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ABSTRACT OF THE THESIS

Optimal Task Allocation in Crowdsourcing for Human Robot Interaction

by

John Hoang Duy Tran

Master of Science, Graduate Program in Mechanical Engineering
University of California, Riverside, August 2014

Dr. Fabio Pasqualetti, Chairperson

Crowdsourcing is an emerging method for efficient task distribution and com-

pletion. With multiple tasks at hand, it is considerably faster to divide these tasks to

multiple operators than to queue them all onto one person. A single human agent can

arguably only finish one problem at any single point in time, assuming the tasks do not

overlap in their description. This method is useful for real-world applications as many

complex systems with a variety of tasks could be solved more efficiently. Due to pulling

agents from a randomized crowd; however, we are faced with the problem of the quality

of the work of each agent utilized. Efficiency will always go up the more tasks we dis-

tribute to a random crowd, but the performance or success rate may go down depending

on the quality of the crowd. We then consider the question, how do we optimize various

users from a crowd? In this paper, we focus on a single exogenous human factor, fatigue,

and the expertise of the agents to approximate the probability of an erroneous decision

from the agents. We study various fatigue models, using the Three-Process Model to

compare with our model. We will also present a simplified model to predict fatigue

and approximate our agents’ performance due to task load and compare with current

models. Considering these fatigue models, performance values of agents will be calcu-
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lated to maximize our success rate depending on their task allocation. The expertise of

these agents are also important in analyzing the quality of their work. We model the

expertise coefficient of our agents in two fashions: a single constant value throughout

the system and a dynamic value based on the drift diffusion model in optimal decision

making. The studies regarding a dynamic expertise coefficient are to be completed in

detail during future works. We then provide an optimal control approach using dynamic

linear systems. Our model is optimized by Pontryagin’s Maximum Principle from op-

timal control theory, allowing for analysis as a continuous function. In this thesis, the

models of study are also extended into the discrete time model where we provide a new

optimal policy. At the end of our thesis, we will provide an analysis of our performance

model and present its success rate due to optimal task allocation.
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Chapter 1

Introduction

Crowdsourcing is a method that allows tasks to be completed efficiently at

lower costs. This is utilized when a substantial amount of tasks or data is worked with.

Intuitively, a single user would take much longer than a group of users to complete a

large set of tasks despite their levels of knowledge. The ability to split tasks throughout

a crowd will allow for quicker completion time.

The caveat of using a crowd lies in the variance of each users’ quality. A

completed task does not correlate with accuracy. Accordingly, it is intuitive to say the

time necessary to complete a task and the accuracy in which the task is completed is

directly proportional. That is, as the performance desired increases, the time needed

for completion increases.

Even with this condition, the idea of crowdsourcing is desirable in many fields,

such as human robot interaction. This is due to the fact that the system will no longer

require one “master” user to constantly monitor the system. This constant monitor-

ing requires an extensive amount of time for a knowledgeable user to complete trivial

assignments.
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With this in mind, this thesis presents a framework to effectively use crowds

at a desired performance level. The system in study is represented with a feedback

control loop. The robot or controller will optimize its selection of users and distribute

tasks in order to maximize its overall performance. The selection process will be highly

dependent on the current performance of the user, all of which is dependent on the

selection itself. The constant optimization of this cycle will lead to a maximum overall

performance.

Accordingly, the controller will continue to update its selection of users as their

individual performances evolve over time. This cycle is presented in Fig. 1.1, as shown.

Figure 1.1: The cycle shown in Fig. 1.1 illustrates the feedback loop for the robot/con-
troller to continue optimizing its selection of users in order to maximize performance.

Current crowdsourcing articles develop algorithms to predict the quality of each

label or user through the use of priors. A prior, or prior belief, is a label that determines

an individual’s likelihood to make a certain decision. Ihler et al. utilizes algorithms that

carefully selects priors in order to increase the performance of their system. [16] The

studies completed by Ihler et al.; however, are applied for variational inference and use

crowdsourcing itself as a methodology. The focus of this thesis is to create a policy in
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order to effectively use crowdsourcing for such applications. The approach this thesis

takes evaluates the performance of each user to be related with their respective fatigue

and expertise. With that knowledge, the controller will implement a task allocation

policy for performance optimization.

This thesis will discuss various models of study to consider for both the fatigue

and the expertise of each user. An analytical fatigue model will be presented and

compared with a current fatigue model from literature. Furthermore, the performances

of the corresponding users will be extracted from their fatigue and expertise levels.

This thesis will study various cases for analysis and comparison in order to develop

a mathematical framework for the system. An optimal task allocation policy will be

developed and implemented for each case. Preliminary findings will be discussed and

illustrated prior to the conclusion of this thesis. Any future work will be described after

the body of the research.

1.1 Literature Review

In this section of the chapter, the literature review completed in the field of

human performance and optimal control theory will be discussed. This literature review

will provide us with a body of knowledge to move forward in this thesis.

The human body is incredibly complex with countless factors affecting our

“performance”. The main focus of this thesis is the prominent exogenous factor that

affects human performance: fatigue. Human fatigue is considerably powerful in affecting

the ability to make decisions.

There are seven major biomathematical models of human fatigue that have

been thoroughly studied. These models are the two-process model, the sleep/wake pre-
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dictor model (Three-Process Model), the SAFE model, the interactive neurobehavioral

model, the SAFTE model, the FAID model, and the CAS model [19]. This thesis will

focus on the Three-Process Model for model comparison purposes.

The Three-Process Model by Åkerstedt and Folkard [23], discusses a mathemat-

ical model for approximating fatigue based on three biological systems. The respective

study considers sleep cycles and time of day (sleep/wake patterns), which displays an

exponential relationship. It is a complex, but effective model. It is an extended model

of Peter Achermann’s Two-Process Model [19] and utilizes three processes: Process C

that is affected by the circadian cycle, Process S that is the exponential function from

time awake to time rest, and Process S’, the recovery curve that occurs during rest.

Before the details of each process are studied, assumptions to develop the

model must be examined. In this model, the main change of fatigue is caused by the

circadian rhythm, or the internal intrinsic clock in humans. This internal clock does

not run on a perfect 24 hour day. Humans must synchronize their internal clock by

exposing themselves to environmental cues, or zeitgebers, that describe the general time

of the day. These cues include sunlight for the solar light cycle and moonlight for the

dark cycle [10, 28]. It is instinctive to correlate night time with the “dark” half of the

full cycle. This illustrates the idea that with no circadian cycle, irregular work hours

would be more feasible [24]. Assuming the users that we pull from a crowd are gathered

from the same time zone, then the effect from the circadian cycle is constant due to no

variance between users during work hours.

The next two processes that Åkerstedt considers, deal with the sleep/wake

cycle. The fatigue/alertness of a user will fluctuate depending on the amount of hours

they give to each cycle. The user’s alertness will asymptotically decrease as the wake

cycle progresses and then increase when the user enters the sleep cycle. This model
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is parallel with the idea that as a user gains a workload, their alertness will decrease

due to fatigue and then increase again when they have no work to complete. Åkerstedt

considers alertness for their measurement rather than fatigue. Assuming that fatigue is

physically the inverse of alertness, we obtain a comparison between the proposed model

and the Three-Process Model. This comparison will be illustrated in Chapter 3.

We proceed to discuss the study of linear systems and optimal control theory.

We study dynamical linear systems to apply a mathematical model from our derivation

and studies of human performance. Optimal control theory is then applied in order to

select a control variable that will optimize our linear system. Classical control theory

studies the linear system and analyzes through an iterative process to determine the

change of state with respect to the state itself [15]. In our studies, the state will correlate

with the fatigue of the users. These linear systems are analyzed with constraints to reach

an optimal conclusion within those parameters. These design parameters can range from

the state, costate, and control in order to achieve a specific optimal design.

In essence, we want to obtain the optimal input, in which the output is op-

timized. The problem set up will specify what the performance condition is for the

output. Using optimization techniques, the system will either maximize or minimize as

desired for the given optimal control. This thesis will focus on the study of Pontryagin’s

Maximum Principle, a commonly used method in optimal control theory that is utilized

for the optimization of dynamical linear systems. Pontryagin developed the Maximum

Principle initially to maximize these linear systems, but with time, the principle be-

came more widely used for minimization. The proof for the principle from calculus

of variations and optimal control theory is known to be extremely difficult, but the

studies and applications are much easier. Derivation should only be considered for the

Hamiltonian-Jacobi-Bellman equation of the principle. [17]
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Studies show derivation of the principle was to improve upon the Weierstrass

condition due to the Weierstrass condition having restrictions on the control variable

[17, 18]. Pontryagin’s Maximum Principle considered all admissible control variables

that included Weierstrass’s set. This allowed his principle to be extended for specific

models such as the widely used “bang bang” control model, where the control switches

instantaneously between extrema. This subset problem from the principle will display

its utility and applicability further in this thesis.

Recall that our model for human performance considers both fatigue and user

expertise. We extend our studies to model the probability in which the user will complete

the task successfully. The preliminary work completed for expertise evolution, presented

in this thesis, is the widely studied drift diffusion model based on the two-alternative

forced choice model. This model will be used as a base for future work.

We present initial studies as an introduction to our future work discussed in

conclusion of this thesis. In the two-alternative forced choice model, the user must

decide between two choices based on the amount of evidence obtained during that set

amount of time. The evidence accumulation process is modeled as the random walk

process [2], where the path taken from one point to another is seemingly random. There

are two main paradigms of study in which more in depth methods expand: the free-

response paradigm and the interrogation paradigm. In these two different paradigms,

the constraints are different and lead to different error rates (ER) [2]. These differences

in error rates is equivalent to differences in the performance of the user. This is in

agreement with performance studies in literature [30].

The free-response paradigm is a case where the user is allowed to make a choice

within an infinite amount of time. There are no time constraints on the decision, which

should allow the user to increase their accuracy at the cost of time. In this scenario, there
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are thresholds that are generally assumed symmetrical: ±z. These thresholds represent

the amount of evidence accumulation required in order to make that respective decision.

Most literature studies develop a right and wrong choice decision model where the right

choice has a threshold of +z and the wrong choice is −z. [2, 30]

In the interrogation paradigm, the decision-maker must make a choice within a

small window of time. Due to this time constraint, the case may be seen as an optimal

time scenario at the cost of performance. With this paradigm, the threshold becomes a

single value equal to the value where the user starts their evidence accumulation process.

The threshold is generally assumed zero and acts similar to the free-response paradigm.

At the end of the time interval, if the evidence obtained is higher than the threshold

limit, then the choice related to the higher limit (choice 1) is selected and vice versa.

Based on probability studies of decision making, we can analyze the perfor-

mance of a user with respect to time according to the drift diffusion model. Utilizing

this process, we can amend our expertise coefficient to become a dynamic process where

the user gains experience over time if selected again.

The drift diffusion model is heavily studied with a wide range of applications.

Current literature shows studies to improve reaction time in optimal decision theory

[2, 25, 26, 27]. Extended applications blend into human decisions affecting human robot

interaction for a mixed team model as studied [30, 31]. In this thesis, we formulate the

framework to apply this model into crowdsourcing scenarios.

1.2 Thesis Contributions

The main contributions of this thesis are provided as follows: In Chapter 2,

we present the studies for our model comparison, notation for further use, and technical
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analysis as a framework for our simulation model. The main models of study and

comparison are presented clearly in accordance to [2, 12, 17, 24, 30, 31] for future

reference throughout the thesis. In Chapter 3, we introduce the model considered for

our fatigue and performance. From this set of system dynamics, we are able to simulate

and analyze the performance of single and multi-user systems, where we apply these

simulations to both continuous and discrete time. Pontryagin’s Maximum Principle is

also presented as a policy to optimize one of our cases.
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Chapter 2

Preliminary Concepts and

Results

In this chapter of the thesis, we will discuss the analysis and modeling of

human performances and linear dynamical systems. These mathematical models will be

the basis of our studies and comparisons.

2.1 Human Performance and Fatigue Modeling

2.1.1 The Three-Process Model

The Three-Process Model studied by Åkerstedt and Folkard is a biomathe-

matical model representing the wake cycle and the sleep cycle. Åkerstedt and Folkard

considered the correspondence of alertness as an exponential function. It is discussed by

Hursh et al. that most biomathematical models are approximations of a more complex

biological cycle [12]. Various studies show differences in their respective models; how-

ever, common literature obtained data from mutual biological cycles. These differences

in modeling alertness and fatigue curves range from linear with Hursh et al., exponential
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with Åkerstedt and Folkard, and sigmoidal with Jewett and Kronauer [12, 14, 23].

Let the three processes represent alertness levels that are contingent on the time

of day. The first cycle, the circadian rhythm, is presented in Process C, which is the

sleepiness produced by an intrinsic biological cycle. This curve alone is only represented

as a sinusoidal wave dependent on the time of the day [24]. The corresponding curve C

is defined as follows:

C = M cos(t− p) π
12
, (2.1)

where M is the amplitude (default = 2.5), p is the acrophase [decimal hours], and t is

the time of the day [decimal hours] [23]. The peak is assumed in the afternoon with the

trough in the early morning. Various studies display that the circadian rhythm is a more

complex multi-oscillator cycle, rather than a simple single sinusoidal wave. Studies show

that there exists secondary extrema within the main sinusoidal function [10, 11, 12, 20].

The next process is the wake cycle, modeled by the exponential S curve. The

function is inversely proportional with time: as the user stays awake, the alertness will

go down. This is intuitive as fatigue increases naturally over large time intervals. To

oppose this reduction of alertness, a user must rest. The sleep cycle will reverse the loss

of alertness exponentially as illustrated by process S’ [23, 24]. The S and S’ curve are

as follows [24]:

S = [(Sa− L)e−0.0353t + L] (2.2)

S′ = U − (U − Sr)e−0.381t (2.3)

where Sa is the value of S at an agent’s awakening, L is the lower asymptote for the wake

function, t is the time since awakening of the agent, Sr is the value of S at resting, and U

is the upper asymptote value for the sleep/wake cycle. The function of S is measured on

the alertness scale from extremely fatigued to extremely alert. These values according
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to Åkerstedt and Folkard can range from 3 to 14 (with minor deviations) [23].

Literature discusses one more variable to consider: sleep inertia. Sleep inertia

is the process in which a user gradually approaches maximum alertness upon entering

the wake cycle. The time interval for this cycle is approximated at about two hours;

however, our simulations assume users are not being selected immediately upon waking

up. Let this assumption allow for the disregard of sleep inertia [22].

2.1.2 Drift Diffusion Model

To extend our expertise coefficient in our performance model, we study the in

depth drift diffusion model. We utilized the drift diffusion model in order to present a

dynamic expertise coefficient, where the coefficient will evolve with time for each agent.

We will display preliminary studies in this thesis with areas for future research in mind.

The drift diffusion model, as stated in Section 1.1, is based off the two alterna-

tive forced choice scenario. The pure drift diffusion model is presented in the following

format:

dx = Adt+ cdW, x(0) = 0, (2.4)

where dx is the change of evidence gained over a small given time interval, dt, A : A→ R

is the constant drift coefficient, and c is the white noise coefficient [2, 7, 25, 26].

The drift diffusion model equation has two competing factors as displayed in

equation (2.4). These two parts are the constant drift, Adt, and white noise, cdW . The

constant drift is considered the average gain in evidence, or “drift”, towards a choice,

per time unit [2]. We can analyze two different values for A according to Eckoff et al.

When A is positive, the desired choice is the first one. Likewise, when A is negative,

the desired selection is the second choice [7]. This model may extend these values as

needed.
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The white noise term, cdW , is a Gaussian distributed curve with mean 0, and

variance, c2dt [2]. We can model the performance function of the agent in question

through use of the error rate in the drift diffusion model. The error rate is determined

differently according to each paradigm discussed in Section 1.1. The error rates are

dependent on the drift constant A, white noise coefficient c, and the threshold for making

a choice ±z if free-response is considered.

The error rate for the free-response paradigm is given as

ERfree-response =
1

1 + e2Az/c2
, (2.5)

where we assume the error is selecting the second choice. Subsequently, we can obtain

the performance function of an agent by taking the complement of the error rate. That

is,

Pfree-response = 1− 1

1 + e2Az/c2
. (2.6)

The performance function is equivalent to the probability that the agent selects the

first choice [2]. Making the first choice the desired answer for task completion, we can

observe the performance as the expertise coefficient of each agent; however, this is for

the free-response paradigm where the agent is allowed as much time as needed to make

a selection. Our need lies in finishing the task within time constraints. With that in

mind, we look to the interrogation paradigm.

The interrogation paradigm is a scenario in which the agent must make a choice

in the allotted amount of time, depending on the evidence accrued as stated in Section

1.1. Recall that the selection of a choice is dependent on the evidence level at time T

with respect to the threshold z. The optimal selection for the threshold is at z = 1,

which will reduce the total error probability of the function [21]. As stated earlier, this

paradigm has a different error rate as opposed to equation (2.5). The error rate for the
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interrogation paradigm is given by,

ERinterrogation = Φ

(
−A
c

√
T

)
, (2.7)

where T : T → R≥0 is the time at the end of the decision interval and Φ is the normal

standard cumulative distribution function [2, 31]. The normal cumulative distribution

function is defined as follows [2]:

Φ(x) =

∫ x

−∞

1√
2π
e−(u

2/2)du. (2.8)

The error rate in equation (2.7) is given as the probability that the evidence

at time T is below x(T ) from equation (2.4) [2]. Given that we want our user to select

choice 1, we can again write our performance function as

Pinterrogation = 1− Φ

(
−A
c

√
T

)
, (2.9)

where our performance is dependent on the initial model conditions, A, c, and final time

T . In equation (2.9), we contain no comparison values between agents for performance

variability; therefore, we examine a prior probability related to each agent, in which the

agent will select choice 1 [31]. We denote this prior probability as π and it affects the

initial condition as follows:

x0 = c2 log(π/(1− π))/2A, (2.10)

where x0 ∈ R is the initial evidence and π : R≥0 × [0, 1]→ [0, 1) is the prior probability

that the first choice is true [31]. Each agent, similar to their expertise coefficient, will

have various prior probabilities for their decision making. Our new performance function

with this initial condition is given by,

Pinterrogation = 1− Φ

(
−AT − x0

c
√
T

)
, (2.11)
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where x0 is equation (2.10). We plot the probability function as our performance for

various prior probability values as shown in Fig. 2.1.

Figure 2.1: In this plot, we illustrate the various performance functions from the drift
diffusion model under the interrogation paradigm as prior probability values, π, change.

Along with the performance curve, we present a simulation of the pure drift

diffusion model with constant drift. We assume a constant drift of A = 1 and a constant

noise coefficient of c = 1. Consider our initial point at x0 = 0 for each trial. We obtain

the “random walk model” as our evidence accumulates towards a choice with the effect

of noise. At the end of our time interval, (t = 2.5 seconds), our trial must make a

selection. The selections are shown as 3 trials for choice 1 and 2 trials for choice 2 as

displayed in Fig. 2.2.
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Figure 2.2: This simulation for pure drift diffusion considers a constant drift with all
trials having the initial condition of x0 = 0. The plot displays the model given in
equation (2.4)

We assess an extension of our model into a time dependent system, we add an

extra term as given in the Ornstein-Uhlenbeck (O-U) Model [2, 4, 7]. The O-U Model

extends equation (2.4) as follows:

dx = (λx+A)dt+ cdW, (2.12)

where λ is considered the reward, where x can drift towards a threshold depending on

λ [2, 7]. The error rate for the O-U Model is given as

ERO-U(T ) = Φ

(
−A
c

√
2(eλT − 1)

λ(eλT + 1)

)
, (2.13)

where λ : λ → R is the additional parameter that determines the direction of rate, dx

[2, 3]. Again, with this time dependent error rate, we can consider the performance as

the complement of equation (2.13).

PO-U(T ) = 1− Φ

(
−A
c

√
2(eλT − 1)

λ(eλT + 1)

)
, (2.14)

Let this performance function be the time dependent expertise coefficient of our agent.

The expertise of our agents will now begin as equality, but different agents will display
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rapid growth with time to have higher expertise. This relationship is illustrated in Fig.

2.3 as various values for λ are simulated. In addition, the simulation for the O-U drift

diffusion model is presented in 2.4.

Figure 2.3: In this simulation, we display the effects of various values of λ from -1 to
-5 on the performance function or the probability that the first choice is selected. This
simulation is applied using the O-U Model under the interrogation paradigm.

Figure 2.4: This figure illustrates the drift diffusion model under the O-U extension in
which the drift rate evolves over time as shown in equation (2.12).
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As an agent’s probability of selecting choice one increases, their expertise co-

efficient increases along with it. Thus, leading to a higher individual performance value

according to our model presented in Section 4.2. That model that will be presented is

the preliminary work for further research and an extension of the main model.

2.2 Optimal Control Theory for Dynamical Systems

In this section, we discuss definitions and notations relevant to optimal control

theory. This section will be the basis for our technical analysis and simulations provided

in Section 3.

2.2.1 Dynamic Linear Systems

In this section of the thesis, we will recall the setup of optimal control theory.

Our studies revolve around the dynamic linear system, which contain the state and

control equation. Using this system, we may model a myriad of processes. In this

thesis, we will model the dynamics of human fatigue.

Let R≥0 be considered a set of non-negative real numbers. To begin our model,

we present the state variable, which is the core of our dynamic linear system and is given

by,

xi(t) for i = [1, ..., n],

for x : R≥0 → Rn, being the state at time t ∈ [0, tf ], where i ∈ N considers multiple

states.

We have a controller that we must select given by,

ui(t) for i = [1, ..., n],

where u : R≥0 → Rm is the control at time t, for each corresponding i.
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Let these functions be our state and control. Here we consider our linear system

to be the change of state as follows:

ẋi(t) = Axi(t) +Bui(t), (2.15)

where (2.15) is a linear, continuous time-invariant system. Due to time invariance,

matrix A and B are constant.

Given (2.15), we can now analyze an optimization problem for our linear sys-

tem. With our state trajectory, we must select a control in order to optimize the

objective or cost function of our system. Let the cost function be given by,

J = φ(xf , tf ) +

∫ tf

t0

L(x, u, t)dt, (2.16)

subject to system dynamics and initial condition:

ẋi(t) = fi(x, u, t)

xi(t0) = xi,0

where φ ∈ R considers the final state, L ∈ R relates with our Hamiltonian for optimiza-

tion, and our initial condition xi,0 ∈ R is assumed to be at 0. The objective function, J ,

is the core for general optimization models considering control theory [15, 17]. We have

t0 and tf as our initial and final time respectively, with final time being assumed “free,”

or not fixed at a value, for our problem statement. In order to optimize our model, we

follow the studies of Pontryagin’s Minimum Principle as discussed in Chapter 2.2.2 of

this thesis.
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2.2.2 Pontryagin’s Maximum Principle

Consider the objective function and the system dynamics from equation (2.16).

We want to find an admissible control, u∗, where

u ∈ U

is the set of admissible controls, such that our system

ẋi(t) = Axi(t) +Bui(t)

follows its admissible state trajectory, x∗, so that equation (2.16) is optimized. [15, 17]

Considering that J is maximized (or minimized), we obtain u∗ and x∗ as our

“optimal” control and state trajectory as desired. Obtaining these optimal trajectories

is the goal of Pontryagin’s Minimum Principle. The proof for Pontryagin’s Principle

will be discussed further in this section. Pontryagin’s Minimum Principle was developed

as a proof that expanded on the initial Weierstrass condition’s set of controls. We

consider Pontryagin’s Maximum Principle (the original principle), with the minimum

version in mind for specific cases. The two models are parallel and are dependent on

the necessity of maximizing or minimizing the cost function. Weierstrass’s condition

required the Hamiltonian to be minimized over the set of all admissible controls, u,

where u is limited to continuously differentiable and unbounded functions. Pontryagin

et al. expanded those set of controls to include all “measurable” functions [17]. The

Minimum Principle states that the Hamiltonian must be minimized over the set of all

admissible U . With the Maximum Principle, we state that the Hamiltonian must be

maximized over the set of all admissible U . [17] This is in accordance with our statement

that the two models are identical.

In short, the principle states that our cost function (2.16) is optimized if an

optimal control u, with respect to the system dynamics (2.15), is selected such that the
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respective Hamiltonian functions agree with the principle. This will be discussed below

in detail.

Consider an optimal control problem, in which we want to maximize our ob-

jective function, J , as given in equation (2.16). Assuming from above that u∗(t) ∈ U

will force J to be maximized, we can then proceed with the optimization analysis.

The Hamiltonian can be written as

H(xi, ui, t, λi) ≡ L(xi, ui, t) + λTi fi(xi, ui, t) (2.17)

where H is the Hamiltonian and λ is the costate function [15, 33].

To progress, we must consider the costate function from calculus of variations.

Through our studies, we note that combining an Euler condition theorem with the

transversality condition theorem, we can obtain the Multiplier Rule [8]. This rule devel-

oped by Bliss, states that continuous costate functions, λi(t), on [t0, tf ] for i = [1, ..., n]

exists such that the following is true at each t: [8, 15]

λ̇i = −H∗xi (2.18)

(i = 1, ..., n) (2.19)

where −H∗xi is the negative partial of the Hamiltonian with respect to x. This allows us

to obtain our first vital equation for optimizing.

The transversality condition is a terminal condition on the costate variables

where time, t, to reach the target is minimized. The Multiplier Rule given above tells

us that costate functions are equivalent to the partial derivatives of the Hamiltonian.

This is a necessary rule for us to proceed with the analysis.

For the assumptions given above, we obtain Pontryagin’s Maximum Principle:
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Condition 1. Pontryagin’s Maximum Principle

H[x∗(t), u∗(t), t, λ(t)] ≥ H[x∗(t), u(t), t, λ(t)] (2.20)

where if condition 1 holds true, then the objective function (2.16) is maximized [17].

By taking the partial derivative of our Hamiltonian with different variables, we

define the state and the costate equations:

ẋ =
∂H

∂λ
(x, u, λ) = f(x, u) (2.21a)

λ̇ = −∂H
∂x

(x, u, λ) = −∂L
∂x

(x, u)− (
∂f

∂x
(x, u))′λ (2.21b)

where ẋ is the state equation and λ̇ is the costate equation for the Hamiltonian system.

Let u(t) be in the domain of admissible controls with an admissible state x(t) from that

control. We then define a solution λ(t) that corresponds with the Hamiltonian system.

Provided these equations, we can optimize problems formulated with linear systems

through the use of Pontryagin’s Maximum Principle [1].
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Chapter 3

Optimal Task Allocation

This chapter contains the main results of this thesis. We start by describing

our models for characterizing the performance of the human user which is dependent

on the fatigue level, the expertise, and the tasks to be accomplished. Then, we derive

optimal policies to allocate tasks while maximizing performance.

3.1 Model of User’s Fatigue

In this section we model the fatigue and the performance of a human user

as a function of his/her workload over time. Intuitively, the performance of a user in

inverse-proportional to his/her fatigue, while the fatigue is proportional to the workload

and work time. Then, in order to optimize the performance of an user, it is necessary

to modulate the workload so as to maintain the fatigue level around an optimal value.

For our study we assume that the fatigue xi : R→ R of the user i evolves according to

the linear continuous-time dynamics

ẋi(t) = −αixi(t) + ui(t), (3.1)
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Figure 3.1: In this figure, we display the monotonically increasing exponential relation-
ship of fatigue considering constant task load. It is observed that different values for
the recovery constant provide various fatigue curves. As t approaches∞, our maximum
fatigue has a value of ū/αi.

where α ∈ R>0 is the recovery constant of user i, and ui : R → R is the workload

assigned to the ith user. Without affecting generality, we assume that xi(0) = 0, that

is, the ith user has zero fatigue level at time t = 0, and 0 ≤ ui(t) ≤ 1 at all times

t ∈ R≥0. The recovery constant αi is a coefficient that relates with each individual user

and quantifies various aspects such as exhaustion, lifestyle, and boredom.

It should be observed that, as the task load increases, it begins to compete with

the negatively exponential value of the fatigue, allowing for the rate of fatigue change

to obtain its value depending on which factor outweighs the other. As the recovery

load outweighs the task load, the rate of fatigue change becomes negative, allowing the

fatigue value to decrease. When the task load outweighs the recovery load, the rate of

fatigue change becomes positive, forcing the fatigue to increase. This discussion is in

accordance with the intuition that the more work one user completes, the more fatigue

he/she will become.

The dynamic evolution of the fatigue can be explicitly computed. In fact, from
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the dynamic model (3.1) we obtain

xi(t) = e−αitxi(0) +

∫ t

0
e−αi(t−τ)ui(τ) dτ. (3.2)

When the user is assigned no load work, that is, ui is identically zero, then xi(t) =

e−αitxi(0), which shows the exponential recovery behavior, that is, the fatigue level

exponentially decreases to zero in the absence of workload. Instead, when the workload

is constant and equal to ū, we have

xi(t) = e−αitxi(0) +
ū

αi
(1− e−αit)

The evolution of the fatigue for different recovery constants and constant load are shown

in Fig. 3.1. It should be observed that the fatigue is monotonically increasing, so that

the maximum fatigue level is asymptotically obtained at t =∞, and it equals ū/αi. It is

important to note that our fatigue model only depends on the workload, and it neglects

other factors, such as the circadian rhythm, homeostasis, and sleep inertia. Hence, our

model is most relevant when the workload has a short duration with respect to a typical

work shift.

To perform a model comparison, we show that equation (3.1) is in accordance

with the Three-Process Model described in Section 2.1.1. In fact, in comparison with

equations (2.2) and (2.3), we observe many similarities.

We are provided the following variables and constants: Sa is assumed 14,

L is given as 2.4, Sr is assumed to be 7.96, and U is the upper asymptote at 14.3

[23, 24]. These values being assumed are on the alertness scale where “7” is the sleepiness

threshold, “3” is extreme sleepiness, and “14” is very little sleepiness or extremely high

alertness.

For comparison purposes, we scaled down the Three-Process Model with the

one we provided in equation (3.1). We assume a 24 hour period of fatigue gain and a 24
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hour period of alertness gain for both models. Let alertness be represented in parallel

with performance. Our model comparison is shown in Fig. 3.2.

(a) Three-Process Model

(b) Our Model

Figure 3.2: This figure illustrates the similarities between our model and the Three-
Process Model developed by Åkerstedt et al. in terms of performance and alertness.
There is a slight discrepancy in the time scale, but both models visually convey a similar
relationship. [23]

It is important to note that we disregard the circadian process in both models.

25



We assume minute differences due to the circadian rhythm between users. This assump-

tion agrees with the policy that our controller will select users in an environment where

the circadian rhythm is controlled.

3.2 Model of User’s Performance

In this section we characterize the performance of a human user with respect to

his/her fatigue level and his/her assigned workload. We adopt the following exponential

model of user’s performance Pi : R→ R,

Pi(t) = kie
−xi(t), (3.3)

where ki ∈ R is a constant representing the expertise of user i. Notice that the per-

formance function Pi is exponentially decreasing with the fatigue level, and that, since

the fatigue level is nonnegative, its maximum value coincides with the expertise ki. In

Fig. 3.3, we show the dynamic behavior of the performance Pi when the workload is

constant for different recovery and expertise constants. It illustrates the critical point

at which the tradeoff between expertise and recovery occur.

Figure 3.3: Fig. 3.3 displays the dynamic behavior of our performance curve considering
various recovery and expertise coefficients for a constant workload.
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Given (3.3), we analyze that the fatigue is minimum when performance is

maximum and vice versa. This is in accordance with our intuition in Section 3.1 and

simulations as shown in Fig. 3.3. It is also observed that the expertise coefficient will

shift the entire performance with a direct relationship. It is concluded that a higher

expertise coefficient will lead to higher performance as analyzed. It is important to

understand this competitive feedback behavior for our optimization.

Assuming a constant recovery rate and task load with various expertise co-

efficients, the performance curve is observed to have a steadily decreasing exponential

curve. Each curve is offset to match the expertise coefficient, where users with more

expertise will output a higher performance. Consider the same scenario with different

recovery rates, but constant expertise; it may be observed that the starting performance

at zero fatigue will be equal for all users. The equality of their expertise provide an equal

initial performance output before fatigue begins to influence the performance.

Figure 3.4: The performance curve considering different values of ki.
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Figure 3.5: The performance curve considering different values of αi

Given Fig. 3.4 from above, we observe the direct proportional relationship

of performance with the expertise coefficient. That analysis is considering a constant

expertise coefficient, ki with equation (3.3). In terms of future work, studying a dynamic

expertise coefficient must be done. Preliminary analysis will be displayed in Section 4.2.

3.3 Continuous Task Allocation for Single User

Consider the scenario in which a single user has to complete the tasks assigned

by a robot. Let the fatigue level of the user be described by (3.1), and let the user

performance be as in (3.3). We consider the overall performance function to be

JC-S =

∫ tf

0

(
1

α
− x
)
udt, (3.4)

where tf is a time horizon of interest. The cost function JC-S is a measure of the tasks

successfully completed by the user. In fact, u(t) denotes the workload assigned to the

user, while 1
α − x(t) measures the productivity of the user at time t, since x(t) is the

fatigue level at time t, and 1/α is the maximum fatigue level due to equation (3.2). Our
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objective is to design the workload u : R → [0, 1] so as to maximize the cost function

JC-S.

To address our optimization problem we resort to Pontryagin’s Maximum Prin-

ciple; see Chapter 2. For the dynamics (3.1) and the objective (3.4), the Hamiltonian

function is found to be

H =

(
1

α
− x
)
u+ λ (−αx+ u) , (3.5)

where λ is a vector of Lagrange multipliers. In the absence of constraints on the work-

load, the optimal workload profile and the costate would satisfy

∂H

∂u
= 0 =

1

α
− x+ λ, ⇒ λ = x− 1

α
.

Taking the negative partial derivative of equation (3.5) with respect to x, we may obtain

our costate equation:

λ̇ = −∂H
∂x

= αλ+ u.

By combining the above equations with the dynamics (3.1) we obtain λ̇ = ẋ, or equiva-

lently,

αx− 1 + u = −αx+ u.

Consequently, the optimal fatigue level is found to be

x∗ =
1

2α
,

and the optimal workload u∗ is such that it drives the fatigue level up to the optimal

level x∗ as fast as possible, and then maintains such value. Our discussion is summarized

in the following theorem.
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Theorem 2. (Optimal continuous task allocation for a single user) Consider

a single user with fatigue dynamics

ẋ = −αx+ u,

where α ∈ R and x(0) = 0. The optimal task allocation u∗ : R → [0, 1] that maximizes

the cost function

JC-S =

∫ tf

0

(
1

α
− x
)
udt,

is as follows:

u∗ =


1, if x < 1

2α ,

0, if x ≥ 1
2α .

In Theorem 2, we derive the continuous optimal task allocation policy for a

single user. It should be observed that the optimal task allocation policy is in fact a

Bang Bang control law, where the task allocation is either zero or maximum. This type

of controller is typical in constrained optimal control applications [15].

Although optimal, the control policy u∗ in Theorem 2 has some undesirable

features that may limit its applicability in a practical application where there may be

a limit on the switching rate between the zero and unit workloads. Limitations in the

switching rate would result in oscillations in the fatigue level and performance, as shown

in Fig. 3.6 and 3.7. One possible solution is to design a (suboptimal) feedback controller

to maintain the fatigue level at its optimal value.

Theorem 3. (Steady state optimal controller) Consider a single user with fatigue

dynamics

ẋ = −αx+ u,
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where α ∈ R and x(0) = 0. The constant workload ū = 0.5 satisfies

lim
t→∞

x(t) = x∗ =
1

2α
.

Proof. The statement follows directly from equation (3.2).

The task allocation policy ū described in Theorem 3 achieves a lower perfor-

mance with respect to the optimal policy u∗ described in Theorem 2. Yet, the policy

ū is asymptotically equivalent to u∗, as they both achieve the same fatigue level, and

it does not depend on the maximum allowable switching rate as for the case of u∗. A

comparison between the performance of ū and u∗ is reported in Fig. 3.7.

Figure 3.6: A simulation presenting the fatigue curve, illustrating the Bang Bang control
model. Blue: Optimal conditions representing Theorem 2. Red: Steady state conditions
from Theorem 3.
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Figure 3.7: Performance curve from our Bang Bang control model simulation. The red
and blue simulations match Fig. 3.6 respectively.

It may be noted that in the first case with the Bang Bang control, we have

multiple continuous switches as time progresses. In the steady state policy, the user will

undergo zero switches. If desired, a controller may utilize a merged policy that requires

the user to experience one switch; the switch from the Bang Bang control policy to the

steady state policy. This will allow the user to converge to the optimal fatigue level

after reaching the critical point in the Bang Bang policy.

3.4 Continuous Task Allocation for Multiple Users

Consider the scenario in which the robot can assign the tasks to be completed

to different users to optimize their overall performance. Let the fatigue level of each

user be described as in (3.1), and let the performance of each user be as in (3.3). We

consider the overall performance function to be

JC-M =
1

Ntf

N∑
i=1

∫ tf

0
Pi(t)ui(t)dt, (3.6)
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where N is the total number of users, Pi : R → R denotes the performance of user i,

and ui : R → [0, 1] is the workload assigned to user i. For notational convenience, we

assume that

N∑
i=1

ui(t) = 1, (3.7)

at all times t.

To design an optimal task allocation, notice that each term Pi(t)ui(t) is nonzero

at all times t. Moreover, due to assumption (3.7), the function

N∑
i=1

Pi(t)ui(t),

is a weighted average of the performances Pi. Hence, the cost function (3.6) is maxi-

mized by assigning the entire workload to the most performing user at each time. We

summarize this discussion in the following theorem.

Theorem 4. (Optimal controller for multiple users in continuous time) Con-

sider N users with fatigue dynamics

ẋi = −αixi + ui, i ∈ {1, . . . , N},

where αi ∈ R, and xi(0) = 0. The task allocation u∗i : R→ [0, 1], with
∑N

i=1 ui(t) = 1 at

all times t, that maximizes the cost function

JC-M =
1

Ntf

N∑
i=1

∫ tf

t0

Pi(t)ui(t)dt,

is as follows:

u∗i (t) =


1, if Pi = max{P1, . . . , PN},

0, otherwise.
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From theorem 4 we conclude that an optimal task allocation for the cost func-

tion JC-M in (3.6) is so that the performance levels of all users are all equal to each

other. Hence, the performance of the crowd is in fact dictated by the performance of

each single user, and not only by most performing one. The dynamic behavior of the

fatigue levels and the performances for a group of three users is reported in Fig. 3.8(a)

and Fig. 3.8.
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(a) The dynamic fatigue curve for 3 users undergoing full task load and rest through Pontryagin’s

Maximum Principle.

(b) Performance of the 3 users considering dynamic fatigue (recovery) and dynamic task load

Figure 3.8: In Fig. 3.8, we observe a dynamic linear system of fatigue for 3 users with
various recovery and expertise coefficients. In Fig. 3.8(a), it is seen that users may
fatigue and recover continuously depending on their dynamic task load. Note that as
time increases, the fatigue approaches an asymptotic value which conforms with our
analysis in Section 3.1. The solid, dashed, and dotted lines represent 0.3, 0.5, and 0.8
for α and 0.8, 0.5, and 0.3 for ki respectively. In Fig. 3.8(b), we examine the respective
individual performance of each user dependent on their above fatigue.
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To obtain the overall performance of our model. we simulate equation (3.6)

with the above data. Through this analysis, we acquire the optimum performance from

the correct selection algorithm as seen in Fig. 3.9. For completeness, we compare the

optimal task allocation described in Theorem 4 with other allocation policies.

Figure 3.9: In this figure, we present the overall performance modeled from equation
(3.6). Upon inspection, we note that our optimal controller produces the highest perfor-
mance curve (solid-blue) in comparison with suboptimal controllers (brown and grey).
This is in agreement with Theorem 4.

3.5 Discrete Task Allocation for Multiple Users

In the previous sections we have considered continuous-time models, where

tasks are assigned and completed instantaneously. Instead, we now consider the case

in which each task has a fixed duration so that, once assigned to user i, it must be

completed by user i. In our mathematical framework, the assumption that tasks have a

fixed duration is captured by considering the workload u to be piecewise constant, and

that it is updated at discrete time instants.

To obtain our discrete-time dynamical model of fatigue and performance for
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piecewise constant workload, we discretize (3.1) that becomes:

xi(tk+1) = αdi xi(tk) + bdui(tk),

where tk = kT , T is the duration of each task, and k ∈ {0, 1, . . . }. Moreover,

αdi = e−αiT , and bd =
1

αi
(1− e−αT ),

where αi is the i-th recovery coefficient.

Since the workload is piecewise constant, the cost function (3.6) can be written

as

JD-M =
1

NM

N∑
i=1

M∑
k=1

P di (tk)ui(tk)T,

where

P di (tk) = kie
−xi(tk).

This cost function is obtained from a simplification of our model. We note with this

definition that JD-M is not the counterpart to our continuous model, JC-M. In order for

the two cost functions to be parallel, P di should be analyzed as an integral; however, the

analysis of this integral is nontrivial, so we save this analysis for future work.

Following our procedure in Section 3.4, the maximization of the cost function

JD-M is obtained by assigning the whole workload to the user with largest P di . How-

ever, since P di depends on the user fatigue level and workload, and because users have

different expertise and recovery rates, the computation of the optimal allocation policy

is nontrivial.

With this in mind, we continue to propose an optimal policy for our discrete

time case. Recall that each task is now considered to be piecewise constant. Our optimal

policy requires the controller to consider the performance curve of each user at each time
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frame, tk. The controller will then allocate the whole workload, u = 1, to the current

highest performing user at the beginning of each discrete time block. Each other user

will be at rest until the next iteration occurs for user selection.

This optimal policy now simplifies the discrete case in terms of analysis. Cal-

culations are only required during each discrete time step in order to locate the highest

performing user. With that analysis, the controller may allocate the respective work-

load and calculations will continue for the next time step. Due to this model being

discretized, the policy may seem suboptimal upon inspection due to comparison with

the continuous model. This is as expected due to our constraints from discretizing our

time and workloads. The analysis will show that a discrete model will display suboptimal

performances when compared with continuous analysis.

Theorem 5. (Optimal controller for multiple users in discrete time) Consider

N users with fatigue dynamics

xi(tk+1) = αdi xi(tk) + bdui(tk), i ∈ {1, . . . , N},

where αdi ∈ R, and xi(0) = 0. The task allocation u∗i : R → [0, 1], with
∑N

i=1 ui(t) = 1

at all times t, that maximizes the cost function

JD-M =
1

NM

N∑
i=1

M∑
k=1

P di (tk)ui(tk)T,

is as follows:

u∗i (t) =


1, if P di = max{P d1 , . . . , P dN},

0, otherwise.

We provide the following simulations to illustrate the differences between our

continuous policy vs. our discrete policy. The policy proposed in Theorem 5 is simulated

in Fig. 3.10. It may be observed that the discrete policy will for the most part, act
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suboptimally compared with our continuous model. Our continuous model will always

select the optimal worker for task allocation. The discrete model proposed in the thesis

will agree with the continuous model when no users’ performance curve intersect in the

time frame.

Figure 3.10: This figure illustrates a standard policy where the controller selects the
highest performing user at the beginning of each time iteration, and assign him/her
with the entire workload.

With the policy given in Theorem 5, we model the performance curves of two

arbitrary users in Fig. 3.10. It is noted that each user exhibits a constant performance

increase or decrease during each time frame. No user changes workload in the middle of a

single time frame, tk to tk+1. This simulation agrees with our policy assumed in Theorem

5. We compare the overall performance of the discrete policy with our continuous policy.

An important note here is our continuous policy was simulated again in a minute scale

discretization in order to meet software constraints for our comparison. We also note

the slight change in the overall performance for our two continuous simulation due

to these software constraints. Calculation time must be considered for the software

during simulations. The use of infinitesimal time steps was considered, but the overall

performance for the continuous policy would be much higher than the discrete policy.
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This substantial difference would make our two models difficult to compare. We provide

this comparison as follows in Fig. 3.11.

Figure 3.11: In this comparison, we notice a dramatic performance loss due to dis-
cretization of the system. This is expected with the mathematical comparisons of our
two policies and is in agreement with our conclusion.

Given the comparison shown in Fig. 3.11 above, we conclude that the discrete

model’s policy has a lower overall performance than the continuous policy as expected.

This is due to our discrete time steps inhibiting the controller from selecting a new

optimal user. This constraint on the controller forces the controller to select a user

who may initially be optimal but acts suboptimally in the long run. This case is very

intriguing albeit simplified. The more complicated model considering the integral will

be discussed in Chapter 4.2.
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Chapter 4

Conclusion and Future Work

Crowdsourcing has the potential to be extremely effective and cost-efficient in

modern day task completion. As our society moves towards the “cloud”, with the inter-

net being the main medium for conferences, seminars, and task assignments, we begin to

unravel the power of crowdsourcing. Communication can be achieved instantaneously

with the current state of the internet, allowing crowdsourcing to be possible. Noting

the challenges of the emerging method, we offer optimal algorithms for task allocation

through crowdsourcing. This thesis focused on designing task allocation algorithms that

maximize the performance of users with respect to their fatigue level, recovery rate, and

expertise. Our models were hypothesized and validated continually from optimal control

theory and dynamical systems. Upon completion of our simulation, we provided visual

examples of the data and the performance plot. These figures help convey the success

of our task allocation algorithms.
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4.1 Summary

In Chapter 2, we presented the basis of our studies and model. We discuss

the theory behind each work in current literature that contributed to and motivated

our thesis. We provide analytical equations and notation that aided in providing a

background for our simulations.

In Chapter 3, we illustrated our model for fatigue and performance, where we

validate it with current studies in literature. We extend our method for modeling a

user’s expertise through the study of the drift diffusion model. We exhibit the variances

from these new simulations with our previous examples. Given these dynamic systems,

we display our findings through various cases. In particular, we discuss the overall

performance of our model considering continuous and discrete time, as well as single

and multi-user systems. We conclude the chapter by illustrating our performance curve

for each optimal task allocation algorithm.

4.2 Future Work

The studies provided in this thesis discuss simple optimal crowdsourcing algo-

rithms that consider a single exogenous human factor. Despite agreeable performance

curves from corresponding algorithms, we must indicate room for future work and im-

provement. We begin to present elements that must be studied in future research.

In-depth analysis must be completed for complex biological factors that are

not fully understood or modeled. Various factors that need to be considered range from

boredom, sleep activity, motive, and etc. A large body of findings and studies have

been completed in various literature articles [6, 9, 10, 11, 12, 14, 19, 20, 23, 24, 28, 32].

Preliminary studies have been conducted by Vaibhav et al. to implement these complex
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models to human robot decision making [31].

Malicious crowd users must also be studied for implementation. In our analysis,

we focus on users whose performance is solely based on their fatigue. Assumptions were

made that every user will attempt to complete the task with their best efforts. Current

studies illustrate that in crowdsourcing, many users provide useless or erroneous answers

due to obscurity [16]. New research must implement these bad labels into optimal task

allocation algorithms.

Recall from Chapter 3.5 the discussion of our nontrivial integral. A better

performing discrete model would consider the integral of our users’ performance, P di (tk).

This would be in accordance to our continuous model. The cost function for our discrete

model, JD-M, would then be the counterpart to the continuous cost, JC-M, as discussed

in Chapter 3.5. The difficulty in this consideration is the approximation of our integral.

This model is an important one to consider for future studies.

The last topic for future research considers optimal decision making. Decision

making theory must be studied further to accurately model a user’s expertise at any

point in time. Considering a plethora of factors, inherent and extrinsic, lead to decision

making, various studies may be completed to improve the model of a user’s expertise.

These studies range from network models to prior experience and will help accurately

implement the user’s expertise into our approximations.

Preliminary studies have been completed to examine a dynamic expertise co-

efficient that evolves over time. In this thesis, we present early analysis of the drift

diffusion model to approximate a dynamic expertise coefficient for our users.

Consider the drift diffusion model following the interrogation paradigm. Recall

that in the interrogation paradigm, the user must select a decision at the end of the time

interval based of his/her accumulation of evidence. Let this paradigm be our focus of
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analysis. We examine the first pure drift diffusion model from equation (2.4) under the

interrogation paradigm,

dx = Adt+ cdW,

where we assume the drift A to be 1 and the noise c to be 1. The corresponding

performance function is given by

Pinterrogation = 1− Φ

(
−AT − x0

c
√
T

)
,

from equation (2.11), where Φ is the normal cumulative distribution function from equa-

tion (2.8), x0 is the initial condition given by equation (2.10), A : A → R is the drift

constant, c : R → [0, 1] is the noise, and T ∈ [0, tf ] is the time interval of the model.

Let this performance function be our dynamic expertise coefficient,

ki(t) = Pinterrogation(t).

As expertise increases over time from the drift diffusion model, the performance from

equation (3.3) will increase as well. This concurs with our intuition that expertise should

improve over time and experience. We model this performance curve with various initial

conditions in Fig. 4.1.
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Figure 4.1: This figure represents the simulation of our performance curve from pure
drift diffusion in the interrogation paradigm.

Now we observe the O-U Model given in equation (2.12), where the users will

each learn at a different rate over time. This is opposing the model in Fig. 4.1 where

in comparison, each user approaches the same asymptotic learning curve. In the O-U

Model, the performance function given by equation (2.14) will have a different evolution

with time. Let us examine the equation (2.12) given by,

dx = (λx+A)dt+ cdW,

where λ : λ → R is the reward effect on x as stated in Section 2.1.2. Let the drift

A = 1, λ = −1 < 0 to assume a stable O-U process, and the noise constant c = 1 [2].

Studying the O-U Model where we apply the interrogation paradigm provides us with a

performance function given by

ki(T ) = PO-U(T ) = 1− Φ

(
−A
c

√
2(eλT − 1)

λ(eλT + 1)

)
,

from equation (2.14). We model the performance function above to obtain Fig. 4.2

where we can observe the change of each user’s performance over time. This follows the
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same intuition that users learn over time, but now we add different limitations to each

users’ learning curve.

Figure 4.2: This figure represents the simulation of our performance curve for an O-U
Model in the interrogation paradigm.

Now we present the effects of the drift diffusion model in our optimization

models. These simulations are all preliminary studies that form a framework for future

research.

The main objective of this thesis is to design task allocation algorithms to

maximize the performance of some users, with respect to their fatigue level, recovery

rate, and expertise. In the following paragraphs, we detail different scenarios and the

corresponding optimal task allocation policies.

The preliminary analyses for evolving the user’s expertise coefficient, have been

completed and will be shown as follows. We let ki be dynamic following the drift diffusion

model from Section 2.1.2. This thesis presents two models of study for our expertise

coefficient: the pure drift diffusion model and the Ornstein-Uhlenbeck (O-U) Model.
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Consider the pure drift diffusion model with performance given from equation (2.11),

Pinterrogation = 1− Φ

(
−AT − x0

c
√
T

)
,

where x0 is the initial condition dependent on π from equation (2.10). Let π range from

0.3 to 0.8 with the equation for x0 given by

x0 = c2 log(π/(1− π))/2A.

Assuming the drift rate A = 1, the noise constant c = 1, and a time interval T ∈ [0, 10],

we present new simulations with Pinterrogation as our ki. This is displayed in Fig. 4.3

with the corresponding performance shown in Fig. 4.4.

Figure 4.3: This figure shows our fatigue curve from Fig. 3.8(a) with a dynamic expertise
coefficient, ki, based on the drift diffusion model presented in Section 2.1.2.

Comparing Fig. 3.8(b) with Fig. 4.4, we observe a variance early in the curve.

Recall that ki is now modeled as the complement of an error function from equation

(2.9). This sigmoidal relationship causes the most variance early in the curve before

approaching a saturated value as inspected in Fig. 2.1. This agrees naturally that users

will learn over time.
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Figure 4.4: This figure shows the plot of our performance obtained from our fatigue
model with a dynamic expertise coefficient shown in Fig. 4.3.

Extending our drift diffusion model into the O-U Model, we are presented with

a performance function from (2.14),

PO-U(T ) = 1− Φ

(
−A
c

√
2(eλT − 1)

λ(eλT + 1)

)
,

where λ ∈ R is the leak or reward rate and Φ is a normal cumulative distribution

function. Examining Fig. 4.2, we note that in the O-U Model, each user learns at

a different rate depending on the value of λ. In comparison, we note that each user

reaches the same learning rate in the pure drift diffusion model as inspected from Fig.

4.1. Consider the same parameters from the pure drift diffusion model. We simulate

the performance function as our expertise, ki, to obtain the following:
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Figure 4.5: The fatigue curve under the O-U drift diffusion model. The fatigue follows
equation (3.2).

Figure 4.6: Using the performance model from O-U in equation (2.14) in combina-
tion with our normal performance model from equation (3.3), we obtain the simulation
presented in this figure.

In comparison of Fig. 4.5 and 4.6 above and Fig. 4.3 and 4.4 from earlier, we

detect diminutive variances in the general curve. The low initial performance is due to

users starting at an extremely low initial expertise. After an interval of time, the fatigue
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takes over the performance model as the expertise saturates. These two drift diffusion

models become comparable after that time frame.

This study for the expertise evolution becomes a base for future work. De-

tailed studies for a dynamic expertise coefficient must be completed for a more accurate

approximation and analysis of our optimization models.

In conclusion, our studies draw from many different fields in order to assess

our problem statement. Each field provides mechanisms that could be studied in depth

and improved for future implementation. With our current assumptions, it is seen that

our task allocation algorithm is optimal.
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