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ABSTRACT OF THE DISSERTATION

Asymptotic Syzygies of Normal Crossing Varieties

by

Daniel Minha Chun

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2018

Dr. Ziv Ran, Chairperson

Asymptotic syzygies of a normal crossing variety follow the same vanishing be-

havior as one of its smooth components, unless there is a cohomological obstruction

arising from how the smooth components intersect each other. In that case, we com-

pute the asymptotic syzygies in terms of the cohomology of the simplicial complex

associated to the normal crossing variety.

We combine our results with knowledge of degenerations of certain smooth pro-

jective varieties into normal crossing varieties to obtain some results on asymptotic

syzygies of those smooth projective varieties.
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1 Introduction

Mark Green’s paper [1] introduced a way to interpret syzygies of projective varieties

as the cohomology groups of a Koszul type complex. This interpretation allowed

for concrete computational results about syzygies that were not possible before. In

particular, Lawrence Ein and Robert Lazarsfeld have established interesting results on

vanishing and non-vanishing of asymptotic syzygies, as in [5] and [6]. Here, asymptotic

refers to the fact that they investigated the syzygies of smooth projective varieties of

large enough degree embedding.

Recently, Ziv Ran has extended some of these results to the case of nodal, possibly

reducible, curves in [7]. In this paper, we try to generalize his results by analzying

the case of normal crossing varieties of arbitrary dimension.

As one would expect intuitively, we find that the asymptotic syzygies of nor-

mal crossing varieties depend on the worst behaved smooth component as well as the

combinatorics of how the smooth components intersect each other. We use the knowl-

edge of asymptotic syzygies of normal crossing varieties and degenerations in order to

answer questions about asymptotic syzygies of smooth varieties in the Applications

section.

2 Spectral Sequences

Spectral sequence is a powerful tool to manipulate complicated commutative diagrams

to get useful information. One good reference on it is [13] by Ravi Vakil. It is a family

Ep,q
r of vector spaces, for all integers p, q, r with r ≥ 0 (for a fixed r, they form the

r-th page of the spectral sequence).
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If it has a horizontal orientation, for each p, q, r, there is a differential dp,qr : Ep,q
r →

Ep+r,q−r+1
r satisfying d2r = 0. If it has a vertical orientation, there is a differential

dp,qr : Ep,q
r → Ep−r+1,q+r

r . We will assume horizontal orientation for the rest of this

section, but it will apply to vertical orientation analogously as well.

There are isomorphismsHp,q(Er)→ Ep,q
r+1 where the homology is given byHp,q(Er) =

kerdp,qr /imdp−r,q+r−1r .

The spectral sequence converges if there is r(p, q) for each p, q such that for all

r ≥ r(p, q) we have Er
p,q
∼= E

r(p,q)
p,q . The bigraded object E∞ = {Er(p,q)

p,q }p,q, if it exists,

is the limit term of the spectral sequence, and we say the spectral sequence abuts to

E∞.

It is called a bounded spectral sequence if all terms except for a finite number of

choices p, q vanish. An important fact is that a bounded spectral sequence converges.

This is because for large enough r, all of the differentials on the Er page will either

map from zero or to zero, so the pages will stop changing after such a r.

2.1 Filtered Chain Complexes

We will now look at filtered chain complexes, since almost all of the applications of

spectral sequences arise from filtered chain complexes.

A filtered chain complex is a chain complex of modules

...
∂n−1→ Cn

∂n→ Cn+1 → ...

with a filtering F•Cn on each Cn such that ∂(FpCn) ⊂ FpCn+1. Define GpCn =

FpCn/Fp−1Cn. Note that ∂ induces chain complexes FpC• as well as GpC• for each p.

The filtration on the complex also induces a filtration on the homology H•(C), which

looks like the following
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FpHn(C) = im(Hn(FpC•)→ Hn(C•)).

Now, define

Zr
p,q = {c ∈ FpCp+q|∂(c) ∈ Fp−rCp+q+1}/Fp−1Cp+q and

Br
p,q = ∂(Fp+r−1Cp+q−1) ∩ FpCp+q/Fp−1Cp+q and Er

p,q = Zr
p,q/B

r
p,q.

Then the differentials ∂ of C• induce maps ∂r : Er
p,q → Er

p+r,q−r+1, so that Er form

a spectral sequence. Furthermore, we can see that by definition, for a fixed choice of

p and q, we get that Er
p,q = GpHp+q(C) for large enough r.

In other words, Er, our spectral sequence associated to the filtered chain complex,

abuts to E∞p,q = GpHp+q(C). Thus, for a fixed n, Hn(C) =
⊕
p+q=n

E∞p,q. Crucially, we

have the following fact

Remark 1. If we have the same complex with multiple different filtrations, then in

general, we will have different limits E∞, but the direct sum of all the terms on a

fixed anti-diagonal of any of these limits will be the same.

2.2 Double Complexes

Let’s now discuss double complexes, because it is in this context that most spectral

sequences are used in practice.

A bounded double complex is a collection of vector spaces Cp,q (p, q ∈ Z), which

are zero except for a finite number of choices p, q, and horizontal differentials ∂p,qh :

Cp,q → Cp,q+1 and vertial differentials ∂p,qv : Cp,q → Cp+1,q, such that ∂h∂v +∂v∂h = 0.

From the double complex we construct a corresponding single total complex C•

with Cn =
⊕
p+q=n

Cp,q with the differential as ∂ = ∂h+∂v. Then there are two different

filtrations. The horizontal filtration on C• is given by
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F h
p Cn =

⊕
n1+n2=n,n1≤p

Cn1,n2

And the vertical filtration is given by

F v
pCn =

⊕
n1+n2=n,n2≤p

Cn1,n2

For horizontal filtration, define the zeroth page as follows

′E0
p,q = GpCp+q with the differential ′E0

p,q →′ E0
p,q+1 induced from C•.

and for vertical filtration, define the zeroth page analogously as follows

′′E0
p,q = GpCp+q with the differential ′′E0

p,q →′′ E0
p+1,q induced from C•.

Then by Remark 1, we get

Remark 2. Horizontal and vertical filtrations of the total complex associated to the

double complex lead to the same direct sum of all the terms on any fixed anti-diagonal.

In practice, one of the filtrations usually leads to a simpler result with lots of

vanishing, so we get information about the other filtration.

3 Why Koszul Cohomology?

The standard references for the theory of Koszul Cohomology are [1] and [2] by Mark

Green. Let X be a projective variety of dimension n defined over C. Let L be a very

ample line bundle on X, and let B be an arbitrary line bundle on X. L defines an

embedding

X ⊆ Pr = PH0(L ),
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where r + 1 = h0(OX(L )). The study of asymptotic syzygies is the study of

syzygies of X in Pr when L is very positive. Let S = SymH0(L ) be the homogeneous

coordinate ring of Pr, and let R =
⊕
q

H0(B ⊗ qL )), and view R as a finitely

generated S-module. R has a minimal graded free resolution F• = F•(X,B,L ),

0→ Fr =
⊕
q

S(−q)⊗Mr,q → ...→ F1 =
⊕
q

S(−q)⊗M1,q → F0 =⊕
q

S(−q)⊗M0,q → R→ 0

where Mp,q, called syzygies, are finite dimensional vector spaces that keep track

of how many copies of S(−q) are in Fp. Intuitively, we can think of them as follows

M0,q = generators of degree q for R as a S-module,

M1,q = primitive relations of weight q among the generators for R,

M2,q = primitive syzygies of weight q among the relations for R,

... and so on.

In other words, if x1, x2, ... are generators for R with degxi = ei, then a relation

of weight q among the generators is one of the form

∑
i

uixi = 0, ui ∈ Sq−ei .

A primitive relation of weight q is one that is not an S-linear combination of

relations of lower weight. If
∑
i

uvi xi = 0 are a basis for the primitive relations of

weights ev respectively, a syzygy of weight q is a relation of the form

∑
v

wvu
v
i = 0 for all i with wv ∈ Sq−ev

...and so on.
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Since Green’s paper [1], much attention has been focused on what we can say about

these syzygies. Green’s main insight in [1] was to interpret them as the cohomology

groups of a Koszul-type complex.

Definition 1. Let V be a finite dimensional complex vector space, S, the symmetric

algebra over V , and B =
⊕
q∈Z

Bq, a graded S-module. Then there is a Koszul Complex

...→
p+1∧

V ⊗Bq−1
∂p+1,q−1→

p∧
V ⊗Bq

∂p,q→
p−1∧

V ⊗Bq+1 → ... ... (a)

where the differential is given by ∂p+1,q−1(v0 ∧ ... ∧ vp ⊗m) =

p∑
k=0

(−1)kv0 ∧ ... ∧

v̂k ∧ ... ∧ vp ⊗ vkm.

The cohomology of the above complex is called the Koszul Cohomology, and denoted

by Kp,q(B, V ).

In the special case where V = H0(L ) and B = R, it is denoted as Kp,q(X,B,L ),

and if B = OX , we omit B and write Kp,q(X,L ).

Before establishing a connection between syzygies and Koszul Cohomology, we

need a helper lemma which states that the Koszul Complex associated to the projec-

tive space is exact.

Lemma 1. The complex

...→
p+1∧

V ⊗ Sq−1
∂p+1,q−1→

p∧
V ⊗ Sq

∂p,q→
p−1∧

V ⊗ Sq+1 → ... ... (b)

with the differentials given by the Koszul differentials, is exact unless n = 0, in

which case the complex is 0→ S0 = C→ 0.
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Proof. If we construct a chain homotopy between a constant multiple of the identity

map and the zero map, then since chain homotopic maps induce the same map on

homology, a constant multiple of the identity map and the zero map on homology are

the same, meaning the homologies are all zero, which will prove the Lemma.

So, let’s construct such a chain homotopy, which we will call h. Set d+1 = dimV .

hp :

p∧
V ⊗ Sq →

p+1∧
V ⊗ Sq−1 is defined as

hp(v0 ∧ ... ∧ vp−1 ⊗m) = (−1)p
d∑
l=0

v0 ∧ ... ∧ vp−1 ∧ vl ⊗
∂m

∂vl
.

Then we have

(∂p+1hp + hp−1∂p)(v0 ∧ ... ∧ vp−1 ⊗m) =

(−1)p(pv0∧ ...∧vp−1⊗m+v0∧ ...∧vp−1⊗
d∑
l=0

vl
∂m

∂vl
) = (−1)p(p+ q)v0∧ ...∧vp−1⊗m

where the second equality is by the Euler identity. We have constructed the

appropriate h, so we proved the Lemma.

Proposition 1. We have isomorphisms Kp,q(X,B,L ) ∼= Mp,p+q(X,B,L ).

Proof. For a fixed integer l, define a double complex

Cp,q =

−p∧
V ⊗

⊕
k

(Sk ⊗M−q,l+p−k) for q ≤ 0,

=
∧−p V ⊗Rl+p for q = 1, and

= 0 otherwise.

As differentials, we take

Cp,q ∂v→ Cp+1,q and Cp,q ∂h→ Cp,q+1
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where for q ≥ 0, ∂v comes from (b), and for q = −1 , ∂v comes from the Koszul

differential, and finally, ∂h comes from the minimal free resolution of R as a S-module.

We can check that ∂h∂v + ∂v∂h = 0, so Remark 2 applies here, and we get

two spectral sequences, E ′ from the horizontal filtration, and E ′′ from the vertical

filtration, with the same abuttment on fixed anti-diagonals and

′Ep,q
∞ =′ Ep,q

1 = 0 for all p, q.

and

′′Ep,q
1 = K−p,l−p(X,B,L ) for q = 1,

= M−q,l(X,B,L ) for q ≤ 0, p = 0, and

= 0, otherwise.

Now, the differentials on the ′′E1 page are either zero maps, is M0,l → K0,l, or

look like ∂0,−q+1 : M−q+1,l → M−q,l for q ≤ 0. By the minimality of the minimal free

resolution of R, ∂0,−q+1 are zero maps.

Thus, the only non-zero map in the ′′Er page is ∂0,r : Mr,l → Kr,l−r, but since the

abuttment is to zero, we get the these ∂0,r are isomorphisms.

4 Standard Facts About Koszul Cohomology

A useful reference for this topic is [6]. For rest of the paper we will keep the notation

of the above Proposition 1. We have several useful facts regarding them.

First, we can treat them as coherent cohomology groups of a certain vector bundle

on X. Consider a natural evaluation map
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eV : VX =def V ⊗ OX → L

Set MV = kereV and dimV = v. Then MV is a vector bundle of rank v− 1 sitting

inside the following short exact sequence of vector bundles

0→MV → VX → L → 0 ... (b)

Proposition 2. Asume that

H i(B +mL ) = 0 for i > 0 and m > 0.

Then for q ≥ 2, we get

Kp,q(X,B, V ) = H1(

p+1∧
MV ⊗B ⊗ (q − 1)L )

If moreover H1(B) = 0, then the same statement holds also when q = 1.

Proof. From (b), we get VX ∼= MV ⊕L , so taking exterior powers, we get

p∧
VX ∼=

p⊕
j=0

i∧
MV ⊗

p−i∧
L ∼=

p∧
MV ⊕

p−1∧
MV ⊗L

where the second isomorphism is because L is a line bundle so any of its higher

exterior products is zero. The isomorphism above gives us a short exact sequence.

Twist it by B ⊗ qL to get

0→
p∧
MV ⊗B ⊗ qL →

p∧
VX ⊗B ⊗ qL →

p−1∧
MV ⊗B ⊗ (q + 1)L → 0 ... (c)p,q

We can splice a bunch of these short exact sequences (for different values of p and

q) together then twist to get the following exact sequence

...→
p+1∧

VX⊗B⊗ (q−1)L
∂p+1,q−1→

p∧
VX⊗B⊗ qL ∂p,q→

p−1∧
VX⊗B⊗ (q+ 1)L → ...

9



... (d)

In other words, the differential ∂p,q in the complex (d) is the composition

p∧
VX ⊗

B ⊗ qL →
p−1∧

MV ⊗B ⊗ (q + 1)L ↪→
p−1∧

VX ⊗B ⊗ (q + 1)L , where the first map

is from (c)p,q and the second map is simply inclusion.

and if we apply the global sections functor to ∂p,q, we get the differential dp,q from

Proposition 1. Thus, because of the cohomological assumptions in the proposi-

tion, from the long exact sequence of cohomology from (c)p,q, we get that kerdp,q =

H0(

p∧
MV⊗B⊗qL ), and from the long exact sequence of cohomology from (c)p+1,q−1,

we get that H0(
∧pMV ⊗B⊗ qL )/Imdp+1,q−1 = H1(

p+1∧
MV ⊗B⊗ (q− 1)L ). From

which we get the desired result.

Proposition 3. Make same assumptions as in Proposition 2. Then q ≥ 2

Kp,q(X,B, V ) = Hq−1(
∧p+q−1MV ⊗B ⊗L )

Proof. Because of the cohomological assumptions in Proposition 2, from the long

exact sequence of cohomology from (c)p+i,q−i, we get isomorphisms H i(

p+i∧
MV ⊗B⊗

(q − i)L ) ∼= H i+1(

p+i+1∧
MV ⊗ B ⊗ (q − i − 1)L ) for i = 1 ... q − 2. Combined

with Kp,q(X,B, V ) = H1(

p+1∧
MV ⊗B ⊗ (q − 1)L ) from Proposition 2, we get the

desired result.
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Proposition 4. Assume that X is smooth of dimension n, and the same conditions

are held as in Proposition 2 hold. In addition assume that

H i(B ⊗mL ) = 0 for 0 < i < n and all m ∈ Z ... (e)

and

H0(B − jL ) = 0 for j > 0 ... (f)

Then for 0 ≤ q ≤ n+ 1 one has isomorphisms

Kp,q(X,B, V ) ∼= Kv−1−p−n,n+1−q(X,KX −B, V )?

Proof. Let’s first deal with the case where 1 ≤ q ≤ n. By the same argument given

in the proof of Proposition 3, using the assumption (e), we get

Kp,q(X,B, V ) = H1(

p+1∧
MV ⊗B⊗ (q−1)L ) = Hn−1(

p+n−1∧
MV ⊗B⊗ (q+ 1−n)L )

which is Serre dual to

H1(

p+n−1∧
M?

V ⊗ (KX −B)⊗ (n− q − 1)L )

where M?
V is the dual of MV . Note that we have

0→
v−1∧

MV →
v∧
VX → L → 0

by taking v-th exterior product of the short exact sequence (b). Also, OX
∼=

v∧
VX .

That means

v−1∧
MV
∼= −L
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So we get

p+n−1∧
M?

V
∼=

v−p−n∧
MV ⊗

v−1∧
MV
∼=

v−p−n∧
MV ⊗L

where the first isomorphism is due to Hodge Duality. Thus, Kp,q(X,B, V ) is dual

to

H1(

v−p−n∧
MV ⊗ (KX −B)⊗ (n− q)L )

and the above is isomorphic to Kv−1−p−n,n+1−q(X,KX −B, V ) by Proposition

2, so we’re done.

Now for the cases q = 0, n + 1, first note that because of (f), using the same

argument as in the proof of Proposition 2, we get

Kp,0(X,B, V ) = H0(

p∧
MV ⊗B)

We can then use the same duality argument as in the case of 1 ≤ q ≤ n to prove

the statement for the cases q = 0, n+ 1.

5 Some Established Results

Green proved in [1]

Proposition 5. For a smooth curve C of genus g and a line bundle L of degree d

on C,

Kp,q(C,L ) = 0 for q ≥ 3 if h1(L ) = 0, and

Kp,2(C,L ) = 0 if d ≥ 2g + 1 + p

12



For higher dimensional varieties, the picture is more complicated, but there are

still quite a few established results.

For example, let X be an abelian variety of dimension n ≥ 3, L an ample line

bundle on X, a an integer with a ≥ 2, and B a line bundle on X such that bL −B

is ample for some integer b ≥ 1. Set ra = h0(aL )− 1, and assume a ≥ b. M. Aprodu

and L. Lombardi prove in [12] that

Proposition 6. Kp,1(X,B, aL ) = 0 for p in the range ra − a(n − 1) + b(1 − 1
a
) ≤

p ≤ ra − n

Our two main computational results in this paper have similar flavor to the above

two established results. We prove that

Theorem 1 Let X be a general smooth degree n+ 2 hypersurface in Pn+1. Then,

Kp,q(X,OX(d)) = 0 if p ≤ (q − 1)d− 3.

and

Theorem 2 Let X be a general smooth degree 4a hypersurface in P3 with a ≥ 2.

Then, Kp,1(X,OX(d)) = 0 if p ≥ h0(d)− 4d+ 4 where h0(d) = h0(OX(d))

6 Notations

Let D = D0 ∪ ... ∪ Db be a normal crossing variety of dimension n sitting inside

an ambient smooth projective variety X, where the Di are the smooth irreducible

components of D. Set Di0...ip = Di0 ∩ ...∩Dip to be the scheme-theoratic intersection

13



in X (in other words, if Ii is the ideal sheaf of Di in X, then, Ii0 + ... + Iip is the

ideal sheaf of Di0...ip).

Let B and P be arbitrary line bundles on D. Let A be an ample line bundle on

D. Set Ld = P ⊗ dA where d >> 0, and set V = H0(Ld).

Set Bp
q =

⊕
i0<...<ip

H0((B ⊗ qLd)|Di0...ip
), and Bp =

⊕
q≥0

Bp
q . Then Bp is a graded

S(
⊕

i0<...<ip

H0(Ld|Di0...ip
))-module. Letting V →

⊕
i0<...<ip

H0(Ld|Di0...ip
) be the natural

map induced by restriction maps to each component Di0...ip , we see Bp is also a graded

S(V )-module by the action of S(V ) induced by this map.

7 Koszul Cohomology of Normal Crossing Vari-

eties

First, we will need to construct a complex ofOD-modules, which look like the following

0→ OD
ρ→ C0 =

⊕
i0

ODi0

∂0→ C1 =
⊕
i0<i1

ODi0i1
→ ...→ Cb−2 =

⊕
i0<...<ib−2

ODi0...ib−2

∂b−2→

Cb−1 = OD1...b
→ 0 ... (*)

where given an open affine U ⊂ X and α = (fi0...ip) ∈ Cp(U∩D), then ∂p(α)i0...ip+1 =
p+1∑
j=0

(−1)j(fi0...îj ...ip+1
)|U∩Di0...ip+1

.

Furthermore, the map ρ is induced by restriction to each component.

Proposition 7. The complex (*) is exact.

Proof. We can work over an open affine U = SpecA ⊂ X, with Ii0...ip = Ii0 + ...+ Iip

being the ideal cutting out Di0...ip ∩ U (so ∩Ii cuts out D). Let a be a section over

14



U ∩D. ρ(a) = 0 means that a ∈ Ii for all i, which means a ∈ ∩Ii, so a = 0 ∈ A/∩ Ii,

and so ρ is injective.

Now let’s prove exactness at C0. Suppose we’re given a closed cycle α = (fi) ∈

C0(U ∩D). Then fj − fi = 0 on Dij for every i < j, so f2 − f1 ∈ I12, which means

we can write f2 − f1 = a2 − a1 where ai ∈ Ii. Set

f (2) = f2 − a2 = f1 − a1 ∈ A

which lifts both f1 and f2 by construction.

By assumption, we have f (2) − f3 = 0 on D13 and D23, which means

f (2) − f3 ∈ (I1 ∩ I2) + I3

because (I1 ∩ I2) + I3 is the ideal cutting out (D1 ∪D2) ∩D3 = D13 ∪D23. This

means we can write f (2) − f3 = a12 − a3 where a12 ∈ I12 and a3 ∈ I3.

Set

f (3) = f (2) − a12 = f3 − a3 ∈ A

which lifts f1, f2, and f3 by construction.

Continuing similarly, there is some a1...b ∈ I1...b such that f (b) = f (b−1) − a1...b lifts

each fi. Image of this f (b) is α = (fi), so the complex is exact at C0.

For Cp with p ≥ 1, we induct on the dimension of the ambient X. If dimX = 0,

there’s nothing to show. For the inductive step, we do another induction on b, which

is the number of components of D. For b = 1, our complex is 0 → OD → OD → 0,

which is trivially exact. For the inductive step, set α = (fi0...ip) ∈ Cp to be a closed

cycle, and write
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α = α6=1 ⊕ α1 = (fi0...ip)i0>1 ⊕ (f1i1...ip)

the differential of the complex associated to D2∪ ...∪Db acts the same way as does

the differential for D on the α 6=1 component, so the induction hypothesis on b gives us

some β 6=1 = (gi0...ip−1)i0>1 ∈
⊕

1<i0<...<ip−1

ODi0...ip−1
such that ∂(β 6=1)i0...ip = (α 6=1)i0...ip

where i0 > 1.

Now, set D′i = D1i for all i = 2, ... b and D′ = ∪D′i. Define D′i1...ip = D′i1 ∩ ...∩D
′
ip

scheme-theoratically.

Consider the cycle

(gi1...ip |D1i1...ip
− f1i1...ip) ∈

⊕
1<i1<...<ip

OD′i1...ip
... (0)

as a (p − 1)-cycle in the complex associated to D′. It is in fact a closed cycle

because for each 1 < i1 < ... < ip+1,

((gi2...ip+1−f1i2...ip+1)−(gi1i3...ip+1−f1i1i3...ip+1)+ ...+(−1)p(gi1...ip−f1i1...ip))|D1i1...ip+1
=

p+1∑
j=1

(−1)j−1gi1...îj ...ip+1
|D1i1...ip+1

+

p+1∑
j=1

(−1)jf1i1...îj ...ip+1
|D1i1...ip+1

=

fi1...ip+1 |D1i1...ip+1
+

p+1∑
j=1

(−1)jf1i1...îj ...ip+1
|D1i1...ip+1

= 0

where the second to last equality of by the construction of β6=1, and the last

equality is because α is a closed p-cycle in the complex associated to D.

Notice D′ has b− 1 components and is embedded in an ambient space D1 which

is one dimension less than that of X. Thus by the inductive assumption on the

dimension, the closed cycle from (0) is a boundary, so there exists a (p − 2)-cycle

β1 = (g1i1...ip−1) ∈
⊕

1<i1<...<ip
OD′i1...ip−1

such that for each 1 < i1 < ... < ip, we have

that
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(g1i2...ip − g1i1i3...ip + ...+ (−1)p−1g1i1...ip−1)|D1i1...ip
= gi1...ip |D1i1...ip

− f1i1...ip

which means we can take β = β 6=1 ⊕ β1 = (gi0...ip−1)i0>1 ⊕ (g1i1...ip−1) so that

∂(β) = α, so α is a boundary, completing the proof.

For d >> 0 and for any choice of i0 < ... < ip, we have by Serre vanishing,

H i((B ⊗ qLd)|Di0...ip
) = 0 = H i(B ⊗ qLd) for i > 0, q > 0 ... (1)

We also have

H0((B ⊗ qLd)|Di0...ip
) = 0 = H0(B ⊗ qLd) if q < 0 ... (2)

Serre vanishing also gives us H1(Ld(−Di0...ip)) = 0 where Ld(−Di0...ip) is the

coherent sheaf of sections of Ld which vanish along Di0...ip , which means

Restriction map φi0...ip : V → H0(Ld|Di0...ip
) is surjective ... (3)

Taking global sections of (*) tensored by B ⊗ qLd, we get a complex B•q , with

H0(B ⊗ qLd) = H0(B•q ) ... (4)

For any i > 0, q > 0, we see by (1) that 0 → B ⊗ qLd → (*) is an acyclic

resolution of B ⊗ qLd, thus

For any i > 0, q > 0, H i(B•q ) = H i(B ⊗ qLd) = 0 ... (5)

Fix some l ∈ N (we will specify later on in this report what value we need l to

be). Set Cp,q =

l−q∧
V ⊗Bp

q to be the double complex with vertical differentials coming

from (−1)p times the maps for the complex B•q and horizontal differentials coming
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from the Koszul complex maps. We will consider spectral sequences associated to

this double complex.

Remark 3. Before beginning our analysis, let me note that without the asymptotic

assumption (i.e. d >> 0), we don’t have the Serre vanishing results, and without

them, there is not enough simplification in the spectral sequences to say anything

meaningful that relates Koszul Cohomology groups of the smooth components to Koszul

Cohomology groups of the normal crossing variety. Thus, for the rest of this paper,

we will assume the Serre vanishing results.

We get two spectral sequences, ′E starting from horizontal differentials and ′′E

starting from vertical differentials, with same abutment. By (4) and (5),

′′E0,q
2 = Kl−q,q(D,B,Ld) for and ′′Ep,0

2 =
l∧
V ⊗Hp(B•0) for p > 0

with zeroes everywhere else on the ′′E2 page ... (6)

This means for q ≥ 2, the only non-zero map on the ′′Eq page is the map ∂q :

′′Eq−1,0
q =

∧l V ⊗Hq−1(B•0) → ′′E0,q
q = Kl−q,q(D,B,Ld). Keeping this notation, we

get

′′E0,q
∞ = coker∂q for q ≥ 2 and ′′Ep,0

∞ = ker∂p+1 for p ≥ 1 with zeroes everywhere else

on the ′E2 page ... (7)

We also have

′Ep,q
1 = Kl−q,q(B

p, V ) ... (8)

Now, let’s start calculating the terms in the ′E1 page. Kl−q,q(B
p, V ) is the coho-

mology at the middle of
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...→
l−q+1∧

V ⊗
⊕

i0<...<ip

H0((B ⊗ (q − 1)Ld)|Di0...ip
)→

l−q∧
V ⊗

⊕
i0<...<ip

H0((B ⊗

qLd)|Di0...ip
)→

l−q−1∧
V ⊗

⊕
i0<...<ip

H0((B ⊗ (q + 1)Ld)|Di0...ip
)→ ...

The above complex is a direct sum over all i0 < ... < ip of complexes of the form

...→
l−q+1∧

V ⊗H0((B ⊗ (q − 1)Ld)|Di0...ip
)→

l−q∧
V ⊗H0((B ⊗ qLd)|Di0...ip

)→
l−q−1∧

V ⊗H0((B ⊗ (q + 1)Ld)|Di0...ip
)→ ...

By (3),

l−q∧
V has a filtration with quotients

j∧
kerφi0...ip ⊗

l−q−j∧
H0(Ld|Di0...ip

), as

j = 0, ..., h0(Ld) − h0(Ld|Di0...ip
), which induces a filtration on the above complex

with quotients each of which is a tensor product of a fixed vector space

j∧
kerφi0...ip

with

...→
l−q+1−j∧

H0(Ld|Di0...ip
)⊗H0((B ⊗ (q − 1)Ld)|Di0...ip

)→
l−q−j∧

H0(Ld|Di0...ip
)⊗

H0((B ⊗ qLd)|Di0...ip
)→

l−q−1−j∧
H0(Ld|Di0...ip

)⊗H0((B ⊗ (q + 1)Ld)|Di0...ip
)→ ...

Note Kl−q−j,q(Di0...ip ,B|Di0...ip
,Ld|Di0...ip

) is the cohomology at the middle of the

above Koszul complex, so combining (8) with the above we get

′Ep,q
1 =

⊕
i0<i1<...<ip

l−q⊕
j=0

j∧
kerφi0...ip ⊗Kl−q−j,q(Di0...ip ,B|Di0...ip

,Ld|Di0...ip
)...(9)

We thus get the following lemma that relates Koszul Cohomology groups of the

smooth components to kernels and cokernels of maps involving Koszul Cohomology

groups of the normal crossing variety.

Lemma 2. Fix any integer l ∈ N. Then, there are two spectral sequences ′E and ′′E

with the same abutment with the following properties:
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′Ep,q
1 =

⊕
i0<i1<...<ip

l−q⊕
j=0

j∧
kerφi0...ip ⊗Kl−q−j,q(Di0...ip ,B|Di0...ip

,Ld|Di0...ip
)

′′E0,q
∞ = coker∂q and ′′Ep,0

∞ = ker∂p+1 with zeroes everywhere else on the ′E2 page

where the map ∂q : ′′Eq−1,0
q =

l∧
V ⊗Hq−1(B•0)→ ′E0,q

q = Kl−q,q(D,B,Ld) is the

only non-zero map on the ′′Eq page.

8 The Main Results

The main results are as follows.

Corollary 1. Suppose for each choice of q, we’re given a number sq such that

Kh0(Ld|Di0...ip
)−s,q(Di0...ip ,B|Di0...ip

,Ld|Di0...ip
) = 0 for all 0 ≤ s ≤ sq and for any

choice of i0 < ... < ip.

Then, for any q and l with 0 ≤ q ≤ n + 1 and l − q ≥ h0(Ld) − sq, we get

Kl−q,q(D,B,Ld) = 0 if q = 0 or 1 and Kl−q,q(D,B,Ld) ∼=
l∧
V ⊗ Hq−1(B•0) if

2 ≤ q ≤ n+ 1.

Proof. Fix any l with l − q ≥ h0(Ld)− sq. We then have

Kl−q−j,q(Di0...ip ,B|Di0...ip
,Ld|Di0...ip

) = 0 for all j ≤ h0(Ld)− h0(Ld|Di0...ip
),

and for j > h0(Ld) − h0(Ld|Di0...ip
) we have

j∧
kerφi0...ip = 0, which means by

Lemma 2

′′Ep,q
1 = 0 =′′ Ep,q

∞ ... (10)
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(10) tells us that Kl−q,q(D,B,Ld) = 0 if q = 0 or 1. By Lemma 2, (10) also tells

us that

∂q :
l∧
V ⊗Hq−1(B•0)→ Kl−q,q(D,B,Ld).

is an isomorphism for q ≥ 2

Corollary 2. In addition to assumptions in Corollary 1, suppose we set B = OD

and assume that H i(ODi0...ip
) = 0 for all i > 0 and i0 < ... < ip.

Then, we have

Kl−q,q(D,B,Ld) ∼=
l∧
V ⊗Hq−1(∆(D)) if 2 ≤ q ≤ n+ 1

where ∆(D) is the simplicial complex constructed using incidence information of

D (i.e. each Di0 is a 0-face, each Di0i1 is a 1-face, each Di0i1i2 is a 2-face, etc.).

Proof. The additional assumptions mean that B•0 gives us an acyclic resolution of

OD. So, in this case, H i(B•0) = H i(OD). Furthermore, by Remark 5.5 in [4],

H i(OD) ∼= H i(∆(D)). We’re done.

In other words, under these assupmtions, the behavior at the tail of a row in

the Betti table of (D,Ld) depends only on the combinatorics of how the pieces

Di0...ip intersect and on the behavior at the tail of a row in the Betti table of each

(Di0...ip ,Ld|Di0...ip
).

21



Remark 4. Recall n = dimD. Set Di = Proj C[x0, ..., xn+1]/xi−1 and D = D1 ∪

... ∪ Dn+2. Set B = OD. Then, ∆(D) = Sn, the n-sphere. We’re in the case of

Corollary 2, so H i(B•0) = H i(OD) ∼= H i(Sn,C) = C if i = 0 or n and is 0 for all

other values of i. Thus, by Corollary 2, Kl−q,q(D,Ld) = 0 where l ≥ h0(Ld)+q−sq.

In fact, we would be able to use the exact same argument for any normal crossing

variety D with H i(∆(D)) = 0 for any 1 ≤ i ≤ n− 1 for any n = dimD.

9 Applications

In this section, we use the upper semicontinuity of dimension of Koszul Cohomology

groups in flat families with constant cohomology to deduce vanishing statements for

asymtotic syzygies of smooth projective varieties. Specifically, we obtain results on

syzygies of smooth hypersurfaces of arbitrary dimension and smooth hypersurfaces of

general type in P3.

Calculation 1: Consider F ⊆ Pn+1 × P1 = Proj C[x0, ..., xn+1] × Proj C[y0, y1],

defined by y0f + y1g = 0, where f is a homogeneous degree n+ 2 polynomial cutting

out a smooth hypersurface in Pn+1, and g = x0x1...xn+1.

Then, F → P1 is a flat family where general fibers Ft for t 6= 0 are smooth Calabi-

Yau n-folds, and the special fiber F0 is a union of n+ 2 copies of Pn intersecting each

other in a spherical configuration.

Let’s prove vanishing statements on the special fiber F0. By Theorem 2.2 in

[2], Kp,q(Pn,OPn(−3),OPn(d)) = 0 if (q − 1)d − 3 ≥ p. Set h0(d) = h0(OPn(d)). By

duality of Koszul Cohomology groups, this means Kh0(d)−n−1−p,n+1−q(Pn,OPn(d)) = 0

if (q − 1)d− 3 ≥ p.
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Note that Euler characteristic is locally constant for the fibers of a flat family. In

addition, since we’re assuming d >> 0, by Serre Vanishing, the higher cohomologies

of all the fibers vanish. Lastly, P1 is connected, thus the h0 term is constant for all

fibers of F → P1. Set h to be this constant term.

Then, by Remark 4 and Corollary 2, we find for any fixed q with 0 ≤ n+1−q ≤

n+1 that Kh−n−1−p,n+1−q(F0,OF0(d)) = 0 if (q−1)d−3 ≥ p. By upper semicontinuity,

this means Kh−n−1−p,n+1−q(Ft,OFt(d)) = 0 if (q − 1)d− 3 ≥ p for a general fiber Ft.

Sinc, the dualizing sheaf KFt is OFt , by duality of Koszul Cohomology, we obtain

the following result.

Theorem 1. Let X be a general smooth degree n + 2 hypersurface in Pn+1. Then,

Kp,q(X,OX(d)) = 0 if p ≤ (q − 1)d− 3.

Remark 5. Before this paper, the best result on vanishing of asymptotic syzygies

of smooth Calabi-Yau varieties was Corollary 1.6 in [8], which states that for a

smooth Calabi-Yau n-fold X, Kp,q(X,OX(d)) = 0 for all p and q with p ≤ d− n and

q ≥ 2. So Theorem 1 is an improvement on that result in the particular case of X

being a smooth hypersurface.

Calculation 2: First, note that a general quartic K3 hypersurface in P3 has Pi-

card number 1. Fix a positive integer a. Consider F ⊆ P3 × P1 = Proj C[x0, x1, x2, x3]

× Proj C[y0, y1], defined by y0f+y1g = 0, where f is a homogeneous degree 4a polyno-

mial cutting out a smooth hypersurface in P3, and g = g1g2...ga where gi are a general

homogeneous polynomials of degree 4 each cutting out a smooth hypersurface in P3

with Picard number 1.
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Then, F → P1 is a flat family where general fibers Ft for t 6= 0 are smooth surfaces

of general type of genus
(
4a−1
3

)
, and the special fiber F0 = S1 ∪ ... ∪ Sa where each Si

is a smooth quartic K3 hypersurface in P3.

Let’s prove vanishing statements on the special fiber F0. We will use Theorem

1.3 in [9], which gives us a complete description of vanishing and non-vanishing of

syzygies of K3 surfaces.

Let L be a line bundle on a K3 surface S with L 2 = 2g − 2 where g is the

genus of any member of |L |. Note h0(L ) = g+ 1. By [11], the Clifford index of any

irreducible smooth curve C ∈ |L | is constant. Call this constant c. Then, Theorem

1.3 in [9] tells us that Kp,1(S,L ) = 0 if and only if p ≥ g − c− 1 = h0(L )− c− 2.

Assume that Picard number of S is 1.

By sections 1 and 2 in [10], setting H to be a generator of the Picard group of S,

we get c = H · (C−H)−2. In our case, S = Si and L = OSi
(d), thus, c+2 = 4d−4,

which means Kp,1(Si,OSi
(d)) = 0 if and only if p ≥ h0(OSi

(d)) − 4d + 4. Applying

Corollary 2 here, we obtain Kp,1(F0,OF0(d)) = 0 if and only if p ≥ h−4d+4, where

as in Calculation 1, h is defined to be the constant h0 term of all the fibers of the

flat family F → P1. We can apply Corollary 2 now to get

Theorem 2. Let X be a general smooth degree 4a hypersurface in P3 with a ≥ 2.

Then, X is a surface of general type with Kp,1(X,OX(d)) = 0 if p ≥ h0(d) − 4d + 4

where h0(d) = h0(OX(d)).

The above result complements the work of F. J. Gallego and B. P. Purnaprajna

on the syzygies of surfaces of general type in [8].
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