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Abstract

GPU-Based Computation of Voxelized Minkowski Sums with Applications

by

Wei Li

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

Minkowski sums are a fundamental operation for many applications in Computer-Aided
Design and Manufacturing, such as solid modeling (offsetting and sweeping), collision de-
tection, toolpath planning, assembly/disassembly planning, and penetration depth compu-
tation. Configuration spaces (C-spaces) are closely related to Minkowski sums; we analyze
accessibility for waterjet cleaning processes as an example to illustrate the important re-
lationship between them. We describe an algorithm for finding all the cleanable regions
given the geometry of a workpiece. Minkowski sums are used to compute the C-spaces and
cleanable regions are then found by visibility analysis.

Computing the Minkowski sum of two arbitrary polyhedra in R3 is difficult because of high
combinatorial complexity. We present two algorithms for directly computing a voxelization of
the Minkowski sum of two closed watertight polyhedra that run on the Graphics Processing
Unit (GPU) and do not need to compute a complete boundary representation (B-rep).

For the first voxelization algorithm, we put forward a new formula that decomposes the
Minkowski sum of two polyhedra into the union of the Minkowski sum of their boundaries
and a translation of each input polyhedron. The union is then voxelized on the GPU using
the stencil shadow volume technique. The performance of this algorithm depends on the
numbers of faces of the two polyhedra.

For Minkowski sums in cases where we do not need to consider enclosed voids, we propose
the second voxelization algorithm, which has much faster running times and also achieves
higher resolution. It first robustly culls primitives that cannot contribute to the final bound-
ary of the Minkowski sum, and then uses flood fill to find all the outer voxels. The perfor-
mance of this algorithm depends on both the numbers of faces of the input polyhedra and
the shape complexity of the Minkowski sum.

We demonstrate applications of the voxelized Minkowski sums in solid modeling, mo-
tion planning, and penetration depth computation. Compared with existing B-rep based
algorithms, our voxelization algorithms are easy to implement and avoid the extra sampling
process required in many applications.
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Chapter 1

Introduction

Minkowski sums are a fundamental operation for many applications in Computer-Aided
Design and Manufacturing, such as solid modeling (offsetting and sweeping), collision de-
tection, toolpath planning, assembly/disassembly planning, and penetration depth compu-
tation. The concept of configuration spaces (C-spaces), which have been heavily used in
automatic toolpath planning, are closely related to Minkowski sums. In this thesis, we will
analyze accessibility for waterjet cleaning (where mechanical components are cleaned using
high pressure waterjets) as an example to illustrate the important relationship between them.

Despite the simplicity of its mathematical definition, computing the Minkowski sum of
two arbitrary polyhedra in R3 is generally difficult because of its high combinatorial com-
plexity. In this dissertation, we present two algorithms for directly computing a voxelization
of the Minkowski sum of two closed watertight polyhedra. Unlike most previous algorithms
for computing Minkowski sums, these two algorithms run on the Graphics Processing Unit
(GPU) and directly create a voxelization without having to compute a complete boundary
representation (B-rep).

1.1 Notation

In this dissertation we will not distinguish between points and vectors; i.e., a point will also
represent the vector pointing from the origin to itself. Unless otherwise specified, we will
use lower case letters for points and upper case for sets of points. Below is some notation
frequently used in this dissertation.

O: the origin
Ad: the translation of point set A by a vector d
Ac: the complement of point set A
−A: A reflected about the origin (formally, −A = {−a | a ∈ A})
∂A: the boundary of an object A
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1.2 Minkowski Sums

The Minkowski sum of two point sets A and B in Rn is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B} (1.1)

where a and b denote the coordinate vectors of arbitrary points in A and B, and + denotes
vector addition. From the above definition, and the commutativity and associativity of vector
addition, the following two properties (commutativity and associativity) of Minkowski sums
hold:

A⊕B = B ⊕ A, (1.2)

(A⊕B)⊕ C = A⊕ (B ⊕ C) . (1.3)

The translation of a point set A by a vector d, denoted as Ad, can be represented as the
Minkowski sum of point set A and another point set that contains only point d; i.e.,

Ad = A⊕ {d} . (1.4)

In this dissertation, we will always denote A ⊕ {d} as either A + d or Ad for simplicity.
The shape of a Minkowski sum is translation invariant. If we translate one of the input
models by a specific vector d, the Minkowski sum will also translate by the same vector, or
mathematically,

Ad ⊕B = A⊕Bd = (A⊕B)d . (1.5)

Another equivalent definition of Minkowski sums using the concept of translation is

A⊕B =
⋃
a∈A

Ba =
⋃
b∈B

Ab. (1.6)

The equivalence of (1.1) and (1.6) can be shown as below:

A⊕B = {a+ b | a ∈ A, b ∈ B}
⇐⇒ A⊕B = {a+B | a ∈ A}
⇐⇒ A⊕B =

⋃
a∈ABa.

Definition (1.6) implies a method often used to construct and visualize Minkowski sums.
IfA andB represent polygons in R2 or polyhedra in R3, A⊕B can be generated by “sweeping”
A along the boundary of B and then taking the union of the sweep and B (or vice versa).
Figure 1.1 shows the 2D Minkowski sum of a square and a triangle generated by sweeping
the triangle along the boundary of the square. A 3D example is shown in Figure 1.2, where
the 3D Minkowski sum is generated by sweeping the tetrahedron over the six boundary
faces of the cube. The two examples given in Figure 1.1 and 1.2 are simple convex models.
When both input models become non-convex, their Minkowski sum can still be generated
by sweeping one over the other, but the final shape will become much more complex (see
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A B sweep B along boundary of A BA

(a) (b)

(c) (d)

O

O

O

Figure 1.1: 2D Minkowski sum of a square and a triangle.

⊕ =

Figure 1.2: 3D Minkowski sum of a cube and a tetrahedron.

Figure 1.3 for an example). We will give a more formal and more accurate description of
how Minkowski sums can be generated by such sweeps in Chapter 4.

Note that in Figure 1.1, we set the origin on the boundary of the input models. The
position of the origin does not affect the shape of the Minkowski sum. From property (1.5),
we know that changing the origin will only translate Minkowski sums without changing their
shapes. In the following examples we will ignore the position of the origin unless position
matters.

1.3 Applications of Minkowski Sums

Minkowski sums are a fundamental operation for many applications such as solid model-
ing, motion planning, collision detection, penetration depth computation, and mathematical
morphology [Lozano-Pérez, 1983, Kaul and Rossignac, 1992, Varadhan et al., 2006, Nelaturi
and Shapiro, 2009]. In this section we will discuss some example applications and illustrate
how they can be solved by using Minkowski sums. More detailed theoretical background
related to these applications will be discussed in section 2.1.
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Figure 1.3: 2D Minkowski sum of two nonconvex geometries.

1.3.1 Solid Modeling

Minkowski sums can be used to compute offsets of geometric models. The outer offset of an
object A with a distance r can be generated as A⊕Ball(r), where Ball(r) is a ball centered
at the origin with radius r. As long as the input model A is a closed watertight object,
A⊕Ball(r) will always generate a closed watertight object. Figure 1.4 shows the outer offset
of a table computed as its Minkowski sum with a ball.

⊕ =

⊕ =

Figure 1.4: The outer offset of a table model.

The inner offset of A with a distance r is given by (Ac ⊕ Ball (r))c where Ac denotes
the complement set of A. A 2D example of inner offset computed using Minkowski sums is
shown in Figure 1.5.

Minkowski sums can also be used to compute translation-only sweeps (the object to be
swept does not rotate along the trajectory). Suppose the object to be swept is A and the
trajectory is T , then the sweep of A along T can be expressed as sweep(A, T ) =

⋃
t∈T At =

A⊕ T . An example of a sweep computed by Minkowski sums is shown in Figure 1.6.

1.3.2 Motion Planning

Minkowski sum based motion planners usually involve computing configuration spaces (C-
spaces), introduced by Lozano-Pérez for motion planning of a rigid object among physical
obstacles [Lozano-Pérez, 1983]. Every point in the C-space corresponds to a set of inde-
pendent parameters that characterize the position and orientation of the rigid object (its
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A B sweep B along boundary of A BA

(a) (b)

(c) (d)

O

O

O

Figure 1.5: The inner offset of a 2D shape. (a) The 2D shape A. (b) The complement of A
(Ac). (c) Ac ⊕ Ball(r). (d) The inner offset as (Ac ⊕ Ball (r))c.

configuration). In this section we assume fixed orientation, so the configuration is deter-
mined by the position. The whole C-space is usually decomposed into two sub-spaces, the
interference C-space and the free C-space. The interference C-space is the set of configura-
tions of the object where it collides with one or more of the obstacles, while free C-space is
the set of configurations where it does not collide. The motion planning problem is then re-
duced to computing the interference and free C-spaces and finding a path in the free C-space
connecting the initial and goal configurations.

Computation of C-spaces is based on the following important property of Minkowski
sums: if A and B intersect each other, then the origin O must lie in set A⊕−B, where −B
is set B reflected about the origin (formally, −B = {−b | b ∈ B}). The above property also
forms the theoretical basis of almost all Minkowski sum based motion planning, collision
detection, and assembly/disassembly algorithms. Figure 1.7 shows a 2D illustration. A
formal proposition is given in section 2.1 (see Proposition 2.2). Note that the origin O
can be chosen arbitrarily, since changing the origin O is equivalent to applying the same
translation to both sets A and B, so it does not change either the position or the shape of



CHAPTER 1. INTRODUCTION 6

⊕ =

⊕ =

⊕ =

Figure 1.6: A 3D sweep computed by Minkowski sums.

A⊕−B.
The interference and free C-spaces are usually computed using Minkowski sums based

on Proposition 2.2. For P a translating object and Q the union of all the obstacles (see
Figure 1.8, Q = Q1 ∪ Q2), the interference C-space is Q ⊕ −P . Sometimes Q ⊕ −P is also
called the C-space obstacle(s). In the configuration space, the obstacles are enlarged by the
Minkowski sum operations and the moving object is reduced to a single point (initially it is
located at the origin). Thus the collision detection problem between 3D objects is reduced to
the simpler collision detection problem between a single point and a set of 3D objects. The
free C-space is the complement set of the interference C-space. If we denote the interference
and free C-spaces as Si and Sf , then we have

Si = Q⊕−P
Sf = (Q⊕−P )c .

(1.7)

Usually the moving object is constrained inside a workspace, denoted as W . To take the
workspace into consideration, we can treat the complement of the workspace (W c) as an
obstacle, such that the object should not “touch” (i.e., collide with) the outside of the
workspace. Then the formulas for Si and Sf become

Si = (Q ∪W c)⊕−P
Sf = Sc

i .
(1.8)

If we let Q = ∅, the collision detection problem becomes an object containment problem
(finding all the configurations under which object P is completely contained in the workspace
W ), and the formulas for Si and Sf in this case become

Si = W c ⊕−P
Sf = Sc

i = (W c ⊕−P )c.
(1.9)
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A1

A B sweep B along A BA

O

A2

B

-B

-BA1

A3

O

-BA2

-BA3

Figure 1.7: Collision detection by using Minkowski sums. A1 intersects with B, A2 just
touches B on the boundary, and A3 is separated from B. Correspondingly, O is in the
interior of A1 ⊕−B, on the boundary of A2 ⊕−B, and outside of A3 ⊕−B.

As opposed to A⊕B, which means “enlarging” A by B, operation (Ac⊕−B)c can be seen as
a “shrinking” of A by B. When we computed the inner offset of A in section 1.3.1, we were
actually using a special case of this expression, (Ac ⊕ Ball (r))c (note that Ball(r) = −Ball(r)
for a ball centered at the origin). A more detailed discussion of (Ac ⊕−B)c can be found in
Proposition 2.3.

A 2D example illustrating the basic process of C-space based motion planning is shown
in Figure 1.8. In Chapter 3, we will discuss accessibility for waterjet cleaning in detail, which
involves computation of several different C-spaces using Minkowski sums.

1.3.3 Penetration Depth Computation

Minkowski sums can also be used to compute the translational penetration depth between
two intersecting objects. This penetration depth is the minimum translational distance to
separate two intersecting objects. Mathematically, the penetration depth of two objects A
and B is defined as:

PenetrationDepth(A,B) = inf
{
|d| : d ∈ R3, Ad ∩B = ∅

}
. (1.10)

Penetration depth is often used in dynamic simulation, haptic rendering, and tolerance
verification of CAD models. From section 1.3.2 we already know that if A and B intersect,
then the origin O is inside B⊕−A, but B⊕−A also reveals how “deeply” A and B intersect:
the penetration depth is equal to the shortest distance from O to the boundary of B ⊕−A.



CHAPTER 1. INTRODUCTION 8

Q1
Q2

P

Q1 -P Q2 -P

W W -Pc( ) W

(a) (b)

(c) (d)

O

initial

goal

Figure 1.8: C-space based motion planning. (a) A moving object P and two obstacles Q1 and
Q2 in a workspace W . We want to move P from the initial to the goal position. (b) C-space
obstacles of Q1 and Q2 due to P . (c) A path contained in the free C-space connecting the
initial and goal configuration. (d) The movement of the object in the workspace.
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B

A

B⊕-A

O

p

-A

Figure 1.9: Penetration depth of A and B. The dashed red vector indicates the direction
and distance in which to translate A to separate it from B.

The vector from O to the closest point on the boundary of B ⊕ −A gives the separation
direction in which A can be translated away from B (see Figure 1.9).

1.4 Motivation

Despite the simplicity of its mathematical definition, computing the Minkowski sum of ar-
bitrary polyhedra in R3 is generally difficult because of its high combinatorial complexity.
For polyhedra A and B consisting of m and n facets respectively, although A⊕ B only has
complexity of O(mn) if they are convex, the complexity can be as high as O(m3n3) if they
are non-convex [Varadhan and Manocha, 2006]. Most existing algorithms for computing
general 3D Minkowski sums involve many complex 3D computations and their performance
degrades rapidly as the polyhedra complexity increases (see section 2.3 for detailed discus-
sions of existing algorithms). The two publicly available libraries, the Cgal library [CGAL,
2008] and “m+3d” provided by Lien [Lien, 2011], take minutes or even tens of minutes to
compute Minkowski sums of models with just hundreds or thousands of triangles.

Most existing algorithms compute either an exact [Hachenberger, 2009, Fogel and Halperin,
2007, Halperin, 2002, Wein, 2006] or an approximated [Peternell and Steiner, 2007, Varad-
han and Manocha, 2006] boundary representation (B-rep) of the Minkowski sum. A B-rep is
convenient for rendering and visualization due to its explicit representation of surface bound-
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aries, but it cannot be directly applied to many applications where we are more interested in
the interior of the Minkowski sum instead of its boundary. In motion planning (see Figure 1.8
for an example), even if we have computed a B-rep based free C-space, it usually needs to be
sampled in order to construct a connectivity roadmap [Varadhan et al., 2006, Lien, 2008c].
In collision detection and assembly/disassembly, we need to determine whether a point is
inside or outside of the Minkowski sum, which usually requires a parity check for B-reps. If
we consider higher dimensional Minkowski sums (e.g., 3D motion planning involving both
translation and rotation requires computing and representing 6D Minkowski sums), a B-rep
is not an appropriate representation any more.

(a) (b) (c)

Figure 1.10: Representation of a 3D object. (a) The original B-rep model. (b) Voxelization
of 64× 64× 64. (c) Voxelization of 128× 128× 128.

To overcome the shortcomings of B-rep based Minkowski sums, in this dissertation we
consider a voxelized representation as an alternative to the traditional B-rep. A voxelized rep-
resentation provides a uniform and simple description for objects and can be easily extended
to higher dimensions. Figure 1.10 shows the voxelized representations of a 3D model at
different resolutions. The voxelized representation of Minkowski sums is more advantageous
in applications where a B-rep would need to be sampled or point membership classifica-
tion (PMC, determining whether a point is inside a B-rep solid or not) would need to be
performed. It provides sample points used to build the connectivity roadmap in motion plan-
ning with no need of further computation, and also provides immediate collision feedback
by simply checking if a certain voxel is set to one or zero.

All the above factors have motivated us to research new approaches for directly comput-
ing a voxelized representation of Minkowski sums of arbitrary polyhedra, without having to
compute a complete boundary representation. For achieving better performance than exist-
ing algorithms, we exploit the parallel computing capacity of modern GPUs. The built-in
rasterization functionality of GPUs can also be utilized to compute the volumetric data.
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1.5 Contributions

In chapter 3, we analyze the accessibility problem for waterjet cleaning as an example to
illustrate the important relationship between C-spaces and Minkowski sums. We describe
an algorithm for finding all the cleanable regions given the geometry of a workpiece. Imple-
mentations and results for 2D examples are shown to validate the approach.

In chapter 4, we mathematically describe and prove the commonly used “sweeping-along-
the-boundary” method to generate Minkowski sums (Figure 1.1). Based on this method, we
introduce a new formula that decomposes the Minkowski sum of two polyhedra into the
union of the Minkowski sum of their boundaries and a translation of each input polyhedron.
We also describe a method to voxelize the union on the GPU using the stencil shadow volume
technique.

In chapter 5, we propose a new voxelization algorithm for computing the outer boundary
of a Minkowski sum in cases where we do not need to consider enclosed voids, which extends
upon previous work on Minkowski sums and combines these methods with GPU-based vox-
elization techniques. It runs completely on the GPU and is at least one order of magnitude
faster than existing B-rep based algorithms.

Finally, in chapter 6, we demonstrate applications of the voxelized Minkowski sums in
solid modeling, motion planning, and penetration depth computation.



12

Chapter 2

Background and Previous Work

In this chapter, we develop the theoretical background of some important Minkowski sum
applications. We also discuss some commonly used approaches and existing algorithms for
Minkowski sum computation and GPU-based voxelization.

2.1 Theoretical Background for Applications

In this section, we prove some mathematical propositions that form the theoretical basis of
the applications described in section 1.3. These propositions are widely used in Minkowski
sum publications, but to our knowledge have previously only been presented without formal
proofs.

A B sweep B along A BA

p

q d

A

A   Ball(r)

Figure 2.1: A point p on ∂ (A⊕ Ball (r)) and its closest point q on A.

The first proposition relates to the offset application described in section 1.3.1. Again
Ball(r) denotes a ball centered at the origin with radius r; please refer back to section 1.1
for additional notation conventions.
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Proposition 2.1. Suppose A is a closed watertight object. Every point on ∂ (A⊕ Ball (r))
has a minimum distance of r to A.

Proof. For any point p ∈ ∂ (A⊕ Ball (r)), let its minimum distance to A be d, and its closest
point (or one of them) on ∂A be q (see Figure 2.1). If d < r, point p is in the interior of
Ball(r) + q, which contradicts the fact that p ∈ ∂ (A⊕ Ball (r)). Then d ≥ r.

On the other hand, suppose p = a + b, where a ∈ A and b ∈ Ball(r). If b is in the
interior of Ball(r), the infinitesimal ball around b is also in the interior of Ball(r). Then the
infinitesimal ball around a+ b is in the interior of A⊕Ball(r). This contradicts the fact that
p ∈ ∂ (A⊕ Ball (r)). Then b ∈ ∂ (Ball (r)); i.e., b is a vector of length r. Then the distance
between points p and a is r. Since d is the minimum distance from p to A and a ∈ A, we
have d ≤ r. This proves d = r.

The next proposition is the basis for motion planning and collision detection algorithms
(see the motion planning application in section 1.3.2).

Proposition 2.2. Suppose A and B are closed watertight objects. Then
(a) A and B intersect (including just contact) each other ⇐⇒ O ∈ A⊕−B;

or equivalently,
(b) A and B are separated ⇐⇒ O /∈ A⊕−B.

Proof. We only prove (a), since (a) and (b) are equivalent.

A and B intersect each other ⇐⇒ A ∩B 6= ∅
⇐⇒ ∃a ∈ A, b ∈ B, s.t. a = b, and hence a− b = O
⇐⇒ O ∈ A⊕−B

In motion planning problems, the moving objectB is usually constrained inside a workspace
A. All the positions that B can access without going outside of A can be computed using
the so-called “Minkowski decomposition” A	B [Ghosh, 1993], defined as:

A	B =
⋂
b∈B

A−b. (2.1)

Note that in [Lozano-Pérez, 1983], A 	 B has a different meaning (defined as A ⊕ −B). A
2D example of Minkowski decomposition is shown in Figure 2.2. The above definition (2.1)
of Minkowski decomposition has a similar form to the definition of the Minkowski sum
A⊕ B =

⋃
b∈B Ab in equation (1.6). The proposition below shows the relationship between

the Minkowski decomposition and the Minkowski sum, and also explains why Minkowski
decomposition can be used to find positions where B is completely contained in A.

Proposition 2.3. A	B = (Ac ⊕−B)c
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A B BA

a1 a2

a3a4

b1
b2

b3

v v

v v v

v
v

a1e

a2e

a3e

a4e
b1e

b2e
b3e

a1e b1v+ b1e a2v+

a2e b2v+

b2e a3v+

a3e b3v+

b3e a4v+

a4e b1v+

O

O O

A B

BA

Figure 2.2: A 2D example of Minkowski decomposition.

Proof.

x ∈ (Ac ⊕−B)c ⇐⇒ x /∈ Ac ⊕−B
⇐⇒ (B + x)

⋂
Ac = ∅

⇐⇒ B + x ⊆ A
⇐⇒ ∀b ∈ B, x+ b ∈ A
⇐⇒ ∀b ∈ B, x ∈ A−b
⇐⇒ x ∈

⋂
b∈B A−b

Thus since
⋂

b∈B A−b = A	B, A	B = (Ac ⊕−B)c.

2.2 Minkowski Sums of Convex Polyhedra
A1

A B

sweep B along A

BA

O

A2

B

-B

A3

a1 a2

a3a4

b1
b2

b3

a1+  b1 a2+  b1

a2+  b2

a3+  b2

a3+  b3a4+  b3

a4+  b1

v v

v v v

v
v

v v v v

v v

v v

v vv v

v v

Figure 2.3: Convex hull approach for the Minkowski sum of two convex polygons. The black
dots represent the vector sum of all the vertex pairs. The red polygon is their convex hull,
and also the Minkowski sum.

Minkowski sums of convex polyhedra can be computed easily and efficiently. Convex
hull or Gaussian map approaches are commonly used [Ghosh, 1993, Fogel and Halperin,
2007]. The convex hull approach first computes the vector sum between all possible pairs of
vertices, one from each polyhedron, and then computes their convex hull (see Figure 2.3 for
a 2D illustration). It is based on the following proposition, where VA = {va1, va2, · · · , vam}
and VB = {vb1, vb2, · · · , vbn} denote the vertex sets of A and B respectively, and CH denotes
the convex hull operator.
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Proposition 2.4. Suppose A and B are two convex polyhedra. Then A⊕B = CH(VA⊕VB).

Proof. We first prove A ⊕ B is convex. Suppose c1 and c2 are two arbitrary points in
A ⊕ B. We need to show for 0 ≤ u ≤ 1, uc1 + (1 − u)c2 is also in A ⊕ B. Suppose
c1 = a1 + b1 and c2 = a2 + b2, with a1, a2 ∈ A, and b1, b2 ∈ B. Then uc1 + (1 − u)c2 =
u(a1 + b1) + (1−u)(a2 + b2) = (ua1 + (1− u)a2) + (ub1 + (1− u)b2). Since A and B are both
convex, we have ua1 + (1−u)a2 ∈ A and ub1 + (1−u)b2 ∈ B. Then uc1 + (1−u)c2 ∈ A⊕B.
This proves A⊕B is convex.

VA⊕VB is a set of discrete points. Since VA ⊂ A and VB ⊂ B, we know VA⊕VB ⊆ A⊕B.
Since A⊕B is convex and CH(VA⊕VB) is the smallest convex polyhedron containing VA⊕VB,
we have CH(VA ⊕ VB) ⊆ A⊕B.

On the other hand, if A⊕ B 6⊆ CH(VA ⊕ VB), there must be a vertex of A⊕ B that lies
outside of CH(VA ⊕ VB) (otherwise, if all the vertices of A⊕B is inside CH(VA ⊕ VB), since
both A ⊕ B and CH(VA ⊕ VB) are convex, we must have A ⊕ B ⊆ CH(VA ⊕ VB)). Denote
this vertex as c and suppose c = a + b, a ∈ A and b ∈ B. Since c is a vertex of A ⊕ B, a
and b must be vertices of A and B respectively, i.e., a ∈ VA and b ∈ VB. (Note that since
A⊕B is convex and c is one of its vertices, we can find a direction such that c is the unique
maximum of A ⊕ B in this direction. Then a and b must also be the unique maxima of A
and B respectively in this direction. This can be true only when a and b are vertices of A
and B respectively.) Then c = a+ b ∈ VA ⊕ VB. This contradicts the assumption that c lies
outside of CH(VA ⊕ VB). Then we must have CH(VA ⊕ VB) = A⊕B.

In the convex hull approach, not all the points in VA⊕VB need be vertices of the Minkowski
sum (see Figure 2.3); some of them are typically located in the interior and do not contribute
to the Minkowski sum boundary. It is possible, by analyzing the outwardly oriented normal
(simply called “outward normal” in the rest of this chapter) of each boundary facet, to
directly find all the points in VA⊕ VB that ultimately are the Minkowski sum vertices. This
leads to the elegant Gaussian map approach, which is illustrated in Figure 2.4. A Gaussian
map is a dual representation of a convex polygon or polyhedron. As seen in Figure 2.4, for
a 2D polygon, a boundary edge maps to a point on the Gaussian circle (determined by its
outward normal), and a vertex maps to an arc connecting the two points on the Gaussian
circle corresponding to its two incident edges. For a 3D polyhedron, a boundary facet maps
to a point on the Gaussian sphere (determined by its outward normal), a boundary edge
maps to a geodesic arc connecting the two points corresponding to its two incident facets, and
a vertex maps to a patch on the Gaussian sphere bounded by the geodesic arcs corresponding
to its incident boundary edges. Overall, each point on the boundary of a convex polygon or
polyhedron maps to a set of points (or a single point) on the Gaussian sphere that define
the direction(s) in which the point on the boundary is maximal, and vice versa.

To compute the Minkowski sum of two convex polyhedra by the Gaussian map approach,
we first construct their Gaussian spheres, and overlay these two Gaussian spheres to generate
a new one. Then we can reconstruct the Minkowski sum from the new Gaussian sphere, as
shown in Figure 2.4 for a 2D example. Many algorithms for computing Minkowski sums
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Figure 2.4: Gaussian map approach for the Minkowski sum of two convex polygons. The
first row shows the Minkowski sum. The second row shows the two Gaussian circles and
their overlay. A point on the overlay is generated by adding the two corresponding points
on the two Gaussian circles.

of convex polyhedra are based on the Gaussian map idea. Fogel studied how to directly
compute the arrangements of geodesic arcs embedded on the Gaussian sphere [Fogel, 2008].
In order to avoid computing arrangements on a sphere, Fogel and Halperin proposed using
a “Cubical Gaussian Map,” where geodesic arcs on the Gaussian sphere are projected to the
six faces of a bounding cube [Fogel and Halperin, 2007]. Barki et al. proposed the concept
of “contributing vertices,” which is a variant of the Gaussian map approach [Barki et al.,
2009b].

2.3 Minkowski Sums of Non-Convex Polyhedra

Although the Minkowski sum of two convex polyhedra has complexity of O(mn) (here m
and n denote the numbers of triangles of each input polyhedron) and can be computed easily
and efficiently using either the convex hull or Gaussian map approach, the Minkowski sum of
two non-convex polyhedra can have complexity as high as O(m3n3) and becomes much more
difficult to compute. In this section we review existing algorithms for non-convex objects.
Most of them fall into two main categories: convex decomposition or convolution.

2.3.1 Convex-Decomposition Based Approaches

The basic idea of convex-decomposition based algorithms is decomposing the input non-
convex polyhedra into convex pieces, computing all the pairwise Minkowski sums of these
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convex pieces, and then taking their union. It is based on the following property of Minkowski
sums (distributivity):

Proposition 2.5. (A ∪B)⊕ C = (A⊕ C) ∪ (B ⊕ C).

Proof.

x ∈ (A ∪B)⊕ C
⇐⇒ x = y + c, y ∈ A ∪B, c ∈ C
⇐⇒ x = a+ c or b+ c, a ∈ A, b ∈ B, c ∈ C
⇐⇒ x ∈ A⊕ C or x ∈ B ⊕ C

Then (A ∪B)⊕ C = (A⊕ C) ∪ (B ⊕ C).

There are three steps in convex-decomposition based approaches: convex decomposition,
computing the Minkowski sum of convex pieces, and union computation. While it is desirable
to compute an optimal (minimum number of pieces) convex decomposition, this problem is
known to be NP-hard [Chazelle, 1981]. Several practical algorithms are known to compute
a sub-optimal or approximate convex decomposition [Chazelle et al., 1995, Ehmann and
Lin, 2001, Lien and Amato, 2007]. The second step is typically performed using either the
convex hull or Gaussian map approaches described in the previous section. The third step,
computing the union of the intermediate Minkowski sum pieces, is the main bottleneck in
implementing such convex-decomposition based algorithms, especially when the number of
pairwise Minkowski sum pieces has quadratic complexity. Given n polyhedral objects, their
union can have combinatorial complexity of O(n3) [Aronov et al., 1997].

Based on the algorithms used for convex decomposition and union computation, convex-
decomposition based approaches for Minkowski sum computation can be either exact or
approximate. The exact algorithms allow robust implementation and are able to find low
dimensional boundaries, i.e., they are able to identify dangling faces or lines and singular
points in the Minkowski sums [CGAL, 2008, Halperin, 2002, Hachenberger, 2009]. However,
these algorithms are limited to relatively simple objects because of their performance. To
compute the Minkowski sum of two polyhedra bounded by only hundreds of triangles, it
usually takes tens of minutes [CGAL, 2011]. Varadhan and Manocha proposed another
convex-decomposition based algorithm to compute an approximated boundary of Minkowski
sums [Varadhan and Manocha, 2006]. Instead of computing the exact union of pairwise
Minkowski sums, they compute a signed distance field and extract its zero iso-surface. Their
algorithm provides geometrical and topological guarantees by using an adaptive subdivision
algorithm. However, the performance of their algorithm is impacted by the large number of
convex pieces after decomposition. The timing reported in their paper shows that computing
the distance fields for tens of thousands of pairwise convex Minkowski sums usually takes
quite a few minutes.
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2.3.2 Convolution-Based Approaches

Convolution-based approaches have also been proposed for computing the boundary of
Minkowski sums. Usually they start with a set of surface primitives that is a superset
of the Minkowski sum boundary. These surface primitives are then trimmed and filtered to
form the final boundary.

For objects with smooth boundary surfaces, their convolution is well defined. If we denote
the convolution of two surfaces as ?, then the convolution of two smooth boundary surfaces
∂A and ∂B is defined as

∂A ? ∂B = {a+ b | a ∈ ∂A, b ∈ ∂B, na = nb} , (2.2)

where na denotes the unit outward normal at point a. A 2D example of the convolution of two
smooth curves is shown in Figure 2.5. Note that the convolution in this context is different
from its usual definition of “convolving two functions.” For two objects the convolution of
their boundaries is a superset of the boundary of their Minkowski sum and also a subset
of the Minkowski sum of their boundaries [Mühlthaler and Pottmann, 2003, Peternell and
Steiner, 2007]; i.e.,

∂(A⊕B) ⊆ ∂A ? ∂B ⊆ ∂A⊕ ∂B. (2.3)

If both objects are convex, it is easy to show that ∂A ? ∂B = ∂(A ⊕ B) [Ghosh, 1993].
If at least one of them is non-convex, the convolution may become self-intersecting (see
Figure 2.5 for an example), and the Minkowski sum boundary can be extracted by trimming
and filtering the convolution surfaces.

(a) (b) (c)

Figure 2.5: Convolution of two smooth curves. (a) Two smooth curves (in black) and their
convolution (in red). (b) The Minkowski sum boundary of the two shapes (in red). (c) The
Minkowski sum of the two curves (in red).

Polyhedra do not have smooth boundary surfaces, and the outward normals at their
vertices and edges are not well defined. The definition of convolution for polyhedra is much
more complicated and sometimes confusing, especially for non-convex polyhedra. In [Ghosh,
1993], the convolution of two polyhedra is defined using the concept of Gaussian map (called
“slope diagrams” in [Ghosh, 1993]), and for non-convex input, an additional concept called
“negative objects.” In that definition, the convolution of two polyhedra can be seen as
an extension of equation (2.2), which defines the convolution of smooth boundary surfaces,
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where na and nb are replaced with the corresponding features (a single point, a geodesic arc,
or a patch, depending on the position of a or b on the boundary) to which points a and b are
mapped to on the Gaussian sphere, and then instead of checking whether the two outward
normals are the same, the intersection of the two features is checked.

Computing the exact convolution of two polyhedra is difficult itself since it involves
3D arrangements and Boolean operations. Usually people compute the exact convolution
only if both input models have smooth boundaries and if explicit parameterization of both
boundaries exists [Mühlthaler and Pottmann, 2003, Peternell and Steiner, 2007]. Many
convolution-based approaches for polyhedra just start with ∂A⊕∂B as the convolution [Lien,
2008d, Kaul and Rossignac, 1992], and then filter and trim its surface primitives to extract
the final Minkowski sum boundary. The filtering and trimming operations may become
very complex since the number of generated surface primitives has quadratic complexity and
they may intersect each other arbitrarily in 3D space. The algorithm we shall describe in
Chapter 5 uses this basic approach, but we use GPUs to directly compute a voxelization so
we can avoid the complex 3D computations.

Below we briefly discuss some existing convolution-based algorithms. Guibas and Seidel
presented an output sensitive algorithm for computing the convolution of 2D curves [Guibas
and Seidel, 1986]. Kaul and Rossignac introduced a set of criteria to cull out facets that
are not part of the Minkowski sum boundary [Kaul and Rossignac, 1992]. These criteria
were used later in other works [Lien, 2008a,d, Liu et al., 2009], and also in this dissertation
(Section 5.2.1). Peternell and Steiner studied how to extract the Minkowski sum bound-
ary from the convolution of two objects with piecewise smooth boundaries [Peternell and
Steiner, 2007]. As discussed in the previous paragraph, Lien started with a brute force con-
volution, which is simply defined as ∂A ⊕ ∂B, and then computed facet-facet intersections
as 2D arrangements on each facet [Lien, 2008d]. Then he introduced the novel idea of using
collision detection tests to merge and filter cells from 2D arrangements. Unfortunately the
2D arrangements and collision detection become both time and memory consuming when
the size and complexity of the input models increase.

2.3.3 Other Approaches

To overcome the computational complexity introduced by 3D operations, some approaches
seek to use other lower dimensional representations. Voelcker and his group suggested using
“ray representations” (ray-reps) to reduce 3D Minkowski sum computation to 1D Boolean
operations [Menon and Voelcker, 1993, Hartquist et al., 1999], but no practical implementa-
tion of this algorithm is known. Lien proposed a point-based approach that creates a point
set covering the Minkowski sum boundary [Lien, 2008a]. This approach starts with a set
of points both on and inside the Minkowski sum boundary. Several filters, including the
ones introduced in [Kaul and Rossignac, 1992], are used to cull out points that are not on
the boundary to generate the final point set. The main drawback of this approach is that
its result includes no information of the interior of the Minkowski sum. Kavraki proposed
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#tri 1 #tri 2 Timing (min:sec)
448 6 3:24
448 128 9:13
336 24 14:42

1,000 1,000 164:11

Table 2.1: Performance of 3D Minkowski sum computation for Cgal library. The Minkowski
sums were computed with Cgal 3.3 on a machine with a 2.4 GHz AMD Opteron processor
and 4 GB RAM [CGAL, 2011].

voxelizing both input models, then converting the Minkowski sum to the convolution (the
usual mathematical convolution, not the convolution of two surfaces mentioned in the previ-
ous section) of two 3D arrays representing the voxels, and finally computing the convolution
using a fast Fourier transform (FFT) [Kavraki, 1995, Lysenko et al., 2010, 2011]. The main
drawback of this approach is the low resolution (1283 or 2563) used for the voxelization due
to memory limitations, since each voxel needs to be represented as a floating point number.

Some algorithms have also been introduced for handling specific types of objects. Seong
et al. presented an algorithm for computing Minkowski sums of surfaces generated by slope-
monotone closed curves [Seong et al., 2002]. Mühlthaler and Pottmann introduced an explicit
parameterization of the convolution of two ruled surfaces [Mühlthaler and Pottmann, 2003],
which was defined in equation (2.2). Barki et al. proposed an approach for computing
the Minkowski sum of a convex polyhedron and a non-convex polyhedron whose boundary is
completely recoverable from three orthogonal projections [Barki et al., 2009a]. Other authors
have introduced fast algorithms for the special case of rotating convex polyhedra by tracking
the changes to the topology of the arrangement on the Gaussian sphere [Lien, 2008b, Behar
and Lien, 2011, Mayer et al., 2010].

2.3.4 Performance of Existing Libraries

There are two publicly available libraries for computing general 3D Minkowski sums, the
Cgal library [CGAL, 2008] and “m+3d” provided by Lien [Lien, 2008d]. The former is
based on convex decomposition and the latter based on convolution. Table 2.1 and 2.2 give
the reported timings for both libraries. Note that the performance is determined not only
by the numbers of triangles of input models, but also by their specific shapes. Overall m+3d
has better performance compared to Cgal, but Cgal uses exact arithmetic so that it is
able to find low dimensional boundaries, i.e., to identify dangling faces or lines and singular
points in the Minkowski sums. From the two tables, we can see that for input models with
hundreds or thousands of triangles, both libraries take minutes or even tens of minutes to
compute their Minkowski sums.
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#tri 1 #tri 2 Timing (min:sec)
540 942 5:19

2,116 992 5:47
12,396 992 12:35
32,236 992 15:21

Table 2.2: Performance of 3D Minkowski sum computation for m+3d. The timings were
obtained on a PC with two Intel Core 2 CPUs at 2.13 GHz with 4 GB RAM [Lien, 2008d].

2.4 GPU-Based Voxelization

In chapter 4 and 5, we will present two GPU-based algorithms for directly voxelizing the
Minkowski sum of two watertight polyhedra. In this section we briefly review several GPU-
based voxelization algorithms that are related to the techniques we will use in these chapters.

First we give an overall introduction to voxelized representations and voxelization algo-
rithms. Voxelized representations (see Figure 1.10 for an example) are popular because of
their simplicity and regularity [Gibson, 1995]. A variety of fields exploit voxelized represen-
tations including virtual medicine [Kreeger and Kaufman, 1999], haptic rendering [McNeely
et al., 1999], shadow rendering [Kim and Neumann, 2001], CSG operations [Fang and Liao,
2000], and visibility queries [Schaufler et al., 2000]. Voxelization is the process of generating
a voxelized representation for geometric objects. Voxelization algorithms can be classified
into surface voxelization or solid voxelization, depending on whether they voxelize only the
boundary surface or the whole interior. Another classification is binary voxelization, where
each voxel is represented by 0 or 1, or non-binary voxelization, where each voxel is represented
by a real value in the range [0, 1]. In this dissertation, we only consider binary voxelizations.

Most voxelization algorithms are GPU-based due to the GPU’s built-in rasterization
capability. Karabassi et al. presented a depth buffer based voxelization algorithm [Karabassi
et al., 1999], which works only for an object whose boundary can be completely seen from the
six orthogonal directions. The input object is projected to the six faces of its bounding box
and depth information is then read back from the depth buffer and used to reconstruct the
object. Llamas presented an algorithm for solid voxelization inspired by the stencil shadow
volume technique [Llamas, 2007]. In this technique, the stencil buffer is increased by one
for back faces and decreased by one for front faces (both with wrapping enabled to avoid
saturation); thus after rendering a slice of the input object, any voxel centered at this slice
and located inside the object will have a non-zero stencil value. This algorithm can also be
used to voxelize the union of a set of watertight objects. It will be discussed in more details
in section 4.2 and 4.3. In the algorithm proposed by Fang and Chen, the object is rendered
slice by slice along the z direction, and each slice is voxelized individually [Fang and Chen,
2000]. This algorithm directly creates a surface voxelization, from which a solid voxelization
can then be generated using a parity check. However, surfaces parallel or nearly parallel
to the projection direction are not completely voxelized, and the memory cost for a high
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resolution volume is high since each voxel requires a byte (rather than a bit) of memory.
To address these issues, Dong et al. proposed projecting the model along three orthogonal
directions and encoding multiple voxels in one texel (texture element) [Dong et al., 2004].
We will use the same approach in the algorithm described in section 5.3.1.
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Chapter 3

2D Accessibility Analysis for Waterjet
Cleaning

In section 1.3.2, we summarized the relationship between Minkowski sums and the widely
used configuration space (C-space) approach for motion planning. In this chapter, we intro-
duce a C-space approach to analyzing the accessibility and cleanability problem for waterjet
cleaning.

Effective cleaning with high pressure waterjets requires direct impact of jets and suffi-
ciently high impact pressure. The objective of this research is to find all such cleanable
regions, given a CAD model of a workpiece, by means of geometric accessibility analysis.
We use a C-space approach for addressing the problems of both optimum surface proximity
for effective cleaning and collision avoidance between the cleaning lance and the workpiece.
Minkowski sums are used to compute the C-spaces and cleanable regions are then found by
visibility analysis. Implementations and results for 2D examples are shown to validate the
approach.

3.1 Introduction and Problem Statement

Cleaning engine components to remove hard particle contaminants introduced during the
manufacturing process is becoming a significant issue for industry [Ávila et al., 2006, Berger,
2006]. Examples of mechanical components that are particularly prone to solid particle con-
tamination are engine blocks and cylinder heads fabricated by sand casting wherein the sand
particles from the mold get embedded onto the surface of the cast product. A commonly used
cleaning method is High Pressure Jets (HPJs), where the cleaning action is obtained from the
impact of a high speed jet of water. Experience in the automotive industry has shown that
efficacy of HPJ cleaning is strongly dependent on the geometry of the workpiece [Arbelaez
et al., 2008].

Using HPJ cleaning for the removal of embedded particles such as casting sand, it has
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been found that direct impact of the jets is often necessary for their removal [Ávila et al.,
2006]. Hence, the HPJ lance — a rigid tube with a cleaning nozzle on the end — must be
able to access the features such that the entire surface area receives a direct impact from
the jets. Another necessary condition is sufficiently high impact pressure on the workpiece
surface when it is hit by the waterjets from the nozzle [Ávila, 2007]. If the distance between
the nozzle and the surface becomes large enough, the impact pressure drops below the
minimum requirement for effective cleaning. In this research we take into consideration
both the ability to achieve direct impact and the magnitude of impact pressure. We say a
region of the surface is cleanable if waterjets can directly access it and the impact pressure is
high enough to perform effective cleaning. Otherwise we say it is non-cleanable. Figure 3.1
illustrates these two types of non-cleanable regions.

Lance

Workpiece

Waterjet
Nozzle

Non-cleanable 

region

Maximum effective

cleaning distance

All cleanable regions

Translating lanceFigure 3.1: Two types of non-cleanable regions (dotted). On the left the surface is not
directly accessible by the waterjet. On the right the distance between the nozzle and the
surface is too large to provide enough impact pressure for effective cleaning.

In this research we present an approach for finding all possible cleanable regions of a
workpiece by means of geometric accessibility analysis. We consider a simplified 2D prob-
lem where the workpiece is represented as a polygon. We also assume that the workpiece
position and orientation is fixed and that the lance can only translate (not rotate) relative
to the workpiece during the cleaning process. We only consider the collision between the
lance and workpiece and do not consider the lance holder and other obstacles in our imple-
mentation, although our algorithm could be trivially extended to incorporate these inputs
as well. An example result of our algorithm is shown in Figure 3.2. Although the algorithm
is demonstrated in 2D, it can be extended to 3D as well.

Our algorithm consists of two major stages. In the first stage, the entire C-space is divided
into three disjoint C-spaces — cleaning C-space, non-cleaning C-space, and interference C-
space — by using Minkowski sums. Then in the second stage, we find all the regions of the
workpiece that are cleanable when the lance is positioned in the cleaning C-space, based on
visibility and effective cleaning distance.
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Lance

Workpiece

Waterjet
Nozzle

Non-cleanable 

region

Maximum effective

cleaning distance

All cleanable regions

Translating lance

Figure 3.2: An example of all possible cleanable regions (thickened). The workpiece is fixed
and the lance can only translate.

3.2 Related Work

C-spaces have been heavily used for collision avoidance in automatic path planning. Lozano-
Pérez first introduced the C-space approach for motion planning of a rigid object among
physical obstacles [Lozano-Pérez, 1983]. Every point in the C-space corresponds to a set of
independent parameters that characterize the position and orientation of the rigid object.
Choi et al. applied the C-space approach to 3-axis NC tool path generation for sculptured
surface machining [Choi et al., 1997]. Tool paths generated from the C-spaces were gouge-free
and collision-free.

Accessibility analysis has been recognized as an important tool in various applications
such as dimensional inspection, machining, assembly, and mold design. In machining, for
example, accessibility analysis helps in determining machinability by finding the set of di-
rections from which the part may be approached by the cutting tool. Woo and his group
introduced the concept of spherical visibility maps and applied them to various manufac-
turing problems like optimal workpiece orientation [Chen et al., 1993, Woo, 1994]. Spitz et
al. presented a discrete approximation algorithm for computing accessibility information by
exploiting computer graphics hardware [Spitz et al., 1998].

3.3 Mathematical Model of Waterjet Cleaning

Before we analyze the accessibility of waterjets, we need to compute the effective water zone
— the water zone where the impact pressure is high enough for effectively cleaning. The
impact pressure becomes low where the distance to the nozzle is large and where waterjets
mix with the surrounding air. To compute the impact pressure inside the waterjets, we use
a mathematical model introduced in [Leu et al., 1998]. Let the nozzle center be the origin
O. The impact pressure P at some point inside the waterjets is a function of the standoff
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distance x and radial distance r, as depicted in Figure 3.3(a).

Lance

Workpiece

Waterjet
Nozzle

Non-cleanable 

surface

Maximum effective

cleaning distance

Cleanable surface

Translating lance

O
r

x

0-18 MPa

18-36 MPa

36-54 MPa

54-72 MPa

>72 MPa

A1

A2

A3

(a) (b) (c)

Effective Water Zone

r

x

P(x,r)
0.1m

A4

A5

Figure 3.3: Impact pressure of a waterjet. (a) Impact pressure P is a function of standoff
distance x and radial distance r. (b) An example of impact pressure distribution inside the
waterjets. (c) The effective water zone is approximated as a polygon A1A2A3A4A5.

According to [Leu et al., 1998], the impact pressure can be expressed as:

P (x, r) =

(
D

x

)2 [
1−

( r

Cx

)1.5]3
(3.1)

where C is the spreading coefficient of water, and D is a parameter determined by the water
pressure from the pump, the nozzle radius, and some physical constants of water. Both C
and D can be assumed as constants during the cleaning process. Based on this equation, we
can compute the impact pressure distribution inside the waterjets. Figure 3.3(b) illustrates
such an example where the water pressure from the pump is 200MPa and the nozzle radius
is 0.3mm. If the minimum effective impact pressure is Pmin, then the effective water zone is
the set of all locations satisfying P ≥ Pmin. We can see from Figure 3.3(b) that iso-pressure
curves have an ellipse-like shape. For simplicity we approximate the effective water zone as a
polygon A1A2A3A4A5, as shown in Figure 3.3(c). The short edge A1A5 represents the width
of the nozzle. Since usually the nozzle radius r0 is very small and the impact pressure near
the nozzle is very high, we assume the effective water zone emanates from the full width of
the nozzle and set the coordinates of A1 and A5 as:

(r1, x1) = (−r0, 0),
(r5, x5) = (r0, 0).

(3.2)

The coordinates of A2 and A4 are determined by the system of equations:

∂P/∂x = 0,
P = Pmin;

(3.3)

and the coordinates of A3 are determined by the system of equations:

r = 0,
P = Pmin.

(3.4)
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Solving these equations we obtain the coordinates of A2, A3, and A4 as:

(r2, x2) =
(
−0.26 CD√

Pmin
, 0.58 D√

Pmin

)
,

(r3, x3) =
(

0, D√
Pmin

)
,

(r4, x4) =
(

0.26 CD√
Pmin

, 0.58 D√
Pmin

)
.

(3.5)

In our algorithm implementation, we use the polygon A1A2A3A4A5 as the effective water
zone. Slightly more accurate simulations could be performed using a convex n-gon with more
sides, at the expense of longer running times.

3.4 C-space Computation

As the first stage of our algorithm, we divide the entire configuration space into three sub-
sets based on the geometry of the lance, the workpiece, and the effective water zone. A
configuration of an object is defined by independent parameter values that characterize the
position the object [Lozano-Pérez, 1983]. In our simplified cleaning problem, the lance sys-
tem is a rigid polygon that can only translate in the plane, so each configuration has two
degrees of freedom. We pick a point in the polygon as the reference point, and use its x and
y coordinates to specify the corresponding configuration. The set of all configurations is the
configuration space (C-space). Some configurations are forbidden during the cleaning pro-
cess because the lance will collide with the workpiece under these configurations. The others
are safe; however, some of them are not valid for cleaning if the effective water zone doesn’t
“touch” some region of the surface of the workpiece. (Note that not all surfaces touched by
the efficient water zone will necessarily be cleaned in the corresponding configuration due
to visibility constraints, as described in the next section.) Thus we can divide the whole
C-space of waterjet cleaning into three disjoint C-spaces:

• Interference C-space (AI): the C-space where the lance collides with the workpiece;

• Non-cleaning C-space (AN): the C-space where the lance does not collide with the
workpiece but the waterjets fail to effectively clean the workpiece;

• Cleaning C-space (AC ): the C-space where the waterjets can effectively clean some
regions of the workpiece.

We represent the lance, the effective water zone, and the workpiece as polygons L, W , and
P respectively, and place the reference point O at the center of the water nozzle, as shown
in Figure 3.4 (a). We also assume that the workpiece does not have any self-intersections or
enclosed holes (enclosed holes, if any, can be marked as non-cleanable and removed since the
lance can never go into these holes). Since we don’t consider the lance holder geometry in our
problem, we model the lance as a rectangle with infinite height to simulate the existence of the
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Cleaning 
C-space (AC)

Interference 
C-space (AI)

Non-cleaning C-space (AN)

(a) (b)

Figure 3.4: Computation of the cleaning, non-cleaning, and interference C-spaces. O is the
reference point.
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Inner boundary 

of

Figure 3.5: A hole in the interference C-space. The lance cannot access holes in P ⊕ −L,
such as in the dashed configuration pictured, although these configurations would not be in
the interference C-space.

lance holder. In practice a height larger than the diagonal of the workpiece’s bounding box
is sufficient. (Alternatively, a polygon with more sides could be used to accurately represent
the combined lance and lance holder geometry.) Computation of the three C-spaces can be
described using Minkowski sums as follows:

AI = P ⊕−L
AC = (P ⊕−W ) \AI

AN = (AI ∪ AC)c .
(3.6)

In the above equation, the interference C-space AI is the Minkowski sum of the workpiece P
and the inverse lance −L. Since L effectively has an infinite height, there will be no holes in
P ⊕−L (because a ray emanating from any point in P ⊕−L and going down vertically also
lies in P ⊕−L). Thus we avoid the case where the lance can be “placed” in cavities without
collision but cannot access them from the outside (see Figure 3.5). The cleaning C-space AC
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is the difference between P ⊕−W and AI . The non-cleaning C-space AN is the complement
of the union of the cleaning and the interference C-space. The result of computing these
three C-spaces is illustrated in Figure 3.4 (b), where the (light) green area is the cleaning
C-space and the (dark) red area is the interference C-space.

3.5 Algorithms for Finding Cleanable Regions

As the second stage of our algorithm, we find all the cleanable regions, building on the
computation of the three C-spaces, which give us information about where we can place the
lance for effective cleaning and where the lance collides with the workpiece. Under any con-
figuration in the cleaning C-space, the waterjets clean some regions of the workpiece. In this
section, we describe an algorithm for finding all such cleanable regions of a workpiece, given
a translating lance. We solve this problem in two steps. First we find the cleanable regions
under a specific configuration (lance position), taking visibility into account (section 3.5.1),
and then we use a simulation approach to find all such cleanable regions (section 3.5.2).

3.5.1 Finding Cleanable Regions under a Specific Configuration

For a configuration c ∈ AC , we want to find the cleanable regions when the lance is positioned
in this configuration. These cleanable regions are a subset of the surface regions that lie inside
the effective water zone, since they must also be visible from the nozzle. The actual nozzle
has a radius that is usually very small compared to the size of the lance or the workpiece. In
our algorithm, we test the visibility from point O′, the intersection of lines A2A1 and A4A5

bounding the effective water zone (see Figure 3.6 (a)).

L

W

O'P

(a) (b)

A1

A2

A3

A4

A5

O'

(c) (d)

Figure 3.6: Computation of the cleanable regions under a specific configuration. (a) The
effective water zone. (b) The workpiece to be cleaned. (c) Surfaces inside the effective water
zone. (d) The subset of such surfaces also visible from the nozzle.

The algorithm for finding cleanable regions under a specific configuration consists of three
steps:
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1. Compute the regions of the workpiece that lie inside the effective water zone, which is
a set of line segments, denoted as RE (highlighted in Figure 3.6 (c));

2. For each line segment in the set RE, compute the portion of it that is visible from the
nozzle (highlighted in Figure 3.6 (d));

3. The cleanable regions under this configuration are the union of all such visible sub-
segments.

For the first step, we can use either a näıve approach to compute the intersections be-
tween each edge of the workpiece and the effective water zone, or a more efficient one with
hierarchical data structures such as quadtrees. Currently we simply use a näıve approach.
For the second step, we first give a clear definition of visibility to handle ambiguous cases.
We say a point Q is visible from point O′ if the line segment O′Q doesn’t intersect the interior
of the workpiece. For simplicity, in the remainder of this chapter, when we say a point or a
region is visible, we mean that it is visible from the point O′. According to this definition,
points A and D in Figure 3.7 (a) are not visible, but points B and C are visible. We give
the algorithm for computing the visibility of a point below.

A B C D

visible visiblenot

visible

O'
case (i) case (ii)

case (iii) case (iv)

(b) (c)(a)

A B C D

O'

or

Figure 3.7: Visible points and visible regions. (a) Points A and D are not visible; point B
and C are visible. (b) Disjoint visible regions on a line segment. (c) Four different visibility
cases for a line segment.

The visible regions on a line segment are the set of all visible points on it. We can prove
by contradiction that for a line segment on the workpiece, its visible regions are connected.

Proposition 3.1. The visible regions of a line segment on the workpiece are connected.

Proof. Suppose that on a line segment AD, there exist disjoint visible regions AB and CD
(Figure 3.7 (b)). Since BC is not visible, there must exist a region of the workpiece inside
4O′BC that blocks the visibility. Since the workpiece is a polygon without holes, the
boundary of this region should be connected with line segment AD, and it cannot cross
line segment BC (otherwise the workpiece is self-intersecting). It cannot go through point
O′ either, otherwise the lance would be colliding with the workpiece. So this region of the
workpiece inside 4O′BC has to cross the interior of line segment O′B or O′C, which causes
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Algorithm 3.1 Compute the visibility of point Q

1: Find all intersection points between the line segment O′Q and the boundary of the
workpiece. (If an edge of the workpiece overlaps O′Q, only its endpoints are deemed
potential intersection points.)

2: Store these intersection points in a list L and sort them lexicographically by coordinates.
3: visibility ← true
4: for each pair of adjacent points L[i], L[i+ 1] in L do
5: M ← (L[i] + L[i+ 1]) /2
6: if M is in the interior of the workpiece then
7: visibility ← false
8: end if
9: end for
10: return visibility

the neighborhoods of B or C to be invisible. This contradicts the assumption that the whole
of line segments AB and CD are visible.

Based on this theorem, we can conclude that any line segment on the workpiece belongs
to exactly one of the four different visibility cases shown in Figure 3.7 (c): the whole line
segment is invisible (case i), a region in the interior is visible (case ii), a region on one end is
visible (case iii), or the whole line segment is visible (case iv). Thus, to compute the visible
regions of a line segment, we first find the visible vertices of the workpiece that occlude
the line segment from the nozzle (i.e., inside the triangle formed by the line segment and
O′ on the nozzle), if any. We then compute the distinct intersection(s) between the ray(s)
emanating from the nozzle that pass(es) through these vertices, and the line segment. If
the number of distinct visible intersection points is one or two, the line segment belongs to
case (iii) or case (ii), respectively. If zero, it is either case (i) or case (iv), which can in
turn be differentiated by the visibility of the middle point of the line segment. The detailed
algorithm is described below.

We apply this algorithm to each line segment in the set RE to find its visible regions,
and then take the union of all these visible regions. The union is the cleanable regions under
the current configuration.

3.5.2 Finding All Cleanable Regions

All possible cleanable regions are the union of the cleanable regions when the lance is po-
sitioned under each configuration of the cleaning C-space. A näıve approach might sample
the whole cleaning C-space, calculate the cleanable regions under each sample configura-
tion, and then take their union. However, we can prove that it is sufficient to sample only
the boundary between the cleaning and the interference C-spaces to cover all the possible
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Algorithm 3.2 Compute the visible regions of a line segment Q1Q2 on the workpiece

1: Find all visible vertices of the workpiece, and store them in an array Avert.
2: Initialize an empty point array Apnt.
3: for all V ∈ Avert do
4: if ray O′V intersects the line segment Q1Q2 at point T and T is visible then
5: add T to Apnt

6: end if
7: end for
8: Remove duplicate points in Apnt.
9: if size(Apnt)=1 then {this is case (iii)}
10: if Q1 is visible then
11: return line segment (Q1, Apnt[0])
12: else
13: return line segment (Apnt[0], Q2)
14: end if
15: else if size(Apnt)=2 then {this is case (ii)}
16: return line segment (Apnt[0], Apnt[1])
17: else if size(Apnt)=0 then
18: M ← (Q1 +Q2)/2
19: if M is visible then {this is case (iv)}
20: return line segment (Q1, Q2)
21: else {this is case (i)}
22: return NULL
23: end if
24: else
25: assert(false) {this should not happen}
26: end if
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Figure 3.8: Only the boundary between the cleaning and interference C-spaces needs to be
sampled.

Proposition 3.2. If a point on the workpiece is cleanable, then it is cleanable under some
configuration on the boundary between the cleaning and interference C-spaces.

Proof. Suppose that a point Q on the workpiece is cleanable. There must exist a configura-
tion C in the cleaning C-space such that Q can be cleaned when the lance is positioned at
C (see Figure 3.8 (a)). Since Q lies inside the interference C-space and C lies outside, the
line segment QC must intersect the border of the interference C-space. Call the intersection
point C ′ (if more than one intersection point exists, we pick the one closest to C). Because
of the convexity of the effective water zone, Q still lies in the effective water zone if the
lance is moved from C to C ′. Since Q is visible from C, it is also visible from C ′. So Q can
be cleaned under configuration C ′. Since C ′ lies on the border of the interference C-space
and the lance positioned at it cleans part of the workpiece, C ′ must belong to the boundary
between the interference and cleaning C-spaces.

For the example in Figure 3.4, the boundary between its cleaning and interference C-
spaces are shown in Figure 3.8 (b). To compute the boundary, we first compute the border
of P ⊕−L (see Figure 3.4 (a)), then find the portions that lie inside P ⊕−W . In practice, we
offset the boundary into the cleaning C-space for a very small distance to avoid the situation
where a portion of the boundary may overlap the edges of the workpiece. We then regularly
sample points along the boundary, compute the visible regions for each sample point using
the algorithm described in section 3.5.1, and take the union of all these visible regions.

3.6 Implementation

We implemented all the above algorithms using the CGAL library [CGAL, 2008], which offers
robust implementations of some basic algorithms like Minkowski sums, point membership
classification (PMC), intersection point computation, etc. We used the predefined Cartesian
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kernel with exact predicates and constructions to guarantee robustness when handling corner
cases like the visibility computation for points B and C in Figure 3.7 (a) [Halperin, 2002].

(a) (b)

Figure 3.9: Example results of our program. All the possible cleanable regions for a slanted
(a) single-orifice and (b) multi-orifice lance are highlighted.

In our interactive program, the user can translate the lance or change its orientation using
the keyboard. The color of the lance indicates the current C-space it lies in: red means the
interference C-space, green means the cleaning C-space, and gray means the non-cleaning
C-space. The cleanable regions under the current configuration are highlighted. The user
can also invoke the simulation to find all possible cleanable regions. Our program supports
multi-orifice nozzles as well. Two examples of our results are shown in Figure 3.9. The
accuracy of the results is determined by the sampling frequency on the boundary between
interference and cleaning C-spaces. In our implementation, a fixed sampling step equal to
the nozzle radius r0 (see Equation (3.2)) was used to prevent unintended gaps between the
cleanable regions that could otherwise cause artifacts due to the discrete sampling.

3.7 Discussion

An exact algorithm for finding all the cleanable regions remains as future work. A promising
approach would find the exact locations of “critical points” on the boundary of the workpiece
(the endpoints of the highlighted line segments in Figure 3.9). To find these critical points
directly would be difficult; instead we find a set of possible candidate points that is a superset
of all the actual critical points. Such candidates subdivide the boundary of the workpiece
into many line segments. Inside each line segment, all points have the same cleanability, i.e.,
they are all either cleanable or non-cleanable. To find the possible candidates for critical
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Figure 3.10: Possible candidates for critical points.

points, we consider each pair consisting of an edge (ew) of the workpiece and an edge (ec)
of the boundary between the interference and cleaning C-space. In addition to the original
vertices of the workpiece, possible candidates include, but are not limited to:

• Intersection points between ew and the boundary of ec ⊕ W , such as C1 and C2 in
Figure 3.10 (a);

• Extreme points caused by the occlusion of another vertex on the workpiece, such as
C3 in Figure 3.10 (b).

Conditions for finding the complete set of candidates remain future work.
More accurate geometries can be used for the effective water zone W and the lance L.

A more accurate approximation of the effective water zone (Figure 3.3) can be used as long
as it is a convex polygon (required by Proposition 3.2). Currently the geometry of the lance
holder is not considered and the lance is modeled as a simple rectangle. We can use a
more complex polygon to accurately represent the combined geometry of the lance and lance
holder; this polygon needs not be convex.

The approach described in this paper can be extended to 3D as well. Algorithm 3.1 for
computing the visibility of a point still holds in 3D, but Proposition 3.1 is no longer true —
the visible regions on a face of a 3D workpiece may be disjoint. To find the visible regions
on a face, we can employ a spherical visibility map [Woo, 1994] or graphics-hardware based
visibility algorithms [Khardekar et al., 2006]. Proposition 3.2 still holds true in 3D, therefore
we only need to sample the boundary faces between the interference and cleaning C-spaces
to find all the possible cleanable regions. In order to provide interactive 3D cleanability
feedback to designers, however, the speed of prior 3D Minkowski sum algorithms would
remain a bottleneck.

3.8 Summary

In this chapter we presented an approach for finding all the cleanable regions of a polygon un-
der a 2D waterjet cleaning process by means of geometric accessibility analysis. Cleanability
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is determined by three factors — visibility from the nozzle, sufficient impact pressure, and a
collision-free position of the lance. Our approach first constructs the cleaning C-space where
the lance doesn’t collide with the workpiece and at the same time the waterjet produces suf-
ficient impact pressure for effective cleaning. Visibility testing is then performed to find the
cleanable regions under a specific configuration. The boundary between the cleaning and in-
terference C-spaces is sampled to find all the possible cleanable regions. Results demonstrate
that our approach can be applied to different lance orientations and multi-orifice nozzles.
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Chapter 4

Computing Voxelized 3D Minkowski
Sums on the GPU

In section 1.2, we gave an example showing that the Minkowski sum A⊕B can be gen-
erated by sweeping A along the boundary of B (or vice versa). In this chapter, we will
develop the mathematics behind the “sweep-along-the-boundary” behavior — we give both
an accurate mathematical description and a strict proof (Proposition 4.1). Based on this
mathematical formulation, we then introduce a new formula (Proposition 4.2) that decom-
poses the Minkowski sum of two closed watertight objects as the union of the Minkowski
sum of their boundaries and a translation of each input object. Finally, for an efficient im-
plementation, we use a stencil shadow volume technique to voxelize the union and create a
solid voxelization of the Minkowski sum.

4.1 Mathematical Formulation

To manually draw the Minkowski sum of two simple shapes, one usually sweeps one shape
along the boundary of the other. (In fact this method works for complex 3D objects too,
but it is easier to perform manually for simple shapes.) Such an example is shown in
Figure 4.1 (a). Here we sweep the yellow triangle along the boundary of the green rectangle.
There are some subtleties that need to be clarified in this common approach, listed below
and explained in Figure 4.1.

• A reference point needs to be specified for B. This reference point is placed on and
swept along the boundary of A. Theoretically this point can be chosen arbitrarily. One
usually uses a point on the boundary of B for convenience. In Figure 4.1 (a), we use
point r as the reference point.

• Before B is swept, A needs to be translated by the vector defined by the reference point
of B. Usually one simply sweeps B along the boundary of A without translating A,
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just because the origin is taken as the reference point. If the reference point is not the
origin, a translation of A is necessary. In Figure 4.1 (a), the green square is translated
by vector r.

• Just sweepingB along the boundary ofA does not necessarily cover the whole Minkowski
sum A⊕B. As shown in Figure 4.1 (b), an empty rectangle inside the Minkowski sum
is not covered by the sweep in this example. This empty rectangle will be covered by
A after it is translated by vector r if r is chosen to be a point of B (either on the
boundary or in the interior), as one normally does.

A B

O
O

O

r

O O

(a)

(b) (c)

Figure 4.1: Minkowski sum A ⊕ B by sweeping B along the boundary of A. (a) Sweep B
along the boundary of A. (b) An empty area inside the Minkowski sum is not swept by B.
(c) Translation of A by any vector in B covers the empty area.

Mathematically “sweeping B along the boundary of A” is represented by B ⊕ ∂A. To
cover the empty area that is not covered by the sweep, we need a translation of A. A key
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observation is that as long as A is translated by a vector defined by any point of B, it will
cover the empty area (see Figure 4.1 (c)). We summarize this observation in the proposition
below and also give a strict proof. A similar proposition was introduced in the technical
report of [Menon and Voelcker, 1993], though the origin was assumed to be inside of B (or
translated before and after). In our proposition below, we do not put any restriction on the
origin and give a more concise proof.

Proposition 4.1. Suppose A and B are two singly connected watertight objects, and pb is
an arbitrary point of B (either on the boundary or in the interior). Then
A⊕B = (B ⊕ ∂A) ∪ (A+ pb)

Proof. Let C denote (B ⊕ ∂A) ∪ (A+ pb), ∀pb ∈ B. By definition, B ⊕ ∂A ⊆ A ⊕ B and
A + pb ⊆ A ⊕ B. Therefore C ⊆ A ⊕ B. We only need to prove that A ⊕ B ⊆ C; i.e.,
∀c ∈ A⊕B, we need to show that c ∈ C.

For any c ∈ A⊕B there must exist points a and b, a ∈ A and b ∈ B, such that c = a+ b.
If a ∈ ∂A, then c ∈ B ⊕ ∂A ⊆ C. If a /∈ ∂A, then a must lie in the interior of A. Now we
consider −B+ (a+ b) (B is reflected around the origin and then translated by vector a+ b).
After this transformation, point b will coincide with point a (since −b + (a + b) = a). Note
that b can be either on the boundary or in the interior of B. Now consider the intersection
between the boundaries of A and −B + (a + b). Since A and −B + (a + b) share at least
one common point a and a is in the interior of A, either these two boundaries intersect each
other, or one of them completely contains the other, for a total of three different cases to
consider (see Figure 4.2).

• case (1): ∂(−B+(a+ b)) and ∂A intersect. Suppose a′ is the intersection, a′ ∈ ∂A and
a′ ∈ ∂(−B + (a+ b)). Since a′ ∈ ∂(−B + (a+ b)), ∃b′ ∈ B such that a′ = −b′ + a+ b.
Then c = a+ b = (a+ b− b′) + b′ = a′ + b′ ∈ ∂A⊕B ⊆ C.

• case (2): −B + (a + b) ⊆ A. Then ∀pb ∈ B, −pb + a + b ∈ A ⇒ −pb + c ∈ A ⇒ c ∈
A+ pb ⊆ C.

• case (3): A ⊆ −B+ (a+ b). Then ∀pa ∈ ∂A ⊆ A, pa ∈ −B+ (a+ b)⇒ pa ∈ −B+ c⇒
−pa ∈ B + (−c)⇒ c− pa ∈ B ⇒ c ∈ B + pa ⊆ B ⊕ ∂A ⊆ C.

Thus for all the three cases, we have c ∈ C. This proves A⊕B ⊆ C. Thus A⊕B = C.

Proposition 4.1 mathematically explains the “sweep-along-the-boundary” method used
to generate Minkowski sums. In fact, as suggested by our proof above, we find that the
proposition can be further extended. In case (1), b′ must be on the boundary of B; in
case (3), pa can be any point of A, not just a point on the boundary of A. Another reason
the proposition might be extended is that A and B are symmetric in A ⊕ B (i.e., they can
be swapped without causing any change), but they are not in (B ⊕ ∂A) ∪ (A+ pb).
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Figure 4.2: Proof of Proposition 4.1 and Proposition 4.2.
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The extended proposition is given below. It shows that the Minkowski sum of two singly
connected watertight objects can be decomposed as the union of the Minkowski sum of their
boundaries and a copy of each object translated by a vector defined by any point of the other
object. Its proof is very similar to the one for Proposition 4.1. To the best of our knowledge,
this is the first mathematical formulation and explanation of the relationship between the
Minkowski sum of two objects and the Minkowski sum of their boundaries.

Proposition 4.2. Suppose A and B are two singly connected watertight objects, and pa
and pb are two arbitrary points of A and B respectively (either on the boundary or in the
interior). Then
A⊕B = (∂A⊕ ∂B) ∪ (A+ pb) ∪ (B + pa).

Proof. Let C denote (∂A⊕ ∂B)∪ (A+ pb)∪ (B + pa), ∀pa ∈ A and ∀pb ∈ B. By definition,
∂A⊕ ∂B ⊆ A⊕B, A+ pb ⊆ A⊕B, and B + pa ⊆ A⊕B. Then C ⊆ A⊕B. We only need
to prove that A⊕B ⊆ C; i.e., ∀c ∈ A⊕B, we need to show that c ∈ C.

For any c ∈ A⊕B there must exist points a and b, a ∈ A and b ∈ B, such that c = a+ b.
If a ∈ ∂A and b ∈ ∂B, we have c ∈ ∂A ⊕ ∂B ⊆ C. Otherwise, either a /∈ ∂A or b /∈ ∂B.
Without loss of generality we assume that a /∈ ∂A. Then a must lie in the interior of A. Now
we consider −B+(a+b) (B is reflected around the origin and then translated by vector a+b).
After this transformation, point b will coincide with point a (since −b + (a + b) = a). Note
that b can be either on the boundary or in the interior of B. Now consider the intersection
between the boundaries of A and −B + (a + b). Since A and −B + (a + b) share at least
one common point a and a is in the interior of A, either these two boundaries intersect each
other, or one of them completely contains the other, for a total of three different cases to
consider (see Figure 4.2).

• case (1): ∂(−B+(a+ b)) and ∂A intersect. Suppose a′ is the intersection, a′ ∈ ∂A and
a′ ∈ ∂(−B+ (a+ b)). Since a′ ∈ ∂(−B+ (a+ b)), ∃b′ ∈ ∂B such that a′ = −b′+ a+ b.
Then c = a+ b = (a+ b− b′) + b′ = a′ + b′ ∈ ∂A⊕ ∂B ⊆ C.

• case (2): −B + (a + b) ⊆ A. Then ∀pb ∈ B, −pb + a + b ∈ A ⇒ −pb + c ∈ A ⇒ c ∈
A+ pb ⊆ C.

• case (3): A ⊆ −B + (a + b). Then ∀pa ∈ A, pa ∈ −B + (a + b) ⇒ pa ∈ −B + c ⇒
−pa ∈ B + (−c)⇒ c− pa ∈ B ⇒ c ∈ B + pa ⊆ C.

Thus for all the three cases, we have c ∈ C. This proves A⊕B ⊆ C. Thus A⊕B = C.

Proposition 4.1 and 4.2 apply to any singly connected watertight object. Note that for a
degenerate object that has zero volume (such as a surface, a line, or a point embedded in 3D
space), its boundary is the same as the object itself. If both input models are triangulated
polyhedra, their boundaries are the sets of their boundary triangles. Proposition 4.2 can
then be rewritten as the corollary below.
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Corollary 4.1. Suppose A and B are two triangulated polyhedra (singly connected and wa-
tertight), FA and FB are the sets of their respective boundary triangles (faces), and pa and pb
are two arbitrary points of A and B respectively (either on the boundary or in the interior),
then we have
A⊕B = (FA ⊕ FB) ∪ (A+ pb) ∪ (B + pa).

⊕ =

⊕ =

Figure 4.3: Minkowski sum of two triangles in 3D space.

To compute FA ⊕ FB, we need to compute the Minkowski sum of two triangles in 3D
space. Generally the Minkowski sum of two triangles in 3D (Figure 4.3) is a polyhedron with
9 boundary faces (4 triangles and 5 quadrilaterals). These boundary faces are determined by
the relative position of the two triangles in 3D space. To further simplify the computation,
we use the proposition below to reduce the Minkowski sum of two triangles to the union of
Minkowski sums of triangles and edges, which are simply triangular prisms.

Proposition 4.3. Suppose A and B are two triangles in 3D space, and EA and EB are the
sets of their respective boundary edges, then
A⊕B = (A⊕ EB) ∪ (B ⊕ EA).

Proof. Let C denote (A⊕ EB) ∪ (B ⊕ EA). By definition, A⊕ EB ⊆ A⊕B and B ⊕ EA ⊆
A⊕B, so C ⊆ A⊕B. It remains only to prove that A⊕B ⊆ C.

If the two planes containing A and B respectively are not parallel, call their intersection
line L (see Figure 4.4). If the two planes are parallel, take any line parallel to them as L. For
any c ∈ A⊕B there must exist points a and b, a ∈ A and b ∈ B, such that c = a+b. If at least
one of a and b is on an edge of the two triangles, we have c ∈ A⊕EB ⊆ C or c ∈ B⊕EA ⊆ C.
Otherwise, both a and b are in the interior of the triangles; call the intersections of the line,
passing through a (respectively, b) and parallel to L, with the edges of A (respectively, B)
a1 and a2 (respectively, b1 and b2). We compare the lengths of the four line segments aa1,
aa2, bb1, and bb2. Without loss of generality, suppose aa1 has the smallest length out of the
four, then b+ a− a1 ∈ B. This gives us c = a+ b = (b+ a− a1) + a1 ∈ B ⊕ EA ⊆ C. Note
that the above reasoning still holds if all four line segments have the same length or if A and
B intersect.

Therefore we have ∀c ∈ A⊕B, c ∈ C; i.e., A⊕B ⊆ C.
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Figure 4.4: Proof of Proposition 4.3

Based on Corollary 4.1 and 4.3, we can decompose the Minkowski sum of two polyhedra
as the union of a series of prisms and a translation of both input polyhedra, as shown in the
proposition below.

Proposition 4.4. Suppose A and B are two triangulated polyhedra, FA and FB are the sets
of their respective boundary triangles, EA and EB are the sets of their respective edges, pa
and pb are two arbitrary points of A and B respectively (either on the boundary or in the
interior), then
A⊕B = (FA ⊕ EB) ∪ (FB ⊕ EA) ∪ (A+ pb) ∪ (B + pa).

Proof. For any triangle fA ∈ FA and fB ∈ FB, suppose the edge sets of fA and fB are EfA

and EfB respectively. From Proposition 4.3, fA⊕ fB = (fA ⊕ EfB)∪ (fB ⊕ EfA). Then from
Proposition 2.5 (distributivity), we have

FA ⊕ FB = (∪fA∈FA
{fA})⊕ (∪fB∈FB

{fB})
= ∪fA∈FA,fB∈FB

(fA ⊕ fB)

= ∪fA∈FA,fB∈FB
((fA ⊕ EfB) ∪ (fB ⊕ EfA))

= (∪fA∈FA,fB∈FB
fA ⊕ EfB) ∪ (∪fA∈FA,fB∈FB

fB ⊕ EfA)

= ((∪fA∈FA
{fA})⊕ (∪fB∈FB

EfB)) ∪ ((∪fB∈FB
{fB})⊕ (∪fA∈FA

EfA))

= (FA ⊕ EB) ∪ (FB ⊕ EA) .

Now applying Corollary 4.1,

A⊕B = (FA ⊕ FB) ∪ (A+ pb) ∪ (B + pa)

= (FA ⊕ EB) ∪ (FB ⊕ EA) ∪ (A+ pb) ∪ (B + pa) .
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From Proposition 4.4, we know that the Minkowski sum of two polyhedra can be decom-
posed as the union of the following four components:

• FA⊕EB, which is a series of prisms formed by sweeping each triangle of A along each
edge of B;

• FB ⊕EA, which is a series of prisms formed by sweeping each triangle of B along each
edge of A;

• A+ pb, which is a translation of A by a vector defined by any point of B;

• B + pa, which is a translation of B by a vector defined by any point of A.

Each one of these four components can be computed easily. To compute Minkowski sums
using Proposition 4.4, we need to find a way to compute their union efficiently, which will
be described in the next section.

4.2 Voxelization Using Stencil Shadow Volumes

Suppose object A has |FA| triangles and |EA| edges, and object B has |FB| triangles and
|EB| edges, then in total we have |FA| · |EB|+ |FB| · |EA| prisms for (FA ⊕ EB)∪ (FB ⊕ EA).
Including the two translated objects A+pb and B+pa, we need to compute the union of |FA|·
|EB|+|FB|·|EA|+2 polyhedral objects in order to compute A⊕B using Proposition 4.4. The
combinatorial complexity of the union can be as high as O(|FA|·|EB|+|FB|·|EA|+2)3 [Aronov
et al., 1997], which is of the same magnitude as the worst-case complexity O(|FA|3 |FB|3) of
the Minkowski sum A⊕B. Even if both A and B have just thousands of triangles, the union
consists of millions of objects, and in the worst case its number of facets can be on the order
of 1018. Computing an exact union of such a large number of polyhedra is not practical.
Exact boundary evaluation of a union of this size is slow and prone to robustness problems.

Instead of computing the union exactly, we propose approximating it by using GPU-
based voxelization techniques. In a voxelized representation, each object M is represented
by a 3D grid Mij (1 ≤ i, j ≤ n, where n is the resolution) that corresponds to the 3D
space occupied by a bounding box enclosing the object. Each voxel Mij is set to either 1
or 0 according to whether it is located inside or outside of the object. In a conservative
voxelization [Zhang et al., 2007], as long as the voxel intersects with the object, it is set to
1 (Figure 4.5 (a)); in other voxelizations, the center of the voxel is used as a representative
point to determine whether the voxel is inside or outside of the object (Figure 4.5 (b)), which
is also the behavior of standard rasterization algorithms required by 3D graphics APIs such
as OpenGL [OpenGL, 2011] and Direct3D [Direct3D, 2011]. In our approach for voxelizing
Minkowski sums, we follow the latter convention.

Voxelization algorithms can be classified into surface voxelization (only the boundary is
voxelized) and solid voxelization (the whole interior is voxelized). A surface voxelization can



CHAPTER 4. COMPUTING VOXELIZED 3D MINKOWSKI SUMS ON THE GPU 45

(a) (b)

Figure 4.5: Conservative (a) and non-conservative (b) voxelization

be created from a solid voxelization by simply checking if a voxel has any outside neighbors
(this technique will be demonstrated in the next chapter). A solid voxelization can also be
created from a surface voxelization by using the parity check rule (explained below), if a
single watertight object is being voxelized [Fang and Chen, 2000]. In this chapter we discuss
algorithms for directly creating a solid voxelization for the Minkowski sum, since our goal is
to avoid the computational complexity involved in evaluating the complete boundary of the
Minkowski sum.

near clip plane

far clip plane

1

0

1

1

0 1

0

(a) (b)

parity=1 parity=0 parity=0

key

parity=1

parity=0

point to test

Figure 4.6: (a) Parity check for a point outside the object and a point inside the object. (b)
The parity check does not work for the union of several watertight objects.

Most solid voxelization algorithms are based on parity checking and work for a single
watertight object [Fang and Chen, 2000, Dong et al., 2004, Eisemann and Décoret, 2008,
Heidelberger et al., 2003, Liao, 2008, Nooruddin and Turk, 2003]. The parity check is based
on the principal that a ray shooting from a point inside (or outside) the object will have
an odd (or even) number of intersections with the object boundary respectively, as shown
in Figure 4.6 (a). To perform the parity check using OpenGL, we can set the near clipping
plane to the current slice (all the pixels on this slice will be checked together) and the far
clipping plane to be infinity, and then render the object. Only the portion of the object
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that is between the near and far clipping planes is rendered. The parity flag for each pixel
is initialized to be zero. Then it is toggled between one and zero for each rendered fragment
at its position (these fragments can be processed in arbitrary order). After the rendering is
complete, any pixel inside the object will have a flag of one, and any pixel outside will have
a flag of zero. Flag toggling can be implemented using either XOR operations with the color
buffer or GL INVERT operations with the stencil buffer.

The parity check, however, does not work for the union of watertight objects. As shown
in Figure 4.6 (b), to voxelize the union of a rectangle and a triangle, the parity flag of the
indicated point is zero after rendering, but in fact it is inside the union. We need a slightly
more complex check to correctly classify inside and outside voxels for the union of objects.

The technique used in stencil shadow volumes [Everitt and Kilgard, 2002, McGuire et al.,
2003] has been applied to solid voxelization of individual watertight objects as well as their
union [Llamas, 2007, Liao and Fang, 2002]. It strengthens the above parity check by taking
into consideration the orientation of boundary surfaces. Instead of simply toggling the flag
between one and zero for each rendered fragment, they increase it by one for back faces and
decrease it by one for front faces, as shown in Figure 4.7. After the rendering is complete,
any pixel inside the union will have a non-zero stencil value, while any pixel outside the
union will have a zero stencil value. The increments and decrements can be implemented
using the two-sided stencil test provided by OpenGL extension GL EXT stencil two side.
Note that the increments and decrements are performed with wrapping enabled to avoid
saturation (otherwise the stencil value will be clamped at the maximum value and zero);
thus for an 8-bit stencil buffer, increasing 255 by one will return 0 and decreasing 0 by one
will return 255.

The final voxelization is stored in a 3D texture, where a 3D texture of size X×Y ×Z can
be seen as Z images of size X ×Y stacked together, each one of which can be independently
set as the draw buffer to store the color of currently rendered pixels. Each image is a 2D
array of texels (texture elements), and each texel has four color channels (RGBA), with each
color channel using eight bits. Thus each image has 32 slices, with each bit representing the
plane of a specific slice. Each voxel is represented by a single bit, thus for a voxelization
with a resolution of 512 × 512 × 512, the 3D texture should have a size of 512 × 512 × 16
(16 = 512/32), which uses only 16 MB of video memory.

We map bits of the 3D texture to the voxels of the voxelization using color encoding [Dong
et al., 2004]. Suppose the resolution of the voxelization is N ×N ×N , the index of a voxel
is (xv, yv, zv) (ranging from 0 to N − 1), and it corresponds to the nbit bit of the texel with
index (xt, yt, zt) in the 3D texture. Then the following relationships holds:

xt = xv
yt = yv
zt = bzv/32c
nbit = zv − 32zt.

(4.1)

Figure 4.8 shows a 2D example of color encoding. For the purpose of illustration, we assume
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Figure 4.7: The stencil shadow volume technique. The stencil value is increased for back
faces and decreased for front faces.

each texel has a bit depth of eight, though in reality it is 32.

4.3 Algorithm and Implementation

The overall algorithm for computing a solid voxelization of A ⊕ B for closed watertight
objects A and B is given in Algorithm 4.1 and explained below. Suppose the resolution of
voxelization is N ×N ×N . We first need to create a 3D texture of size N ×N × (N/32) with
a bit depth of 32. We also create a framebuffer object and a stencil buffer, and attach the
stencil buffer to the framebuffer object. Next we create a display list for all the triangular
prisms and two translated objects according to Proposition 4.4. The bounding box of the
Minkowski sum, which can be computed easily by adding up the minimum and maximum
points of the two input models along the x, y, and z directions, is divided into N slices along
the z direction.

Now we perform the voxelization slice by slice. For each slice, we first need to set the near
clipping plane at the current slice and the far clipping plane slightly beyond the maximum z
of the bounding box. We also need to set the two-sided stencil operation to be increasing for
back faces and decreasing for front faces. We disable the draw buffer for now since we do not
need to render the display list to a color buffer; instead we only need to fill the stencil buffer.
Now we call the display list to render the prisms and the two translated objects. Note that
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Figure 4.8: Color encoding of the voxels (2D illustration). (a) The voxels of a solid voxeliza-
tion. (b) The corresponding texture (each texel has a bit depth of eight, two for each color
channel). It includes two images (16 slices). The colored bits are set to 1 and the others are
0.

only the portion between the near and far clipping planes are rendered. After rendering, the
stencil buffer is filled with zeros and non-zeros, indicating whether the corresponding voxel
is outside or inside the Minkowski sum.

Now we can use the stencil buffer to find corresponding bits in the 3D texture. To do
this, we first need to attach the current image of the 3D texture (we have N/32 images
in total, and each image corresponds to 32 slices) as the draw buffer. If it is the ith slice
(0 ≤ i ≤ N−1), we attach the bi/32cth image, so we only need to change the attached image
every 32 slices. We also need to compute an RGBA color in which only the bit corresponding
to the current slice is set to one and all the other bits are zeros. In fact we create a table
in advance that includes all the 32 possible RGBA color values (0x00000001, 0x00000002,
0x00000004, 0x00000008, 0x00000010, ..., 0x40000000, and 0x80000000), and look up the
correct color value in the table instead of computing it on the CPU. For the ith slice, we
use the (i− 32bi/32c)th color value in the table. The logical pixel operation is set to OR to
avoid overwriting previously computed bits. Since we only need to write to the pixels whose
stencil value is nonzero, we set the stencil test to pass if the stencil value is nonzero. Now
we render a quadrilateral that is slightly larger than the xy projection of the bounding box
to set the bits on the current slice.

We repeat this process for all the slices. Finally the 3D texture will contain all the
information of the solid voxelization.

The main drawback of the above algorithm is the large number of prisms to be rendered.
If both A and B have thousands of triangles, there will be millions of prisms. However, we
can show that we do not need to render all the prisms for each slice. If a prism does not
intersect with the current slice, it is either entirely between the near and far clipping planes
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Algorithm 4.1 Compute a solid voxelization of resolution N ×N ×N for A⊕B
1: Create a 3D texture, a stencil buffer, and a framebuffer object.
2: Create a display list of all the triangular prisms and the two translated objects.
3: for each slice do
4: Set up the view frustum.
5: Set up the two-sided stencil operation.
6: Disable the draw buffer.
7: Call the display list to render to the stencil buffer.
8: Attach the corresponding image of the 3D texture as the draw buffer.
9: Compute the RGBA color corresponding to the current slice.
10: Set the logical pixel operation to OR.
11: Set the stencil test such that it passes if the stencil value is not zero.
12: Render a quadrilateral with the computed color.
13: end for
14: return the 3D texture.

(prism C in Figure 4.9), which does not change the final stencil value, or entirely in front
of the near clipping plane (prism B in Figure 4.9), which is not rendered at all. Therefore
for each slice, instead of rendering all the prisms, we only need to render those prisms with
which the current slice intersects. Especially for complex polyhedra generated by tessellating
smooth models, their boundary triangles are usually very small. The prisms formed by these
triangles are therefore small compared to the Minkowski sum, and they usually intersect
with only a small number of slices. Then by first computing a list of prisms intersecting with
each slice, we can reduce the number of prisms rendered for each slice and therefore the time
needed for rendering. It is straightforward to check whether a prism intersects with a slice
or not — since the slice is perpendicular with the z axis, we just need to check whether its
z value is between the minimum and maximum z coordinates of the prism.

current slice 
(near clip plane)

far clip plane

A

B

C

view
direction

s-1

(s-1)+1

Figure 4.9: A prism only needs to be rendered for the slices that it intersects with. For the
current slice, prism B and C do not need to be rendered.
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On the other hand, finding intersecting prisms for each slice also incurs some overhead.
If we use just a single display list for all the slices, we only need to create and evaluate (i.e.,
process the input draw commands to generate final pixel information) the display list once,
and then reuse it repeatedly without re-evaluating the data over and over again. But if we
render different sets of prisms for each slice, we lose the benefits from using a display list;
i.e., we have to re-evaluate the data for each slice.

slice 0

slice 1

slice 2

slice 3

slice 4

slice 5

slice 6

slice 7

Layer 1

Layer 0ABCD

E

F

G

H
I

Figure 4.10: Slices are grouped into layers. In this example, layer 0 includes slice 0 to 3, and
layer 1 includes slice 4 to 7. The intersecting prisms for layer 0 are {A,B,C,D,E,G}, and
for layer 1 are {E,F,G,H, I}.

Therefore as a tradeoff, we group all the slices into several layers, each layer including
a fixed number of slices. For each layer we compute a list of prisms intersecting with it, as
shown in Figure 4.10. We render the same list of prisms for all the slices in one layer, so
they can reuse a single display list.

Two factors need to be considered for choosing an appropriate value for the number of
layers — the number and the size of display lists. If the number of layers is small, the
generated display lists for each layer will be large; if the number of layers is large, the
display lists will have smaller sizes, but at the same time we need to create more display
lists. To determine an optimal value for the number of layers, we compute the voxelization
of two Minkowski sums, representing two different types of input, using varying numbers of
layers and compare the running timing. The first example (dragon ⊕ ball, Figure 4.11) uses
two polyhedra generated by tesselating smooth models, and the second (grate1 ⊕ grate2,
Figure 4.12) uses two rectilinear models. The timings of both examples show that for both
resolutions of 256×256×256 and 512×512×512, using 16 layers has the best performance.
Compared to using a single display list for all the slices (i.e., the number of layers is one),
using 16 layers has a 3× to 6× speedup.

4.4 Results and Discussion

In this section, we give some results of the above voxelization algorithm and also their
timings. The test models we use come from Lien’s website [Lien, 2011] and were also used
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Figure 4.11: Running time for computing the voxelization of the Minkowski sum of the
dragon (2328 triangles) and the ball (500 triangles) using different numbers of layers. Both
resolutions of 256× 256× 256 and 512× 512× 512 are used for comparison. The Minkowski
sum on the top row is rendered using resolution 256× 256× 256.

in [Lien, 2008d]. The timing was performed on an NVIDIA Quadro 6000 GPU with 6 GB
video memory and an Intel Core 2 Quad CPU at 2.66 GHz with 4 GB RAM. The program
runs on CUDA driver 3.2 and 64-bit Windows 7. For all the tests we divide the slices into
16 layers.

The timings of the voxelization algorithm are given in Table 4.1. We also include the
timings reported by Lien in [Lien, 2008d] for comparison (performed on two Intel Core
2 CPUs at 2.13 GHz with 4 GB RAM). Note that Lien’s approach uses a convolution-
based approach and computes a boundary representation, while ours computes a voxelized
representation. The final voxelized Minkowski sums are shown in Figure 4.13, except “grate1
⊕ grate2”, which was already shown in Figure 4.12.

From Table 4.1, we can see that the performance of our algorithm is mainly dominated
by the sizes (numbers of triangles) of the input polyhedra, while the performance of Lien’s
approach is determined by both the sizes and the shape complexity of the input models.
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Figure 4.12: Running time for computing the voxelization of the Minkowski sum of the
grate1 (540 triangles) and the grate2 (942 triangles) using different numbers of layers. Both
resolutions of 256× 256× 256 and 512× 512× 512 are used for comparison. The Minkowski
sum on the top row is rendered using resolution 256× 256× 256.

This is especially obvious for the “grate1 ⊕ grate2” case, which is a worst case example for
concave Minkowski sum computation with O(m3n3) faces [Varadhan and Manocha, 2006].
Even though the two input polyhedra do not have large numbers of triangles compared
to the other examples, Lien’s approach takes 318 seconds to compute their Minkowski sum
boundary, while our approach needs just 10 seconds to compute a 512×512×512 voxelization.
Another example is the “clutch ⊕ ball” case. Since one of the input models is convex, Lien’s
approach can take advantage of the convexity so that it takes less than 3 seconds to compute
the Minkowski sum, but our algorithm takes around 20 seconds to compute a 256×256×256
voxelization.

One advantage of the voxelization algorithm described in this chapter is ease of imple-
mentation. It does not require the complex 3D Boolean operations that are usually involved
in existing B-rep based algorithms — the only necessary 3D computation is computing the
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Figure 4.13: Voxelization results of the other examples given in Table 4.1. The voxelizaition
is computed using a resolution of 256× 256× 256.
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A B #triA #triB 5123 2563 Lien

grate1 grate2 540 942 9.56 6.65 318.50
clutch frame 2,116 96 6.26 4.27 23.50
wrench ball 772 500 11.26 8.10 0.90
bull axes 12,396 36 10.80 7.82 22.10
knot wrench 992 772 18.60 13.17 37.00
clutch ball 2,116 500 26.34 19.20 2.70
knot clutch 992 2,116 49.60 36.23 347

Table 4.1: Timings of the voxelization algorithm (in seconds). Two resolutions (512× 512×
512 and 256× 256× 256) are used for testing. The timings reported by Lien in [Lien, 2008d]
are also included for comparison.

triangular prism formed by a triangle and an edge, which is straightforward. However, its
main drawback is that the performance does not improve significantly on prior results, which
has two explanations. The first is that a large number of prisms need to be rendered even if
the input models have a moderate size (thousands of triangles). For most of the examples
given in Table 4.1, we need to render millions of prisms. The other is that our algorithm does
not consider the specific shapes of the input models. If one of the input models is convex, its
convexity can be used to simplify the computation of Minkowski sums [Barki et al., 2009a,
Varadhan and Manocha, 2006, Lien, 2008d], but it is not utilized in this voxelization algo-
rithm. (This explains why our algorithm takes much longer than Lien’s to compute “clutch
⊕ ball” in Table 4.1). In the next chapter, we will present another voxelization algorithm
that overcomes these two shortcomings and has significantly improved performance, at the
expense of not computing inner voids that may exist in the Minkowski sum.

One limitation of this approach is that it is not robust in the presence of floating point
rounding errors. When we compute the triangular prism formed by a triangle abc and an
edge de, we need to determine the correct orientation of each boundary face of the prism,
since the orientation determines whether the boundary face is a front face or back face. As
shown in Figure 4.14, there are two possible orientations for the boundary triangle formed
by the three vertices a + e, b + e, and c + e. In Figure 4.14 (a), the triangle is oriented as
a + e → b + e → c + e; while in Figure 4.14 (b), it is oriented as a + e → c + e → b + e.
Computing the orientation of a face suffers from floating point errors if the volume of the
prism is very close to zero. If the orientation of the boundary faces of a prism is wrongly
computed due to rounding errors, it may cause a hole inside the Minkowski sum. But these
holes are very small since the volume of a prism with wrongly oriented faces is close to zero.

To compute an accurate orientation, one needs to use exact arithmetic [Shewchuk, 1997,
Halperin, 2002]. Implementing such exact arithmetic is not trivial and it will unavoidably
impact the performance. In the voxelization algorithm to be discussed in the next chapter,
we use a conservative method to adaptively bound floating point errors and avoid computing
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Figure 4.14: Two possible orientations for a boundary face of the prism formed by a triangle
abc and an edge de.

exact orientations.
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Chapter 5

Computing Voxelized 3D Minkowski
Sums Without Holes

5.1 Introduction

In this chapter we present a new approach for computing Minkowski sums (excluding any
enclosed voids) of arbitrary polyhedra that extends and improves upon previous convolution-
based algorithms [Kaul and Rossignac, 1992, Lien, 2008d] and combines these methods with
GPU-based voxelization techniques. Similar to the algorithm introduced in the previous
chapter, the new algorithm aims to directly create a voxelization of the Minkowski sum,
without having to compute a complete boundary representation. Meanwhile we provide a
boundary visualization for display. The volumetric data is stored and computed exclusively
on the GPU to utilize its rasterization functionality and parallel computation capacity.

Our approach consists of two main steps — primitive culling (section 5.2) and voxeliza-
tion (section 5.3). We first cull out surface primitives that will not contribute to the final
boundary of the Minkowski sum, analyzing and adaptively bounding the rounding errors
of the culling algorithm to solve the floating point error problem. The remaining surface
primitives are then rendered to depth textures along six orthogonal directions to generate an
initial solid voxelization of the Minkowski sum. Then we employ fast flood fill to find all the
outside voxels. We generate both solid and surface voxelizations of Minkowski sums without
enclosed voids and support high volumetric resolution of 10243 with low video memory cost.

The benefits of this voxelization algorithm include:

• easy implementation: Our approach avoids the complex 3D computations involved in
convex-decomposition and convolution approaches.

• high speed : Our algorithm is at least one order of magnitude faster than existing B-rep
based algorithms.
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• memory efficiency : Our voxelized Minkowski sum only requires 128MB video memory
for a resolution of 10243.

• multiresolution: Users can choose different volumetric resolutions according to the
tolerance requirements of different applications.

• robustness : We analyze floating point rounding errors of the culling algorithm to ensure
correct voxelization.

The accuracy of our algorithm is governed by the volumetric resolution. Since we support
a relatively high resolution of 10243 by using volume encoding (section 5.3.1), we can achieve
an accuracy of 0.085% (measured by the minimum distance from centers of boundary voxels
to the actual Minkowski sum boundary,

√
3/2/1024, or

√
3/2/N for a resolution of N3),

which is enough for most applications.
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Figure 5.1: The 2D Minkowski sum (on right in red) of a yellow disk and a green belt contains
an enclosed void. The yellow disk can be placed at B, but it cannot go from A to B.

One limitation of this work is that we do not compute enclosed voids of a Minkowski
sum, i.e., we only identify its outer boundary. Usually in motion planning, we do not need
to consider enclosed voids in Minkowski sums, because they represent locations where the
object can be placed without collision, but cannot be reached from the outside (Figure 5.1).

5.2 Rendering the Outer Boundary of Minkowski Sums

In this section we introduce a GPU-based algorithm for rendering the outer boundaries of
Minkowski sums, without having to compute a correct and complete boundary representa-
tion. The voxelization algorithm presented in 5.3 is built upon the rendering results. The
rendering algorithm described here can also be used as a stand-alone visualization system for
3D Minkowski sums. It can also be directly applied to implement polyhedron interpolation
and morphing.

We first introduce the terminology used in this section. We assume the two input poly-
hedra A and B are 2-manifold triangular meshes. Let FA = {fA} and FB = {fB} be the
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boundary triangle sets, EA = {eA} and EB = {eB} be the edge sets, and VA = {vA} and
VB = {vB} be the vertex sets of A and B respectively.

The rendering algorithm first computes a set of surface primitives that is a superset of
the Minkowski sum boundary. Surface primitives that do not contribute to the boundary are
culled out in parallel on the GPU. The remaining primitives are written to a VBO (Vertex
Buffer Object), which is then rendered directly using OpenGL.

5.2.1 Surface Primitive Culling

It has been shown in [Kaul and Rossignac, 1992] that any facet on the boundary of A ⊕ B
is generated in one of the following three ways: translating a triangle in FA by a vector in
VB, translating a triangle in FB by a vector in VA, or sweeping an edge in EA along an edge
in EB. We call the triangles formed by the first two methods triangle primitives, and the
quadrilaterals formed by the third method quadrilateral primitives.

The counts of all the triangle and quadrilateral primitives are |FA| · |VB| + |VA| · |FB|
and |EA| · |EB| respectively. These numbers are as high as millions for two polyhedra with
thousands of triangles, similar to the previous chapter. It will take a large amount of time
and memory to render all these primitives. For example, 1 GB of video memory will limit
the size of A and B to just a few thousands of triangles. Note, however, that a large
number of surface primitives lie entirely inside the Minkowski sum and will be hidden during
the rendering (see Figure 5.2 for a 2D example). We can cull out these primitives and
render only the remaining ones. As to be shown in Table 5.1, this will greatly reduce the
number of primitives to be rendered. In addition to these completely hidden primitives,
some primitives are trimmed by others and become partially hidden during the rendering
(also shown in Figure 5.2). Convolution-based algorithms for computing the Minkowski sum
boundary identify and compute all such intersections, but for the purpose of rendering, we
allow them to be handled automatically in the graphics pipeline by using the appropriate
depth test.

=

Figure 5.2: A 2D example of surface primitives in the interior of the Minkowski sum (shown
as red lines) and trimmed surface primitives (shown as dashed lines).

In the text that follows we call a surface primitive contributing if its intersection with
the Minkowski sum boundary has a non-zero area (so a partially trimmed primitive is con-
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tributing since it has a partial overlap with the Minkowski sum boundary); otherwise we
call it noncontributing. As the name implies, contributing primitives will “contribute” to the
boundary of the Minkowski sum, but noncontributing ones will not. Note that according to
our definition, a surface primitive that only shares an edge or vertex with the Minkowski
sum boundary is noncontributing, because their intersection has an area of zero.

The rendering algorithm developed in this chapter is based on several propositions for
primitive culling. The first two propositions (Proposition 5.1 and 5.2 below) were first
introduced in [Kaul and Rossignac, 1992]. However, no proof was provided in that paper.
These two propositions were used later, also unproved, in other works [Lien, 2008a,d]. In [Liu
et al., 2009] the authors proved similar propositions, but their criterion for triangle primitive
culling is weaker than the one stated below (Proposition 5.1). Here we use a mathematical
description and give proofs of these two propositions.
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Figure 5.3: Illustration of the proof of Proposition 5.1 (i), 5.2 (ii), 5.3 (iii), and 5.4 (iv).
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Proposition 5.1. Given fA ∈ FA and vB ∈ VB, with nA the outward facing normal of fA,
and ei the ith incident edge pointing away from vB. If fA ⊕ vB is a contributing triangle
primitive, then nA · ei ≤ 0, ∀ei.

Proof. (By contradiction.) Suppose ∃ek such that nA · ek > 0 (Figure 5.3 (i)). Since A is a
2-manifold, for any point P inside the triangle fA, we can find a hemisphere HS(P ) with a
small radius r, centered at P and entirely inside A, i.e.,

HS(P ) = {Q : ‖Q− P‖ ≤ r, (Q− P ) · nA ≤ 0}
HS(P ) ⊆ A.

Then we consider the translated hemisphere HS(P )⊕vB and the prism generated by fA⊕ek.
They locate on different sides of the triangle fA⊕vB (shaded in the figure). Since P is inside
fA, we can always reduce the radius of HS(P ) such that the other half of the hemisphere
HS(P ) ⊕ vB is entirely inside the prism fA ⊕ ek. This means that for each point inside the
triangle fA ⊕ vB, we can always find a small sphere around it and the sphere is a subset of
A⊕ B (remember that HS(P )⊕ vB ⊆ A⊕ vB ⊆ A⊕ B and fA ⊕ ek ⊆ A⊕ B). So fA ⊕ vB
will not overlap with the boundary of A⊕B. This contradicts the assumption that fA⊕ vB
is contributing.

Proposition 5.2. Suppose eA ∈ EA and eB ∈ EB, f 0 and f 1 are the two incident triangles
of eA, and e0 (or e1) is one of the two edges of f 0 (or f 1) pointing away from eA. Let f 2,
f 3, e2 and e3 be defined similarly for eB. If eA⊕ eB is a contributing quadrilateral primitive,
then either (eA × eB) · ei ≤ 0, ∀ei or (eA × eB) · ei ≥ 0, ∀ei, i ∈ {0, 1, 2, 3}.

Proof. (By contradiction.) Suppose (eA × eB) · e0 > 0 and (eA × eB) · e3 < 0 (the other cases
can be proved similarly). We consider the two prisms generated by f 0 ⊕ eB and f 3 ⊕ eA
(Figure 5.3 (ii)). They share the quadrilateral eA ⊕ eB (shaded in the figure) and locate on
different sides of it. Since both prisms are subsets of A ⊕ B, eA ⊕ eB will not overlap with
the boundary of A⊕B. This contradicts the assumption that eA ⊕ eB is contributing.

Propositions 5.1 and 5.2 give necessary conditions for contributing primitives by analyzing
local supporting planes. If both input polyhedra are convex, these conditions become both
necessary and sufficient (because local supporting planes of a convex polyhedron are also
global supporting planes), and thus can be used to compute the complete Minkowski sum
boundary. In the convex case they are equivalent to the criteria used to find boundary
triangles and quadrilaterals in the slope-diagram based approaches [Ghosh, 1993, Fogel and
Halperin, 2007, Barki et al., 2009a].

The above two propositions only check the relative positions of incident triangles. In this
chapter we introduce two new propositions that check the orientation of incident triangles.
These two propositions are based on the convexity of vertices and edges. For a vertex, if
there exists a supporting plane that does not intersect the interior of the polyhedron in the
infinitesimal neighborhood of the vertex, it is a convex vertex; otherwise, it is non-convex.
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For an edge, if its dihedral angle is greater than π, it is a non-convex edge. These two new
propositions cull out primitives that are generated by at least one non-convex vertex or edge.
In [Barki et al., 2009a] the authors considered the case of non-convex edges, but they did
not provide a proof.

Proposition 5.3. Suppose eA ∈ EA and eB ∈ EB. If either eA or eB is a non-convex edge,
then eA ⊕ eB cannot be a contributing quadrilateral primitive.

Proof. (By contradiction.) Suppose eA ⊕ eB is contributing, then eA ⊕ eB at least partially
overlaps with the boundary of A⊕B. Then there must exist a point c ∈ eA ⊕ eB, such that
c is on the boundary of A ⊕ B but not on any edge or vertex of the boundary (Figure 5.3
(iii)). Then c is either a local maximum or a local minimum of A ⊕ B in the direction of
eA × eB. Suppose c = a + b, a ∈ eA and b ∈ eB, then both a and b should also be a local
maximum or a local minimum of A and B respectively in the direction of eA × eB. This
cannot be true if either eA or eB is a non-convex edge.

Proposition 5.4. Suppose fA ∈ FA and vB ∈ VB. If vB is a non-convex vertex, then fA⊕vB
cannot be a contributing triangle primitive.

Proof. (By contradiction.) Suppose fA ⊕ vB is contributing, then fA ⊕ vB at least partially
overlaps with the boundary of A⊕B. Then there must exist a point c ∈ fA ⊕ vB, such that
c is on the boundary of A ⊕ B but not on any edge or vertex of the boundary (Figure 5.3
(iv)). Then c must be a local maximum of A⊕B in the direction of nA. Suppose c = a+vB,
a ∈ fA, then vB must also be a local maximum of B in the direction of nA. This cannot be
true if vB is a non-convex vertex.

We use Proposition 5.1 and 5.4 to cull triangle primitives, and Proposition 5.2 and 5.3
to cull quadrilateral primitives. Note that not all the remaining primitives are contributing,
because the four propositions only give necessary (not sufficient) conditions for contributing
primitives. However, the number of primitives will be reduced greatly after culling. Ta-
ble 5.1 compares the number of primitives before and after culling for several examples (see
Figure 5.5 for pictures of these input models). We can see that less than 1% of the total
primitives remain after culling. Figure 5.4 shows a Minkowski sum and its triangle and
quadrilateral primitives after culling.

5.2.2 VBO Generation

To take advantage of back-face culling and still render the surface primitives correctly, we
also need to compute their surface normals. From Proposition 5.1 and 5.2, we know that the
actual normal of a triangle primitive fA ⊕ vB (equivalently fB ⊕ vA) is always the same as
the outward facing surface normal of fA, and the actual normal of a quadrilateral primitive
eA⊕ eB is either eA× eB (when (eA × eB) · ei ≤ 0, ∀ei) or −eA× eB (when (eA × eB) · ei ≥ 0,
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A B
#tri primitives #quad primitives #total

before after % before after % %
bunny ball 13 M 33 K 0.26% 29 M 18 K 0.06% 0.12%

pig horse 114 M 692 K 0.61% 255 M 268 K 0.11% 0.26%
Scooby torus 272 M 266 K 0.10% 612 M 327 K 0.05% 0.07%

dancing kids octopus 651 M 1,755 K 0.27% 1,466 M 1,300 K 0.09% 0.14%

Table 5.1: Examples of surface primitive culling. From left to right, each column respectively
shows models A and B, the number of triangle primitives before/after culling, the percentage
of remaining triangle primitives, the number of quadrilateral primitives before/after culling,
the percentage of remaining quadrilateral primitives, and the percentage of total remaining
primitives after culling.

Figure 5.4: Triangle and quadrilateral primitives after culling. From left to right, each
picture represents the two models (ball and dragon), triangle primitives after culling (two
different colors represent triangles from the two different models), quadrilateral primitives
after culling (yellow), and finally the rendered Minkowski sum.

∀ei). For implementation, we use a flag array to store the results of the culling test. If
a surface primitive is noncontributing and should be culled out, we set its flag to be 0;
otherwise, we set it to be 1 for triangle primitives, and 1 or -1 for quadrilateral primitives,
according to whether its surface normal is eA × eB or −eA × eB respectively.

Since the number of surface primitives has quadratic complexity, the culling test will
become costly in terms of running time when the sizes of the models increase. However,
it can be easily parallelized since each surface primitive can be treated independently. We
implemented the parallel culling test using NVIDIA’s CUDA library on an NVIDIA Quadro
6000, which has 448 CUDA cores and a “compute capacity” of 2.0. We chose a block size of
16 × 16 based on the consideration that the maximum number of threads per block is 512.
We also tested other block sizes (16×32 and 16×8) and found no performance improvement.
Each block shares the data of 16 triangles and 16 vertices (or 16 edges from each of the two
objects in the case of quadrilateral primitives), and performs culling tests on 256 surface
primitives. For 0 ≤ i, j ≤ 15, thread (i, j) works on triangle primitive fi⊕vj or quadrilateral
primitive ei ⊕ ej.

We have also implemented two memory optimization techniques: shared memory and
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coalesced global memory. Since all the 256 threads in a block share the coordinates of 16
triangles and 16 vertices (or 32 edges), and shared memory is much faster than global memory
(if we do not consider memory caches), we copy these coordinates from global memory to
the shared memory of each block before we perform the culling test. To achieve coalesced
global memory access [CUDA, 2011], instead of storing the x, y, and z coordinate of each
vertex consecutively (x1y1z1x2y2z2...xnynzn), we store all the x coordinates first, followed by
all y, and then all z coordinates (x1x2...xny1y2...ynz1z2...zn). On a Quadro FX 5800, which
does not support caches, we achieved a 3× speedup on average compared to the unoptimized
version by using shared memory and coalesced global memory in our implementation. Out
of the 3× speedup, 2× speedup comes from using shared memory and 1.5× speedup from
using coalesced global memory. But on a Quadro 6000 with cache support, we achieved only
a 1.13× speedup by using both shared memory and coalesced global memory, and almost
100% of the speedup comes from using coalesced global memory since the Quadro 6000 card
itself includes memory cache support.

After all the culling tests are done, primitives with non-zero flags and their normals are
written to the VBO, which is directly rendered using OpenGL. (A seemingly more efficient
way to generate the VBO would be simply discarding noncontributing primitives and directly
storing contributing ones to the VBO without using any flag array. However, this is difficult
to implement on the GPU, because each primitive is tested independently in parallel and
thus its position in the VBO cannot be determined at the time when it is tested.)

5.2.3 Rendering Results

We show some results of the above CUDA-based rendering algorithm in Figure 5.5. The
program runs on 64-bit Windows 7 with an NVIDIA Quadro 6000 GPU with 6 GB video
memory. We also implemented a sequential CPU version of the same algorithm and ran it
on the same machine that has an Intel Core 2 Quad CPU at 2.66 GHz with 4 GB RAM,
and compared the performance between the CUDA and the CPU implementation (see Ta-
ble 5.2). Overall the CUDA implementation has a 40 to 50 times speedup over the CPU
implementation.

We also applied the rendering algorithm to solid interpolation and shape morphing. The
linear interpolation between two objects A and B can be computed using Minkowski sums
as (1− t)A⊕ tB, t ∈ [0, 1] (see [Kaul and Rossignac, 1992]). An example of shape morphing
is shown in Figure 5.6. Here we use A to represent the cone model, B to represent the torus
knot model, and render the Minkowski sums of (1−t)A⊕tB for t=0, 0.2, 0.4, 0.6, 0.8, and 1.

5.3 Voxelizing Minkowski Sums

In this section we introduce a new algorithm for voxelizing Minkowski sums, which is based
on the rendering algorithm discussed in the previous section. Most existing GPU voxeliza-
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A:

B:

A⊕B:

Figure 5.5: Four examples of CUDA-based Minkowski sum rendering. The Minkowski sum
boundary is colored in green, blue, and yellow, representing triangle primitives from the green
object, triangle primitives from the blue object, and quadrilateral primitives respectively.

tion algorithms utilize the GPU’s rasterization functionality to voxelize boundary surfaces,
and then perform a parity check via the stencil buffer [Llamas, 2007] or bitwise logic opera-
tions [Fang and Chen, 2000] to fill the interior voxels. However, they cannot be applied to the
voxelization of Minkowski sums rendered using the above method, because of the existence
of non-boundary surfaces in the interior. These surfaces will also be voxelized and cannot be
distinguished from the actual boundary surfaces. The parity check will fail in such a case.

To solve this problem, instead of using parity checks to voxelize the interior, we propose
using 3D flood fill to find all the outer voxels (defined as voxels whose centers are outside the
Minkowski sum). The idea has similarities to the front propagation used for sweep volume
approximation in [Kim et al., 2003]. Their method computes a discrete distance field of low
resolution (128×128×128) on the GPU and then reads back the distance values to perform
front propagation on the CPU. Our flood fill method directly uses the adjacency between
neighboring voxels. It runs completely on the GPU and avoids the expensive readbacks from
GPU to CPU memories.

Figure 5.7 gives a 2D illustration of our voxelization algorithm. It consists of three main
steps: primitive voxelization, orthogonal fill, and flood fill, as discussed below.
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A B #tri (A) #tri (B) CUDA (sec) CPU (sec) Speedup
bunny ball 25,336 500 0.35 15.74 45×

pig horse 2,784 40,746 2.71 113.49 42×
Scooby torus 170,106 1,600 5.93 276.71 47×

dancing kids octopus 78,706 8,276 13.31 563.57 42×

Table 5.2: Timing for rendering the Minkowski sums in Figure 5.5 (including primitive
culling and VBO generation). From left to right, each column respectively shows models
A and B, number of triangles of A and B, time of the CUDA implementation, time of the
CPU implementation, and speedup of CUDA over CPU.

5.3.1 Primitive Voxelization

As the first step of the voxelization algorithm, we voxelize all the remaining surface prim-
itives after culling. This gives an “incorrect” surface voxelization because, as discussed in
section 5.2.1, we do not cull out all the noncontributing portions of surface primitives. There
still exist primitives (or fractions of primitives) hidden inside by the boundary surfaces (see
Figure 5.7 left), which are also voxelized along with the actual boundary primitives. How-
ever, this initial surface voxelization can be used later as a barrier to stop the flood fill. We
will describe how to construct the final surface voxelization in section 5.3.3.

Graphics hardware is typically used for surface voxelization using the following technique.
Each surface of an input model is projected orthogonally onto a 2D plane. The projected
surfaces are rasterized to produce a set of fragments. These fragments contain depth in-
formation as well as 2D coordinates in the projection plane, which are used to map each
fragment to a corresponding voxel in the 3D volume. In the slicing-based algorithm [Fang
and Chen, 2000], each slice is voxelized consecutively by setting a near and far clipping plane.
To generate a 10243 volume, the object has to be rendered 1024 times. This algorithm was
improved by encoding each voxel into a single bit of a texel [Dong et al., 2004]. The benefits
are twofold — it reduces both the memory cost and the number of passes needed to render
the object.

We choose to use this voxelization technique for our surface voxelization due to its ef-
ficiency. Instead of using one or multiple 2D textures as in the original algorithm [Dong
et al., 2004], we simplify the voxel access by using a single 3D texture, which has a 32 bit
RGBA format and requires only 128MB video memory for the 10243 volumetric resolution.
By using Multiple Render Targets (MRTs) we can render to 8 color buffers simultaneously.
So in total we only need to render the VBO 4 (= 1024/32/8) times in order to voxelize all
the surface primitives.

We set the view volume to be a little larger than the bounding box of the Minkowski sum,
which can be easily computed by adding the bounding boxes (i.e., adding the corresponding
minimum and maximum x, y, and z coordinates) of the two input models, such that all the
voxels on the view volume boundary are outer voxels. To be more specific, we enlarge the
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(1) (2) (3)(1) (2) (3)

(4) (5) (6)

Figure 5.6: Shape morphing between a cone (78 triangles) and a torus knot (8000 triangles).
The animation is computed and rendered at a framerate of 28.3 frames/second.

computed bounding box by a scale factor of 1 + 2(1 + δ)/ [N − 2(1 + δ)], where N is the
volumetric resolution and δ is a small number (0.1 in our implementation). This guarantees
all the outer voxels are connected and can be visited from each other.

We implement the volume encoding through a fragment shader program, which computes
an RGBA color for each fragment according to its depth information. The depth of each
fragment is passed to the shader program as a texture coordinate, similar to the technique
described by Fernando and Kilgard for Phong shading [Fernando and Kilgard, 2003].

A common problem of surface voxelization is that surfaces perpendicular (or nearly per-
pendicular) to the projection plane are not rasterized because their projections have a zero
(or near zero) area. This problem was addressed in [Dong et al., 2004] by projecting the
input model along three orthogonal directions and finally compositing the three directional
voxelizations. We use the same approach and implement the composition using another
fragment shader program. It samples the x and y 3D textures and writes to the z texture.
The x and y textures are deleted after composition to free the video memory they use. In
our experiments, the voxelization of Minkowski sum surface primitives (unculled triangles
and quadrilaterals), including three directional projections and texture composition, takes
on the order of one second (see Table 5.4). An example of primitive voxelization is shown in
Figure 5.8.



CHAPTER 5. VOXELIZED MINKOWSKI SUMS WITHOUT HOLES 67

axis

8.0 5.8 2.2 2.1 2.7 1.6 1.7 8.0

1.00 0.73 0.28 0.26 0.34 0.20 0.21 1.00

0

1

0.125

0.250

0.375

0.500

0.625

0.750

0.875

depth

depth buffer

axis

8.0 5.8 2.2 2.1 2.7 1.2 1.7 8.0

1.00 0.73 0.28 0.26 0.34 0.20 0.21 1.00

0

8

1

2

3

4

5

6

7

depth

depth buffer

A

A

B

B

G

G

R

R

1

2 3

1 1 1 1 1

2

1 1

2 2

4 3 3

Figure 5.7: Overview of the voxelization algorithm. We first voxelize all the remaining
surface primitives after culling (left), including boundary surfaces (solid black lines) and
surfaces hidden inside (red lines). The outer dashed black lines represent the view volume.
Then we perform an orthogonal fill along the six orthogonal directions (four in 2D) to find a
portion of the set of outer voxels (in green, middle). Finally we use flood fill to find all the
remaining outer voxels (in yellow, right).

5.3.2 Orthogonal Fill

The goal of orthogonal fill is to find all the outer voxels that are visible from the outside along
the six orthogonal directions (+x, +y, +z, −x, −y, and −z). An example of such voxels
is shown in green in Figure 5.9. The orthogonal fill is done by rendering the VBO (whose
generation was described in section 5.2.2) six times, each time along a different orthogonal
direction. These outer voxels serve as seeds for the later flood fill described in section 5.3.3.

The details of the orthogonal fill algorithm are as follows. We first generate a depth
texture and attach it to a framebuffer object for offscreen rendering. Suppose we are ren-
dering the VBO along the axis direction (axis is one of +x, +y, +z, −x, −y, and −z).
We first need to rotate the unculled primitives (the VBO) such that axis is aligned with
the original +z direction. Then we clear the depth buffer to the maximum depth value 1.0
and set the depth test to GL LESS. Now we render the VBO to the depth texture. After
rendering, the depth texture contains the smallest depth along the axis direction sampled at
the center of each pixel (Figure 5.9). Then we identify all the voxels with a depth (at their
centers) no larger than the corresponding stored value in the depth texture as outer voxels,
and write an appropriate RGBA color to a 3D texture for each pixel. For example, for the
pixel with a smallest depth of 2.7 in Figure 5.9, the RGBA color is 11 10 00 00 in binary
form. Here we use 1 for outer voxels and 0 otherwise. We only need three such 3D textures
for the orthogonal fill – each pair of opposite directions share the same texture. After all
six directions are computed, we composite the three directional 3D textures, using the same
composition shader program that was used for primitive voxelization (section 5.3.1).
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Figure 5.8: Primitive voxelization (10243) of the bunny ⊕ ball example in Figure 5.5. Each
voxel is drawn as a point at its center. It is colored in red, green, blue, or cyan if its
corresponding bit in the composite 3D texture is in the R, G, B, or A channel respectively.
Note that each color band in the figure represents eight slices of voxels.

5.3.3 Flood Fill

After primitive voxelization and orthogonal fill, we have two 3D textures, one for primitive
voxels and the other for the outer voxels found by orthogonal fill. Since these two steps
only require three and six passes of rendering respectively and one pass of composition,
they run very fast, both steps taking approximately one second for a resolution of 10243

(Table 5.4). However, they are “incomplete” voxelizations in that the primitive voxelization
includes extra voxels hidden by the boundary surfaces, and the orthogonal fill voxelization
contains only a portion of all the outer voxels. Outer voxels that are not visible from outside
along any of the six orthogonal directions are not identified by the orthogonal fill process
(for example, yellow voxels in Figure 5.7). To find all such outer voxels, we perform a flood
fill that builds upon these two incomplete voxelizations.

In the following, we denote the 3D texture from primitive voxelization as Tb and the 3D
texture from orthogonal fill as To. We use T (i, j, k) to denote the bit in the 3D texture T
that represents voxel (i, j, k). We call a voxel the neighbor of another if they share a face
(according to this definition, a voxel has at most six neighbors).

Flood fill, also called seed fill, is one of the fundamental algorithms in raster graphics.
Given a seed pixel inside a closed boundary, it recursively traverses all the pixels connected
with it and assigns the desired color to them. Most flood fill algorithms explicitly or implic-
itly make use of a queue or stack data structure, both of which are difficult to implement
efficiently on GPUs. What is more, our flood fill is performed in 3D image space, which
increases the computational complexity. Flood fill algorithms are often sped up by filling
whole lines instead of individual pixels [Burtsev and Kuzmin, 1993]. However, this technique
relies on being able to perform valid parity checks, which we cannot support because of inte-
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Figure 5.9: Outer voxels found by orthogonal fill along the specified axis direction. These
outer voxels are colored in red, green, blue, or cyan according to their corresponding color
channels. Here the volumetric resolution is 82 and each color channel has a bit-depth of 2.
Note that the depth values, actually from [0, 1], are scaled to [0, 8] for the sake of clarity in
the figure.

rior surface primitives. In this section, we propose a GPU-based 3D flood fill algorithm. It
benefits from the three facts below. First, we use all the outer voxels from orthogonal fill as
seeds, which usually have already covered a large portion of outer voxels. Second, we create
a “mask” from newly found outer voxels such that we do not need to check every voxel in
the next iteration. Third, the algorithm runs in parallel on the GPU, so in one iteration we
are able to find a batch of new outer voxels, which represents a new “front.”

Our flood fill is based on the following two observations: all the outer voxels are connected,
and any neighbor of an outer voxel is either an outer voxel or a boundary voxel. Figure 5.10
shows a 2D illustration of the flood fill process. Outer voxels from orthogonal fill (in green)
are used as “seeds” of the flood fill. Each iteration we find new outer voxels (in yellow) by
checking the neighbors of existing outer voxels. The process is repeated until we reach the
“barrier,” the boundary voxels (in red), and no more new outer voxels are found.

Now we explain the implementation of flood fill in detail. Some voxels are marked as 1
in both To and Tb. As a preprocess, we need to reset them to 0 in To, since otherwise the
flood fill will incorrectly penetrate into the interior of the object. This preprocess can be
easily performed by adding Tb to To with logical operation GL AND INVERTED. Then we
create two temporary 3D textures, Tnew and Tmask, to store the outer voxels newly found
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Figure 5.10: Flood fill of outer voxels. Voxels from primitive voxelization (Tb) are shown
in red (we use solid black lines to represent the actual outer boundary of the Minkowski
sum and dashed black lines the primitives hidden inside). Outer voxels found by orthogonal
fill and not in Tb are shown in green. Yellow denotes outer voxels found by flood fill. The
number in each yellow voxel indicates how many iterations are needed to reach that voxel.

in the current iteration and the voxel mask for the next iteration. For the first iteration,
we check the neighbors of all the outer voxels in To. If they are neither already identified
outer voxels in To nor boundary voxels in Tb, we add them to both Tnew and To. Then we
add all the neighbors of voxels in Tnew to Tmask. We only need to check voxels in Tmask in
the next iteration. Usually after the first iteration, the number of voxels we need to check
will be greatly reduced. After each iteration, we employ an occlusion query to count the
number of newly found voxels. If no new voxels are found, the flood fill is terminated and
now To contains all the outer voxels. The pseudocode for our flood fill algorithm is given
in Algorithm 5.1. The entire algorithm is implemented using three fragment shaders, for
excluding voxels in Tb from To, checking neighbor voxels, and creating the mask respectively.

After all the outer voxels are identified, it becomes very easy to compute a correct surface
voxelization. We only need to find those primitive voxels in Tb adjacent to an outer voxel.
For example, in Figure 5.10, the final outer boundary surface (solid black lines) consists of
primitive voxels (red) that have at least one outer voxel (green or yellow) as a neighbor.

The performance of flood fill is determined by the volumetric resolution and object com-
plexity. For a resolution of 512× 512× 512, it usually takes less than one second for most of
the models we have tested (see Table 5.4). For a resolution of 10243, the time ranges from a
few to tens of seconds, depending on how many iterations we need to perform the flood fill.
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Algorithm 5.1 FloodFill

input: To, Tb
output: To
To ← To − (To ∩ Tb)
create two 3D textures Tnew and Tmask;
clear all voxels of Tmask to 0;
for all voxel(i,j,k) do

if at least one neighbor has value 1 in To then
Tmask(i, j, k) = 1

end if
end for
repeat

clear all voxels of Tnew to 0
for all voxel(i,j,k) satisfying Tmask(i, j, k) = 1 do

if To(i, j, k) = 0 and Tb(i, j, k) = 0 then
To(i, j, k) = 1
Tnew(i, j, k) = 1

end if
end for
clear all voxels of Tmask to 0
for all voxel(i,j,k) do

if at least one neighbor has value 1 in Tnew then
Tmask(i, j, k) = 1

end if
end for

until ∀(i, j, k), Tnew(i, j, k) = 0 //test with occlusion query
delete Tnew and Tmask

return To
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5.4 Robust Culling in the Presence of Floating Point

Errors

The flood fill algorithm requires the computed Minkowski sum outer boundary to be “water-
tight,” i.e., there can be no cracks in the outer boundary. Otherwise, the flood fill will wrongly
penetrate into the interior of the Minkowski sum and make the voxelization algorithm fail.
Theoretically, the Minkowski sum will be watertight as long as the two input models are
watertight. However, cracks may occur due to floating point errors when performing surface
primitive culling tests, as explained below.

The core of the four propositions used for surface primitive culling (section 5.2.1) relies
on a 3D orientation test. For four points a, b, c, and d in R3, Orient3D(a, b, c, d) returns
a positive value if a, b, and c appear in clockwise order when viewed from d. To compute
Orient3D(a, b, c, d), we need to evaluate the sign of a 3×3 matrix determinant [Shewchuk,
1997], as shown below.

Orient3D(a, b, c, d) =

∣∣∣∣∣∣
ax − dx ay − dy az − dz
bx − dx by − dy bz − dz
cx − dx cy − dy cz − dz

∣∣∣∣∣∣ (5.1)

The 3D orientation test may fail because of floating point rounding errors. To be more
specific, if the above determinant is very close to zero (i.e., the four points are nearly copla-
nar), the computed sign may be incorrect and the orientation test will return a false answer.
In such a case, some contributing surface primitives will be wrongly culled out. For example,
when we perform the culling test for a triangle primitive, if at least one of its orientation
tests returns a negative sign, we cull this triangle primitive out; thus it is possible that
we cull out a contributing triangle primitive if one of its orientation tests wrongly returns
a negative sign due to rounding errors. This will in turn cause cracks on the computed
Minkowski sum boundary and the flood fill will penetrate into the interior of the Minkowski
sum. A particularly challenging example to illustrate the rounding errors is to compute the
Minkowski sum of a model and itself, where many orientation tests should return exact 0s,
but actually return very small positive or negative values instead. Figure 5.11 (left) shows
the Minkowski sum of two identical tessellated spheres. As we can see, quite a few boundary
primitives are missing due to rounding errors.

Exact arithmetic is one solution to the floating point error problem. However, it comes
at great performance expense, and implementing exact arithmetic on GPUs is not trivial.
In this section, we compute an upper bound of the rounding error for equation (5.1). If the
absolute value of the computed determinant is greater than the upper bound, we can safely
return its sign as the result of the orientation test; otherwise, we are not sure whether the
computed sign is correct or not, so we just keep this primitive without culling it. Compared
to using exact arithmetic, we do not continue to compute a more accurate result when the
determinant is within the error bound, which requires much more complex computations.
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Figure 5.11: Computed Minkowski sum of two identical tessellated spheres, without rounding
error analysis (left), by using Shewchuk’s upper bound for the orientation test error (center),
and by using our upper bound for the orientation test error (right).

An upper bound of the rounding error for equation (5.1) was introduced in [Shewchuk,
1997]. However we cannot directly apply it to our problem, because it is based on the
assumption that all the floating point numbers in the matrix (5.1) are free of rounding
errors. In our case, each of these numbers is the sum of two floating point quantities, one
from each of the two input models, so they are already contaminated by rounding errors.
Figure 5.11 (center) shows that some primitives are still missing if we directly apply the
upper bound in [Shewchuk, 1997]. To derive the upper bound for our problem, we need
to consider every operation that can introduce rounding errors, which in this case means
replacing each element in matrix (5.1) with the sum of two original input numbers, as in
equation (5.2), where numbers with subscript 1 or 2 represent coordinates from the first or
second input model respectively.

Orient3D(a,b,c,d)

=

∣∣∣∣∣∣
(ax1 + ax2)− (dx1 + dx2) (ay1 + ay2)− (dy1 + dy2) (az1 + az2)− (dz1 + dz2)
(bx1 + bx2)− (dx1 + dx2) (by1 + by2)− (dy1 + dy2) (bz1 + bz2)− (dz1 + dz2)
(cx1 + cx2)− (dx1 + dx2) (cy1 + cy2)− (dy1 + dy2) (cz1 + cz2)− (dz1 + dz2)

∣∣∣∣∣∣ (5.2)

=

∣∣∣∣∣∣
(ax1 − dx1) + (ax2 − dx2) (ay1 − dy1) + (ay2 − dy2) (az1 − dz1) + (az2 − dz2)
(bx1 − dx1) + (bx2 − dx2) (by1 − dy1) + (by2 − dy2) (bz1 − dz1) + (bz2 − dz2)
(cx1 − dx1) + (cx2 − dx2) (cy1 − dy1) + (cy2 − dy2) (cz1 − dz1) + (cz2 − dz2)

∣∣∣∣∣∣ (5.3)

Further analysis indicates that equation (5.2) suffers from so-called “subtractive cancel-
lation,” which happens when two nearly equal numbers contaminated by rounding errors
are subtracted. This causes relative errors already present in these two numbers to be
magnified. In equation (5.2), ax1 and dx1 are x-coordinates of adjacent vertices from the
first model. For densely tessellated models, usually ax1 ≈ dx1, and similarly ax2 ≈ dx2.
Thus ax1 + ax2 ≈ dx1 + dx2. Subtractive cancellation therefore occurs when we compute
(ax1 + ax2) − (dx1 + dx2). The same is true for all the nine elements of the matrix in (5.2).
To avoid this undesirable subtractive cancellation, we rewrite equation (5.2) as (5.3). Since
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ax1 and dx1 are free of rounding errors, there is no subtractive cancellation in ax1 − dx1.
Furthermore, the revised formulation benefits from the fact that if two inputs p and q
are rounding-error free floating point numbers and sufficiently close (to be more specific,
q/2 ≤ p ≤ 2q), the subtraction p− q is exact.

Rounding error analysis starts with computing ε, a quantity called “unit roundoff,” which
is half the distance between 1 and the next larger representable floating point number. For
IEEE 754 single precision arithmetic, ε = 2−24; for double precision, ε = 2−53. Under IEEE
floating point arithmetic, the relative rounding error of all basic arithmetic operations (+, –,
*, /) cannot exceed the unit roundoff. More formally, if we use fl(·) to denote the evaluation
of an expression (·) in floating point arithmetic, then for two rounding-error free floating
point numbers x and y, the arithmetic operations op (+, –, *, /) satisfy

fl(x op y) = (x op y)(1 + δ), |δ| ≤ ε. (5.4)

The above equation is the basic model for most rounding error analysis.
We take a simple example, x2 − y2, to explain how to perform rounding error analysis

using model (5.4). Note that there are three floating point operations in the expression
x2− y2: square of x, square of y, and subtraction. Applying model (5.4) to each of the three
operations, we have

fl(x2 − y2)
= (x2 (1 + δ1)− y2 (1 + δ2)) (1 + δ3)
= x2 (1 + δ1 + δ3 + δ1δ3)− y2 (1 + δ2 + δ3 + δ2δ3) ,

where |δi| ≤ ε, for i = 1, 2, and 3. Then the rounding error of x2 − y2 is

|fl(x2 − y2)− (x2 − y2)|
= |x2 (δ1 + δ3 + δ1δ3)− y2 (δ2 + δ3 + δ2δ3)|
≤ x2 |δ1 + δ3 + δ1δ3|+ y2 |δ2 + δ3 + δ2δ3|
≤ (2ε+ ε2)(x2 + y2).

(5.5)

Unfortunately, to carry out the rounding error analysis for equation (5.3), it would be
tedious and error-prone to compute the rounding error step by step using model (5.4), as
above, since equation (5.3) requires 41 floating point operations, 18 more operations than
were analyzed in [Shewchuk, 1997]. To simplify the process, we use a convenient notation
described in [Higham, 2002, chapter 3]:

〈k〉 =
k∏

i=1

(1 + δi), |δi| ≤ ε. (5.6)

Here 〈k〉 serves as a relative error counter. Note 〈j〉 〈k〉 = 〈j + k〉.



CHAPTER 5. VOXELIZED MINKOWSKI SUMS WITHOUT HOLES 75

Again, we take x2 − y2 as an example. We have

fl(x2 − y2) = (x2 〈1〉 − y2 〈1〉) 〈1〉
= x2 〈2〉 − y2 〈2〉 . (5.7)

The three 〈1〉s in the first step correspond to the three floating point operations: square of
x, square of y, and subtraction. So the rounding error of x2 − y2 is bounded by∣∣fl(x2 − y2)− (x2 − y2)

∣∣ =
∣∣x2 (〈2〉 − 1)− y2 (〈2〉 − 1)

∣∣
≤ |〈2〉 − 1| (x2 + y2).

Note that the two 〈2〉s in the first step represent different numbers, i.e., they have different
δis in equation (5.6). This explains why it is x2 + y2 instead of x2 − y2 in the second step.

As we can see from above, at the end of rounding error analysis, it is necessary to bound
|〈k〉 − 1|. A useful inequality is proved in [Higham, 2002, chapter 3]:

|〈k〉 − 1| ≤ 1.01kε, if kε ≤ 0.01. (5.8)

The condition kε ≤ 0.01 is always true unless k is enormous, since ε is very small for IEEE
floating point arithmetic. Using this inequality we can compute an upper bound of the
rounding error of x2 − y2 as below:

|fl(x2 − y2)− (x2 − y2)| ≤ |〈2〉 − 1| (x2 + y2)
≤ 2.02ε(x2 + y2).

(5.9)

Compared to the upper bound in (5.5), the above upper bound derived using the 〈k〉 notation
is a little larger, but it greatly simplifies the derivation process, especially when there are
many floating point operations, as in our case.

Following a similar process, we can derive an upper bound for the rounding error of
equation (5.3), as shown in the proposition below.

Proposition 5.5. The rounding error of equation (5.3) is bounded by

|err| ≤ 11.11ε
[
adz · (bdx · cdy + cdx · bdy)

+bdz · (cdx · ady + adx · cdy)

+cdz · (adx · bdy + bdx · ady)
] (5.10)

where adz = |az1 − dz1|+ |az2 − dz2|, etc.

Proof. Let the right side of equation (5.3) be P . If we define

adz1 = az1 − dz1,
adz2 = az2 − dz2,
adz = adz1 + adz2,

(5.11)
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etc., then P can be rewritten as

P =

∣∣∣∣∣∣
adx ady adz

bdx bdy bdz

cdx cdy cdz

∣∣∣∣∣∣ . (5.12)

From model (5.4) and notation (5.6), we have

fl(adz1) = (az1 − dz1) 〈1〉 = adz1 〈1〉
fl(adz2) = (az2 − dz2) 〈1〉 = adz2 〈1〉
fl(adz) =

(
fl(adz1) + fl(adz2)

)
〈1〉

= (adz1 〈1〉+ adz2 〈1〉) 〈1〉
= adz1 〈2〉+ adz2 〈2〉 . (5.13)

Thus the rounding error of adz is

|err(adz)| = |fl(adz)− adz|
= |adz1 〈2〉+ adz2 〈2〉 − adz1 − adz2|
= |adz1(〈2〉 − 1) + adz2(〈2〉 − 1)|
≤ |〈2〉 − 1| · (|adz1|+ |adz2|) . (5.14)

If we define
adz = |adz1|+ |adz2| , (5.15)

equation (5.14) can be rewritten as

|err(adz)| ≤ |〈2〉 − 1| · adz. (5.16)

Note that the two 〈2〉s in equation (5.13) represent different numbers, i.e., they have dif-
ferent δis in notation (5.6). For convenience of notation, we do not distinguish the difference
between them and rewrite equation (5.13) as

fl(adz) = (adz1 + adz2) 〈2〉
= adz 〈2〉 . (5.17)

As we can see, by using this change of notation, we get a very concise expression fl(adz) =
adz 〈2〉. However, when we recover the magnitude of the rounding error |fl(adz)− adz| from
equation (5.17), we must use adz, as shown in equation (5.16), instead of |adz|. We will use
the same convention in all the following derivations. Similarly, equations (5.16) and (5.17)
hold for all the elements in matrix (5.12).
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Now we define the following variables that represent intermediate steps in calculating P :

M1 = bdx · cdy − cdx · bdy (5.18)

M2 = cdx · ady − adx · cdy (5.19)

M3 = adx · bdy − bdx · ady (5.20)

N1 = adz ·M1 (5.21)

N2 = bdz ·M2 (5.22)

N3 = cdz ·M3. (5.23)

Then we have
P = N1 +N2 +N3. (5.24)

Consider the rounding error of M1. We have

fl(M1)
= (fl(bdx) · fl(cdy) 〈1〉 − fl(cdx) · fl(bdy) 〈1〉) 〈1〉
= (bdx 〈2〉 · cdy 〈2〉 〈1〉 − cdx 〈2〉 · bdy 〈2〉 〈1〉) 〈1〉
= (bdx · cdy − cdx · bdy) 〈6〉
= M1 〈6〉 .

(5.25)

The magnitude of the rounding error of M1 is

|err(M1)| = |fl(M1)−M1| ≤ |〈6〉 − 1| ·M1, (5.26)

where
M1 = bdx · cdy + cdx · bdy. (5.27)

Here bdx etc. are defined in the same way as adz in equation (5.15). Note that the minus sign
from equation (5.18) becomes plus in the above equation since we are taking absolute values.
Again we should use M1 instead of |M1| for the same reason as we use adz in equation (5.16).

Now consider the rounding error of N1. We have

fl(N1) = fl(adz) · fl(M1) 〈1〉
= adz 〈2〉 ·M1 〈6〉 〈1〉
= N1 〈9〉 . (5.28)

If we define
N1 = adz ·M1, (5.29)

the rounding error of N1 is
|err(N1)| ≤ |〈9〉 − 1| ·N1. (5.30)

Analogous results hold for N2 and N3.
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Finally we consider the rounding error of P in equation (5.24). Note that its rounding
error depends on the order in which the two sums are performed. Here we assume that it is
computed from left to right, i.e., P = (N1 +N2) +N3. Later we will loosen the error bound
to eliminate the dependence on the operation order. We have

fl(P ) =
((
fl (N1) + fl (N2)

)
〈1〉+ fl (N3)

)
〈1〉

=
(
(N1 〈9〉+N2 〈9〉) 〈1〉+N3 〈9〉

)
〈1〉

= N1 〈11〉+N2 〈11〉+N3 〈10〉 . (5.31)

To make equation (5.31) symmetric for N1, N2 and N3, we can add one extra 〈1〉 to N3.
This will slightly loosen the error bound, as shown below, but it makes the expression easier
to compute and also independent of the operation order:

|err(P )| = |fl(P )− P |
= |N1 〈11〉+N2 〈11〉+N3 〈10〉 − P |
≤ |N1 〈11〉+N2 〈11〉+N3 〈11〉 − P |
= |P 〈11〉 − P | . (5.32)

Now we define
P = N1 +N2 +N3. (5.33)

The rounding error of P is
|err(P )| ≤ |〈11〉 − 1|P . (5.34)

Using inequality (5.8), we get

|err(P )| ≤ 11.11εP

= 11.11ε
(
N1 +N2 +N3

)
= 11.11ε

(
adz ·M1 + bdz ·M2 + cdz ·M3

)
= 11.11ε

[
adz · (bdx · cdy + cdx · bdy)

+bdz · (cdx · ady + adx · cdy)

+cdz · (adx · bdy + bdx · ady)
]

(5.35)

This proves the error bound given in equation (5.10).

When we perform culling tests, we check the computed determinant of matrix (5.3)
against its error bound computed using the above inequality (5.10). If the absolute value
of the determinant is greater than the error bound, we return its sign as the result of the
orientation test; otherwise, we just keep the corresponding primitive without culling it.
Figure 5.11 (right) shows the result after applying the adaptive 3D orientation tests. It
is easy to implement on GPUs, and does not cause any significant performance difference,
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since the rounding error check affects only those orientation tests where the four points are
nearly coplanar, and flood fill dominates running times. For example, for the inputs in
Table 5.4 and 5.5, times are at most 2% slower with robust culling (see Table 5.6 at the end
of the chapter). The number of remaining primitives after culling increases very little (∼1%)
compared with using orientation tests without checking rounding error. Furthermore, we
simply check the error bound instead of computing an exact result, which would be much
more time consuming.

5.5 Results and Performance

Figure 5.12 shows the voxelization results of the four Minkowski sums in Figure 5.5. The
timings under two different resolutions are given in Table 5.3 and 5.4. All the timings
reported by us in this section are obtained by taking the average of five repeated experiments.
Here again we use the same NVIDIA Quadro 6000 GPU and Intel Core 2 Quad CPU. The
program runs on CUDA driver 3.2 and 64-bit Windows 7. We can see that for complex
models with tens or hundreds of thousands of triangles, we can compute their Minkowski
sums within one minute. The performance is mainly dominated by VBO generation and
flood fill. The VBO generation time is nearly proportional to the sizes of the input models,
since we need to test every surface primitive. The flood fill time is determined by the shape
complexity of the Minkowski sum. To be more specific, if a large portion of its boundary
surface is invisible along all the orthogonal directions from outside, the flood fill will take
more time. This can be easily seen by comparing bunny ⊕ ball and Scooby ⊕ torus in
Figure 5.5.

Below we compare our voxelization approach with three other recent approaches for ap-
proximate Minkowski sum computation, the distance-field based approach [Varadhan and
Manocha, 2006], the point based approach [Lien, 2008a], and the FFT based approach [Ly-
senko et al., 2011]. The approach in [Varadhan and Manocha, 2006] outputs watertight
boundary surfaces that are extracted as isosurfaces from the distance field. The point based
approach [Lien, 2008a] generates discrete sample points covering the Minkowski sum bound-
ary. Similar to our approach, the FFT based approach [Lysenko et al., 2011] generates
voxelized Minkowski sums, but it first voxelizes the two input models, and then computes
the Minkowski sum of the two voxelizations. Our approach directly creates surface and solid
voxelizations of the Minkowski sum from the boundaries of the input models. The accuracy
of the distance-field approach, the FFT based approach, and our approach is governed by the
resolution of the volumetric grid. The resolutions used in the distance field approach range
from 323 to 1283, lower than the 5123 and 10243 resolutions used in our approach (distance
fields require storing distances for each cell vertex, whereas we only store one bit per cell).
The FFT based approach can only achieve a resolution of 2563 due to memory limitations
(it stores a floating point number for each voxel). The accuracy of the point based approach
is determined by the sampling density. The sampling densities reported in [Lien, 2008a] are
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Figure 5.12: Voxelization (10243) of the four Minkowski sums in Figure 5.5.

equivalent to volumetric resolutions ranged from 643 to 2563, also lower than ours (again
their samples have more than one bit of information). The distance-field approach guar-
antees that their approximation has the same topology as the exact Minkowski sum, while
the point based approach, the FFT based approach, and our approach do not provide such
topological guarantees.

We next compare the performance of our voxelization approach with the method proposed
by Lien [Lien, 2008d]. We use the same test models as in [Lien, 2008d] and report the
test results in Table 5.5, with floating point error checking (note that Lien does not check
floating point errors). The test models and their Minkowski sums are shown in Figure 5.13.
For Lien’s method, we use the timings reported in [Lien, 2008d] for comparison, which were
obtained on a PC with two Intel Core 2 CPUs at 2.13 GHz and 4 GB memory. Since our
algorithm runs completely on the GPU, its performance is mainly determined by the GPU
instead of the CPU. Here we again use the Quadro 6000 GPU as detailed above for our
timings. From Table 5.5, we can see that our approach is at least one order of magnitude
faster. Lien’s approach handles enclosed voids and generates exact boundary representations
except that it does not produce low dimensional boundaries. Our voxelization approach is
an approximate method. However, we can achieve relatively high accuracy by supporting a
resolution of 10243. Most test models used here are generated by polygonizing models with
curved surfaces. Even a simple curved object like a sphere would need to be polygonized with
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A ⊕ B VBO P.V. O.F. F.F. #F.F. Total

bunny (25,336) ⊕ ball (500) 0.35 0.10 0.12 0.31 0 0.89
pig (2,784) ⊕ horse (40,746) 2.76 1.02 1.02 0.58 23 5.37

Scooby (170,106) ⊕ torus (1,600) 5.98 0.69 0.68 0.90 44 8.25
dancing kids (78,706) ⊕ octopus (8,276) 13.47 3.38 3.31 0.95 41 21.10

Table 5.3: Timing for voxelizing the four Minkowski sums in Figure 5.5 under the resolution
of 5123 (in seconds). From left to right, each column respectively shows the input models
with their numbers of triangles, time for VBO generation (including primitive culling), time
for primitive voxelization, time for orthogonal fill, time for flood fill, number of flood fill
iterations, and total time.

A ⊕ B VBO P.V. O.F. F.F. #F.F. Total

bunny (25,336) ⊕ ball (500) 0.35 0.41 0.41 2.25 1 3.42
pig (2,784) ⊕ horse (40,746) 2.76 2.17 1.29 7.76 111 13.98

Scooby (170,106) ⊕ torus (1,600) 5.98 1.57 0.96 10.91 153 19.42
dancing kids (78,706) ⊕ octopus (8,276) 13.47 6.89 3.57 12.54 185 36.46

Table 5.4: Timing for voxelizing the four Minkowski sums in Figure 5.5 under the resolution
of 10243 (in seconds). From left to right, each column respectively shows the input models
with their numbers of triangles, time for VBO generation (including primitive culling), time
for primitive voxelization, time for orthogonal fill, time for flood fill, number of flood fill
iterations, and total time.
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about 5,000 triangles [Baumgardner and Frederickson, 1985] in order to match the accuracy
of the voxelization at a resolution of 10243.

A:

B:

A⊕B:

Figure 5.13: The test models used in Table 5.5 for performance comparison with Lien’s
approach.

We also found, from the source code Lien kindly provided to us for performance testing,
that he also used Proposition 5.3 and 5.4 for primitive culling. However, they were not
covered in his paper.

To measure the slowdown of the performance caused by the adaptive robust culling,
we use a näıve implementation of equation (5.2) without checking floating point errors and
compare the timings of computing the eight test cases in Table 5.4 and 5.5. The results are
shown in Table 5.6, from which we can see that the slowdown caused by using robust culling
is less than 2%. For the “grate1 ⊕ grate2” and “Scooby ⊕ torus” examples, if we do not
use robust culling there will be cracks on the computed outer boundaries, therefore we use a
small ε (0.001) as a threshold for the 3D orientation tests in the non-robust implementation
to ensure correct outputs (to be more specific, we return a positive value only when the
computed result of equation (5.2) is greater than ε, and a negative value only when it is
less than −ε). The “grate1 ⊕ grate2” test case is faster with robust culling because fewer
primitives remain after adaptive culling tests and therefore the voxelization process takes
less time.
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A B #tri(A) #tri(B) Lien’s
#Flood Fill Ours Speedup
512 1024 512 1024 512 1024

bull frame 12,396 96 289.30 120 240 2.14 18.07 135× 16×
grate1 grate2 540 942 318.50 0 0 2.17 7.68 147× 41×
clutch knot 2,116 992 347.00 0 0 0.94 4.31 370× 81×
bull knot 12,396 992 755.10 113 195 2.98 15.68 254× 48×

Table 5.5: Performance comparison with Lien’s approach (in seconds). From left to right,
each column respectively shows model A and B, number of triangles of A and B, time of
Lien’s approach, number of flood fill iterations, time of our approach, and the speedup. The
“512” and “1024” subcolumns represent 5123 and 10243 resolutions.

A B
512 1024

Nonrobust Robust %slower Nonrobust Robust %slower

bull frame 2.1105 2.1384 1.32% 17.9500 18.0656 0.64%
grate1 grate2 2.2334 2.1663 -3.00% 7.7638 7.6780 -1.10%
clutch knot 0.9286 0.9379 1.00% 4.3050 4.3090 0.09%
bull knot 2.9904 2.9764 -0.47% 15.5269 15.6843 1.01%

bunny ball 0.8919 0.8875 -0.49% 3.4248 3.4181 -0.20%
horse pig 5.2694 5.3725 1.96% 13.9405 13.9808 0.29%

Scooby torus 8.1863 8.2519 0.80% 19.3996 19.4221 0.12%
dancing kids octopus 20.8011 21.1049 1.46% 36.2551 36.4576 0.56%

Table 5.6: Performance comparison of computing voxelized Minkowski sums with robust and
non-robust culling (in seconds). From left to right, each column respectively shows model A
and B, timing with non-robust culling, timing with robust culling, and the slowdown due to
using robust culling (negative values mean the algorithm is faster with robust culling). The
“512” and “1024” columns represent 5123 and 10243 resolutions.
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5.6 Conclusions

We have presented a new approach for directly computing a voxelization of the Minkowski
sum of two polyhedral objects, without having to compute a complete boundary representa-
tion. By analyzing and adaptively bounding the floating point rounding errors in computing
the predicate we use for culling surface primitives, we guarantee that no primitives belong-
ing to the actual Minkowski sum boundary will be mistakenly culled. Our voxelization
approach avoids complex 3D Boolean operations by utilizing the GPU’s rasterization func-
tionality. The whole algorithm runs in parallel on the GPU and is at least one order of
magnitude faster than existing algorithms at the relatively high resolution of 10243. It is
memory efficient and able to handle large geometric models.
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Chapter 6

Applications of Voxelized Minkowski
Sums

In section 1.3 and 2.1, we discussed some applications of Minkowski sums including
solid modeling, motion planning, and penetration depth computation. In this chapter, we
give some examples of these applications computed using the two voxelization algorithms
described in chapter 4 and 5. All the voxelized Minkowski sums are computed on an Intel
Core 2 Quad CPU at 2.66 GHz with 4 GB RAM and a Quadro 6000 GPU with 6 GB video
memory. The program runs on 64-bit Windows 7.

6.1 Solid Modeling

From section 1.3.1 we know that the outer offset of a model can be generated by computing
the Minkowski sum of the model and a ball centered at the origin, and the inner offset
can be generated by first computing the Minkowski sum of the (bounded) complement of
the model and the ball and then taking its complement (or equivalently the Minkowski
difference of the model and the ball, see Proposition 2.3). Since our algorithms compute
a voxelized Minkowski sum, its complement can be computed trivially by toggling 0 and 1
for each voxel. Figure 6.1 shows an example of the outer and inner offsets computed using
our voxelization algorithms. The algorithm described in chapter 5 is much faster than the
one in chapter 4 since the former culls out most surface primitives, but it does not handle
holes inside Minkowski sums, so we need to use the algorithm in chapter 4 to compute inner
offsets (since the complement of a finite object will contain a hole).

Translational sweeps can also be computed using Minkowski sums (section 1.3.1). Fig-
ure 6.2 shows an example of a 3D translational sweep with an error tolerance computed by
using the voxelization algorithm described in chapter 5.
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⊕ =

=

Ballx0.26, 5123, 

26.46 sec

Ballx0.26, 5123, 

2.52 sec

Figure 6.1: The outer (top) and inner (bottom) offsets of a vase model. The vase model has
3,164 triangles and the ball has 500 triangles. The outer offset is computed in 2.52 seconds
using the algorithm described in chapter 5. The inner offset is computed in 26.46 seconds
using the algorithm described in chapter 4. Both offsets are computed using a resolution of
5123.

6.2 Motion Planning

In section 1.3.2 we talked about how motion planning problems can be solved by computing
C-space obstacles and free C-spaces using Minkowski sums. In this section we give two such
examples computed using the voxelization algorithm in chapter 5.

Figure 6.3 shows the C-space obstacle and free C-space of a plug and an outlet. This is a
challenging problem since the three prongs of the plug should go into the three corresponding
holes of the outlet. Our algorithm successfully found the narrow passageway in the free C-
space. Another example of motion planning is shown in Figure 6.4.

6.3 Penetration Depth Computation

From section 1.3.3 we know that the translational penetration depth of two intersecting
objects A and B is the same as the shortest distance from the origin to the boundary surface
of B ⊕ −A, and that the vector from the origin to the corresponding closest point gives
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10243, 1.77 sec

⊕ =

Figure 6.2: Sweep of a hammer model (886 triangles). The sweep trajectory is modeled
using a slim polyhedron with 260 triangles that represents the path of the sweep with radius
equal to the error tolerance. The voxelized Minkowski sum is computed in 1.77 seconds at
a resolution of 10243.

the separation direction in which we can translate A away from B. Kim et al. proposed
an algorithm for computing penetration depth based on this idea [Kim et al., 2002]. They
compute only the Minkowski sum of boundary surfaces and use a depth test to find the
closest point on the outer boundary.

We use the surface voxelization of B ⊕ −A (discussed in section 5.3.3) to compute the
penetration depth. We compute the distance from the origin to all the surface voxels on
each slice, and then perform a reduction to find a minimum distance on this slice. Then we
perform another pass of reduction on these minimum distances to find the overall minimum
distance. Both the reduction and distance computation are implemented using fragment
programs on the GPU. Since a fragment program can output a 4-tuple RGBA color, we use
the A channel to store the minimum distance and the RGB channels to store the position of
the closest voxel. Figure 6.5 shows an example output of our implementation.
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Figure 6.3: Application of our voxelized Minkowski sums in motion planning. From left to
right: an outlet (2,018 triangles), a plug (9,262 triangles), a portion of the C-space obstacle
outlet ⊕ -plug, and the voxelization of the free C-space (the complement of the C-space
obstacle) inside the red bounding box. The voxelization is computed in 8.41 seconds at a
resolution of 10243.
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(a) (b)

(c) (d)

Figure 6.4: (a) The initial configuration. The blue object has 32 triangles and the green
one has 64 triangles. (b) The goal configuration. We want to translate the blue object
away from the green one. (c) The voxelized C-space obstacle (computed in 2.19 seconds at
a resolution of 5123). Note that there is a hole in the top face. (d) The free C-space inside
the red bounding box and a path connecting the initial (black dot) and goal (white dot)
configurations.

Figure 6.5: Penetration depth between a gear (836 triangles) and a haptic probe (2,498
triangles) that intersects it. The center left figure shows the rendered gear ⊕ -probe (the
red line connects the origin and the closest point on the boundary surface), and the center
right figure shows its voxelization (5123 resolution). In the rightmost figure, the probe is
translated along the computed vector to separate it from the gear. The Minkowski sum is
computed in 0.84 second using the voxelization algorithm described in chapter 5 and the
penetration depth is found in 0.072 second.
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Chapter 7

Conclusions

7.1 Conclusions

In this dissertation, we have presented two algorithms for directly computing a voxelization
of the 3D Minkowski sum of two polyhedra on GPUs, without having to first compute a
complete boundary representation. Our work is motivated by the fact that most existing
algorithms for computing 3D Minkowski sums are B-rep based and suffer from high combi-
natorial complexity and complex 3D computations such as arrangements and unions, which
makes these algorithms both time and memory consuming for inputs with large numbers of
facets. By directly computing a voxelization of the Minkowski sum, our approaches avoid
such complex computations and are easy to implement.

We have shown that the benefits of our direct voxelization approaches are twofold. First,
we can utilize the GPU’s built-in rasterization functionality to perform the voxelization, and
parallel computing capability to speed up massive geometric data processing (such as the
primitive culling and front propagation in chapter 5). Second, voxelized Minkowski sums are
more advantageous in applications where a B-rep would need to be sampled and/or point
membership classification would need to be performed (such as motion planning, one of the
most important applications of Minkowski sums).

Benefits of voxelization are inseparable from two limitations. The first is that we do not
compute a boundary representation (although we provide an outer boundary visualization).
Since a B-rep is the main input format of most CAD tools and commercial software, our
voxelized Minkowski sums can not be directly processed by them. The second is that we
compute an approximate Minkowski sum instead of an exact one. The voxelized represen-
tation itself is an approximate one, so it can not handle degenerate cases such as lower
dimensional features in Minkowski sums. However, we support high resolution of 10243,
and users can choose the necessary resolution according to the tolerance requirement of the
specific application.

The main achievements of this dissertation are summarized as follows:
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• We have developed the theoretical background of some important Minkowski sum appli-
cations including solid modeling and motion planning, which was previously presented
without formal proofs.

• We have analyzed the accessibility and cleanability problem of high pressure water-
jet cleaning, to illustrate the relationship between Minkowski sums and the widely
used C-space approach for motion planning. We present an approach for finding all
the cleanable regions of a polygon under a 2D waterjet cleaning process by means of
geometric accessibility analysis that uses Minkowski sums for computing C-spaces.

• We have presented the mathematical formulation and explanation of the commonly
used “sweep-along-the-boundary” method for generating Minkowski sums. We intro-
duce a new formula that decomposes the Minkowski sum of two polyhedra as the union
of a series of triangular prisms and a translation of each input. Bases on this formula,
we describe a GPU-based algorithm to compute a voxelization of the Minkowski sum
using a stencil shadow volume technique.

• We have presented a new approach for efficiently computing voxelized Minkowski sums
without holes that combines previous convolution-based algorithms for computing
Minkowski sums and GPU-based voxelization techniques. We also provide a method
to adaptively bound the rounding errors of the primitive culling algorithm to solve
the floating point error problem. This voxelization approach is one to two orders of
magnitude faster than existing B-rep based algorithms.

7.2 Future Research Directions

We believe that the voxelized Minkowski sum is a promising approach for computing Minkowski
sums in 3D or even higher dimensions, given its simplicity and ease of implementation. Its
massive parallelism should allow it to automatically benefit from the more and more powerful
parallel computing capability of future GPUs and CPUs. Below we suggest some possible
future research directions for computing voxelized Minkowski sums, based on the limitations
of the two approaches introduced in this dissertation.

• The voxelization algorithm described in chapter 4 is not robust in the presence of
floating point rounding errors. These rounding errors may cause small holes inside
computed Minkowski sums. The adaptive culling method described in section 5.4 can
not be applied here because we can not simply cull out a prism when its orientation
test result is within the rounding error bound. One possible solution is to use an exact
arithmetic approach such as [Shewchuk, 1997]. However, implementing such exact
arithmetic is not trivial and it will unavoidably impact the performance. Finding an
efficient way to solve the floating point error problem remains future work.



CHAPTER 7. CONCLUSIONS 92

• Despite its fast speed compared to existing algorithms and also the algorithm presented
in chapter 4, the voxelization algorithm described in chapter 5 can not handle holes
inside Minkowski sums, which limits its applications. A compromise solution is, if
we already know a seed in a hole, we can use the same front propagation technique
presented in section 5.3.3 to find all the voxels inside that hole.

• Both the Minkowski sum algorithms presented in this dissertation take polyhedra as
their inputs, but in some applications we need to compute the Minkowski sum of two
point sets that do not represent meaningful geometric objects. For example in articu-
lated robots, each point represents a series of angles formed by the robotic arms [Curto
et al., 2002]. Both algorithms are also limited to Minkowski sums of watertight poly-
hedra in the 3D space. If we take rotations into consideration, we need to compute 6
dimensional Minkowski sums. We can not handle lower dimensional objects embedded
in the 3D space either (e.g., a sweep along a 2D path). One unified approach to over-
come the difficulties introduced by both non-polyhedra inputs and higher dimensions
is sampling the two inputs into two arrays, converting the Minkowski sum to a con-
volution of these two arrays, and then computing the convolution using a fast Fourier
transform (FFT) [Kavraki, 1995, Curto et al., 2002, Lysenko et al., 2010, 2011]. Similar
to our approaches presented in chapter 4 and 5, this FFT approach also computes a
voxelization of the Minkowski sum. But they first voxelize (or sample) the two inputs
and then compute the Minkowski sum of these two voxelized inputs. Our approaches
directly compute the voxelized Minkowski sum from the boundaries of the two inputs.
The main drawback of this FFT approach is its low accuracy, because the memory
usage limits the resolution used for voxelization (it requires a floating point number
for each voxel). Finding a solution that has the advantages of both the FFT and our
GPU-based approaches could be promising future work.
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