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Asset Prices and Efficiency in a Krebs Economy

Alexis Akira Toda∗†

November 18, 2014

Abstract

I study the asset pricing implications and the efficiency of a tractable
dynamic stochastic general equilibrium model with heterogeneous agents
and incomplete markets along the lines of Krebs (2003a). Contrary to
previous applications of these types of models, I find that generically the
distribution of idiosyncratic shocks affects the risk premia of aggregate
shocks and that the equilibrium is constrained inefficient in the sense that
a planner can Pareto improve the equilibrium outcome by assigning differ-
ent portfolio choices to agents. The inefficiency is caused by a ‘portfolio
externality’: the average portfolio of the economy affects the portfolio
return of each agent. The constrained efficient outcome can be achieved
through linear taxes and subsidies that I characterize in closed-form.

Keywords: AK models, constrained efficiency, externality, idiosyn-
cratic risk, incomplete markets, optimal taxation.

JEL codes: D52, D58, E21, E22, G11, H21, H23.

1 Introduction

Since the theoretical work of Bewley (1986) and the quantitative work of Huggett
(1993), Aiyagari (1994), and Krusell and Smith (1998), heterogeneous-agent
general equilibrium models with incomplete markets have been widely applied in
economics. Two particular applications are asset pricing and welfare economics.
The former literature is largely motivated by the inability of the representative-
agent, consumption-based asset pricing model to explain various asset pricing
puzzles, most notably the equity premium puzzle and the risk-free rate puzzle.
The latter literature, for instance Dávila et al. (2012), is motivated by the the-
oretical result that the general equilibrium with incomplete markets (GEI) is
generically constrained inefficient.1

Since heterogeneous-agent models are typically analytically intractable, few
theoretical results are known about the asset pricing and welfare implications of
incomplete market heterogeneous-agentmodels, apart from a few exceptions. By

∗Department of Economics, University of California San Diego. Email: atoda@ucsd.edu
†Part of this paper grew out of Chapter 3 of my dissertation at Yale University. I thank Tru-

man Bewley, John Geanakoplos, and Tony Smith for continual support, and Leland Farmer,
Yoshiyuki Miyoshi, Kieran Walsh, Johannes Wieland, and the editor (Martin Schneider) for
helpful comments and feedback. I am especially grateful to two anonymous referees for con-
structive suggestions that significantly improved the paper.

1A property holds “generically” if it holds for all parameter values except those in a set
with measure zero.
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judiciously constructing individual income processes, Constantinides and Duffie
(1996) show that any arbitrage-free asset prices, dividends, and aggregate con-
sumption can be explained. Krueger and Lustig (2010), on the other hand,
show that idiosyncratic labor income risk has no effect on the equity premium
if idiosyncratic shocks are independent of aggregate shocks and aggregate con-
sumption growth is independent over time. With regard to efficiency, Krebs
(2003a,b, 2006) develops a tractable dynamic general equilibrium model with
heterogeneous agents who are subject to uninsurable idiosyncratic human capi-
tal risk2 but finds that the equilibrium is nevertheless constrained efficient. This
paper extends these two literatures by generalizing the model of Krebs (2006).

The contribution of this paper is twofold. First, I show that the irrelevance
result of Krueger and Lustig does not generally hold unless there is a single
source of aggregate risk. When there are multiple sources of aggregate risk, as
in Constantinides and Duffie (1996), risk premia on assets are typically affected
by idiosyncratic shocks. This is because when there are multiple sources of ag-
gregate risk, the aggregate component of individual consumption growth (which
prices assets through the Euler equation) depends on the portfolio choice, which
in turn is affected by idiosyncratic shocks.

Second, I study the efficiency of the Krebs economy. Both in the base-
line model of Krebs (2006) (with one technology, two inputs, and idiosyncratic
human capital depreciation shocks) and the extension of Toda (2014) (with
multiple AK technologies), the equilibrium is constrained efficient. However,
in the more general case with one or more technologies/inputs and general
idiosyncratic technological shocks, I find that the equilibrium is generically
constrained inefficient. The inefficiency is cause by a pecuniary externality
(Greenwald and Stiglitz, 1986): when there are multiple technologies and in-
puts, the return on an individual portfolio depends on other agents’ portfolio
(weighted average portfolio). Nevertheless, the constrained efficient outcome
can be achieved through linear taxes and subsidies that can be characterized in
closed-form. This result is in sharp contrast to those in the literature. For in-
stance, the mathematical economics literature3 typically studies only two period
models, and while it is possible to show the existence of a Pareto improving in-
tervention (Citanna et al., 1998), it is rarely possible to characterize the optimal
intervention. Dávila et al. (2012) numerically solve a stochastic growth model
with idiosyncratic labor income risk and find that the optimal tax rates depend
on the wealth level and idiosyncratic states of agents. Being a quantitative
work, however, they neither prove that the equilibrium is actually constrained
inefficient nor that an optimal intervention exists.

I also provide a numerical example calibrated to the U.S. economy. The
effect of idiosyncratic shocks on asset prices is substantial (the equity premium
ranges from 0.63% to 3.74% by changing the idiosyncratic labor income volatility
from 0% (representative-agent model) to 30%), and the welfare loss is moderate
(1% in consumption equivalent). In this example (regardless of the parameter

2Similar models (AK models with idiosyncratic investment risk) have been used by Saito
(1998), Angeletos (2007), and Toda (2014), among many others.

3The notion of constrained efficiency was first defined by Diamond (1967).
Geanakoplos and Polemarchakis (1986) first proved the generic constrained inefficiency
of equilibrium in a two period exchange economy. Geanakoplos et al. (1990) and
Carvajal and Polemarchakis (2011) treat the case with production and idiosyncratic risk, re-
spectively.
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values) there is always an over-investment in capital, and the optimal tax rate
on the capital stock is 0.5% in the baseline specification.

Related literature

This paper is closest to Krebs (2003a,b, 2006), Krueger and Lustig (2010),
Gottardi et al. (2011), and Toda (2014). Krebs (2006) is probably the first
tractable dynamic general equilibrium with a continuum of heterogeneous agents
and incomplete markets in a general (non-i.i.d.) Markov setting, which is partic-
ularly useful for various applications such as the current paper. His earlier works
(Krebs, 2003a,b) study the growth and welfare effects of human capital risk in
specialized models. Krueger and Lustig (2010) study a consumption-based asset
pricing model with heterogeneous agents. They find that under certain assump-
tions, idiosyncratic shocks have no impact on the equity premium. My paper
shows that their result holds only in a knife-edge case where there is only one
source of aggregate shock. Gottardi et al. (2011) study the Ramsey problem of
finding the optimal public debt and linear taxes in a model similar to the current
paper (but with no aggregate risk and i.i.d. idiosyncratic risk). Although I do
not consider public debt, my paper is complementary since I study a more gen-
eral model and characterize the optimal tax rates (which happen to be linear)
in closed-form. Toda (2014) studies the theoretical properties such as equilib-
rium existence and uniqueness with general preferences and shocks (which the
current paper applies) and characterizes the stationary wealth distribution and
the power law exponents.

2 A simple example

In this section I present a simple specialized model in order to build the intuition
for the main results. The exposition is deliberately informal since formal defini-
tions, theorems, and proofs in a more general model will be given in subsequent
sections.

2.1 Settings

There is an “all purpose” good that can be either consumed or saved as physical
and human capital.4 Time is infinite and is denoted by t = 0, 1, . . . . A perfectly
competitive firm produces the good using the production function F (K,H) =
AKαH1−α, where K,H are the efficiency units of physical and human capital,
A > 0, and 0 < α < 1. Suppressing the time subscript, the firm’s problem at
each period is

max
K,H

AKαH1−α − rK − ωH,

where r > 0 is the rental rate of physical capital and ω > 0 is the wage.
The economy is populated by a continuum of agents with mass 1 indexed by

i ∈ I = [0, 1] with identical Epstein-Zin constant relative risk aversion, constant

4If the reader is uncomfortable with the assumption that physical and human capital can
be converted 1:1, one can interpret human capital as private equity.
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elasticity of intertemporal substitution (CRRA/CEIS) recursive preferences

Ut =
(

c
1−1/ε
t + β Et[U

1−γ
t+1 ]

1−1/ε
1−γ

)
1

1−1/ε

,

where β > 0 is the discount factor, γ > 0 is the relative risk aversion (RRA)
coefficient, and ε > 0 is the elasticity of intertemporal substitution (EIS).5

Each agent derives income by renting physical and human capital to the firm,
which depreciate at rate δ, η ≤ 1 after production, respectively.6 Then agents
make consumption and investment decisions by allocating the good as physical
and human capital. Between time t and t + 1, the efficiency unit of physical
capital grows at gross growth rate Zt+1, which is an i.i.d. random variable.
Similarly, the human capital of agent i grows by yi,t+1Yt+1, where yi,t+1 is the
purely idiosyncratic component7 (so Et+1[yi,t+1] = 1) and Yt+1 is the aggregate
component. Assume that yi,t+1 is i.i.d. over time and across agents and Yt+1

is i.i.d. over time. Z, y, Y can be broadly interpreted as capital-augmenting
technological shocks or obsolescence. Let kit, hit be agent i’s stock of physical
and human capital at the beginning of time t, cit consumption, and xk

it, x
h
it

the physical and human capital (dis)investment at time t. Then the budget
constraint is

cit + xk
t + xh

t = rtkit + ωthit (2.1)

and the accumulation equations for physical and human capital are

ki,t+1 = Zt+1[(1− δ)kit + xk
it], (2.2a)

hi,t+1 = yi,t+1Yt+1[(1 − η)hit + xh
it]. (2.2b)

It is convenient to define agent i’s total wealth at time t after production by

wit = (1 + rt − δ)kit + (1 + ωt − η)hit (2.3)

and the fraction of wealth held as physical capital after consumption by

θit = [(1− δ)kit + xk
it]/(wit − cit).

Adding (1− δ)kit + (1− η)hit to both sides of (2.1), the fraction of wealth held
as human capital turns out to be

[(1− η)hit + xh
it]/(wit − cit) = 1− θit.

Combining (2.2), (2.3), and using the definition of θit, agent i’s dynamic budget
constraint becomes

wi,t+1 = Ri,t+1(θit)(wit − cit),

where the gross return on wealth is

Ri,t+1(θ) = (1 + rt+1 − δ)Zt+1θ + (1 + ωt+1 − η)yi,t+1Yt+1(1− θ). (2.4)

5As usual, γ = 1 corresponds to log utility. Readers uncomfortable with recursive prefer-
ences may set ε = 1/γ to obtain the additive CRRA preference, in which case U ′

t := 1

1−γ
U1−γ
t

is the usual expected lifetime utility. Note that the value function using Ut is proportional to
the wealth w, whereas the value function using U ′

t is proportional to w1−γ .
6There can be “appreciation” of human capital by “learning by doing”, in which case η < 0.
7In Krebs (2006), the idiosyncratic risk is present only in the depreciation rate η and not

in the technological shock y. This difference is important in obtaining the inefficiency result.
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2.2 Equilibrium

A sequential equilibrium is defined by a plan of consumption and portfolio choice
{(cit, θit)i∈I}

∞

t=0 and rental rates {(rt, ωt)}
∞

t=0 such that (i) agents maximize
utility subject to budget constraints, (ii) firms maximize profit, and (iii) rental
markets for physical and human capital clear. By the i.i.d. assumption and the
homotheticity of the utility function and the budget constraints, it should be
clear that in equilibrium every agent will choose the same constant consumption
rate c̃ = cit/wit ∈ [0, 1] and portfolio θ̄ ∈ [0, 1].

The equilibrium can be obtained as follows. Summing (2.2) across agents in
equilibrium and using the definition of θ̄, we obtain

Kt+1 = Zt+1θ̄(Wt − Ct),

Ht+1 = Yt+1(1− θ̄)(Wt − Ct),

where Wt, Ct are aggregate wealth and consumption. By the first-order condi-
tion for profit maximization of the firm, we obtain

rt+1 = Aα(Ht+1/Kt+1)
1−α = Aα

(

Yt+1

Zt+1

1− θ̄

θ̄

)1−α

,

ωt+1 = A(1− α)(Ht+1/Kt+1)
−α = A(1− α)

(

Yt+1

Zt+1

1− θ̄

θ̄

)−α

.

Combining with (2.4), the gross return on individual portfolio θ given the equi-
librium portfolio θ̄ is

Ri,t+1(θ, θ̄) =

(

1 +Aα

(

Yt+1

Zt+1

1− θ̄

θ̄

)1−α

− δ

)

Zt+1θ

+

(

1 +A(1 − α)

(

Yt+1

Zt+1

1− θ̄

θ̄

)−α

− η

)

yi,t+1Yt+1(1− θ). (2.5)

Again by homotheticity and the assumption of i.i.d. shocks, it should be clear
that the value function of each agent is of the form V (w) = bw, where b > 0 is
a constant. Therefore the Bellman equation is

bw = max
c,θ

(

c1−1/ε + β
(

b(w − c) E[R(θ, θ̄)1−γ ]
1

1−γ

)1−1/ε
)

1

1−1/ε

, (2.6)

where I have suppressed the individual and time subscripts. Thus the equilib-
rium portfolio satisfies

θ̄ = argmax
θ

1

1− γ
E[R(θ, θ̄)1−γ ]. (2.7)

Letting ρ = E[R(θ̄, θ̄)1−γ ]
1

1−γ , carrying out the maximization over c in (2.6),
and comparing coefficients, we get (after some algebra)

b =
(

1− βερε−1
)

1
1−ε , (2.8a)

c = (1− βερε−1)w. (2.8b)
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2.3 Asset prices and efficiency

Having solved for the equilibrium in (almost) closed-form, I state the main
results for this particular example.

2.3.1 Asset prices

Suppose that agents can trade finitely many assets in zero net supply indexed
by k ∈ K = {1, . . . ,K}. Let Rk be the one period gross return in equilibrium.
Since agents are symmetric and assets are in zero net supply, in equilibrium
agents choose not to trade (have zero holdings) of these assets. Suppose that a
typical agent invests a fraction of wealth α in asset k and 1−α in the equilibrium
wealth portfolio. By the same argument used to derive (2.7), we obtain

0 = argmax
α

1

1− γ
E[((1 − α)R(θ̄, θ̄) + αRk)1−γ ].

Taking the first-order condition with respect to α, we obtain

0 = E[R(θ̄, θ̄)−γ(Rk − R(θ̄, θ̄))] ⇐⇒ E[MRk] = 1,

where the stochastic discount factor (SDF) is

M =
R(θ̄, θ̄)−γ

E[R(θ̄, θ̄)1−γ ]
.

By a standard argument in asset pricing, the excess return of an asset is

E[Rk]−Rf = −
Cov[M,Rk]

E[M ]
= −

Cov[R(θ̄, θ̄)−γ , Rk]

E[R(θ̄, θ̄)−γ ]
, (2.9)

where the risk-free rate is Rf = 1/E[M ] = E[R(θ̄, θ̄)1−γ ]/E[R(θ̄, θ̄)−γ ].
Thus we obtain the first result: idiosyncratic risk generally matters for asset

pricing. To see this, note that the portfolio return R(θ, θ̄) in (2.5) depends
both on aggregate shocks (Y, Z) and the idiosyncratic shock y. Since y appears
only in the second term of (2.5), as we increase the riskiness of y, all else equal
agents will typically shift capital from human to physical capital by increasing
θ. But then the composition of aggregate shocks (Y, Z) in R(θ̄, θ̄) will change,
and therefore unless Y and Z are perfectly correlated, the idiosyncratic shock
y will affect the risk premium of assets through (2.9) and its effect on θ̄ (unless,
of course, the asset return Rk is independent of (Y, Z)). Thus even in a simple
i.i.d. setting such as this model, idiosyncratic risk generally matters for asset
pricing whenever there are two or more sources of aggregate risk (in this case, Y
and Z). This result does not contradict Krueger and Lustig (2010), since their
model has only one aggregate shock. The point is that their irrelevance result
is not robust.

2.3.2 Efficiency

Next I turn to efficiency. Since the value function of any agent in equilibrium
is of the form V (w) = bw with b determined by (2.8a), it is clear that the

welfare of any agent is a monotonic function of ρ = E[R(θ̄, θ̄)1−γ ]
1

1−γ . Here
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the portfolio return is defined by (2.5) and the equilibrium portfolio θ̄ satisfies
(2.7). However, since the objective function of the individual optimal portfolio
problem (2.7) depends on the equilibrium portfolio, the equilibrium portfolio θ̄
will typically not satisfy

θ̄ ∈ argmax
θ

1

1− γ
E[R(θ, θ)1−γ ]. (2.10)

In essence, there is a ‘portfolio externality’, or a pecuniary externality caused
by the portfolio choices of other agents. Thus if a planner assigns the portfolio
θ∗ that solves (2.10) to every agent, with corresponding ρ denoted by ρ∗, then
we will have ρ < ρ∗ and therefore the planner can improve welfare. In other
words, the equilibrium is constrained inefficient in the sense of Diamond (1967).
It turns out that the equilibrium in the original model of Krebs (2006) is nev-
ertheless constrained efficient. However, this is a knife-edge case in which the
only idiosyncratic human capital shock is in depreciation or appreciation η and
not in technological change or obsolescence y.

If the equilibrium portfolio θ̄ is constrained inefficient, a natural question
is whether θ̄ invests too much or too little in physical capital, and whether
the constrained efficient portfolio can be implemented in a decentralized way
through taxes and subsidies. For this example, we can prove that there is
always an over-investment in physical capital and that the optimal tax rate on
physical capital is positive.

Proposition 2.1. Let θ̄ be the equilibrium portfolio share of physical capital
that satisfies (2.7) and θ∗ be the constrained efficient portfolio that solves (2.10).
Then θ̄ ≥ θ∗. Furthermore, the optimal tax rate on physical capital is positive.

Proof. See Appendix.

2.4 Numerical example

In this subsection I explore the quantitative impact of idiosyncratic risk on asset
prices and efficiency.

The parameter values are as follows. The physical capital share in the pro-
duction function is α = 0.36 and the depreciation rate is δ = 0.08, which are
standard in the literature. Since human capital is likely to depreciate more
slowly, I set η = 0.04. The relative risk aversion coefficient is γ = 4, which is
considered by many researchers the upper bound for a “reasonable” degree of
risk aversion. Vissing-Jørgensen (2002) finds that the elasticity of intertemporal
substitution (EIS) is 0.8–1.0 for bond holders,8 so I set ε = 0.9.9

I assume that Z, Y, y are two-point, symmetrically distributed random vari-
ables, so for example Z takes the value µZ ± σZ with probability 1/2. The
aggregate shocks Z, Y may well be correlated. Once the correlation coefficient
ρ is set, the probability of each state is automatically determined. For in-
stance, the “high Z, high Y ” state has probability pHH = 1+ρ

4 . Since by (2.4)

8Vissing-Jørgensen (2002) finds that EIS is 0.3–0.4 for stock holders. However, since she
estimates EIS using a model with additive utility, for which relative risk aversion is tied to
EIS by ε = 1/γ, her EIS estimate for stock holders is likely to reflect risk aversion.

9Readers uncomfortable with recursive preferences may set ε = 1/γ since in an i.i.d. set-
ting the recursive utility model is observationally equivalent to the additive utility model
(Kocherlakota, 1990). Doing so will only affect the value of the discount factor β.
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the labor income growth is proportional to yi,t+1, following Storesletten et al.
(2007) I set σy = 0.17. For simplicity I set the means to 1 (no exogenous
growth): µZ = µY = µy = 1. The volatilities of physical and human capital are
σZ = 0.15 and σY = 0.05. I pick a high volatility in physical capital so as to
obtain volatile stock market returns.10

The parameters yet to be determined are the discount factor β, the co-
efficient of the production function A, and the correlation coefficient ρ. I
set these parameters to match the U.S. gross risk-free rate (1.013), aggregate
consumption growth (1.018), and volatility of aggregate consumption (0.033),
which are again taken from Storesletten et al. (2007). The implied parame-
ter values are β = 0.988, A = 0.2311, and ρ = −0.8789. It may be coun-
terintuitive that the correlation between physical and human capital shocks is
highly negative, but Lustig and Van Nieuwerburgh (2008) obtain a similar value
(Corr(DRy

∞, DRa
∞) = −0.63 in their Table 4).

With this parametrization, the equilibrium portfolio (physical capital share)
is θ̄ = 0.3867, the expected stock market return (the term (1 + rt+1 − δ)Zt+1

in (2.4)) is 3.13%, and the stock market volatility is 14.1%. The stock market
return is a little low but has the same order of magnitude as in the data. The
expected return on human capital (the term (1+ωt+1− η)yi,t+1Yt+1 in (2.4)) is
8.47%, which is in line with the returns to schooling. The constrained efficient
portfolio is θ∗ = 0.3748, so there is an over-investment in physical capital (θ̄ >
θ∗), as predicted by Proposition 2.1. The ratio of the coefficient of the value
function b to the efficient level b∗ is 0.9907, so there is a 1% welfare loss in terms
of permanent consumption equivalent.

To verify the claim that idiosyncratic shocks matter for asset pricing and
efficiency, I conduct a comparative statics exercise by changing the idiosyncratic
volatility of human capital σy from 0 to 0.3. Note that setting σy equal to zero
corresponds to a representative-agent model, since in this case there are no
idiosyncratic shocks.

Figure 1 shows the effect of idiosyncratic shocks on asset prices. In the
representative-agent model (σy = 0), the equity premium is low (0.63%) and
the risk-free rate is high (over 6%), consistent with the equity premium puzzle
of Mehra and Prescott (1985) and the risk-free rate puzzle of Weil (1989). How-
ever, we can see that increasing the idiosyncratic risk lowers the risk-free rate
and raises the equity premium, which help explain these asset pricing puzzles.

Figure 2 shows the effect of idiosyncratic shocks on the portfolio choice and
welfare. The figure plots the ratios θ̄/θ∗ and b/b∗, the equilibrium level relative
to the constrained efficient level. As idiosyncratic risk increases, agents invest
more in physical capital, which is free from idiosyncratic risk. Then the higher
wage amplifies the idiosyncratic human capital risk, which lowers welfare. The
magnitude of the welfare loss at the baseline specification is moderate (1% in
consumption equivalent), but the welfare loss deepens sharply as we increase
the idiosyncratic risk further, up to more than 10%.

Figure 3 shows the effect of idiosyncratic shocks on optimal taxes. As the
idiosyncratic risk increases, the equilibrium becomes more inefficient, and there-
fore we need larger taxes to achieve the constrained efficient outcome. The
optimal tax rate on physical capital is 0.5% in the baseline specification.

10Note that the physical and human capital are measured in efficiency units, not in book
value, so it is natural to assume that they are volatile. See the discussion in Black (1995).
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Figure 1: Effect of idiosyncratic shocks on asset prices. Blue solid: risk-free
rate, green dashed: equity premium, vertical dotted: baseline specification.
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3 AK model

In this section I introduce the formal model to present the first main result, that
generally idiosyncratic shocks affect asset prices. Since the presence of firms is
not necessary to obtain this result, for simplicity I work with an AK model
with multiple technologies that is identical to Toda (2014), reproduced below
in order to make the paper self-contained.11

3.1 Settings

Time is infinite and is denoted by t = 0, 1, . . . . All random variables are defined
on a probability space (Ω,F , P ). In the economy there are a continuum of
agents with mass 1 indexed by i ∈ I = [0, 1].

Preferences Agents have (identical) recursive preferences defined over (finite)

consumption plans from time t onwards {ct+s}
T−1
s=0 (where t = 0, 1, . . . and T =

1, 2, . . . ), constructed as follows. The one period utility at time t is U1
t = u(ct),

where u : R+ → R+ is increasing. Given the T period recursive utility at time
t, denoted by UT

t , the T + 1 period recursive utility is defined by

UT+1
t = f(ct, µt(U

T
t+1)),

where f : R
2
+ → R+ is the aggregator, ct is consumption, and µt(U

T
t+1) is

the certainty equivalent of the distribution of time t + 1 utility conditional on
time t information. Throughout the paper I maintain the following assumptions
regarding the aggregator and the certainty equivalent.

Assumption 1. The terminal utility is consumption itself: u(c) = c. The
aggregator f : R2

+ → R+ is upper semi-continuous, weakly increasing in both
arguments, strictly quasi-concave, and homogeneous of degree 1, i.e., f(λc, λv) =
λf(c, v) for any λ > 0.

Assumption 2 (CRRA certainty equivalent). The certainty equivalent µt ex-
hibits constant relative risk aversion (CRRA), i.e.,

µt(U) =

{

Et[U
1−γ ]

1
1−γ , (γ 6= 1)

exp (Et[logU ]) , (γ = 1)

where γ > 0 is the coefficient of relative risk aversion.

The recursive preferences satisfying Assumptions 1 and 2 nest the Epstein-
Zin CRRA/CEIS (constant elasticity of intertemporal substitution) preference

by setting f(c, v) = (c1−1/ε + βv1−1/ε)
1

1−1/ε , where ε > 0 is the elasticity of
intertemporal substitution and β > 0 is the discount factor. We get the standard
additive CRRA preference when ε = 1/γ.

11The focus of Toda (2014) is establishing theoretical properties such as equilibrium exis-
tence and uniqueness, as well as characterizing the stationary wealth distribution and power
law exponents. On the other hand, the current paper is mainly interested in asset pricing,
efficiency, and the optimal tax policy.
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Technology and asset Agent i is endowed with initial wealth (capital) wi0 >
0 in period 0 but nothing thereafter. However, each agent has access to stochas-
tic, constant-returns-to-scale technologies (investment projects) indexed by j ∈
J = {1, . . . , J}, which are subject to aggregate and idiosyncratic risks. When
agent i invests one unit of the good in technology j at the end of period t, he will
receive Aj

i,t+1 > 0 units of the good at the beginning of time t+1 (AK model).

Let Ai,t+1 = (A1
i,t+1, . . . , A

J
i,t+1) be the vector of productivities of agent i. We

can interpret technologies with idiosyncratic risks as human capital investment,
farming in private land, private equity, etc.

There are also publicly traded assets in zero net supply (such as financial
derivatives, Arrow securities, risk-free assets of various maturities, etc.) indexed
by k ∈ K. The set of asset K need not be finite, but I assume that at any point
in time the number of assets traded is finite. One share of asset k ∈ K pays
out dividend Dk

t+1 at the beginning of time t+ 1 without default, independent
of the identity of the asset holder. Therefore the dividend Dk

t+1 is a measurable
function of aggregate shocks alone. Let Dt+1 = (Dk

t+1)k∈K be the collection of
dividends.

The asset price P k
t is to be determined in equilibrium and induces the asset

return by Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t , which is common across agents. Markets

are incomplete in the sense that there is no insurance for the idiosyncratic
component of investment returns, which can arise for a number of reasons but
I take it as exogenous.

Information and distributional assumptions Agent i’s information is
represented by the filtration (increasing sequence of σ-algebras) {Fit}

∞

t=0. The
public information is denoted by Ft =

⋂

i Fit. Of course, productivity Ait is
Fit-measurable and dividend Dt is Ft-measurable. I assume that agents are
symmetric in the following sense.

Assumption 3. Productivities {Ait}i∈I are i.i.d. conditional on public infor-
mation Ft.

I refer to the (common) conditional mean Aj
t = E

[

Aj
it

∣

∣

∣
Ft

]

as the aggregate

component of productivity of technology j. Letting ajit = Aj
it/A

j
t be the purely

idiosyncratic component, the productivity decomposes into the aggregate and
idiosyncratic components as Aj

it = ajitA
j
t . Let At = (A1

t , . . . , A
J
t ) and ait =

(a1it, . . . , a
J
it) be the vectors of aggregate and idiosyncratic shocks.

The second assumption concerns public and private information.

Assumption 4. The distribution of productivity and dividends (Ai,t+1,Dt+1)
conditional on private information Fit is the same as the distribution conditional
on public information Ft.

Assumption 4 implies that the current and past idiosyncratic shocks do not
predict future idiosyncratic shocks, which might appear unrealistic. However,
note that aji,t+1’s are rates of return and hence shocks are permanent in terms
of the level of capital.

Finally, I need a Markov assumption.

Assumption 5. The aggregate state of the economy at time t is denoted by st ∈
S, where {st} follows an exogenous stationary Markov process. The portfolio
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constraint Πt and the distribution of productivity Ai,t+1 conditional on time t
public information depend only on st.

The support S of the Markov process st need not be finite.

Budget and portfolio constraints I denote the portfolio share (relative
position) in investments and asset holdings by a vector (θ, φ) ∈ R

J
+×R

K , where
∑J

j=1 θ
j +

∑

k∈K φk = 1. φk > 0 (φk < 0) means a long (short) position
in asset k. An agent’s portfolio share is constrained to be in the set Πt ⊂
R

J
+ × R

K at time t, which can be interpreted as a constraint on leverage or
other institutional constraints (limits on shortsales, restrictions on access to
certain capital markets, etc.). The assumption that only finitely many assets
are traded at any point in time is mathematically represented by (θ, φ) ∈ Πt

implies φk = 0 for all but finitely many k ∈ K. Letting πt = (θt, φt) and

Ri,t+1(πt) =

J
∑

j=1

Aj
i,t+1θ

j
t +

∑

k∈K

Rk
t+1φ

k
t

be the gross return on portfolio of investments and assets, individual i faces the
budget constraint

wi,t+1 = Ri,t+1(πt)(wit − cit). (3.1)

If shortsales are allowed, it may be the case that Ri,t+1(πt) ≤ 0 in some states,
leaving the agent with negative wealth. I rule out this possibility by letting an
agent with negative wealth bankrupt and get utility −∞, so agents choose only
portfolios that satisfy Ri,t+1(πt) > 0 almost surely. By redefining the portfolio
constraint if necessary, I assume that Ri,t+1(π) > 0 almost surely for any π ∈ Πt.

3.2 Equilibrium

In this subsection I briefly discuss the definition and properties of equilibrium.
For a more complete account, see Toda (2014). As usual the general equilibrium
is defined by individual optimization and market clearing.

Definition 3.1.
{

(cit, wit, θit, φit)i∈I , (P
k
t )k∈K

}∞

t=0
is a sequential general equi-

librium with incomplete markets and heterogeneous agents if

1. given the asset returns Rk
t+1 = (P k

t+1 + Dk
t+1)/P

k
t individual consump-

tion cit and portfolio πit = (θit, φit) are optimal subject to the budget
constraint (3.1) and the portfolio constraint πit ∈ Πt,

2. the markets for assets in zero net supply clear, i.e.,
∫

I φ
k
it(wit − cit)di = 0

for all k ∈ K, and

3. individual wealth wit evolves according to the budget constraint (3.1).

Let V (w, s) be the value function of an agent with wealth w in state s.12

The Bellman equation is

V (w, s) = max
0≤c≤w
π∈Πs

f
(

c,E
[

V (R(π)(w − c), s′)1−γ
∣

∣ s
]

1
1−γ

)

, (3.2)

12That the value function depends only on wealth w and aggregate state s follows from
Assumptions 3–5.
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where I have suppressed the individual and time subscript on portfolio return
and s′ denotes the aggregate state of the next period. Let L+(S) be the space of
positive functions defined on S. Since preferences are homothetic (Assumptions
1 and 2) and shocks are multiplicative, it follows that the value function is
linear: V (w, s) = b(s)w for some b ∈ L+(S). Substituting this into the Bellman
equation (3.2), letting c = c̃w, and using the homotheticity of the aggregator f ,
it follows that b is a fixed point of the mapping B : L+(S) → L+(S) defined by

(Bx)(s) = max
0≤c̃≤1

f

(

c̃, (1− c̃) max
π∈Πs

E
[

(x(s′)R(π))1−γ
∣

∣ s
]

1
1−γ

)

, (3.3)

where x ∈ L+(S). Of course, in order for B to be well-defined, the maximum
with respect to c̃ and π in (3.3) must be attained, but this follows from the upper
semi-continuity of f and imposing mild restrictions on the portfolio constraint
Πs and the portfolio return R(π).

The following theorem provides a sufficient condition for the existence of an
equilibrium and an algorithm for computing the equilibrium.

Theorem 3.2. Suppose that (i) Assumptions 1–5 hold, (ii) for all s ∈ S the set
{θ | (θ, 0) ∈ Πs} is nonempty, compact, convex, and (iii) for all s ∈ S we have

E
[

sup(θ,0)∈Πs
R(θ, 0)1−γ

∣

∣

∣
s
]

< ∞. Let ρs := sup(θ,0)∈Πs
E
[

R(θ, 0)1−γ
∣

∣ s
]

1
1−γ

and suppose further that there exists 0 < ǫ < 1 such that either

(∀s) f(ǫ, ρs) < 1 ≤ sup
0≤c≤1

f(c, ρs(1− c)), or

(∀s) sup
0≤c≤1

f(c, ρs(1− c)) ≤ 1 < sup
0≤c≤1

f(c/ǫ, ρs(1− c))

holds. Define
{

bT
}∞

T=1
⊂ L+(S) by b1 = 1 and bT = BbT−1 for T ≥ 2. Then

{

bT
}∞

T=1
is well-defined, monotonically converges pointwise to some b ∈ L+(S),

and the value function in state s is V (w, s) = b(s)w. Letting

θs ∈ argmax
(θ,0)∈Πs

1

1− γ
E
[

(b(s′)R(θ, 0))1−γ
∣

∣ s
]

, (3.4a)

c̃s = argmax
0≤c̃≤1

f
(

c̃, (1− c̃) E
[

(b(s′)R(θs, 0))
1−γ

∣

∣ s
]

1
1−γ

)

, (3.4b)

(cit, θit, φit) = (c̃stwit, θst , 0) is the equilibrium consumption-portfolio.

Proof. See Toda (2014).

Toda (2014) shows further that (i) if there is an equilibrium (which is not
necessarily Markovian), there is an equilibrium with the same consumption
allocation and a common portfolio choice across agents (hence no trade in assets
in zero net supply), and (ii) all equilibria with no trade in assets have the
same consumption allocation. Combining these two facts, the equilibrium in
Theorem 3.2 is essentially the unique equilibrium of the economy in the sense
that there may be indeterminacy in the portfolio choice (due to redundant assets
or technologies) or asset prices (due to binding portfolio constraints), but the
consumption allocation is unique.
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4 Asset pricing

In this section I derive asset pricing implications of the general equilibrium
model of Section 3.

4.1 Asset pricing implications

Fix an aggregate state s and let θs be the equilibrium portfolio. Let π =
(θ, φ) ∈ R

J × R
K with

∑

θj +
∑

φk = 1 be any portfolio. I say that π = (θ, φ)
is infinitesimally tradable in equilibrium in state s if for sufficiently small |α| we
have

(1− α)(θs, 0) + α(θ, φ) = ((1 − α)θs + αθ, αφ) ∈ Πs,

that is, if an agent can take a small long or short position in the portfolio π and
invest the remaining wealth in the equilibrium portfolio (θs, 0). In particular, I
say that asset k ∈ K is infinitesimally tradable (in equilibrium) if the portfolio
consisting of entirely asset k is infinitesimally tradable.

The following theorem gives a formula for pricing an asset.

Proposition 4.1. Let everything be as in Section 3 and suppose that asset k is
infinitesimally tradable. Then the asset price P k

t satisfies the recursive formula

P k
t =

E
[

b(st+1)
1−γR(θst , 0)

−γ(P k
t+1 +Dk

t+1)
∣

∣ st
]

E [b(st+1)1−γR(θst , 0)
1−γ | st]

, (4.1)

where b(s) is as in Theorem 3.2. In particular, the one period gross risk-free
rate in state s is given by

Rf,s =
E
[

b(s′)1−γR(θs, 0)
1−γ

∣

∣ s
]

E [b(s′)1−γR(θs, 0)−γ | s]
. (4.2)

Furthermore, the risk premium of an infinitesimally tradable portfolio π satisfies
the covariance pricing formula

E [R(π) | s]−Rf,s = −
Cov

[

b(s′)1−γR(θs, 0)
−γ , R(π)

∣

∣ s
]

E [b(s′)1−γR(θs, 0)−γ | s]
. (4.3)

Proof. See Appendix.

Proposition 4.1 can be viewed as a generalization of Rubinstein (1976), who
obtains similar results under the assumptions of a representative-agent and se-
rially independent returns.

4.2 (Ir)relevance of market incompleteness

At least since Mankiw (1986), the relevance of market incompleteness and/or
agent heterogeneity for asset pricing has been recognized, but their quantitative
importance has been found to be small when idiosyncratic shocks are transi-
tory (Telmer, 1993). Constantinides and Duffie (1996) show that idiosyncratic
shocks have a significant impact on asset pricing when they are permanent.

In a recent paper, Krueger and Lustig (2010) showed that, under some as-
sumptions, the absence of insurance markets for idiosyncratic labor income risk
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has no effect on the premium for aggregate risk. The assumptions are (i) a con-
tinuum of agents, (ii) identical CRRA utility, (iii) idiosyncratic labor income
risk that is independent of aggregate risk, (iv) a constant capital share of in-
come, and (v) solvency constraints or borrowing constraints on total financial
wealth that are proportional to aggregate income. They also assume that aggre-
gate consumption growth is independent over time and the labor income shock
can be decomposed multiplicatively into the idiosyncratic and aggregate com-
ponents. These assumptions are parallel to mine: in my model I assume (i) a
continuum of agents, (ii) identical homothetic CRRA recursive utility, (iii) id-
iosyncratic investment risk that is conditionally independent of aggregate risk,
(iv) the portfolio share is common across all agents (which is a consequence, not
an assumption), and (v) portfolio constraints that are independent of the wealth
level. In this section I show that the key assumption leading to the irrelevance
result of Krueger and Lustig is that there is only one source of aggregate shock.

Krueger and Lustig (2010) assume that aggregate consumption growth is
independent over time. Let us assume the following similar but weaker ‘con-
ditional independence assumption (CIA)’ in our model of Section 3: the next
period’s state st+1 and productivities Ai,t+1 are independent conditional on the
current state st. In that case since b(st+1) and Ai,t+1 (hence Ri,t+1(θ, 0) =
∑J

j=1 A
j
i,t+1θ

j) are conditionally independent, the equilibrium portfolio condi-
tion (3.4a) becomes

θs ∈ argmax
(θ,0)∈Πs

1

1− γ
E
[

R(θ, 0)1−γ
∣

∣ s
]

. (4.4)

Since Proposition 4.1 is entirely derived by (3.4a), under CIA (4.4) implies
that Proposition 4.1 holds without the term b(s′). In particular, the covariance
pricing formula (4.3) becomes

E [R(π) | s]−Rf,s = −
Cov [R(θs, 0)

−γ , R(π) | s]

E [R(θs, 0)−γ | s]
. (4.5)

In general, (4.5) still depends on the idiosyncratic shocks. The following
proposition gives a necessary condition for the irrelevance of idiosyncratic risk.

Proposition 4.2. Suppose that the risk premium of an infinitesimally tradable
portfolio π does not depend on idiosyncratic shocks. If there is no portfolio
constraint on technology (for any θ ≥ 0 with

∑

j θ
j = 1 we have (θ, 0) ∈ Πs),

then

−
Cov

[

(Aj)−γ , R(π)
∣

∣ s
]

E [(Aj)−γ | s]
= E [R(π) | s]−Rf,s (4.6)

for all j, where Aj is the aggregate component of technology j.

Proof. See Appendix.

Since the aggregate component of productivities A = (A1, . . . , AJ) is exoge-
nous in the model, (4.6) generically fails when there are multiple technologies.
Thus idiosyncratic risks generically affect risk premia. This ‘generic relevance
of idiosyncratic risk’ is intuitive. When there are multiple sources of aggregate
risk, the aggregate component of individual consumption growth (which prices
assets through the Euler equation) depends on the portfolio choice, which in
turn is affected by idiosyncratic shocks. However, if there is a single source of
aggregate risk, the irrelevance result of Krueger and Lustig survives.
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Proposition 4.3. Suppose that there exists a random variable A such that the
distribution of Aj/A conditional on the aggregate state s is constant for each j.
Then the risk premium does not depend on idiosyncratic shocks.

Proof. By assumption, Aj
i = ajim

j
sA for some constant mj

s. Then (4.5) becomes

E [R(π) | s]−Rf,s = −

E

[

(

∑

j a
j
im

j
sθ

j
s

)−γ
∣

∣

∣

∣

s

]

Cov [A−γ , R(π) | s]

E

[

(

∑

j a
j
im

j
sθ

j
s

)−γ
∣

∣

∣

∣

s

]

Cov [A−γ , R(π) | s]

= −
Cov [A−γ , R(π) | s]

E [A−γ | s]
,

which depends only on aggregate shocks A and s.

Thus we can interpret the irrelevance result of Krueger and Lustig as de-
duced from the presence of only one aggregate shock, namely the growth rate
of aggregate consumption.

5 Model with firms

It is well-known that the equilibrium is generically constrained inefficient when
markets are incomplete (Geanakoplos and Polemarchakis, 1986; Citanna et al.,
1998). A striking property of the incomplete market general equilibrium models
of Krebs (2006) and Section 3 (Toda, 2014) is that the equilibrium is nevertheless
constrained efficient. However, both of these models are rather special: in Krebs
(2006) the only idiosyncratic shock is in human capital depreciation, and in
Section 3 production is linear and employs only one input (AK model). Thus it
is not clear whether constrained efficiency in these models is a robust property.
To explore this issue further, in this section I generalize the Krebs model to the
case with multiple firms and idiosyncratic technological shocks.

5.1 Settings

In the economy there is an “all purpose” good which can either be consumed or
invested as physical or human capital. The supply side of the economy consists
of J firms indexed by j = 1, 2, . . . , J . Firm j has a constant-returns-to-scale
neoclassical production function F j

t (K,H) at time t, where K,H denote the
input of the efficiency unit of physical and human capital, respectively. The
production function F j

t may not only be time-dependent but state-dependent,
in which case F j

t is a random function. I adopt all standard assumptions
for F j

t , namely, that F j
t is twice continuously differentiable, increasing and

strictly concave in both arguments, ∂
∂KF j

t (0, H) = ∂
∂HF j

t (K, 0) = ∞, and
∂

∂KF j
t (∞, H) = ∂

∂HF j
t (K,∞) = 0. At each period, each firm rents physical

and human capital from consumers. Thus a firm’s decision problem is

max
K,H≥0

[F j
t (K,H)− rjtK − r0tH ],

a static problem, where rjt denotes the rental rate of physical capital firm j faces
at period t and r0t is the rental rate of human capital (wage per efficiency unit of
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labor). Since F j
t is constant-returns-to-scale, firms make zero profit and hence

we need not worry about the ownership of firms.
If a consumer rents physical capital kjt to firm j at period t and invests xj

t ,
then the physical capital at the beginning of the next period will be

kjt+1 = Zj
t+1[(1 − δjt )k

j
t + xj

t ],

where δjt is the depreciation rate of physical capital used by firm j, and Zj
t+1

denotes the shock to the efficiency unit of physical capital to firm j that occurs
between periods t and t + 1, both of which are random variables. Zj

t+1 may
represent capital obsolescence or capital-augmenting technological change.

If consumer i ∈ I = [0, 1] has human capital k0t at period t and invests x0
t ,

then the human capital at the beginning of the next period will be

k0t+1 = Z0
i,t+1[(1− δ0it)k

0
t + x0

t ],

where δ0it is the depreciation rate and Z0
i,t+1 denotes the shock to the efficiency

unit of human capital that occurs between periods t and t+1, both assumed to
be i.i.d. across individuals conditional on the history of aggregate shocks (As-
sumption 3). Here I allow disinvestment of human capital (x0

t < 0), which can be
interpreted as cutting work hours or switching to a less (mentally or physically)

demanding job. I assume that the joint distribution of shocks
{

(Zj
t+1, δ

j
t+1)

}J

j=0

(where I have suppressed the subscript i for human capital) conditional on pri-
vate information Fit is the same as the distribution conditional on public in-
formation Ft =

⋂

i∈I Fit (Assumption 4). Because the physical capital of each

firm evolves stochastically, the rental rate rjt may differ across firms. However,
since human capital is not firm-specific but individual-specific, the wage (per
efficiency unit of human capital) r0t must be common across all firms.

Finally, there are an arbitrary number of assets in zero net supply. Since by
the nature of the model there will be no trade in assets in zero net supply, in
what follows I shall ignore these assets.

Each consumer maximizes his recursive utility as in Section 3 subject to the
constraints

ct +
J
∑

j=0

xj
t =

J
∑

j=0

rjtk
j
t , (5.1a)

kjt+1 = Zj
t+1[(1− δjt )k

j
t + xj

t ], j = 0, 1, . . . , J. (5.1b)

(5.1a) is the budget constraint: the left-hand side is the sum of consumption
and investment, which must be equal to the right-hand side, the income from all
sources. (5.1b) is the equation of motion for human capital (j = 0) or physical
capital (j ≥ 1) invested in each firm. Note that my formulation in (5.1) is more
general than that in Krebs (2006): Equation (2) on p. 510 of his paper only
allows for depreciation after production, but through Zj

t+1 I allow for factor
obsolescence or factor-augmenting technological change. Thus Krebs’s model is
nested within the current framework by setting Zj

t+1 ≡ 1 and J = 1 (since there
is a single technology).

The definition of equilibrium is similar to that in Section 3: given the initial
distribution of physical and human capital ((kji0)

J
j=0)i∈I , a sequential equilib-
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rium is defined by a sequence of quantities

{

(cit, (k
j
i,t+1)

J
j=0)i∈I , (K

j
t+1, H

j
t+1)

J
j=1

}∞

t=0

and rental rates and wages
{

(rjt )
J
j=0

}∞

t=1
such that (i) consumers and firms

optimize, and (ii) markets clear.

5.2 Equilibrium

Let ∆J be the unit simplex in R
J+1, that is, the set consisting of θ ∈ R

J+1
+

with
∑J

j=0 θ
j = 1. The following lemma shows that the model has a similar

structure to that in Section 3.

Lemma 5.1. Let
{

(rjt )
J
j=0

}∞

t=1
be rental rates. Define wi0 =

∑J
j=0 k

j
i0 and

wit = (1 + r0t − δ0it)k
0
it +

J
∑

j=1

(1 + rjt − δjt )k
j
it (5.2)

for all t ≥ 1. Then the individual problem reduces to maximizing the recursive
utility subject to the budget constraint

wi,t+1 = Ri,t+1(θit)(wit − cit), (5.3)

where θit ∈ ∆J and

Ri,t+1(θ) = (1 + r0t+1 − δ0i,t+1)Z
0
i,t+1θ

0 +
J
∑

j=1

(1 + rjt+1 − δjt+1)Z
j
t+1θ

j . (5.4)

Proof. For notational simplicity drop the individual subscript i. Let k′jt =
(1 − δjt )k

j
t + xj

t be the amount of physical capital allocated to firm j (if j ≥ 1)
or the amount of human capital (if j = 0) after production and investment.
Since the investment xj

t is unrestricted, so is k′jt . Adding total capital after

depreciation
∑J

j=0(1 − δjt )k
j
t to the budget constraint (5.1a), we obtain

ct +
∑

j

k′jt =
∑

j

(1 + rjt − δjt )k
j
t = wt, (5.5)

where wt is the wealth of the consumer including the production in period t
defined by (5.2).

Define the “portfolio share” at period t, θt ∈ ∆J , by k′jt = θjt (wt − ct) for
j = 0, 1, . . . , J . Using (5.1b), the physical or human capital at the beginning of
period t+ 1 becomes

kjt+1 = Zj
t+1θ

j
t (wt − ct). (5.6)

Letting θt = (θ0t , . . . , θ
J
t ) ∈ ∆J , by (5.5) and (5.6) the consumer’s wealth in

period t+ 1 is

wt+1 =
∑

j

(1 + rjt+1 − δjt+1)k
j
t+1 = Rt+1(θt)(wt − ct),

which is precisely (5.3) and (5.4).
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The budget constraint (5.3) has the same form as the budget constraint
(3.1). By Assumptions 3 and 4, the optimal consumption-portfolio problem
is common across all agents. It follows that if there is an equilibrium, there
exists an equivalent equilibrium in which agents hold a common portfolio (value
weighted average portfolio) and the consumption allocation is the same as in
the original equilibrium. Therefore without loss of generality we may restrict
attention to symmetric equilibria.

Next I characterize the equilibrium rental rates
{

(rjt )
J
j=0

}∞

t=1
. Let θ̄t be the

(symmetric) equilibrium portfolio. Let Kj
t , H

j
t be the amount of physical and

human capital employed by firm j at period t and Ht =
∑

j H
j
t the total human

capital in the economy. Adding (5.6) across all individuals in the economy, for
j ≥ 1 we obtain

Kj
t+1 = Zj

t+1θ̄
j
t (1− c̃t)Wt, (5.7)

where c̃t is the common consumption rate and Wt is the aggregate wealth in
period t. For human capital (j = 0), since the human capital shock Z0

i,t+1 is
conditionally i.i.d. across individuals, by the law of large numbers we obtain

Ht+1 = K0
t+1 = Et+1[Z

0
i,t+1]θ̄

0
t (1− c̃t)Wt. (5.8)

Letting φj
t = Hj

t /Ht be the fraction of human capital employed by firm j, by
firm optimization, (5.7), (5.8), and homogeneity of the production functions,
the rental rates satisfy

rjt =
∂

∂K
F j
t (K

j
t , H

j
t ) =

∂

∂K
F j
t (Z

j
t θ̄

j
t−1,Et[Z

0
it]θ̄

0
t−1φ

j
t ), (5.9a)

r0t =
∂

∂H
F j
t (K

j
t , H

j
t ) =

∂

∂H
F j
t (Z

j
t θ̄

j
t−1,Et[Z

0
it]θ̄

0
t−1φ

j
t ). (5.9b)

By the standard assumptions on the production function, (5.9b) can be solved
for φj

t as a function of r0t , θ̄
j
t−1, and θ̄0t−1. Using

∑

j φ
j
t = 1, we can solve for r0t

as a function of θ̄t−1. Hence φj
t is also a function of θ̄t−1, and so is rjt by (5.9a).

Write this dependency as

rjt = rjt (θ̄t−1), j = 0, 1, . . . , J. (5.10)

Although rjt is a random variable, it is random only through θ̄t−1, (F
j
t , Z

j
t )

J
j=1,

and Et[Z
0
it]. Substituting (5.10) into the budget constraint (5.3), we obtain the

following corollary.

Corollary 5.2. Individual wealth evolves according to the budget constraint

wi,t+1 = Ri,t+1(θit, θ̄t)(wit − cit),

where the portfolio return is given by

Ri,t+1(θ, θ̄)

= (1 + r0t+1(θ̄)− δ0i,t+1)Z
0
i,t+1θ

0 +
J
∑

j=1

(1 + rjt+1(θ̄)− δjt+1)Z
j
t+1θ

j . (5.11)
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Hence the portfolio return Ri,t+1 (conditional on time t information) is ran-

dom only through the technology (F j
t+1, Z

j
t+1, δ

j
t+1)

J
j=1, aggregate shock in hu-

man capital Et+1[Z
0
i,t+1], and idiosyncratic shocks in human capital (Z0

i,t+1, δ
0
i,t+1).

We can derive necessary conditions for equilibrium as follows.

Theorem 5.3. Suppose that a symmetric equilibrium exists. Then the value
function is linear in wealth, Vt(w) = btw, and the equilibrium portfolio θt, the
consumption rate c̃t, and the coefficient bt satisfy

θt ∈ argmax
θ∈∆J

1

1− γ
Et[b

1−γ
t+1 Rt+1(θ, θt)

1−γ ], (5.12a)

c̃t = argmax
0≤c≤1

f
(

c̃, (1− c̃) Et[b
1−γ
t+1 Rt+1(θt, θt)

1−γ ]
1

1−γ

)

, (5.12b)

bt = f
(

c̃t, (1− c̃t) Et[b
1−γ
t+1 Rt+1(θt, θt)

1−γ ]
1

1−γ

)

. (5.12c)

The equilibrium with a continuum of agents generally differs from the one with
a single agent.

Proof. The proof that the equilibrium satisfies (5.12) is similar to Section 3 and
Toda (2014) and therefore I omit it.

The single agent equilibrium corresponds to replacing Et[Z
0
it] in (5.9) by just

Z0
it because the expression Et[Z

0
it] was derived from the law of large numbers,

which does not apply for the single agent problem. Hence unless Z0
it ≡ Z0

t is
common across all consumers, i.e., unless there is no idiosyncratic component
in the shock corresponding to human capital obsolescence or human capital-
augmenting technological change (in which case Et[Z

0
it] = Z0

t ), the equilibrium
with a continuum of agents generally differs from the one with a single agent.

Unlike the case with linear technologies in Section 3, since in Theorem 5.3
the multiple agent equilibrium differs from the single agent equilibrium, there
is some risk sharing in equilibrium. Although agents face exactly the same id-
iosyncratic shocks in the market (continuum of agents) economy and the autarky
(single agent) economy, the agents in the market economy can insure against
the shock in wages (income flow from human capital) by pooling their human
capital (the term with Et[Z

0
it] in (5.9)), but cannot insure against the shock to

the individual human capital stock itself. In the autarky economy, on the other
hand, the agent cannot insure against either. This conclusion differs from that
of Krebs (2006), where the single agent and multiple agent problems are exactly
the same and there is no risk sharing because Z0

it ≡ Z0
t is common across all

agents by construction.

6 Efficiency

Because the equilibrium with AK technologies in Section 3 is equivalent to a
single agent (planning) problem, the equilibrium is constrained efficient. This
is not necessarily the case when there are firms. In this section, I show that the
equilibrium with firms is generically constrained inefficient if there are idiosyn-
cratic human capital obsolescence shocks, but that nevertheless the constrained
efficient allocation can be achieved through linear taxes and subsidies.
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Recall that the original model of Krebs (2006) is constrained efficient. The
following proposition shows that the same is true in a more general model with
multiple firms, provided that the only idiosyncratic human capital shock is in
depreciation.

Proposition 6.1. Suppose that the human capital shock Z0
it is common across

all agents, i.e., the only idiosyncratic shock is in human capital depreciation δ0it.
Then the equilibrium is constrained efficient.

Proof. See Appendix.

The crucial assumption in proving the special case that the equilibrium is
constrained efficient is that there is no idiosyncratic component in the shock for
human capital obsolescence or human capital-augmenting technological change,
that is, Et[Z

0
it] = Z0

it = Z0
t for all agents. Under this assumption we can replace

Et[Z
0
it] appearing in the definition of market rental rates (5.9) by just Z0

t , and
using the constant-returns-to-scale property of the production functions, we
can show that the multiple agent market economy is identical to an autarky
economy. Because there are no gains from trade, the equilibrium is constrained
efficient.

Constrained efficiency, however, holds only in the knife-edge case that the
only idiosyncratic shock is in human capital depreciation. Once we allow for
idiosyncratic technological shocks, the equilibrium becomes generically con-
strained inefficient. The proof employs standard transversality techniques in
mathematical economics, which are easiest to apply in finite dimensional spaces.
Therefore I assume henceforth that the Markov process describing all shocks has
a finite support:

Assumption 6. The Markov process describing all shocks has a finite support.

Remember from Section 5 that the human capital shock is denoted by
(Z0

it, δ
0
it), where Z0

it > 0 is the obsolescence (technological) shock that occurs
between periods and δ0it ≤ 1 is the depreciation shock after production. As in
Section 3, each shock can be decomposed into the aggregate and purely idiosyn-
cratic components. Let

Z0
it = z0itZ

0
t

be such a decomposition, where z0it is the purely idiosyncratic component so
Et[z

0
it] = 1. Since by Proposition 6.1 the equilibrium is constrained efficient if

z0it ≡ 1, I make the following assumption.

Assumption 7. There exists an aggregate state in which the support of the
conditional distribution of z0it contains more than one point.

Combining Assumptions 6, 7, z0it > 0, and the fact that idiosyncratic shocks
are constrained to be mean 1 (Et[z

0
it] = 1), the support of the idiosyncratic

obsolescence shock for all aggregate states can be identified as an element u of
an open subset U of some Euclidean space.13 It is u that I shall perturb to show
the generic constrained inefficiency.

13In fact, U is the product of the interior of simplexes in some Euclidean spaces, where the
product is taken over aggregate states in which the conditional distribution of idiosyncratic
shock is non-degenerate.
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Theorem 6.2 (Generic constrained inefficiency). Let everything be as above.
Then there exists an open subset U∗ of U with full measure ( i.e., U\U∗ is
closed in U and has Lebesgue measure 0; in particular, U\U∗ is nowhere dense)
such that for every u ∈ U∗, the equilibrium associated with u is constrained
inefficient in the sense that the planner can Pareto improve by intervening in
agents’ portfolio choices.

Proof. See Appendix.

The intuition for the generic constraint inefficiency result is straightforward.
Unlike the case with only AK technologies, in the case with firms that have
nonlinear production functions, the return on an individual’s portfolio depends
on the portfolio choice of other agents through the effect on rental rates. In
essence, there is a ‘portfolio externality’, which makes the economy inefficient.
This externality also exists in a representative-agent model as well as the model
of Krebs (2006). However, in these models, combining the constant-returns-
to-scale property of the production function and the absence of idiosyncratic
multiplicative shocks, the individual optimization problem in the market econ-
omy turns out to be equivalent to a planning problem in autarky (Proposition
6.1). This is why the equilibrium was constrained efficient in earlier studies, but
it is a knife-edge case.

As soon as we prove that the equilibrium is generically constrained inefficient,
a natural question that arises is whether the planner can achieve the constrained
efficient allocation through some intervention. Citanna et al. (1998) show how
to Pareto improve the equilibrium allocation in an abstract general equilibrium
model with incomplete markets. Due to the special structure of my model, the
planner can actually achieve the constrained efficient allocation through linear
taxes and subsidies on physical and human capital.

Theorem 6.3. Let everything be as above. Let θ∗t be the constrained efficient
portfolio at time t and b∗t be the corresponding coefficient of the value function
satisfying the analog of (5.12c). Define the random variables A0

t+1, . . . , A
J
t+1 by

Rt+1(θ, θ
∗
t ) =

∑J
j=0 A

j
t+1θ

j , where the portfolio return is defined by (5.11) and
I drop subscript i. Then the constrained efficient outcome can be decentralized
by linear taxes and subsidies. The optimal tax rate on capital j (human capital
if j = 0) is

τ jt = 1−
Et[(b

∗
t+1)

1−γRt+1(θ
∗
t , θ

∗
t )

1−γ ]

Et[(b∗t+1)
1−γRt+1(θ∗t , θ

∗
t )

−γAj
t+1]

.

Proof. See Appendix.

7 Concluding remarks

AK-type models are analytically tractable and free from the ‘curse of dimension-
ality’ even with heterogeneous agents and incomplete markets when preferences
are homothetic and all shocks are multiplicative. This is because agents choose
the same portfolio regardless of the wealth level, and hence the wealth distribu-
tion is not a relevant state variable for describing the equilibrium. The key to
make the analysis tractable is to recast the individual decision problem as an
optimal consumption-portfolio problem. Taking advantage of these features, I
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studied the asset pricing implications and efficiency of a dynamic stochastic gen-
eral equilibrium model with heterogeneous agents and incomplete markets with
multiple technologies/inputs and general preferences/shocks. Unlike commonly
used models with a single source of aggregate risk, the model predicts that
generically idiosyncratic shocks are quantitatively important in pricing assets
and the equilibrium is generically constrained inefficient.

The significant contribution of Krebs (2006) is that it is probably the first
tractable general equilibrium model with a continuum of heterogeneous agents,
incomplete markets, and production that allows for arbitrary stochastic pro-
cesses (at least in terms of aggregate shocks). Toda (2014) further generalized
the model to allow for arbitrary number of technologies and assets with arbi-
trary portfolio constraints, and derived an efficient algorithm for computing the
equilibrium. This type of models has recently been applied in the quantitative
general equilibrium/finance context, where the trade-off between the computa-
tional complexity and the desire to develop a quantitative model with a complex
financial structure with incomplete markets necessitates resorting to analytically
tractable models. For instance, Toda (2013) considers the role of securitization
for sharing idiosyncratic risks; Walsh (2014) analyzes capital flows and default
of emerging economies in international capital markets.

A Proofs

Proof of Proposition 2.1. The proof is fairly complicated and we need sev-
eral steps.

Step 1. If f, g : R → R are increasing (decreasing) functions and X is a random
variable, then E[f(X)g(X)] ≥ E[f(X)] E[g(X)].14

To see this, let X ′ be an i.i.d. copy of X . Since f, g are monotonic, we have
(f(X) − f(X ′))(g(X) − g(X ′)) ≥ 0. Taking expectations of both sides, noting
that X,X ′ are i.i.d., and rearranging terms, we obtain the desired inequality.

Step 2. Let f be an increasing concave function and g be a concave function.
Then f ◦ g is concave.

Take any x1, x2 and α ∈ [0, 1]. Since g is concave, we have

g((1− α)x1 + αx2) ≥ (1 − α)g(x1) + αg(x2).

Since f is increasing and concave, applying f to both sides we get

f(g((1− α)x1 + αx2)) ≥ f((1− α)g(x1) + αg(x2))

≥ (1 − α)f(g(x1)) + αf(g(x2)).

Step 3. The function Ri,t+1(θ, θ) defined by (2.5) (with θ̄ = θ) is continuous
and strictly concave in θ.

Substituting θ̄ = θ in (2.5), we can see that Ri,t+1(θ, θ) is the sum of a linear
function of θ and a positive multiple of θα(1 − θ)1−α. Therefore continuity is

14This inequality is known as the Chebyshev inequality.
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trivial and it suffices to prove that f(θ) = θα(1 − θ)1−α is strictly concave.
Taking logs and differentiating twice, we obtain

f ′

f
=

α

θ
−

1− α

1− θ
and

f ′′f − (f ′)2

f2
= −

α

θ2
−

1− α

(1− θ)2
,

so
f ′′

f
=

(

α

θ
−

1− α

1− θ

)2

−
α

θ2
−

1− α

(1− θ)2
= −

α(1 − α)

θ2(1− θ)2
< 0.

Step 4. The objective function in (2.10) is continuous and strictly concave and
therefore the constrained efficient portfolio θ∗ uniquely exists.

From now on let us drop the i, t + 1 subscripts from Ri,t+1. The objective
function is obtained by applying the (strictly increasing and strictly concave)

function x 7→ x1−γ

1−γ to R(θ, θ) and taking expectations. By Step 3, R(θ, θ)

is continuous and strictly concave. By Step 2, the function 1
1−γR(θ, θ)1−γ is

continuous and strictly concave, and so is its expectation, which is the objective
function in (2.10).

Step 5. For any θ, we have

E

[

R(θ, θ)−γ ∂

∂θ
R(θ, θ)

]

≥ E

[

R(θ, θ)−γ d

dθ
R(θ, θ)

]

,

where the left-hand side contains the partial derivative ∂
∂θR(θ, θ̄) evaluated at

θ̄ = θ and the right-hand side contains the derivative of θ 7→ R(θ, θ).

LetD1R denote the partial derivative ofR with respect to the first argument,
and similarly D2R. Then by the chain rule we have

d

dθ
R(θ, θ) = D1R(θ, θ) +D2R(θ, θ),

so it suffices to prove E[−R(θ, θ)−γD2R(θ, θ)] ≥ 0. By carrying out the differ-
entiation using the definition (2.5), after some algebra we get

D2R(θ, θ) = Aα(1 − α)ZαY 1−αθα−1(1− θ)−α(y − 1), (A.1)

which is clearly an increasing function of y. Furthermore, R(θ, θ) in (2.5) is
increasing in y, and so is −R(θ, θ)−γ . Hence by Step 1, conditioning on Y, Z we
get

E
[

−R(θ, θ)−γD2R(θ, θ)
∣

∣Y, Z
]

≥ E
[

−R(θ, θ)−γ
∣

∣Y, Z
]

E [D2R(θ, θ) |Y, Z] = 0,

where the last equality follows from (A.1) and E [y |Y, Z] = 1. We get the
desired inequality by taking the unconditional expectations.

Step 6. There is always over-investment in physical capital, i.e., θ̄ ≥ θ∗.

Since θ̄ solves (2.7), by the first-order condition and Step 5, we get

0 = E

[

R(θ, θ)−γ ∂

∂θ
R(θ, θ)

]∣

∣

∣

∣

θ=θ̄

≥ E

[

R(θ, θ)−γ d

dθ
R(θ, θ)

]∣

∣

∣

∣

θ=θ̄

= v′(θ̄),

where v(θ) = 1
1−γ E[R(θ, θ)1−γ ]. Since θ∗ maximizes v, we have v′(θ∗) = 0.

Since v is strictly concave by Step 4, v′ is decreasing, so θ̄ ≥ θ∗.
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Step 7. The optimal tax rate on physical capital is positive.

We can decentralize the constrained efficient outcome as follows. Let θ, φ be
the after- and pre-tax portfolios. Let τ1, τ2 < 1 be the tax rates on physical and
human capital. Then (1 − τ1)φ = θ and (1 − τ2)(1 − φ) = 1 − θ. The budget
balance requires τ1φ + τ2(1 − φ) = 0. Define the random variables A1, A2 > 0
by R(θ, θ∗) = A1θ + A2(1 − θ), where the portfolio return R(θ, θ∗) is given by
(2.5). The individual optimization problem is then

max
φ

1

1− γ
E[(A1(1 − τ1)φ+A2(1− τ2)(1− φ))1−γ ].

The first-order condition is

E[R(θ∗, θ∗)−γ(A1(1− τ1)−A2(1− τ2))] = 0. (A.2)

Using the definition of φ and budget balance, we get

1− τ2 = 1 +
φ

1− φ
τ1 = 1 +

θ∗

1−τ1

1− θ∗

1−τ1

τ1 =
(1− τ1)(1− θ∗)

1− τ1 − θ∗
.

Substituting into (A.2), we obtain

E[R(θ∗, θ∗)−γ(A1(1 − τ1 − θ∗)−A2(1 − θ∗))] = 0

⇐⇒ τ1 = (1− θ∗)(1− E[R−γA2]/E[R−γA1]),

where R ≡ R(θ∗, θ∗). By Step 5, it follows that

E[R(θ∗, θ∗)−γ(A1 −A2)] = E

[

R(θ, θ)−γ ∂

∂θ
R(θ, θ)

]∣

∣

∣

∣

θ=θ∗

≥ E

[

R(θ, θ)−γ d

dθ
R(θ, θ)

]
∣

∣

∣

∣

θ=θ∗

= v′(θ∗) = 0,

so τ1 ≥ 0.

Proof of Proposition 4.1. Let Rk
t+1 = (P k

t+1 + Dk
t+1)/P

k
t be the return of

asset k and drop the time subscript. Consider the return (1−α)R(θs, 0)+αRk,
which can be attained by investing the fraction of wealth 1 − α in the optimal
portfolio and α in asset k. Since by assumption the portfolio constraint is not
binding, the consumer can choose a small positive or negative α, and of course
α = 0 is optimal. Hence for small enough ǫ > 0 by (3.4a) we obtain

0 = argmax
α∈[−ǫ,ǫ]

1

1− γ
E
[

b(s′)1−γ [(1− α)R(θs, 0) + αRk]1−γ
∣

∣ s
]

.

The first-order condition with respect to α at α = 0 is

E
[

b(s′)1−γR(θs, 0)
−γ(Rk −R(θs, 0))

∣

∣ s
]

= 0. (A.3)

Using Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t and rearranging terms, we obtain (4.1).

By setting Dt = 1 and zero thereafter (hence Pt+1 = 0) in (4.1), we obtain
the price of the one period risk-free bond as the reciprocal of (4.2).
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By the definition of infinitesimal tradability, (A.3) holds with R(π) in place
of Rk. Rearranging terms and dropping time subscripts, we obtain

1 =
E
[

b(s′)1−γR(θs, 0)
−γR(π)

∣

∣ s
]

E [b(s′)1−γR(θs, 0)1−γ | s]
.

Using E [XY | s] = Cov [X,Y | s] + E [X | s] E [Y | s] for X = b(s′)1−γR(θs, 0)
−γ

and Y = R(π), we obtain

1 =
Cov

[

b(s′)1−γR(θs, 0)
−γ , R(π)

∣

∣ s
]

+ E
[

b(s′)1−γR(θs, 0)
−γ
∣

∣ s
]

E [R(π) | s]

E [b(s′)1−γR(θs, 0)1−γ | s]
.

Using (4.2) and rearranging terms, we obtain (4.3).

Proof of Proposition 4.2. It suffices to prove the case j = 1. Let ∆J−1 =
{

θ ∈ R
J
+

∣

∣

∣

∑

j θ
j = 1

}

be the unit simplex. Consider the idiosyncratic shocks

a1 = 1 (no idiosyncratic shock in technology 1) and

a2 = · · · = aJ = z =:

{

1−p
p , (with probability p)
p

1−p , (with probability 1− p)

where 0 < p < 1, independent of any other random variable. Take any θ ∈ ∆J−1

with θ1 < 1 and let Z =
∑J

j=2 A
jθj be the aggregate component of the portfolio

return excluding technology 1. Then R(θ, 0) = θ1A1 + zZ since there is no
idiosyncratic risk in technology 1. By the definition of the idiosyncratic shock
z, we obtain

1

1− γ
E
[

R(θ, 0)1−γ
∣

∣ s
]

=
1

1− γ
E

[

p

(

θ1A1 +
1− p

p
Z

)1−γ

+ (1− p)

(

θ1A1 +
p

1− p
Z

)1−γ
∣

∣

∣

∣

∣

s

]

=
1

1− γ
E

[

pγ
(

pθ1A1 + (1− p)Z
)1−γ

+ (1− p)

(

θ1A1 +
p

1− p
Z

)1−γ
∣

∣

∣

∣

∣

s

]

→
1

1− γ
E
[

(θ1A1)1−γ
∣

∣ s
]

<
1

1− γ
E
[

(A1)1−γ
∣

∣ s
]

as p → 0 since γ > 0 and θ1 < 1. Thus, any portfolio with θ1 < 1 is dom-
inated by investing entirely in technology 1 as the idiosyncratic shock gets
larger. Letting θs,p be the optimal portfolio corresponding to p, it follows that
limp→0 θs,p = (1, 0, . . . , 0). Substituting θs = θs,p into (4.4) and letting p → 0,
we obtain (4.6).

Proof of Proposition 6.1. Instead of the optimization problem in the market
economy, consider the autarky problem and drop the individual subscript i.
Then the budget constraint (5.1a) is replaced by the resource constraint

ct +
J
∑

j=0

xj
t =

J
∑

j=1

F j
t (k

j
t , φ

j
tk

0
t ),
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where φj
t denotes the fraction of human capital allocated to production with

technology j. Then (5.5) is accordingly replaced by

ct +
∑

j

k′jt = wt :=

J
∑

j=1

[F j
t (k

j
t , φ

j
tk

0
t ) + (1 − δjt )k

j
t + (1− δ0t )φ

j
tk

0
t ],

and the budget constraint (5.3) becomes

wt+1 =

J
∑

j=1

[F j
t+1(Z

j
t+1θ

j
t , Z

0
t+1θ

0
t φ

j
t+1)

+ Zj
t+1(1− δjt+1) + Z0

t+1(1− δ0t+1)θ
0
t φ

j
t+1](wt − ct). (A.4)

Since the allocation of human capital φj
t+1 can be chosen after observing time

t + 1 shocks, the agent will choose it so as to maximize the right-hand side of
(A.4). Hence (5.3) holds with

Rt+1(θt) = max
φt+1∈∆J−1

J
∑

j=1

[F j
t+1(Z

j
t+1θ

j
t , Z

0
t+1θ

0
tφ

j
t+1)

+ Zj
t+1(1− δjt+1)θ

j
t + Z0

t+1(1− δ0t+1)θ
0
t φ

j
t+1]. (A.5)

The budget constraint (A.4) (maximized with respect to φt+1) has precisely the
same form as the budget constraint (3.1). The only difference is that Rt+1(θ) is
not necessarily linear in θ in (A.4), but the linearity plays no role for the proof
of Theorem 3.2. Therefore we can construct a single agent equilibrium with
optimal portfolio θt.

Define the rental rate of physical and human capital at period t+ 1 by

rjt+1 =
∂

∂K
F j
t+1(Z

j
t+1θ

j
t , Z

0
t+1θ

0
t φ

j
t+1), (A.6a)

r0t+1 =
∂

∂H
F j
t+1(Z

j
t+1θ

j
t , Z

0
t+1θ

0
t φ

j
t+1), (A.6b)

which are parallel to (5.9) and φt+1 ∈ ∆J−1 is the maximizer of (A.5). The
right-hand side of (A.6b) does not depend on j by considering the first-order
condition of the maximization (A.5). Let Rt+1(θ) be the return on portfolio in
the autarky economy defined by (A.5) and Rt+1(θ, θt) be the return on portfolio
in the market economy defined by

Rt+1(θ, θt) =

J
∑

j=0

(1 + rjt+1 − δjt+1)Z
j
t+1θ

j , (A.7)

where rjt+1 is given by (A.6). Since production functions exhibit constant returns
to scale, by (A.5)–(A.7) we obtain

Rt+1(θt, θt) =

J
∑

j=1

[(1 + rjt+1 − δjt+1)Z
j
t+1θ

j
t + (1 + r0t+1 − δ0t+1)Z

0
t+1θ

0
tφ

j
t+1]

=

J
∑

j=1

[F j
t+1(Z

j
t+1θ

j
t , Z

0
t+1θ

0
tφ

j
t+1) + Zj

t+1(1− δjt+1) + Z0
t+1(1− δ0t+1)θ

0
tφ

j
t+1]

= Rt+1(θt).
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Furthermore, we obtain DθRt+1(θt, θt) = DθRt+1(θt) by a straightforward cal-
culation. Therefore θt (the optimal portfolio in autarky) satisfies (5.12), that
is, θt is the equilibrium portfolio in the market economy. Since the equilibrium
portfolio is also optimal in autarky, the equilibrium is constrained efficient.

Proof of Theorem 6.2. First let us show that the equilibrium is constrained
efficient if and only if

θt = argmax
θ∈∆J

Et[b
1−γ
t+1 Rt+1(θ, θ)

1−γ ]
1

1−γ (A.8)

for all date-events, where bt+1 is given in Theorem 5.3 and R(θ, θ̄) is given by
(5.11).

If θt does not satisfy (A.8) for some date-event, then

Et[b
1−γ
t+1 Rt+1(θ

∗, θ∗)1−γ ]
1

1−γ > Et[b
1−γ
t+1 Rt+1(θt, θt)

1−γ ]
1

1−γ (A.9)

for some θ∗ ∈ ∆J . Suppose that at this date-event all agents switch to the
portfolio θ∗ instead of θt simultaneously, but stick to the equilibrium portfolio
thereafter. Since the value function is given by Vt(w) = btw and Rt+1(θ, θ)
is the return on the common portfolio θ, if a typical agent has wealth w
after consumption, by (A.9) the future utility term in the recursive utility,

Et[Vt+1(Rt+1(θ, θ)w)
1−γ ]

1
1−γ , becomes

Et[b
1−γ
t+1 Rt+1(θ

∗, θ∗)1−γ ]
1

1−γ w > Et[b
1−γ
t+1 Rt+1(θt, θt)

1−γ ]
1

1−γ w,

so everybody is better off by simultaneously switching to the portfolio θ∗. There-
fore the equilibrium is constrained inefficient.

Conversely, if the equilibrium is constrained inefficient, the planner can
Pareto improve by intervening in the portfolio choice. Since the objective func-
tion is the same for every agent and quasi-concave, by taking the average portfo-
lio intervention weighted by wealth, the planner can Pareto improve by choosing
an alternative symmetric portfolio. Therefore (A.8) fails for some date-events.

Next, let us show that the equilibrium is generically constrained inefficient.
Pick an aggregate state s in which the conditional distribution of idiosyncratic
shock is non-degenerate. Parametrize the idiosyncratic shock by u ∈ Us, where
Us is the interior of some simplex in a Euclidean space. By the equilibrium
condition (5.12a), we have

E
[

b1−γ
s′ R(θs, θs)

−γDθR(θs, θs)
∣

∣

∣
s
]

− λ1 = 0, (A.10)

where Dθ denotes the vector of partial derivatives with respect to θ (the first
argument of R(θ, θ̄)), θs is the equilibrium portfolio, and λ is the Lagrange mul-

tiplier for the portfolio constraint
∑J

j=0 θ
j = 1. If the equilibrium is constrained

efficient, by (A.8) and the chain rule we have

E
[

b1−γ
s′ R(θs, θs)

−γ (DθR(θs, θs) +Dθ̄R(θs, θs))
∣

∣

∣
s
]

− µ1 = 0, (A.11)

where µ is the Lagrange multiplier. Hence by (A.10) and (A.11) we obtain

E
[

b1−γ
s′ R(θs, θs)

−γDθ̄R(θs, θs)
∣

∣

∣
s
]

− (µ− λ)1 = 0. (A.12)
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By the Inada condition human capital is clearly positive, so θ0s > 0. Since
at least one production technology must operate, there is j ≥ 1 with θjs > 0.
Taking the difference of (A.12) for these two cases, we obtain

E
[

b1−γ
s′ R(θs, θs)

−γ(Dθ̄jR(θs, θs)−Dθ̄0R(θs, θs))
∣

∣

∣
s
]

= 0. (A.13)

Now consider the system of equations consisting of (A.10),
∑J

j=0 θ
j−1 = 0, and

(A.13). Let the left-hand side of these equations be G(θ, λ;u), where u ∈ Us is
the parametrization of idiosyncratic human capital obsolescence shock. Since

G : RJ+1
++ × R++ × Us → R

J+1 × R× R,

Given bt+1 and u ∈ Us, there are more equations (J+3) than unknowns (J+2).
The rest of the proof is a standard transversality argument as in Citanna et al.

(1998) and therefore I only provide the sketch. First we show that 0 is a regular
value for G. This can be done by showing that the (J + 3)× (J + 2 + dimUs)
Jacobian matrix DG has full row rank (this is where I use dimUs ≥ 1). I omit
this step since the calculation is straightforward but tedious. By the transver-
sality theorem (Villanacci et al., 2002, p. 151, Theorem 26), then, there exists
a full measure set U∗

s such that for every u ∈ U∗
s , 0 is a regular value of the

function Gu defined by (θ, λ) 7→ G(θ, λ, u). But since the Jacobian matrix DGu

is (J + 3)× (J + 2) and therefore there are more rows than columns, DGu can
never have full row rank. By the definition of a regular value, it follows that
G−1

u ({0}) = ∅, so G(θ, λ, u) = 0 has no solutions. Since (A.13) is necessary for
constrained efficiency, the equilibrium is generically constrained inefficient.

To show that U∗
s is open, I show that (U∗

s )
c is closed. Let un ∈ (U∗

s )
c and

un → u. By the definition of U∗
s , (A.8) holds for the portfolio θnt corresponding

to un. Since ∆J is compact, {θnt } has a convergent subsequence, and by the
maximum theorem its limit also satisfies (A.8), so u ∈ (U∗

s )
c. Letting U =

∏

s Us

and U∗ =
∏

s U
∗
s , we obtain the conclusion.

Proof of Theorem 6.3. Drop time subscripts since there is no risk of con-
fusion. Let τ j < 1 be the tax rate on capital j and φ = (φ0, . . . , φJ ) be the
pre-tax portfolio. In order to achieve the constrained efficient portfolio, we need
θ∗j = (1− τ j)φj . Let mj = 1− τ j be the fraction of capital that remains after
tax. Then the optimal portfolio problem of an agent is

max
φ∈∆J

1

1− γ
E

[

(b∗)1−γ
(

∑

j A
jmjφj

)1−γ
]

.

The first-order condition for optimality is

λ = E

[

(b∗)1−γ
(

∑

j A
jmjφj

)−γ

Ajmj

]

= E[(b∗)1−γR(θ∗, θ∗)−γAjmj ],

⇐⇒
λ

mj
= E[(b∗)1−γR(θ∗, θ∗)−γAj ],

where λ is the Lagrange multiplier for the constraint
∑

j φ
j = 1 and I used

θ∗j = mjφj and the definition of Aj . Multiplying both sides by θ∗j , again using
θ∗j = mjφj and the definition of Aj , and noting that

∑

j φ
j = 1, we obtain

λ =

J
∑

j=0

E[(b∗)1−γR(θ∗, θ∗)−γAjθ∗j ] = E[(b∗)1−γR(θ∗, θ∗)1−γ ].
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Therefore

τ j = 1−mj = 1−
E[(b∗)1−γR(θ∗, θ∗)1−γ ]

E[(b∗)1−γR(θ∗, θ∗)−γAj ]
.

References

S. Rao Aiyagari. Uninsured idiosyncratic risk and aggregate saving. Quarterly
Journal of Economics, 109(3):659–684, 1994. doi:10.2307/2118417.

George-Marios Angeletos. Uninsured idiosyncratic investment risk and ag-
gregate saving. Review of Economic Dynamics, 10(1):1–30, January 2007.
doi:10.1016/j.red.2006.11.001.

Truman F. Bewley. Stationary monetary equilibrium with a continuum of inde-
pendently fluctuating consumers. In Werner Hildenbrand and Andreu Mas-
Collel, editors, Contributions to Mathematical Economics in Honor of Gérard
Debreu, chapter 5, pages 79–102. North-Holland, Amsterdam, 1986.

Fischer Black. Exploring General Equilibrium. MIT Press, Cambridge, MA,
1995.

Andrés Carvajal and Herakles Polemarchakis. Idiosyncratic risk and finan-
cial policy. Journal of Economic Theory, 146(4):1569–1597, July 2011.
doi:10.1016/j.jet.2011.03.012.

Alessandro Citanna, Atsushi Kajii, and Antonio Villanacci. Constrained sub-
optimality in incomplete markets: a general approach and two applications.
Economic Theory, 11(3):495–521, 1998. doi:10.1007/s001990050199.

George M. Constantinides and Darrell Duffie. Asset pricing with heterogeneous
consumers. Journal of Political Economy, 104(2):219–240, April 1996.

Julio Dávila, Jay H. Hong, Per Krusell, and José-Vı́ctor Rı́os-Rull. Con-
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