemannian manifolds with 𝑛 ≥ 2 satisfying that
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1) ∥𝑔(𝑡) − 𝑔(0)∥𝐶0 ((𝑀,𝑔(0))) < 𝜀;

2) the nondegeneracy 𝜆 (𝑔(𝑡)) > 𝜆0 for some 𝜆0 > 0;

3) ∥𝑅𝑚𝑔(𝑡) ∥(𝑡)𝐶0 ≤ 𝑘0 for some 𝑘0 > 0;

4) the diameter 𝑑(𝑔(𝑡)) ≤ 𝐶0 for some 𝐶0 > 0

where 𝜀 depends on 𝑛, 𝜆0, 𝑘0 and 𝐶0. Then for any (𝑥, 𝑡) ∈ 𝑀 × [𝜏, 𝑇], we have

∥ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶1𝑒
−(2𝜆0−𝐶1𝜀)𝑡

∫
𝑀

|ℎ𝑔 |2(𝑥, 0)𝑑𝑥

and

∥∇ℎ𝑔∥𝐶0 (𝑀) + ∥∇2ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶2𝑒
−(2𝜆0−𝐶2𝜀)𝑡

∫
𝑀

|ℎ𝑔 |2(𝑥, 0)𝑑𝑥

where 𝐶1 is a postive constant depending on 𝑛, 𝜆0, 𝑘0 and 𝐶0, and 𝐶2 is a positive

constant depending on 𝑛, 𝜆0, 𝑘0, 𝐶0 and 𝜏.

Then, by the following short time existence of the normalized Ricci flow [23] on the

compact manifolds, we can see that there exists a time 𝑇 such that the conditions in the

above lemma hold if the non-degeneracy of the initial metric, 𝜆 > 0.

Theorem 4.2.3 ([23]). Let (𝑀𝑛, 𝑔) be a closed Riemannian manifold. Then, there exists

𝑇 > 0 depending on 𝑛 and ∥𝑅𝑚𝑔∥𝐶0 (𝑀) , such that the normalized Ricci flow starting

with 𝑔, 𝑔(𝑡) exists on the time interval [0, 𝑇]. Moreover, the following estimates hold at

any time 𝑡 ∈ [0, 𝑇]:

∥∇𝑘𝑅𝑚𝑔(𝑡) ∥𝐶0 (𝑀) ≤
𝑐(𝑘, 𝑛, ∥𝑅𝑚𝑔∥𝐶0 (𝑀))

𝑡𝑘/2 , 𝑘 = 0, 1, · · ·

where 𝑐(𝑘, 𝑛) depends only 𝑘, 𝑛 and ∥𝑅𝑚𝑔∥𝐶0 (𝑀) .

Then, we will review the contradiction argument in [49] to sketch the proof of the

theorem 4.1.1.
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Step1 (The choice of 𝜀 in lemma 4.2.2): Take 𝜆0, 𝑘0 and 𝐶0 in lemma 4.2.2 as

𝜆0 = 𝜆/2, 𝑘0 = 2∥𝑅𝑚𝑔∥𝐶0 (𝑀) and 𝐶0 = 2𝑑(𝑔) respectively, where 𝜆, 𝑅𝑚 and 𝑑(𝑔) are the

nondegeneracy, Riemannian curvature and diameter of the initial metric g respectively.

Then, we can find a 𝜀 in lemma 4.2.2.

Step2 (Short time existence): By the theorem 4.2.3, we can find 𝑇 > 0 such that the

conditions in the lemma 4.2.2 holds for above 𝜀, 𝜆0, 𝑘0 and 𝐶0. Then, take the maximal

value of the all the above available 𝑇 , 𝑇𝑚𝑎𝑥 .

Step3 (Long time existence): The long time existence is shown by contradiction.

Assume that 𝑇𝑚𝑎𝑥 < +∞. Then, by the lemma 4.2.2, we can alway take∫
𝑀

|ℎ𝑔 | (𝑥, 0)𝑑𝑥

small enough such that in [0, 𝑇𝑚𝑎𝑥]

1) ∥𝑔(𝑡) − 𝑔(0)∥𝑔(0) < 3
4𝜀;

2) the nondegeneracy 𝜆 (𝑔(𝑡)) > 3
4𝜆 ≥ 𝜆0;

3) ∥𝑅𝑚𝑔(𝑡) ∥(𝑡)𝐶0 ≤ 3
2 ∥𝑅𝑚𝑔∥𝐶0 (𝑀) ≤ 𝑘0 for some 𝑘0 > 0;

4) the diameter 𝑑(𝑔(𝑡)) ≤ 3
2𝑑 ≤ 𝐶0

which contradict the choice of 𝑇𝑚𝑎𝑥 < +∞.

4.2.2 The non-compact case

The idea of [42] is pretty similar with that of [49]. The key difference is that in [42], they

make use of the auxiliary function constructed by [29] to obtain the local 𝐿2 estimate of
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ℎ𝑔. First, we will review the local 𝐿2 estimate in [42].

Consider the following auxiliary function

𝜉(𝑥, 𝑦, 𝑡, 𝑠) = −
𝑑2

0 (𝑥, 𝑦)
(2 − 𝐶𝜀) (𝑡 − 𝑠) (4.2.1)

where 𝑑0(𝑥, 𝑦) is the distance from 𝑦 ∈ 𝑀 to the geodesic ball 𝐵0(
√︁
𝑟/2, 𝑥) with respect

to the initial metric and 𝐶 is chosen so that

𝜉𝑠 +
1
2
|∇𝜉|2 ≤ 0

Subsequently, set

𝐽 (𝑥, 𝑡, 𝑠) =
∫
𝑀

exp(𝜉(𝑥, 𝑦, 𝑡, 𝑠)) · |ℎ𝑔 |2(𝑦, 𝑠)𝑑𝑦

It is evident that

∥ℎ𝑔∥2
𝐿2 (𝐵0 (

√
𝑟/2,𝑥)))

(𝑠) ≤ 𝐽 (𝑥, 𝑡, 𝑠)

Thus, the local 𝐿2 estimate of ℎ𝑔 is related to the control of 𝐽 (𝑥, 𝑡, 𝑠).

Lemma 4.2.4 (Local 𝐿2 estimate). For any 𝑇 > 0, let (𝑀𝑛+1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇] be a

normalized Ricci flow of non-compact complete Riemannian manifolds with 𝑛 ≥ 3

satisfying that

1) the non-degeneracy 𝜆 (𝑔(𝑡)) > 𝜆0 for some 𝜆0 > 0;

2)

∥ℎ𝑔(𝑡) ∥𝐶0 ( [0,𝑇]×𝑀) ≤ 𝜀, ∥𝑔(𝑡) − 𝑔(0)∥𝐶0 ((𝑀,𝑔(0))) ≤ 𝜀

where 𝜀 > 0 depends on 𝑛 and 𝜆0;
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3) for the initial metric 𝑔(0)∫
𝑀

exp(𝛼𝑑(𝑥, 𝑥0))𝑑𝑣𝑜𝑙𝑔(0) for some 𝛼 > 0

where 𝑑(𝑥, 𝑥0) is the distance function to a fixed point 𝑥0 ∈ 𝑀 with respect to 𝑔(0).

Then, we have

𝐽 (𝑥, 𝑡, 𝑠) ≤ 𝑒−(2𝜆0−𝐶𝜀)𝑠𝐽 (𝑥, 𝑡, 0)

where 𝐶 > 0 is a constant depending on 𝜀, 𝑛 and 𝜆0.

The above lemma is derived by the following inequality.

𝜕𝑠𝐽 (𝑥, 𝑡, 𝑠) ≤ −2
∫
𝑀

((Δ𝐿 + 2𝑛) (𝑒
𝜉
2 ℎ𝑔(𝑡)), 𝑒

𝜉
2 ℎ𝑔(𝑡)) + 𝐶𝜀𝐽 (𝑥, 𝑡, 𝑥)

≤ −(2𝜆0 − 𝐶𝜀)𝐽 (𝑥, 𝑡, 𝑠)

Lemma 4.2.5 (𝐶2 estimate). For any 𝑇 > 0, let (𝑀𝑛+1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇], be a normalized

Ricci flow of non-compact complete Riemannian manifold with the dimension 𝑛 ≥ 3

satisfying that

1) the non-degeneracy 𝜆 (𝑔(𝑡)) > 𝜆0 for some 𝜆0 > 0;

2)

∥ℎ𝑔(𝑡) ∥𝐶0 ( [0,𝑇]×𝑀) ≤ 𝜀, ∥𝑔(𝑡) − 𝑔(0)∥𝐶0 ((𝑀,𝑔(0))) ≤ 𝜀

where 𝜀 > 0 is a constant depending on 𝑛 and 𝜆0;

3) ∥𝑅𝑚𝑔(𝑡) ∥𝐶0 (𝑀) ≤ 𝑘0 for some 𝑘0 > 0;

4)

sup
(𝑡,𝑥)∈[0,𝑇]×𝑀

𝑣𝑜𝑙𝑔(𝑡) (𝐵(𝑥, 1)) > 𝑣0 for some 𝑣0 > 0

5) for the initial metric 𝑔(0)
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|ℎ𝑔(0) | (𝑥) ≤ 𝜀0𝑒
𝛾𝑑(𝑥,𝑥0) ,

∫
𝑀

exp(𝛼𝑑(𝑥, 𝑥0))𝑑𝑥 ≤ 𝐶0

for some 𝜀0 𝛾, 𝛼 > 0 satisfying that

√
𝜆 + 𝛾 > 𝛼

2
and 𝜀0 ≤ 𝜀

where 𝑑(𝑥, 𝑥0) is the distance function to a fixed point 𝑥0 ∈ 𝑀 with respect to the initial

metric 𝑔(0).

Then for any (𝑥, 𝑡) ∈ 𝑀 × [𝜏, 𝑇], we have

∥ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶1𝜀0𝑒
−(2𝜆0−𝐶1𝜀)𝑡

and

∥∇ℎ𝑔∥𝐶0 (𝑀) + ∥∇2ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶2𝜀0𝑒
−(2𝜆0−𝐶2𝜀)𝑡

where 𝐶1 is a postive constant depending on 𝑛, 𝜆0, 𝑘0, 𝑣0, 𝛼, 𝛾 and 𝜀, and 𝐶2 is a positive

constant depending on 𝑛, 𝜆0, 𝑘0, 𝑣0, 𝛼, 𝛾, 𝜀 and 𝜏.

Through the De Giorgi-Nash-Moser theorem

∥ℎℎ∥2
𝐶0 ((𝑡−𝑟/2)×𝐵0 (

√
𝑟/2,𝑥))

≤ 𝐶(𝑛, 𝑣0, 𝑘1, 𝑟)
∫ 𝑡

𝑡−𝑟

∫
𝐵0 (

√
𝑟/2,𝑥))

|ℎ𝑔 |2(𝑦, 𝑠)𝑑𝑦𝑑𝑠,

the following local estimate can be derived

∥ℎℎ∥2
𝐶0 ((𝑡−𝑟/2)×𝐵0 (

√
𝑟/2
, 𝑥) ≤ 𝐶(𝑛, 𝑣0, 𝑘1, 𝑟) exp(−2(𝜆 − 𝜀)𝑡)𝐽 (𝑥, 𝑡, 0)

=𝐶 exp(−2(𝜆 − 𝜀)𝑡)
∫
𝑀

exp(−
𝑑2

0 (𝑥, 𝑦)
(2 + 𝐶0𝜀)𝑡

) · |ℎ𝑔 |2(𝑦, 0)𝑑𝑦

≤𝐶 exp(−2(𝜆 − 𝜆0 − 𝜀)𝑡)
∫
𝑀

exp(−2

√︄
2𝜆0

2 + 𝐶0𝜀
𝑑0(𝑥, 𝑦)) · 𝜀𝑒𝑥 𝑝(−𝛾𝑑0(𝑦, 𝑥0))𝑑𝑦
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To obtain a uniformly bounded last integral, the additional constraint

𝛾 +
√
𝜆 >

𝛼

2
,

is imposed. Then, by applying the same contradiction argument as in [49], [42] still

achieve the long-time existence and convergence theorem. It is worth noting that for

asymptotically hyperbolic manifolds, 𝛼 = 𝑛. And in particularly, for hyperbolic space

ℍ𝑛+1, 𝜆 = 𝑛2

4 . Therefore, for any 𝛾 > 0, we can away find a metric which is closed

enough to the standard hyperbolic space, such that

𝛾 +
√
𝜆 >

𝑛

2

4.2.3 The proof of the theorem 4.1.5

For arbitrary asymptotically hyperbolic manifolds, the above condition

𝛾 +
√
𝜆 >

𝑛

2

might not be satisfied. However, by the lemma 7.13 in [30], we see that if (𝑀𝑛+1, 𝑔+)

is an asymptotically hyperbolic manifold, then for any 𝜀 > 0, there exists a compact set

𝐾𝜀 ⊆ 𝑀, such that

((Δ𝐿 + 2𝑛)𝑢, 𝑢) > (𝑛
2

4
− 𝜀) (𝑢, 𝑢)

whenever 𝑢 is smooth and compactly supported in 𝑀\𝐾𝜀. This observation reminds

us of that for asymptotically hyperbolic manifolds case, the above additional constraint

might not be necessary, since the 𝛾 only works for the part of a function which is closed

to the infinity.

Drawing on the method presented in [49] and [42] and taking into the above obser-
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vation that the Rayleigh quotient tends towards 𝑛2

4 as the function’s support approaches

infinity, we will derive the enhanced global existence and convergence theorem 4.1.5.

This theorem effectively demonstrates that the aforementioned supplementary constraint

is unnecessary.

The key is to prove the following lemma which is an asymptotically hyperbolic

manifolds version of lemma 4.2.5 without the constraint

𝛾 +
√
𝜆 >

𝑛

2

Lemma 4.2.6. For any 𝑇 > 0, let (𝑀𝑛+1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇], be a normalized Ricci flow of

non-compact complete Riemannian manifolds with the dimension 𝑛 ≥ 3 satisfying that

1) the non-degeneracy 𝜆 (𝑔(𝑡)) > 𝜆0 for some 𝜆0 > 0;

2)

∥ℎ𝑔(𝑡) ∥𝐶0 ( [0,𝑇]×𝑀) ≤ 𝜀, ∥𝑔(𝑡) − 𝑔(0)∥𝐶2 ((𝑀,𝑔(0))) ≤ 𝜀

where 𝜀 > 0 is a constant depending on 𝑛 and 𝜆0;

3) ∥𝑅𝑚𝑔(𝑡) ∥𝐶5 (𝑀) ≤ 𝑘 for some 𝑘 > 0;

4)

sup
(𝑡,𝑥)∈[0,𝑇]×𝑀

𝑣𝑜𝑙𝑔(𝑡) (𝐵(𝑥, 1)) > 𝑣0 for some 𝑣0 > 0

5) 𝑔(0) is an asymptotically hyperbolic metric with

|ℎ𝑔(0) |2(𝑥) ≤ 𝜀0𝑒
𝛾𝑑(𝑥,𝑥0) ,

∫
𝑀

exp(𝑛𝑑(𝑥, 𝑥0))𝑑𝑥 ≤ 𝐶0

for some 𝜀0, 𝛾 > 0 satisfying that

𝜀0 ≤ 𝜀
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where 𝑑(𝑥, 𝑥0) is the distance function to a fixed point 𝑥0 ∈ 𝑀 with respect to the initial

metric 𝑔(0).

Then for any (𝑥, 𝑡) ∈ 𝑀 × [𝜏, 𝑇], we have

∥ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶1𝜀0𝑒
−(2𝜆0−𝐶1𝜀)𝑡

and

∥∇ℎ𝑔∥𝐶0 (𝑀) + ∥∇2ℎ𝑔∥𝐶0 (𝑀) ≤ 𝐶2𝜀0𝑒
−(2𝜆0−𝐶2𝜀)𝑡

where 𝐶1 is a postive constant depending on 𝑛, 𝜆0, 𝑘, 𝑣0, 𝛼, 𝛾 and 𝜀, and 𝐶2 is a positive

constant depending on 𝑛, 𝜆0, 𝑘, 𝑣0, 𝛼, 𝛾, 𝜀 and 𝜏.

Once we have the above lemma, we can utilize the contradiction argument of [49] to

obtain the theorem 4.1.5 as in previous section.

We will sketch the proof of the above lemma step by step.

Step1: (non-linear equation to linear equation) Since 𝑔(𝑡), a normalized Ricci

flow, is fixed for 𝑡 ∈ [0, 𝑇], we can think of the Lichnerowicz operator, Δ𝐿 is a operator

depending on 𝑡, then the equation

𝜕𝑡𝑢(𝑡, 𝑥) = −(Δ𝐿 + 2𝑛)𝑢(𝑡, 𝑥)

as a Linear equation. Once the geometry of 𝑔(𝑡) is controlled, the Lichnerowicz operator

is controlled.

Step2 : (Cut-off on the boundary) Since the Rayleigh quotient will approcach
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to 𝑛2/4 only if the support of the related function approach to infinity, we need to

seperate the interior and the boundary of the given asymptotically hyperbolic manifold.

Therefore, we consider the following equations:
𝜕𝑡ℎ𝑖(𝑡, 𝑥) = − (Δ𝐿 + 2𝑛) ℎ𝑖(𝑡, 𝑥)

ℎ𝑖((𝑖 − 1)𝑠𝑡, 𝑥) = 𝜑(𝑥) · ℎ𝑖−1((𝑖 − 1)𝑠𝑡, 𝑥)

and 
𝜕𝑡𝐿𝑖(𝑡, 𝑥) = −(Δ𝐿 + 2𝑛)𝐿𝑖(𝑡, 𝑥)

𝐿𝑖((𝑖 − 1)𝑠𝑡, 𝑥) = (1 − 𝜑)ℎ𝑖−1((𝑖 − 1)𝑠𝑡, 𝑥)

for (𝑖 − 1)𝑠𝑡 ≤ 𝑡 ≤ 𝑇 , where Δ𝐿 is the Lichnerowicz operator determined by the metric

𝑔(𝑡), 𝑠𝑡 > 0 is a small time step which we will determine later, 𝜑 is a cut-off function on

the boundary of 𝑀 which we will determine later as well and ℎ0(0, 𝑥) = ℎ𝑔(0) (𝑥). Let

ℎ̃(𝑡, 𝑥) = ℎ𝑙 (𝑡, 𝑥)

where 𝑙 = [𝑡/𝑠𝑡] + 1. It is straightforward to show that

ℎ𝑔(𝑡) (𝑥) = ℎ̃(𝑡, 𝑥) +
𝑙∑︁
𝑖=1

𝐿𝑖(𝑡, 𝑥)

for any 0 < 𝑠𝑡 < 𝑇 . Therefore, we just need to show that

∥ℎ̃(𝑡, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶𝑒−�̃�𝑡 and ∥
𝑙∑︁
𝑖=0

𝐿𝑖(𝑡, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶𝑒−�̃�𝑡 (4.2.2)

where 𝐶 does not reply on 𝑇 . Once we have the 𝐶0 estimate of ℎ𝑔(𝑡) , by the standard

parabolic estimate, we easily get the estimate of ∇ℎ𝑔(𝑡) and ∇2ℎ𝑔(𝑡) .
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Step3: (Boundary Estimate) we will find out 0 ≤ 𝑠𝑡 ≤ 𝑇 , such that

∥ℎ̃(𝑡, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶𝑒−�̃�𝑡

It is turned out that the following lemma playing an important role.

Lemma 4.2.7. For any 𝛿, 𝑎, 𝑘, 𝑣0, 𝐶0, 𝐶1, 𝛾, 𝑡
′ > 0, and 𝑛 ≥ 3, there exists 𝜀(𝛿, 𝑛) >

0, 𝐷(𝛿, 𝑣0, 𝐶0, 𝐶1, 𝛾, 𝑛) > 0 and 𝑠𝑡(𝛿, 𝑛, 𝜀, 𝑣0, 𝐶0, 𝐶1, 𝛾, 𝑡
′, 𝑛) > 0 such that for any

normalized Ricci flow of non-compact complete manifolds, (𝑀𝑛+1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑡′]

satisfying that

1)

∥ℎ𝑔(𝑡) ∥𝐶0 (𝑀) ≤ 𝜀, ∥𝑔(𝑡) − 𝑔(0)∥𝐶2 ((𝑀,𝑔(0))) ≤ 𝜀

for any 𝑡 ∈ [0, [0, 𝑡′]];

2) ∥∇𝑙𝑅𝑚𝑔(𝑡) ∥𝐶5 (𝑀) ≤ 𝑘

3)

sup
(𝑡,𝑥)∈[0,𝑡′]×𝑀

𝑣𝑜𝑙𝑔(𝑡) (𝐵(𝑥, 1)) > 𝑣0 for some 𝑣0 > 0

4) 𝑔(0) is an asymptotically hyperbolic metric of regularity 𝐶2,𝛼 with

|ℎ𝑔(0) |2(𝑥) ≤ 𝜀0𝑒
𝛾𝑑(𝑥,𝑥0) ,

∫
𝑀

exp(𝑛𝑑(𝑥, 𝑥0))𝑑𝑥 ≤ 𝐶0

for some 𝜀0 ≤ 𝜀, where 𝑑(𝑥, 𝑥0) is the distance function to a fixed point 𝑥0 ∈ 𝑀 with

respect to the initial metric 𝑔(0),

and for any cut-off function 𝜑 ∈ 𝐶∞(𝑀) satisfying that

1) 𝜑(𝜕𝑀) ≡ 1;

2) supp(𝜑) ⊆ {𝑥 ∈ 𝑀 | 𝑑(𝑥, 𝑥0) > 𝐷};

3) ∥𝜑∥𝐶5 (𝑀) < 𝐶1,
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we have that ∫
𝑀

((Δ𝐿 + 2𝑛)𝑢𝑖(𝑡, 𝑥, 𝑇 + 𝑎, 𝑦), 𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦))𝑑𝑥

≥ (𝑛
2

4
− 𝛿)

∫
𝑀

(𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦), 𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦))𝑑𝑥

for any (𝑖 − 1) · 𝑠𝑡 ≤ 𝑡 ≤ 𝑖 · 𝑠𝑡 and 𝑦 ∈ 𝑀, where

𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦) = 𝑒𝜉(𝑥,𝑦,𝑇+𝑎,𝑡)ℎ𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦)

for 𝜉 and ℎ𝑖 defined as (4.2.1) and (4.2.3) respectively.

Once we have this lemma, by the same method as what is shown in the previous

section, we can get that

∥ℎ̃(𝑡′, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶𝑒−�̃�𝑡
′

for any 𝑡′ ∈ [0, 𝑇]. Specifically, consider the following auxiliary function

𝐽𝑖(𝑦, 𝑡′ + 𝑎, 𝑡) =
∫
𝑀

(𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦), 𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦))𝑑𝑥

for (𝑖 − 1) · 𝑠𝑡 ≤ 𝑡 ≤ 𝑖 · 𝑠𝑡. Since 𝐽𝑖 satisfies the following inequality

𝜕𝑡 𝐽𝑢(𝑦, 𝑡′ + 𝑎, 𝑡) ≤ −2
∫
𝑀

((Δ𝐿 + 2𝑛 − 𝜀)𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦), 𝑢𝑖(𝑡, 𝑥, 𝑡′ + 𝑎, 𝑦))𝑑𝑥

≤ −2(𝑛
2

4
− 𝛿)𝐽𝑖(𝑦, 𝑡′ + 𝑎, 𝑡),

for any 𝑡 ∈ [(𝑖 − 1) · 𝑠𝑡, 𝑖 · 𝑠𝑡], then

𝐽𝑖(𝑦, 𝑡′ + 𝑎, 𝑡) ≤ exp(−2(𝑛
2

4
− 𝛿) (𝑡 − (𝑖 − 1) · 𝑠𝑡))𝐽𝑖(𝑦, 𝑡′ + 𝑎, (𝑖 − 1) · 𝑠𝑡).
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Then, by the fact that

𝐽𝑖(𝑦, 𝑡′ + 𝑎, (𝑖 − 1) · 𝑠𝑡) ≤ 𝐽𝑖−1(𝑦, 𝑡′ + 𝑎, (𝑖 − 1) · 𝑠𝑡),

we have that

𝐽𝑖(𝑦, 𝑡′ + 𝑎, 𝑡) ≤ exp(−2(𝑛
2

4
− 𝛿)𝑡)𝐽0(𝑦, 𝑡′ + 𝑎, 0)

≤ exp(−2(𝑛
2

4
− 𝛿)𝑡)

∫
𝑀

exp(−
𝑑2

0 (𝑧, 𝑦)
(2 + 𝐶𝛿) (𝑡′ + 𝑎) ) |ℎ𝑔(0) (𝑧) |

2𝑑𝑧

for any 𝑡 ∈ [(𝑖 − 1) · 𝑠𝑡, 𝑖 · 𝑠𝑡]. Then, by the De Giorgi-Nash-Moser estimate, we have

that

∥ℎ𝑖∥𝐶0 ( [𝑡′− 𝑟
2 ,𝑡

′]×𝐵0 (𝑦,
√
𝑟/2)) ≤ 𝐶(𝑛, 𝑘, 𝑟)

∫ 𝑡′

𝑡′−𝑟

∫
𝐵0 (𝑦,

√
𝑟/2)

|ℎ𝑖(𝑠, 𝑧) |2𝑑𝑧

≤𝐶(𝑛, 𝑘, 𝑟)
∫ 𝑡′

𝑡′−𝑟
𝐽( [𝑠/𝑠𝑡]+1) (𝑧, 𝑇 + 𝑎, 𝑠)𝑑𝑠

≤𝐶(𝑛, 𝑘, 𝑟, 𝑎) exp(−2(𝑛
2

4
− 𝛿 − 𝜆0)𝑇)

·
∫
𝑀

exp(−
𝑑2

0 (𝑧, 𝑦)
(2 + 𝐶𝛿) (𝑡′ + 𝑎) − 2𝜆0(𝑡′ + 𝑎)) |ℎ𝑔(0) (𝑧) |2𝑑𝑧

≤𝐶(𝑛, 𝑘, 𝑟, 𝑎) exp(−2(𝑛
2

4
− 𝛿 − 𝜆0)𝑡′)

·
∫
𝑀

exp(−2
√︂

2
2 + 𝐶𝛿𝜆0 · 𝑑0(𝑧, 𝑦))𝜀0 exp(−2𝛾𝑑0(𝑧, 𝑥0))𝑑𝑧

We see by the above lemma, for any 𝛾 > 0, there exists a small 𝛿, such that we can find

out a proper 𝜆0 satisfying that

(𝑛
2

4
− 𝛿 − 𝜆0) > 0 and

√︂
2

2 + 𝐶𝛿𝜆0 + 𝛾 >
𝑛

2
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Therefore, by the theorem 5.4 of [30], we can get that

∥ℎ𝑖∥𝐶0 (𝑀) (𝑡′) ≤ 𝐶 exp(−2(𝑛
2

4
− 𝛿 − 𝜆0)𝑡′)

for any 𝑡′ ∈ [0, 𝑇].

Step4: (Interior Estimate) In this step, we will estimate

∥
𝑙∑︁
𝑖=0

𝐿𝑖(𝑡, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶𝑒−�̃�𝑡 for 𝑙 = [𝑡/𝑠𝑡] + 1

in (4.2.2). First, we will get the 𝐿2 estimate of 𝐿𝑖. Then, by the De Giorgi-Nash-Moser

estimate, we can have the corresponding𝐶0 estimate. Since ∥𝐿𝑖((𝑖−1) ·𝑠𝑡, 𝑥)∥𝐿2 (𝑀) ≤ ∞,

by the equation of 𝐿𝑖(𝑡, 𝑥). we can get that

∥𝐿𝑖(𝑡, 𝑥)∥𝐿2 (𝑀) ≤ exp(−2(𝜆1 − 𝛿) (𝑡 − (𝑖 − 1) · 𝑠𝑡)∥𝐿𝑖((𝑖 − 1) · 𝑠𝑡, 𝑥)∥𝐿2 (𝑀)

≤ 𝐶(𝐷) exp(−2(𝜆1 − 𝛿) (𝑡 − (𝑖 − 1) · 𝑠𝑡) · ∥𝐿𝑖((𝑖 − 1) · 𝑠𝑡, 𝑥)∥𝐶0 (𝑀)

≤ 𝐶(𝐷) exp(−2(𝜆1 − 𝛿) (𝑡 − (𝑖 − 1) · 𝑠𝑡)∥ℎ𝑖−1((𝑖 − 1) · 𝑠𝑡, 𝑥)∥𝐶0 (𝑀)

≤ 𝐶(𝑛, 𝑘, 𝛼, 𝑎)𝜀0 exp(−2(𝜆1 − 𝛿) (𝑡 − (𝑖 − 1) · 𝑠𝑡) exp(−�̃� (𝑖 − 1) · 𝑠𝑡)

≤ 𝐶(𝑛, 𝑘, 𝛼, 𝑎)𝜀0 exp(−2(𝜆1 − 𝛿)𝑡) · exp(−( �̃� − 2(𝜆1 − 𝛿)) (𝑖 − 1))

for any 𝜆1 ∈ (0, 𝜆]. Therefore, we can always take small enough 𝜆1 such that

�̃� − 2(𝜆1 − 𝛿) > 0.
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Therefore, we have that

∥
𝑙∑︁
𝑖=0

𝐿𝑖(𝑡, 𝑥)∥𝐶0 (𝑀) ≤ 𝐶

𝑙∑︁
𝑖=0

∥𝐿𝑖(𝑡, 𝑥)∥𝐿2 (𝑀)

≤ 𝐶𝜀0 exp(−2(𝜆1 − 𝛿)𝑡)
𝑙∑︁
𝑖=0

exp(−( �̃� − 2(𝜆1 − 𝛿)) (𝑖 − 1))

≤ 𝐶𝜀0 exp(−( �̃� − 2(𝜆1 − 𝛿)) (𝑖 − 1))
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