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Unsupervised deep learning of
electrocardiograms enables scalable
human disease profiling

Check for updates

Sam F. Friedman 1,13, Shaan Khurshid 2,3,4,13, Rachael A. Venn2,3,4,13, Xin Wang2,3,13, Nate Diamant1,
Paolo Di Achille 1, Lu-Chen Weng 2,3, Seung Hoan Choi 3, Christopher Reeder 1,
James P. Pirruccello 3,5,6, Pulkit Singh 1, Emily S. Lau 2,3,7, Anthony Philippakis 8,
Christopher D. Anderson9,10,11, Mahnaz Maddah 1, Puneet Batra1, Patrick T. Ellinor 2,3,4,
Jennifer E. Ho 3,12 & Steven A. Lubitz 2,3,4

The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across
the human disease landscape can be detected using the ECG is unclear. We developed a deep
learning denoising autoencoder and systematically evaluated associations between ECG encodings
and ~1,600 Phecode-based diseases in three datasets separate frommodel development, andmeta-
analyzed the results. The latent space ECGmodel identified associations with 645 prevalent and 606
incident Phecodes. Associations were most enriched in the circulatory (n = 140, 82% of category-
specific Phecodes), respiratory (n = 53, 62%) and endocrine/metabolic (n = 73, 45%) categories, with
additional associations across the phenome. The strongest ECG association was with hypertension
(p < 2.2×10-308). The ECG latent space model demonstrated more associations than models using
standard ECG intervals, and offered favorable discrimination of prevalent disease compared to
models comprising age, sex, and race. We further demonstrate how latent spacemodels can be used
to generate disease-specific ECG waveforms and facilitate individual disease profiling.

The modern resting electrocardiogram (ECG) utilizes waveform data gen-
erated from surface electrodes to represent cardiac activation and impulse
conduction1. Introduced in the early 1900s, the original ECGwas primarily
used for arrhythmia detection, but its diagnostic utility expanded rapidly to
include the identification of coronary artery disease and other cardiac
structural abnormalities2,3. It has now become clear that non-cardiac dis-
eases, from electrolyte derangements to central nervous system pathology,
also cause characteristic changes in the ECG waveform4–7.

Recent advances in machine learning have revealed that the ECG
contains diagnostic and prognostic information that extends beyond tra-
ditional clinical interpretation8–11. Low-dimensional representations of

ECGs constructed from deep learning models can detect cardiac diseases
such as left ventricular dysfunction and paroxysmal atrial fibrillation for
patients in sinus rhythm12,13. Other models have demonstrated predictive
power beyond the cardiovascular system, estimating factors such as age, sex,
serum potassium, and one-year mortality with high accuracy7,14–16. How-
ever, the full extent of human diseases that may become manifest on the
surface ECG remains unknown.

Modern electronic health record (EHR)-based technology has made
available large, detailed datasets with rich phenotypic information, enabling
large-scale disease-based association testing17–19. Phenome-wide association
studies (PheWAS) facilitate high-throughput association testing between

1Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 2Cardiovascular Research Center, Massachusetts General Hospital,
Boston, MA, USA. 3Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 4Telemachus and Irene Demoulas Family
Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA. 5Institute for Human Genetics, University of California San
Francisco, San Francisco, CA, USA. 6Division of Cardiology, University of California San Francisco, San Francisco, San Francisco, CA, USA. 7Division of
Cardiology, Massachusetts General Hospital, Boston, MA, USA. 8Google Ventures, Cambridge, MA, USA. 9Department of Neurology, Brigham and Women’s
Hospital, Boston, MA, USA. 10Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. 11Henry and Allison McCance Center for Brain
Health, Massachusetts General Hospital, Boston,MA, USA. 12CardioVascular Institute andDivision of Cardiology, Department ofMedicine, Beth Israel Deaconess
Medical Center, Boston, MA, USA. 13These authors contributed equally: Sam F. Friedman, Shaan Khurshid, Rachael A. Venn, Xin Wang.

e-mail: slubitz@mgh.harvard.edu

npj Digital Medicine |            (2025) 8:23 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01418-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01418-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01418-9&domain=pdf
http://orcid.org/0000-0002-0688-2169
http://orcid.org/0000-0002-0688-2169
http://orcid.org/0000-0002-0688-2169
http://orcid.org/0000-0002-0688-2169
http://orcid.org/0000-0002-0688-2169
http://orcid.org/0000-0002-2840-4539
http://orcid.org/0000-0002-2840-4539
http://orcid.org/0000-0002-2840-4539
http://orcid.org/0000-0002-2840-4539
http://orcid.org/0000-0002-2840-4539
http://orcid.org/0000-0001-9256-0678
http://orcid.org/0000-0001-9256-0678
http://orcid.org/0000-0001-9256-0678
http://orcid.org/0000-0001-9256-0678
http://orcid.org/0000-0001-9256-0678
http://orcid.org/0000-0003-1475-4930
http://orcid.org/0000-0003-1475-4930
http://orcid.org/0000-0003-1475-4930
http://orcid.org/0000-0003-1475-4930
http://orcid.org/0000-0003-1475-4930
http://orcid.org/0000-0002-2797-3190
http://orcid.org/0000-0002-2797-3190
http://orcid.org/0000-0002-2797-3190
http://orcid.org/0000-0002-2797-3190
http://orcid.org/0000-0002-2797-3190
http://orcid.org/0000-0002-3893-2423
http://orcid.org/0000-0002-3893-2423
http://orcid.org/0000-0002-3893-2423
http://orcid.org/0000-0002-3893-2423
http://orcid.org/0000-0002-3893-2423
http://orcid.org/0000-0001-6088-4037
http://orcid.org/0000-0001-6088-4037
http://orcid.org/0000-0001-6088-4037
http://orcid.org/0000-0001-6088-4037
http://orcid.org/0000-0001-6088-4037
http://orcid.org/0000-0002-1538-5519
http://orcid.org/0000-0002-1538-5519
http://orcid.org/0000-0002-1538-5519
http://orcid.org/0000-0002-1538-5519
http://orcid.org/0000-0002-1538-5519
http://orcid.org/0000-0001-9361-6397
http://orcid.org/0000-0001-9361-6397
http://orcid.org/0000-0001-9361-6397
http://orcid.org/0000-0001-9361-6397
http://orcid.org/0000-0001-9361-6397
http://orcid.org/0000-0001-6953-3794
http://orcid.org/0000-0001-6953-3794
http://orcid.org/0000-0001-6953-3794
http://orcid.org/0000-0001-6953-3794
http://orcid.org/0000-0001-6953-3794
http://orcid.org/0000-0002-9837-6000
http://orcid.org/0000-0002-9837-6000
http://orcid.org/0000-0002-9837-6000
http://orcid.org/0000-0002-9837-6000
http://orcid.org/0000-0002-9837-6000
http://orcid.org/0000-0002-2067-0533
http://orcid.org/0000-0002-2067-0533
http://orcid.org/0000-0002-2067-0533
http://orcid.org/0000-0002-2067-0533
http://orcid.org/0000-0002-2067-0533
http://orcid.org/0000-0002-7987-4768
http://orcid.org/0000-0002-7987-4768
http://orcid.org/0000-0002-7987-4768
http://orcid.org/0000-0002-7987-4768
http://orcid.org/0000-0002-7987-4768
http://orcid.org/0000-0002-9599-4866
http://orcid.org/0000-0002-9599-4866
http://orcid.org/0000-0002-9599-4866
http://orcid.org/0000-0002-9599-4866
http://orcid.org/0000-0002-9599-4866
mailto:slubitz@mgh.harvard.edu
www.nature.com/npjdigitalmed


predictor variables and multiple disease states using electronically ascer-
tained diagnostic codes. Diseases are commonly represented by Phecodes,
or standardized, aggregated groupings of International Classification of
Disease (ICD) codes20–22.

In the present study, we sought to harness the inferential capabilities of
deep learning models and the analytic power of PheWAS to comprehen-
sively assess the array of disease states that manifest in the ECG waveform.
Given the growing number of consumer-based wearable devices capable of
recording single-lead ECGs, we performed parallel analyses using both
traditional 12-lead ECGs and data derived only from lead I, a common
vector used for consumer-based ECG recording23. Specifically, we trained
deep learning models known as denoising autoencoders to encode 12- and
single-lead ECGs within a latent space using a large primary care sample.
We selected the autoencoder model because it is unsupervised and opti-
mized to learn ECG waveform features alone, without additional infor-
mation regarding patient demographics or clinical outcomes.We then used
the position of ECG representations in the latent space to perform high-
throughput association testing with roughly 1600 prevalent and incident
diseases across three independent datasets spanning over 150,000 indivi-
duals. We further demonstrate how latent space modeling can be used to
display characteristic ECG features for detectable conditions and to clini-
cally profile individual patients.

Results
Study sample and autoencoder development
Our study utilized three nonoverlapping, independent, datasets spanning
over 150,000 individuals, each of which contained individual-level demo-
graphic and clinical information, including 12-lead ECGs (Fig. 1). Two
datasets were taken from the Community Care Cohort Project (C3PO), a
previously established cohort comprising adults aged ≥ 18 years who
received longitudinal primary care within the Mass General Brigham net-
work between 2000–2018, which is linked by a common EHR data
warehouse24. The Massachusetts General Hospital (MGH) C3PO dataset

included 60,140 primary care patients and the Brigham and Women’s
Hospital (BWH) C3PO dataset included 46,027 primary care patients. The
third dataset comprised 35,070 participants from the UK Biobank, a pro-
spective national biorepository that enrolled individuals aged 40-60 years
between 2006–2010, with deep phenotyping data, baseline questionnaires,
and linkage to electronic health record data25. Characteristics of participants
by dataset are provided in Table 1.

For both 12- and single-lead models, autoencoders were developed
using ECGs from the MGH-C3PO dataset, including 35,245 for training,
10,152 for validation, and6674 for testing. Thebest-performingarchitecture
contained over 11 million neurons and used mish activations, 2 dense
convolutional blocks (each with 5 layers of convolutions per block), a 71
timestep convolutional kernel, and layernormalization,with 256neurons in
the fully connected layer (SupplementaryFigs 1-2). Themodelswere trained
to reconstruct a median waveform corresponding to a single PQRST cycle
(Supplementary Fig. 3). To assess the accuracy of reconstruction in each of
the three datasets, we pooled voltages across test set ECGs and compared
them to the voltages generated from reconstructions. For each dataset, we
assessed the average per-voltage Pearson correlation coefficient and the 95%
confidence interval based on 1000 bootstrap resamplings. We selected this
method, as opposed to comparing per-person pooled voltages across test set
and reconstructed ECGs, to assess the model’s global performance in ECG
reconstruction rather than its performance reproducing ECGs from specific
individuals within the datasets.We observed high-fidelity reconstruction of
novel ECGs with Pearson correlation coefficients of 0.9956 (95% CI
0.9931–0.9972) in the MGH-C3PO testing set; 0.9916 (95% CI
0.9853–0.9950) in BWH-C3PO; and 0.9526 (95% CI 0.9427–0.9617) in the
UK Biobank.

Phenotype vector derivation and ECG projection
For phenotype vector derivation, wemapped 50%of ECGs from theMGH-
C3PO dataset to a library of 1,866 Phecodes, grouped across 17 disease
categories (e.g., circulatory system, endocrine/metabolic, genitourinary)21.
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Fig. 1 | Study overview. Flow diagram of autoencoder and phenotype vector deri-
vation for latent space phenome-wide association studies (PheWAS), conducted in
parallel for both 12-lead and single-lead electrocardiogram (ECG) models. We
trained an autoencoder to encode and reconstruct 12- and single-lead ECGs using
the Massachusetts General Hospital (MGH) subset of the Community Care Cohort
Project (C3PO) dataset (MGH-C3PO). We tested the autoencoder in three test sets
without modification: a) an MGH-C3PO holdout set, b) the independent Brigham
and Women’s Hospital (BWH) subset of C3PO (BWH-C3PO), and c) the UK

Biobank prospective cohort study. To assess for associations with disease, we derived
phenotype vectors using labeled ECGs from 50% of the MGH-C3PO dataset, and
projected those vectors onto each test set without modification. For every individual
in each test set, we calculated the projected component, or the position along each
phenotype vector (hereafter termed “vector component score”), and tested asso-
ciations between vector component scores and corresponding Phecodes. We per-
formed sample-level PheWAS in each of the three datasets and then meta-analyzed
the results.
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Labeled ECG encodings were used to derive phenotype vectors within the
latent space. We then encoded the remaining unlabeled ECGs across the
three datasets (n = 30,070 for MGH-C3PO; n = 46,027 for BWH-C3PO;
and n = 35,070 for UK Biobank) and determined the position of each ECG
along each phenotype vector to generate disease-specific vector component
scores. Scores were scalar values ranging [-10.1, 8.5] inMGH, [-10.3, 8.3] in
BWH, and [-7.8, 5.6] in the UK Biobank (Supplementary Table 1).
Representations of age, sex, and body mass index in the latent space are
shown in Supplementary Fig. 4, and a schematic summarizing the pheno-
type vector concept is displayed in Supplementary Fig. 5.

Latent space PheWAS
APheWASwas thenperformed in the remainingMGH-C3PO samples. To
assess the validity of results prior to downstream analysis, we performed
empiric perturbation testing by randomly reclassifying samples based on
Phecode presence or absence. We generated quantile-quantile plots for
MGH-C3PO 12-lead results as well as random Phecode reclassification
levels of 10%, 20%, and 100%. Supplementary Fig. 6 demonstrates that, as
expected, the number of significant associations decreases as the degree of
random reclassification increases.

The PheWAS was then performed in each of the independent
validation sets. After filtering out Phecodes with less than 100 com-
bined cases, those present in only one dataset, and/or those for which
model convergence failed, we meta-analyzed the study-specific results
for 1595 Phecodes for the 12-lead model and 1,600 Phecodes for the
single-lead model (Fig. 2, Supplementary Tables 2–3). Using a
Bonferroni-corrected two-sided p-value of 3.1 × 10-5 (0.05/1595 and
0.05/1600), we observed significant associations between latent space
position and disease status for 643 Phecodes in the 12-lead model (40%
of overall Phecodes) and 565 Phecodes in the single-lead model (35%),
respectively. The circulatory system category comprised the greatest
enrichment of significant associations (n = 140, or 82% of Phecodes in
this category for the 12-lead model, and n = 139, or 81% for the single-
lead model). Enrichment was also observed within the respiratory
(n = 53, 62% of category-specific Phecodes for the 12-lead model;
n = 46, 54% for the single-lead model) and endocrine/metabolic cate-
gories (n = 73, 45% of category-specific Phecodes for the 12-leadmodel;
n = 72, 44% for the single lead model; Fig. 2).

For the 12-lead model, the latent space positions for the Phecodes for
hypertension, including “hypertension” (odds ratio [OR] per 1-point
increase in vector component score 1.24, 95% CI 1.23–1.26, p < 2.2×10-308)
and “essential hypertension” (OR 1.24, 95% CI 1.23–1.26, p < 2.2×10-308)

showed the strongest associations (i.e., smallest p-values), followed by
“cardiomyopathy” (OR 1.75, 95% CI 1.71–1.79, p < 2.2×10-308). The stron-
gest associations with non-cardiac Phecodes included “obesity” (OR 1.30,
95% CI 1.29–1.32, p < 2.2×10-308), “diabetes mellitus” (OR 1.26, 95% CI
1.24–1.27, p = 5.9×10-304), “disorders of fluid, electrolyte, and acid-base
balance” (OR 1.28, 95% CI 1.26–1.30, p = 5.5×10-258), and “pulmonary
congestion and hypostasis” (OR1.59, 95%CI 1.55–1.63, p = 1.2×10-245). For
the single-lead model, the latent space positions for the Phecodes for car-
diomyopathy, including “cardiomyopathy” (OR 1.22, 95% CI 1.21–1.23,
p < 2.2×10-308) and “primary/intrinsic cardiomyopathies” (OR 1.24, 95%CI
1.23–1.26, p < 2.2×10-308) showed the strongest associations, followed by
“congestive heart failure NOS” (OR 1.22, 95% CI 1.21-1.23, p < 2.2×10-308).

When ranked by effect estimate, we observed associations with sub-
stantial effect sizes across all disease categories, but in particular for cardiac
Phecodes (e.g., “Cardiac defibrillator in situ” OR 2.18, 95% CI 2.04–2.32,
p = 6.83×10-124) (Table 2). Similar patterns were observed using the single-
leadmodel (SupplementaryTable 4).We additionally identified unexpected
andhighly robust relationships, including tobaccousedisorder (12-lead:OR
1.19, 95% CI 1.18–1.21, p = 1.0×10-149; single-lead: OR 1.08, 95% CI 1.08-
1.09, p = 1.9×10-131), fever of unknown origin (OR 1.18, 95% CI 1.16–1.19,
p = 5.5×10-136;OR1.07, 95%CI 1.07–1.08,p = 1.2×10-104), andnon-alcoholic
liver disease (OR 1.17, 95% CI 1.15–1.20, p = 8.0×10-51; OR 1.05, 95% CI
1.05–1.06, p = 1.9×10-39). Importantly, effects were generally consistent
across datasets, including in the UK Biobank, which had an overall lower
prevalence of disease (individual association results shown in Supplemen-
tary Tables 2-3).

ECG intervals PheWAS
Meta-analyses of the ECG intervals PheWAS included 1607 Phecodes for
the PR interval; 1607Phecodes for theQRSduration; and 1605Phecodes for
theQTinterval. In comparing theECGintervals and latent spacemodels,we
restricted to Phecodes that were present in all meta-analyses (n = 1584).
Using the smallest meta-analyzed p-value across any ECG interval for each
Phecode, we observed fewer significant associations for the intervalsmodels
relative to both the 12-lead and single-lead latent spacemodels, both overall
and within disease categories (Fig. 3 and Supplementary Tables 5-7). Forest
plots summarizing the associations for the top Phecodes are displayed in
Supplementary Fig. 7.

Discrimination of Phecode diseases
We then compared discrimination using the area under the receiver
operator characteristic curve (AUC) across logistic regression models
in which Phecodes having significant associations with the ECG in the
primary meta-analysis were regressed on age, sex, and race, with or
without an additional term for ECG vector component scores. We
generally observed substantial increases in discrimination for models
that included the ECG vector component score term as compared to
models that did not, particularly for circulatory system (median dif-
ference in AUC, interquartile range for MGH-C3PO 0.031,
0.016–0.065; BWH-C3PO 0.024, 0.010–0.06; UKB 0.0053,
0.00086–0.011) and respiratory (MGH-C3PO 0.044, 0.023–0.072;
BWH-C3PO0.028, 0.011–0.058; UKB 0.0015, 0.0019–0.0056) Phecode
categories, though additional improvements in discrimination were
observed for other Phecode categories as well (Supplementary Fig. 8).
The top and bottom five conditions per category based on AUC
improvement with incorporation of the ECG latent space are shown in
Supplementary Tables 8-9. Substantial AUC improvement persisted
when the ECG latent space was compared to models including stan-
dard ECG intervals (top 50 conditions with the largest AUC
improvement in BWH test set shown in Supplementary Table 10).

Latent space incident disease PheWAS
In an exploratory analysis using the 12-lead ECG model, we observed
significant associations between the vector component scores and
incident disease for 457 out of 1370 tested Phecodes (33.4%). Similar to

Table 1 | Patient characteristics by dataset

Covariate Mean (± SD) or n (%)

MGH
(n = 60,140)

BWH
(n = 46,027)

UKBB
(n = 35,070)

Age at ECG 51.6 (17.2) 54.8 (15.9) 63.6 (7.6)

Female sex 31,366 (52.2%) 27,345 (59.4%) 18,144 (51.7%)

Racea

White 46,127 (76.7%) 30,973 (67.3%) 33,924 (96.7%)

Black 3876 (6.4%) 6066 (13.2%) 234 (0.7%)

Asian 2759 (4.6%) 1177 (2.6%) 472 (1.4%)

Hispanic 3201 (5.3%) 3724 (8.1%) –

Other 2542 (4.2%) 1785 (3.9%) 339 (1.0%)

Not reported 1635 (2.7%) 2302 (5.0%) 101 (0.3%)

Year ECG
performed
(median, IQR)

2005
(2001, 2012)

2008
(2003, 2013)

2018
(2016, 2019)

SD standard deviation
aRace/ethnicity information is reported differently across datasets. The groupings above have been
generated from available ascertainments.
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the analyses focused on existing conditions, we observed greatest
enrichment for associations among circulatory (n = 107, 74% of Phe-
codes in this category), endocrine/metabolic (n = 60, 52% of category-
specific Phecodes) and digestive (n = 53, 38% of category-specific
Phecodes) conditions. Significant associations included considerable
effect sizes for a variety of conditions including incident paroxysmal

ventricular tachycardia (hazard ratio [HR] per 1-point increase in
vector component score 1.61, 95% CI 1.53–1.70, p = 2.58×10-65), end
stage renal disease (HR 1.31, 95% CI 1.23–1.40, p = 8.49×10-18), and
respiratory failure (HR 1.35, 95% CI 1.30–1.40, p = 2.16×10-52). Asso-
ciation results are summarized in Fig. 2 and listed in detail in Sup-
plementary Tables 11–12.

Fig. 2 | Latent space phenome-wide association study results for the 12-lead
electrocardiogram autoencoder model. Panels depict phenome-wide association
study results for the 12-lead electrocardiogram autoencoder. Top panel depicts
existing disease associations, and bottom panel incident disease associations.

Each Phecode tested for association is represented as a single point on the plot.
The x-axis represents the phenotype category and the y-axis represents the
-log10(p value) for the association test.
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Table 2 | Top associations by effect size across disease category

Disease groupinga N events Odds ratio (95% CI)b p

Circulatory system

Cardiac defibrillator in situ 514 2.18 (2.04–2.32) 6.83 x 10-124

Bundle branch block 1679 2.16 (2.07–2.25) 1.11 x 10-303

Other hypertrophic cardiomyopathy 127 2.13 (1.78–2.54) 4.21x10-17

Left bundle branch block 927 2.12 (2.03–2.22) 1.13x10-244

Right bundle branch block 868 2.08 (1.98–2.18) 5.80x10-197

Congenital anomalies

Cardiac shunt/ heart septal defect 1303 1.32 (1.25–1.39) 3.16x10-26

Cardiac congenital anomalies 2876 1.22 (1.18–1.26) 7.76x10-40

Cardiac and circulatory congenital anomalies 3632 1.21 (1.18–1.24) 2.38x10-40

Spondylolisthesis, congenital 478 1.17 (1.09–1.25) 1.28x10-05

Dematologic

Decubitus ulcer 479 1.44 (1.33–1.55) 2.05x10-20

Chronic ulcer of leg or foot 1410 1.36 (1.30–1.42) 1.29x10-47

Chronic ulcer of skin 2155 1.30 (1.25–1.34) 8.35x10-53

Cellulitis and abscess of foot, toe 1204 1.29 (1.22–1.36) 7.20x10-22

Cellulitis and abscess of trunk 1513 1.28 (1.22–1.33) 3.81x10-31

Digestive

Portal hypertension 426 1.51 (1.40–1.63) 4.01x10-28

Acute and subacute necrosis of liver 251 1.40 (1.25–1.56) 2.04x10-09

Complications of gastrostomy, colostomy and enterostomy 181 1.36 (1.19–1.54) 3.60x10-06

Liver replaced by transplant 162 1.35 (1.18–1.53) 9.43x10-06

Cirrhosis of liver without mention of alcohol 1078 1.33 (1.28–1.39) 7.05x10-38

Endocrine/Metabolic

Cachexia 176 1.85 (1.64–2.09) 4.30x10-23

Alkalosis 224 1.76 (1.58–1.95) 1.27x10-26

Diabetes type 1 with peripheral circulatory disorders 158 1.75 (1.54–1.98) 1.91x10-18

Type 1 diabetes with ophthalmic manifestations 297 1.60 (1.47–1.75) 1.54x10-25

Acidosis 1239 1.52 (1.45–1.58) 1.08x10-85

Genitourinary

Nephritis and nephropathy in diseases classified elsewhere 481 1.46 (1.37–1.56) 5.80x10-29

Renal dialysis 1001 1.38 (1.32–1.44) 1.92x10-47

Acute renal failure 3700 1.37 (1.34–1.40) 1.43x10-153

End stage renal disease 709 1.36 (1.29–1.44) 4.39x10-29

Kidney replaced by transpant 734 1.35 (1.28–1.43) 3.39x10-26

Hematopoietic

Anemia in chronic kidney disease 447 1.51 (1.40–1.63) 5.40x10-27

Secondary thrombocytopenia 610 1.51 (1.41–1.61) 2.32x10-35

Deficiency anemias 367 1.33 (1.22–1.46) 4.84x10-10

Aplastic anemia 712 1.31 (1.24–1.39) 4.52x10-21

Acquired hemolytic anemias 249 1.30 (1.18–1.44) 6.93x10-08

Infectious diseases

Gram positive septicemia 388 1.57 (1.45–1.71) 8.88x10-28

Infection with drug-resistant microorganisms 468 1.42 (1.32–1.52) 1.28x10-21

Bacteremia 1373 1.41 (1.35–1.46) 6.06x10-68

Septicemia 2585 1.40 (1.36–1.44) 1.84x10-114

Methicillin-sensitive Staphylococcus aureus 892 1.39 (1.32–1.46) 6.48x10-36

Injuries and poisonings

Septic shock 241 1.48 (1.35–1.63) 1.78x10-16

Systemic inflammatory response syndrome (SIRS) 151 1.45 (1.25–1.69) 1.33x10-06

Subarachnoid hemorrhage (injury) 162 1.44 (1.23–1.68) 3.21x10-06
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Model-based, disease-specific median waveforms
For certain diseases with well-characterized ECG manifestations, model-
derived features were consistent with expectations. For example, median
waveforms generated from the left bundle branch block disease-positive
centroid demonstrated QRS widening, smaller initial r waves in the right-

sided precordial leads (V1–V3), and R wave slurring in the left-sided leads
(I, aVL, V5, V6)26 relative tomedianwaveforms generated from the disease-
negative centroid (Fig. 4). For hypokalemia, model-derived features inclu-
ded decreased T wave amplitude and relative QT prolongation27 (Fig. 4). In
other instances, however, reconstructed disease case and control ECGs

Table 2 (continued) | Top associations by effect size across disease category

Disease groupinga N events Odds ratio (95% CI)b p

Sepsis 926 1.43 (1.36–1.50) 8.79x10-43

Sepsis and SIRS 1028 1.42 (1.35-1.49) 7.02x10-45

Mental disorders

Alcoholic liver damage 683 1.48 (1.40–1.56) 2.80x10-46

Delirium due to conditions classified elsewhere 1375 1.39 (1.34–1.45) 1.13x10-57

Altered mental status 1783 1.32 (1.28–1.37) 8.45x10-52

Alcoholism 4669 1.31 (1.28–1.34) 2.71x10-125

Alcohol-related disorders 5982 1.28 (1.26–1.31) 1.71x10-130

Musculoskeletal

Panniculitis 109 1.47 (1.25–1.74) 5.12x10-06

Osteitis deformans and osteopathies associated with other disorders classified elsewhere 273 1.33 (1.22–1.45) 9.86x10-11

Infective connective tissue disorders 159 1.32 (1.18–1.48) 1.96x10-06

Acute osteomyelitis 383 1.32 (1.22–1.42) 1.32x10-12

Unspecified osteomyelitis 812 1.26 (1.20–1.33) 4.84x10-20

Neoplasms

Hodgkin’s disease 450 1.38 (1.28–1.49) 6.23x10-16

Bone marrow or stem cell transplant 327 1.30 (1.19–1.42) 4.18x10-09

Secondary malignancy of bone 546 1.16 (1.09–1.23) 1.87x10-06

Secondary malignancy of respiratory organs 686 1.15 (1.09–1.22) 2.49x10-06

Cancer of other lymphoid, histiocytic tissue 1882 1.14 (1.11–1.18) 4.63x10-17

Neurological

Coma 280 1.42 (1.27–1.58) 1.14x10-10

Peripheral autonomic neuropathy 285 1.32 (1.21–1.43) 7.19x10-11

Cerebral degeneration, unspecified 373 1.30 (1.19–1.42) 6.35x10-09

Encephalitis, non-infectious 256 1.29 (1.17–1.43) 7.74x10-07

Other paralytic syndromes 556 1.27 (1.18–1.37) 1.07x10-09

Pregnancy complications

Hypertension complicating pregnancy, childbirth, and the puerperium 1282 1.15 (1.09–1.22) 1.55x10-07

Respiratory

Obstructive chronic bronchitis 1182 1.71 (1.62–1.80) 8.56x10-91

Respiratory failure 1881 1.65 (1.60–1.71) 9.38x10-174

Emphysema 2471 1.64 (1.58–1.71) 1.05x10-138

Pneumonitis due to inhalation of food or vomitus 919 1.60 (1.52–1.68) 9.01x10–76

Pulmonary congestion and hypostasis 3653 1.59 (1.55–1.63) 1.24x10–245

Sense organs

Other nondiabetic retinopathy 237 1.24 (1.13–1.36) 8.18x10-06

Blindness and low vision 976 1.15 (1.08–1.23) 2.16x10-05

Dizziness and giddiness (Light-headedness and vertigo) 14603 1.05 (1.04–1.07) 3.94x10-13

Symptoms

Cardiogenic shock 287 1.71 (1.57–1.87) 5.34x10-33

Shock 656 1.60 (1.51–1.70) 9.88x10–54

Gangrene 302 1.49 (1.36–1.63) 1.47x10–17

Rhabdomyolysis 185 1.28 (1.15–1.42) 7.23x10–06

Fever of unknown origin 13114 1.18 (1.16–1.19) 5.46x10–136

aDisplayed are significant associationswith the top 5 largest effect sizes within each disease category. In caseswhere there are fewer than 5 significant associations, all significant associations are shown.
bOdds ratios per 1-standard deviation increase in vector component score (see text)
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Fig. 3 | Significant associations in the latent space and electrocardiogram
intervals phenome-wide association studies. Panel a displays the test statistic
distribution (absolute z-score) for the ECG term in the meta-analyzed phenome-
wide association study (PheWAS), stratified by modeling approach. Results are
displayed for the 12-lead and 1-lead electrocardiogram (ECG) latent space models,
as well as the ECG intervals model. Panel b demonstrates the number of significantly
associated Phecodes, defined as those exceeding a Bonferroni-corrected two-sided

p value of 3.1 × 10-5 (0.05 divided by 1584, the number of unique Phecodes included
across all meta-analyses). For the intervals model, a result was considered significant
if the meta-analyzed p value for any of the tested ECG intervals (PR, QRS, QT)
exceeded the significance threshold. When compared to the ECG intervals model,
the latent space models yield a greater number of significant associations, both
overall and across disease categories.
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appeared morphologically similar visually despite highly significant differ-
ences in projected components from the latent space models. For example,
model-derived ECG reconstructions of hypertrophic cardiomyopathy were
notable for broad, flattened T-waves, particularly in the left-sided leads,

which aremore subtle than the classical well-definedECGmanifestations of
hypertrophic cardiomyopathy (e.g., prominent precordial voltages, repo-
larization abnormalities/T-wave inversions, pathologic Q waves28) (Fig. 4).
Likewise, rheumatoid arthritis, an inflammatory condition associated with
higher risk of cardiovascular disease which had a strong ECG vector com-
ponent score association but has no clinically characteristic ECG signature,
was notable for subtle differences in T wave morphology and QT interval
(Fig. 4). Overall findings suggest that the latent space is sensitive to subtle
manifestations of disease,while themodel-derived ECG reconstructions are
conservative and may not visually replicate all hallmarks of disease.

Patient report card prototype
To demonstrate the potential for the ECG to serve as a digital biomarker for
disease status, we generated a prototype of an ECG-based patient report for
select Phecodes (Table 3). In this illustrative example, an ECG from a 65-
year-old female is projected onto thephenotype vectors for select circulatory
system diseases, and the positions relative to the whole cohort along vectors
from the disease-negative to disease-positive centroids are reported. These
diseases were selected based on clinical relevance and the potential to cause
substantial morbidity if undetected, including myocardial infarction, ven-
tricular tachycardia, and heart failure29–33.

Discussion
Here, we highlight the use of autoencoder deep learning models to encode
and reconstruct 12- and single-lead ECGs in order to generate a multi-
dimensional latent space encoding ECG waveform features with

Fig. 4 |Model-based, disease-specific ECG reconstructions.Medianwaveform reconstructions for centroids reflecting individuals without (blue) andwith (red) left bundle
branch block in panel a, hypokalemia (hypoptassemia) in panel b, hypertrophic cardiomyopathy in panel c, and rheumatoid arthritis in panel d.

Table 3 | Patient report prototype for a 65-year-old female

Phecode Probability of
disease (95% CI)*

Background
prevalence (95% CI)

Hypertension 62.1% (60.7–63.4) 46.8% (45.9–47.6)

Diabetes 22.0% (20.9–23.1) 15.4% (14.8–16.0)

Hyperlipidemia 51.1% (50.0–52.2) 42.9% (42.0–43.7)

Cardiomyopathy 16.3% (14.4–18.3) 5.6% (5.2–6.0)

Heart failure with preserved
ejection fraction

2.6% (1.9–3.6) 0.9% (0.8–1.1)

Myocardial infarction 23.5% (20.8–26.3) 8.0% (7.6–8.5)

Paroxysmal ventricular
tachycardia

6.9% (5.3–9.0) 2.0% (1.7–2.3)

Mitral and aortic valve
stenosis

2.1% (1.5–2.8) 0.8% (0.6–0.9)

*Theprobability of disease is estimatedas thediseaseprevalence amongall individuals in theMGH-
C3PO test set with a vector component score value greater than or equal to the individual’s value.
The corresponding disease prevalence in all of the MGH-C3PO test set is depicted as a reference.
The report reflects diseases that were selected for illustrative purposes based on statistical
significance as well as clinical relevance.
CI = confidence interval.
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demonstrable relevance to risk of disease across the spectrum of human
conditions. Indeed, our results demonstrate robust associations between
ECG waveform patterns and conditions spanning the full spectrum of
human disease. When compared to standard ECG intervals, the
autoencoder-based latent space models reveal a substantially greater
number of associations, suggesting that the rich representations afforded by
the architectural complexity of the deep learning model provide more
information about disease status than routinely ascertained ECG intervals.

Autoencoder models have been used previously in fields such as lin-
guistics and image processing to better understand input information. Prior
studies on image representation have demonstrated that attribute labeling
(e.g., headshot photograph categorized as “wearing glasses” versus “no
glasses”) can aid interpretation of the machine-learned latent space, as
images with similar attributes form interpretable semantic clusters. Cluster
centroids are spatially defined using attribute vectors, and any unlabeled
image projection can be relationally defined by its position along the vector,
based solely on the image characteristics interpreted by the model. These
studies further demonstrate that the reconstruction of an input image (e.g.,
person without glasses) can be modified by movement along an attribute
vector, generating a novel imagewith features that aremore alignedwith the
corresponding centroid pair (e.g., the same photograph reconstructed with
glasses)34,35. Although autoencoders have recently been applied to the ECG
primarily in efforts to create more interpretable deep learning pipelines36–39,
our work extends prior models by leveraging attribute, or in this case
phenotype, labeling to explore disease-state information across the full
spectrum of human conditions, to define a range of both cardiac and non-
cardiac conditions detectable by the ECG.

By applying autoencoder-based technology to clinical ECG data, our
results yield several implications. First, we demonstrate how latent space
modeling can be used for the discovery of novel information contained
within the ECG. Specifically, we apply phenotype labeling to explore
disease-state information contained in 12- and single-lead ECGs. By
reconstructing median waveforms from latent space centroids, we visually
represent disease-based patterns identified by deep learning models, which
in some cases confirm expectations and in other cases reflect subtle wave-
form manifestations potentially below the level of human detection. Fur-
thermore, although our primary aim was to investigate the detection of
existing disease, our secondary analyses suggest that autoencoder repre-
sentations may additionally possess utility for the prediction of incident
disease. In the future, samples acquired prior to and after a given diagnosis
may facilitate the derivation of “disease progression vectors,” allowing
visualization of waveform evolution over time. We submit that the meth-
odology of mapping clinical status onto the latent space may have impli-
cations far beyond the ECG, extending to other modalities (e.g., laboratory
testing, imaging results) individually or in combination, thereby greatly
expanding the clinical utility of existing, easily acquired diagnostics.

Second, while ECG-based deep learning models have been developed
previously, studies have predominantly focused on disease-specific risk
prediction within the cardiovascular system8,9,12,13. In taking a more global
analytic approach, we have identified a potential role for the ECG-based
classification of non-cardiac disease. Specific conditions for which further
study may be particularly high yield include diseases not classically asso-
ciatedwith ECGfindings but each independently supported by prior studies
(e.g., type 2 diabetes40,41, sleep apnea42–46, chronic liver disease/cirrhosis15,47,
and renal failure48), as well as diseases with previously undescribed asso-
ciations (e.g., fever ofunknownorigin, tobaccousedisorder). Improvements
in disease discrimination were particularly enriched for conditions com-
monly encountered during critical illness with clear ECG manifestations
(e.g., acid-base disorders, sepsis, shock, arrhythmias), consistent with recent
work demonstrating the particular value of ECG-based deep learning in
critical care populations49.

Third, we demonstrate the potential for personalized and scalable
disease detectionwithECG-based latent spacemodeling.Usingdataderived
from large samples, we construct a complex architectural environment
informed by disease status, in which each ECG encoding represents a single

individual and occupies a unique position in the latent space. Projection of
new ECGs from independent individuals can therefore be used to generate
likelihoods of disease at scale. As latent space modeling approaches are
refined with data from larger and more diverse samples, we anticipate that
the utility for disease-based classification will grow. Our patient report card
is illustrative in nature, and future studies are warranted to prospectively
evaluate the specific test characteristics of latent space proximity in dis-
criminating disease status, and quantify the degree to which discrimination
may be affected by treatment effects. We submit that the approach we
outline will have particular value for detecting diseases in which screening
may be cumbersome, inaccurate, or expensive, and for which early disease
manifestations may be highly morbid (e.g., aortic aneurysm and valvular
heart disease). Importantly, although our approach possesses several
potential advantages when compared to training a large number of indivi-
dual disease-specific classifiers (e.g., the requirement to train and implement
only a single model) or a single large multi-task disease classifier (e.g.,
simpler architecture, lower requirements onmodel capacity, nodependence
on a varying frequency of disease labels), we do not claim our approach is
necessarily superior to alternative modeling strategies. Rather, we submit
our unsupervisedmodeling strategy is better suited to broad risk profiling at
scale. Indeed, the robust performance of our single-leadmodel for prevalent
disease detection highlights the potential utility for screening large popu-
lations, particularly given the widespread emergence of consumer-based
wearable and handheld devices with ECG recording capabilities23.

Our study presents certain limitations. First, sinceour primary aimwas
to develop and apply an autoencoder-based approach to systematically
identify conditions whose presence may be detectable on the ECG, rather
than develop a model to predict future disease, we derived phenotype vec-
tors among individuals with known disease, and of varying durations.
Although training among individuals with known disease may enrich for
more severe cases, such an approach is customary in the development of
disease classification models12,50. We acknowledge prospective validation
would be required to confirm performance among individuals in whom
disease status is unknown at the time of ECG acquisition. Second, we used
single linear probes to define phenotype vectors. Although the use of linear
probes to interpret latent spaces is common and has theroretical support51,
future work is warranted to assess whether methods capable of leveraging
potentially non-linear relations (e.g., use of multiple vectors or non-linear
probes) may result in improved performance. Third, improvements in
discrimination with the incorporation of autoencoder information were
substantial inMGH and BWHbutmoremodest in the UK Biobank, which
is likely due to differences in sample composition (i.e., healthier) and lower
event rates, although lower autoencoder reconstruction accuracy or varying
informativeness of ECG features across datasets are additional potential
contributing factors. Fourth, to standardize the phase of the cardiac cycle
and minimize the effects of artifacts, we encoded ECGs as median wave-
forms. Such an approachmay result in the loss of some information related
to R-R regularity and subtle beat-to-beat changes inmorphology, including
ectopic beats.However,we dodemonstrate that ourmedian samples encode
heart rate information. Fifth, we did not compare our approach to the
analysis of the rawmedian ECGbeat. However, we submit our autoencoder
approach provides retains specific advantages over use of the raw ECG beat
(e.g., flexibility, computational efficiency), and possesses the potential to
extend to modalities where use of the raw signal may be computationally
infeasible (e.g., multi-modality imaging). Sixth, we offer the patient report
card prototype as a demonstration of the concept of how an ECG auto-
encoder model could be applied to broadly classify risk of present but
potentially undiagnosed disease. We acknowledge that certain factors, such
as unclear actionability of intermediate probabilities of disease, require
further investigation before clinical implementation. Seventh, although we
adjusted ourmodels for basic factors likely to confound all potential disease
associations (e.g., age, sex, race), given the number of associations tested we
cannot exclude residual confounding or quantify the degree to which
associations may be driven by clinical factors encoded by the ECG, and
therefore our findings should not be used to infer causal relations. Eighth,
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our autoencoder approach does not provide a straightforward translation
from ECG signal to disease risk, and is not suitable for quantitative model
interpretation methods designed for trained supervised models (e.g., CNN
Explanations Framework for ECG Signals)52. However, we do plot median
samples which demonstrate changes consistent with clinical expectations.
Ninth, our findings are subject to selection bias due to the requirement for a
12-lead ECG obtained for clinical purposes in MGH and BWH. However,
we note the continued value of the autoencoder latent space in the UK
Biobank, where ECGs were obtained prospectively as part of a research
protocol.

In conclusion, we demonstrate how latent spacemodeling can be used
to organize and better understand disease-related information contained
within currently available diagnostics. The corresponding analysis
demonstrates that the ECG waveform contains a wealth of disease-state
information beyond the circulatory system, with the potential to detect
hundreds of prevalent conditions and even stratify the risk of incident
disease. Future studies are warranted to prospectively validate the ability of
the ECG-based autoencoder latent space to facilitate scalable disease
profiling.

Methods
Study subjects
Two of the three datasets included were derived from the Community Care
Cohort Project (C3PO), a previously established cohort comprising over
500,000 adults aged ≥ 18 years who receive longitudinal primary care at one
of eleven hospitals within the Mass General Brigham network, which is
linked by a common EHR data warehouse24. C3PO datasets included a
cohort from theMassachusettsGeneralHospital (MGH-C3POdataset) and
a cohort from the Brigham and Women’s Hospital (BWH-C3PO dataset).
The third, external dataset was derived from the UK Biobank, a prospective
community-based cohort study comprising adults aged 40–60 years at
enrollment between the years 2006–2010 from the United Kingdom25. The
present analysis includes the subsets of individuals in each dataset with at
least one 12-lead ECG performed within three years prior to the start of
follow-up (C3PO) or who had a 12-lead ECGperformed during at least one
study visit (UK Biobank). Use of MGB andUK Biobank (application 7089)
data were approved by the MGB Institutional Review Board. The UK
Biobank was approved by the UK Biobank Research Ethics Committee
(reference number 11/NW/0382). All UK Biobank participants provided
written informed consent.

ECG autoencoder model and latent space derivation
We trained densely connected convolutional autoencoders to encode and
reconstruct 12- and single-lead ECGs. In general, autoencoders consists of
an encoder, whichmaps ahigh-dimensional input into a lower-dimensional
latent space, and a decoder, which reconstructs the original data from the
latent space representation (Supplementary Fig. 1). Autoencoders are
trained to encode variance present within the original data into the latent
space, which encourages the model to minimize differences between the
original data and its reconstruction. Both the 12-lead and single-lead
autoencoders were trained and validated using subsets of ECGs from the
MGH-C3PO cohort. The models were then tested in an MGH-C3PO
holdout set as well as two true holdout datasets, including BWH-C3PO and
the UK Biobank.

To standardize the phase of the cardiac cycle across all individuals
while minimizing the effects of signal artifact (e.g., baseline drift, transient
noise), we encoded ECGs as median waveforms by segmenting 10-second
ECG recordings into 1200 millisecond windows, sampling 600 voltage
timepoints per window, and performed piecewise linear interpolation to
generate R-R adjusted medians53,54. Median waveforms therefore represent
the aggregate morphology of at least one cardiac cycle from each lead
(Supplementary Fig. 2). When assessed in 1,000 randomly sampled indi-
viduals from the UK Biobank, heart rate was easily recovered from the
median waveform (r = 0.94, 95% CI 0.93–0.95), demonstrating little loss in
heart rate information. The 12-lead model utilized median waveforms

generated from all available leads (i.e., 12 waveforms per ECG), while the
single-leadmodel utilized only themedianwaveform generated from lead I.
In the following analysis, the term ECG generally refers to the median
waveform.

Models were trained using one-dimensional convolutions over
voltage-time series, corresponding to 7,200 voltage timepoints for 12-lead
ECGs and 600 voltage timepoints for single leads. For ECGs with incom-
plete voltage data (i.e., less than 10 seconds recorded from each lead), we
used zero padding, converting non-available data into zeros (Supplemen-
tary Table 13). Themean squared error per voltage timepoint across the full
ECG was minimized, as demonstrated in Eq. (1):

LðvECG; vAEÞ ¼ vECG � vAE
� �2 ð1Þ

In C3PO, ECGs were excluded if the acquisition date was greater than
three years prior to the start of clinical follow up, defined for each individual
as the time of the second primary care visit of the earliest qualifying pair24.
Only one ECG per individual was represented; for patients with multiple
ECGs, the most recent was used.

The neural net architecturewas a variant ofDensenet, featuring several
densely connected convolutional blocks operating at different time
resolutions55. Architecture hyperparameters, including width, depth, acti-
vation, normalization, and regularization were chosen via Bayesian hyper-
parameter optimization56.

To assess the accuracy of reconstruction in each of the three datasets,
we pooled voltages across test set ECGs and compared this to the voltages
generated from reconstructions. For each dataset, we assessed the average
per-voltage Pearson correlation coefficient and the 95% confidence interval
based on 1000 bootstrap resamplings.We selected this method, as opposed
to comparing per-person pooled voltages across test set and reconstructed
ECGs, to assess the model’s global performance in ECG reconstruction
rather than its performance reproducing ECGs from specific individuals
within the datasets (Supplementary Fig. 3).

Phenotype definitions
ICD codes in each of the three datasets were mapped to a publicly available
Phecode library (https://phewascatalog.org/Phecodes_icd10cm)21. As pre-
viously described, Phecodes distinguish cases from controls using hier-
archical groupings of ICD 9 and 10 codes to better define clinically
meaningful disease phenotypes. Only prevalent Phecodes were used, i.e., all
corresponding ICD codes had been entered into the patient’s chart prior to
the ECG acquisition date. For certain Phecodes, participants without that
Phecode but with very similar ICD codes were excluded from serving as
controls to avoid biasing results, as described previously (e.g., in association
testing for the myocardial infarction case group, patients were removed
from serving as controls if they had ICD codes corresponding to a list of
disease exclusions, including angina or other evidence of ischemic heart
disease)20,21.

Phenotype vector derivation
If a given disease, represented by a Phecode, has a significant impact on the
ECG, we expect ECG encodings from individuals with the disease to dis-
tribute to a different location in the autoencoder-derived latent space rela-
tive to ECG encodings from individuals without the disease. In contrast, if
the disease has little impact on the ECG, or if the ECG encoding does not
adequately capture disease-relevant features, then we expect there to be no
significant relationship between the position of the ECG encoding in latent
space and the presence or absence of disease.

To quantify this expectation, we define the highest density of ECG
encodings labeled as having the disease (“disease-positive centroid” for
cases) and the highest density of ECG encodings labeled as not having the
disease (“disease-negative centroid” for controls). Each Phecode is therefore
spatially represented by its centroid pair, and the line that connects them is
referred to as the phenotype vector (Supplementary Fig. 5). Uniform
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manifold approximation and projections (UMAPs) were also generated to
visually assess ECG encodings for age, sex, and body mass index.

During autoencoder training/latent space derivation, we labeled a
subset of ECGs from the MGH-C3PO dataset as disease cases or controls
based on the presence or absence of the corresponding Phecode in the
patient’s EHR. ECG encodings from the derivation set were then used to
define centroid pairs and phenotype vectors for each Phecode within the
latent space. The phenotype vector correlation matrix is displayed in Sup-
plementary Fig. 9.

ECG projections
Any ECG encoded within the latent space, including encodings from
unlabeled samples, can be projected onto any phenotype vector, and the
relative position along the phenotype vector can be used to assess how
closely related the unlabeledECGencoding is to encodings thatwere used to
define the disease positive centroid for that Phecode.

We then sought to externally validate our approach to classify the
presence of disease in samples independent of autoencoder and phenotype
vector derviation. After deriving phenotype vectors in the MGH-C3PO
training set, we projected unlabeled ECG encodings from three test sets
independent of autoencoder and phenotype vector derviation: a) the 50%
holdout component of the MGH-C3PO cohort, b) BWH-C3PO, and c)
the UK Biobank, onto the phenotype vectors. There was nomodification of
the autocoderor the phenotype vectors in the applicationof themodel to the
test sets.

We scaled the entire space of ECG encodings to have norm and
standard deviation of one. Each phenotype vector was normalized to have
length one. The high-dimensional spatial relatedness of each ECG and
Phecode was quantified by each sample’s component in the direction of a
given phenotype vector. As illustrated in Supplementary Fig. 10, each ECG
encoding (“ECG embedding”, ECGi) projects onto each phenotype vector,
Vp. The projected component, (“componentip”) is calculated from the angle
between theECGencoding and thephenotype vector, scaledby the lengthof
theECG, as displayed inEq. (2). Thus, theprojected component signifies the
latent space position of a single individual along a single phenotype vector
and therefore represents a disease-specific “vector component score”.

Componentip ¼
ECGi � Vp

k Vp k
¼k ECGi k cosðθipÞ ð2Þ

We used analogous methods for both 12- and single-lead models. In the
single-lead model, the autoencoder-derived latent space, phenotype vector
derivation, and ECGprojectionswere based only onmedianwaveformdata
derived from lead I.

Association Testing by Latent Space PheWAS
For both 12- and single-lead models, we performed a PheWAS in each
dataset using a logistic regression model to assess the strength of the rela-
tionship between a given disease-specific vector component score and the
presence of the targetdisease state (usingPhecodepresenceor absence as the
outcome variable). In this way, the odds ratio represents the adjusted odds
for the presence of disease for every 1-point increase in the vector compo-
nent score. For theUKBiobank dataset, themodel was adjusted for age, sex,
and race. For theMGH-C3POholdout set and the BWH-C3POdataset, the
modelwas additionally adjusted forECGacquisitiondate and the amountof
zero padding (as the degree of missing voltage data may represent other
confounders such as ECG quality, ECG machine used, hospital
location, etc.).

For both latent space models, we performed a fixed-effects inverse
variance weightedmeta-analysis, filtering for Phecodes that were present in
at least two datasets with at least 100 combined cases. Coefficients corre-
sponding to each phenotype vector were pooled across datasets. For com-
parison, we generated a separate model based on ECG intervals, including
thePR interval,QRSduration, andQTinterval.Wechose an intervals-based
model as our comparator because it utilizes routinely ascertained,

standardized, and automated measurements known to have disease-based
prognostic implications57–61. As above, we performed an intervals PheWAS
in each dataset and meta-analyzed results. We then compared the number
of significant associations between the latent space models and the ECG
intervals model, using a Bonferroni-corrected two-sided p-value of 0.05
divided by the number of common Phecodes across all meta-analyses. For
the intervals model, we considered a result significant if the p-value for any
interval met the significance threshold. Metanalyses were performed using
the R packagemeta. Python was used to create a visual summary of meta-
analyzed data, grouped according to disease category. To estimate the
potential added value for disease detection, we assessed the difference in
discrimination of individual Phecodes by calculating the difference in the
area under the curve (AUC) for the logistic regression models described
above with versus without ECG vector component scores, among Phecodes
with Bonferroni-corrected significant associations with the component
model in the primary meta-analysis. In a secondary analysis, we repeated
AUC estimation using models comparing the ECG component vectors to
standard ECG intervals (PR interval, RR interval, QRS duration, and QT
interval).

Although our primary goal was to leverage latent space models to
assess the degree to which existing diseases may be detectable using ECG
waveform, we explored the potential for the ECG latent space to predict the
risk of incident disease using an analogous approach to that outlined above,
except using Cox proportional hazards models rather than logistic regres-
sion models. Individuals with a Phecode diagnosis present at baseline (ie.,
start of follow-up) were excluded from incident analyses of that Phecode,
and a Phecode event was defined as the first instance of any component of
the given Phecode definition. In the C3PO datasets, person-time began at
the start of follow-up and ended at the earliest of an outcome event, death,
last encounter in the EHR, or August 31, 2019. In the UK Biobank, person-
time began at the ECGstudy visit and ended at the earliest of outcome event,
death, or last follow-up. The date of the last follow-up in the UK Biobank
was March 31, 2021 for individuals enrolled in England and Scotland, and
February 28, 2018 for individuals enrolled in Wales.

Phenotype-based ECG reconstructions
Tobetter understandwhichECG featuresmay have contributed to Phecode
segregation in latent space, we generated disease-specific median wave-
forms. Specifically, we decoded ECGs from disease-positive centroids and
overlayed the resultant median waveforms on ECGs decoded from the
corresponding disease-negative centroids.

Patient report card
One advantage of latent space modeling is the ability to incorporate an
enormous amount of ECG- and EHR-based data in a multidimensional
environment. The multidimensional nature of the model allows for
simultaneous assessment of an ECG encoding’s proximity to all Phecode
centroids. We sought to demonstrate the associated potential for persona-
lized and scalable disease reporting by converting the position of an ECG
encoding for a single individual into an estimated probability of disease. The
probability of disease is estimated as the disease prevalence among all
individuals in the MGH-C3PO test set with a vector component value
greater than or equal to the individual’s value. The exactmethodwas used to
estimate 95% confidence intervals.

Data availability
The Mass General Brigham source data are not publicly available because
they are electronic health records. Making the data publicly available
without additional consent or ethical could compromise privacy. Source
data from the UK Biobank are available to qualified investigators via
application at https://www.ukbiobank.ac.uk.

Code availability
Data processing scripts underlying the current analyses, including the
ECG autoencoder, are available at https://github.com/broadinstitute/
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ml4h/tree/master/model_zoo/ECG_PheWAS. The JEDI data pro-
cessing pipeline underlying C3PO is available at https://github.com/
broadinstitute/jedi-public.
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