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Abstract

Octopus skin ‘sight’ and the evolution of dispersed, dermal light sensing in Mollusca

by

M. Desmond Ramirez

We now know that co-option, or reuse of ancestral components, plays a prominent

role in the evolution of emergent systems, like the reuse of gene regulatory networks in

the evolution of developmental programs for morphology. Do the evolutionary origins of

animal behaviors show evidence of modular reuse that we find at other levels of biological

organization? I found that the skin of Octopus bimaculoides is intrinsically light sensitive,

and that bright light causes colored chromatophore organs in octopus skin to expand, even

without input from the central brain or eyes. Because this Light-Activated Chromatophore

Expansion (or LACE) behavior relies on evolutionary novel chromatophore organs, LACE

is also an evolutionary novelty. As such, I can pinpoint its origin in evolutionary time

and ask whether the ability of mollusc skin to sense light existed prior to the evolution

of cephalopod chromatophores and LACE. I found expression of the same r-opsin based

phototransduction genes in both O. bimaculoides eyes and skin, and the spectral sensitivity

of LACE closely matches that of the r-opsin in octopus eyes, consistent with the hypothesis

that r-opsin phototransduction underlies LACE. The r-opsin phototransduction cascade can

be traced back to at least the last common ancestor of bilaterians, so did the reuse of the

cascade in octopus skin arise before, in time with, or after the evolution of cephalopod

chromatophores? After surveying 28 mollusc mantle transcriptomes for opsins, I found

that r-opsin cascade genes are expressed across the molluscs, from multiple species in each

of the major mollusc classes, and an ancestral state reconstruction suggests that the last

common ancestor of molluscs expressed r-opsin in its mantle. Taken together, these results

viii



suggest that the evolution of LACE required co-option of an ancient phototransduction

module, and that like the evolution of development and other emergent systems, reuse

may play a fundamental role in the macroevolution of animal behaviors.
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Chapter 1

Introduction

Animal behaviors are the ephemeral, emergent outputs of biology across multiple levels of

organization. From an evolutionary standpoint, animal behaviors are a key interface be-

tween genes and the environment, providing a conduit through which natural selection can

act on lower biological levels. Niko Tinbergen, one of the founding fathers of the field of

ethology (animal behavior) proposed his now famous ‘four questions’ to explain the ‘how’

and ‘why’ of an animal behavior. We need to not only study a behavior’s current use and

adaptive value, but also understand the contributions of the development of behavior over

an animal’s lifetime, the mechanisms that produce the behavior and the evolutionary his-

tory of the lineage of animals producing that behavior (Tinbergen 1963). While Tinbergen’s

questions isolated the role of history into just one of his questions, we also know that behav-

iors themselves evolve, and that the evolution of their development and their underlying

mechanisms create a vital foundation for evolutionary changes in behavior. While we have

spent many decades understanding the current utility and selective pressures that shape

animal behaviors, as a field we have neglected to consider Tinbergen’s other questions. For

the most part, we are just starting to explain 1) the specific mechanisms (e.g. genetic, neu-

robiological) that underlie most behaviors, and 2) how the evolution of those mechanisms

1



Introduction Chapter 1

have impacted behaviors across species and through macroevolutionary timescales.

Because there are currently so many unknowns, it is unclear how, and indeed, whether,

the evolution of behavior differs from evolution at other levels of biological organization.

For example, behaviors, as emergent properties, may evolve in a manner similar to other

emergent biological processes, like morphological development. The field of evolutionary

developmental biology (evo-devo) has made great strides in understanding how evolution

of developmental programs drives the evolution of morphology. Through studies in this

field, we now know that the genes that regulate development of something like an eye can

be shared across vast evolutionary time scales, even when eyes themselves have evolved

many times in different animal lineages, a concept called deep homology (reviewed in

Shubin et al. 2009). Deep homologies arise through the re-use, or co-option, of components

to build new traits, and this process of re-use is rampant in the evolution of development.

Do these same processes drive the evolution of other kinds of emergent systems, like animal

behaviors? If so, we might expect to find patterns of gene, cell, neural circuit or morphology

reuse and sharing in the evolution of new behaviors over vast evolutionary timescales,

as we see in the deep homology and co-option of gene regulatory networks that drive

development. This background leads to the overarching question of my dissertation: Can

we find deep homology and reuse in the evolution of a novel light-sensing behavior in

octopus skin?

I begin in chapter 2 by setting the stage for what we know about the a particular form

of extraocular light-sensing often referred to as the "dermal light sense," a review that

assembles molecular, physiological and behavioral data about dermal light sensing in 4

invertebrate phyla. From this work, it is clear that dispersed light sensing is pervasive in

these 4 phyla based on decades of behavioral data, but the molecular underpinnings are

essentially unknown.

In chapter 3 I show that octopus skin is intrinsically light sensitive, and in response to

2



Introduction Chapter 1

bright light, the pigmented organs in the skin, chromatophores, expand. Chromatophore

organs of this type are found only in the coeloid cephalopods (octopus, squid, and cut-

tlefish). The same phototransduction genes expressed in octopus eyes are also expressed

in their skin. Together, these data suggest that ancient r-opsin phototransduction genes

have been used for multiple light sensing purposes in multiple parts of the octopus body.

This reuse suggests that novel behaviors, like Light-Activated Chromatophore Expansion

(LACE), may arise through new combinations of evolutionarily old components (opsin pho-

totransduction pathway) and new components (the chromatophores themselves, which are

evolutionary novelties).

In chapter 4, I retrace the evolutionary history of light sensitive opsin proteins to ask

when the kernels of extant opsin diversity in bilaterians arose. I found that contrary to

expectations about the “simple” nature of early animals, I was able to infer that the ancestor

of all animals possessed 4 opsins, and that the last common ancestor of almost all bilaterians

must have possessed at least 9 different opsin types. Despite the very early origins of this

diversity, no extant bilaterian today has orthologs of all 9 original bilaterian duplicates.

Instead, the evolutionary history of opsins in animals is dynamic, with many gains and also

many losses.

Finally, in chapter 5, I wrap up by asking when r-opsin phototransduction cascade ex-

pression in mantle skin arose relative to the origins of the other major component of octopus

LACE, the chromatophores. I surveyed 28 molluscan transcriptomes for phototransduction

genes, and used ancestral state reconstruction to infer when r-opsins came to be expressed

in mollusc mantle skin. I was able to infer that r-opsin based light sensing is likely at least

as old as the last common molluscan ancestor. This result suggests that the multiple in-

dependent origins of eyes in bivalves and chitons, plus the LACE response in octopus skin

(Chapter 3) arose from genes that may have been present in the mantle of their most recent

common ancestor.

3



Introduction Chapter 1

1.1 Permissions and Attributions

1. Chapter 2 was first published in "Ramirez, M. D., Speiser, D. I., Pankey, M. S., & Oak-

ley, T. H. (2011). Understanding the dermal light sense in the context of integrative

photoreceptor cell biology. Visual neuroscience, 28(4), 265-279." Under copyright of

Cambridge University Press, 2011 and reprinted with permission.

2. Chapter 3 was first published in "Ramirez, M. D., & Oakley, T. H. (2015). Eye-

independent, light-activated chromatophore expansion (LACE) and expression of pho-

totransduction genes in the skin of Octopus bimaculoides. Journal of Experimental

Biology, 218(10), 1513-1520."; permission conveyed through Copyright Clearance

Center, Inc.

3. Chapter 4 was originally published in "Ramirez, M. D., Pairett, A. N., Pankey, M. S.,

Serb, J. M., Speiser, D. I., Swafford, A. J., & Oakley, T. H. (2016). The last common

ancestor of most bilaterian animals possessed at least nine opsins. Genome biology

and evolution, 8(12), 3640-3652." It is reprinted by permission of Society of Molec-

ular Biology and Evolution under Creative Commons License CC BY-NC.
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Understanding the dermal light sense in

the context of integrative photoreceptor

cell biology
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Understanding the dermal light sense Chapter 2

2.1 Abstract

While the concept of a dermal light sense has existed for over a century, little progress

has been made in our understanding of the mechanisms underlying dispersed photorecep-

tion and the evolutionary histories of dispersed photoreceptor cells. These cells historically

have been difficult to locate and positively identify, but modern molecular techniques, in-

tegrated with existing behavioral, morphological, and physiological data, will make cell

identification easier and allow us to address questions of mechanism and evolution. With

this in mind, we propose a new classification scheme for all photoreceptor cell types based

on two axes, cell distribution (aggregated vs. dispersed) and position within neural net-

works (first order vs. high order). All photoreceptor cells fall within one of four quadrants

created by these axes: aggregated/high order, dispersed/high order, aggregated/first or-

der, or dispersed/first order. This new method of organization will help researchers make

objective comparisons between different photoreceptor cell types. Using integrative data

from four major phyla (Mollusca, Cnidaria, Echinodermata, and Arthropoda), we also pro-

vide evidence for three hypotheses for dispersed photoreceptor cell function and evolution.

First, aside from echinoderms, we find that animals often use dispersed photoreceptor cells

for tasks that do not require spatial vision. Second, although there are both echinoderm

and arthropod exceptions, we find that dispersed photoreceptor cells generally lack mor-

phological specializations that either enhance light gathering or aid in the collection of

directional information about light. Third, we find that dispersed photoreceptor cells have

evolved a number of times in Metazoa and that most dispersed photoreceptor cells have

likely evolved through the co-option of existing phototransduction cascades. Our new clas-

sification scheme, combined with modern investigative techniques, will help us address

these hypotheses in great detail and generate new hypothesis regarding the function and

evolution of dispersed photoreceptor cells.

6
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Keywords Extraocular photoreceptors, Non-visual photoreception, Evolution, Phototrans-

duction, Invertebrates

2.2 Introduction

Light infiltrates almost every environment on Earth and strongly impacts most animals

lives. Animals detect light using sensors known as photoreceptor cells. Photoreceptor cells

are best known from the retinas of animal eyes, but they are also found outside the eyes,

where they are often called extraocular photoreceptor cells (EOPCs). EOPCs are found in

both eyed and eyeless animals, and in some cases, they confer a particular form of photore-

ception known as the ‘dermal light sense’. Millott (1968) defined the dermal light sense as

a widespread photic sense that is not mediated by eyes or eyespots and in which light does

not act directly on an effector. How is the dermal light sense employed by animals? Do

the same biochemical and physiological mechanisms underlie the dermal light sense in all

animals? How are the photoreceptor cells that confer the dermal light sense related to the

photoreceptor cells found in animal eyes? Answering these and other questions requires

knowledge about the structure and function of the dermal light sense in a wide variety of

animals.

Unfortunately, our understanding of the dermal light sense has not progressed much

since Millott́s (1968) work; it is clear that we still know relatively little about this form of

light perception. Although we have identified many behaviors that may be mediated by a

dermal light sense, in most cases, we have not identified the primary sensory cells and/or

biochemical pathways involved in these behaviors. Additionally, we know that many ani-

mals possess eyes, extraocular photo-organs, and perhaps also dermal photoreceptor cells,

but we often do not understand how the separate contributions of these specific systems or

photoreceptor cell types relate to particular behaviors. In fact, the term dermal light sense

7
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may itself be misleading, as it is unclear if the receptors that confer this sense are located

at or directly below the skin surface. Finally, we rarely know how many receptors are in-

volved in the dermal light sense, how these receptors are distributed in space, or whether

these receptors are primary sensory cells (like retinal photoreceptor cells) or fine processes

extending from higher-order neurons (Kennedy, 1960; Wiederhold et al., 1973).

Despite a wealth of unanswered basic questions regarding dermal photoreceptor cell

identity and function, recent advances in our understanding of the molecular basis of pho-

totransduction offer new ways to study and understand the dermal light sense. Thus, we

have three goals for this paper. First, we will clarify the meaning of the dermal light sense

by providing a new classification scheme for all photoreceptor cells. Next, we will present

data related to the following three hypotheses about dispersed photoreceptor cells: a) that

they are involved in behavioral tasks that do not require true spatial vision (i.e., the ability

to form images); b) that they do not express morphological features that enable retinal

photoreceptor cells to maximize light gathering power or restrict the direction from which

light is collected, such as expanded membrane surface areas or pigmentation, respectively;

and c) that dermal light senses have evolved a number of times in animals, and, in some

instances, may have originated through the co-option of existing phototransduction path-

ways. Finally, we will discuss the implications our hypotheses hold for the evolution of der-

mal light photoreceptor cells and illustrate how detailed comparisons between objectively

categorized photoreceptor cells deepen our understanding of the evolution of photosensory

systems in general.

2.3 (Re)defining the dermal light sense

A first goal for this review is to outline a new classification scheme for photoreceptor

cells that relies on both a receptors’ anatomical distribution within an animal (e.g., dis-

8
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persed or aggregated) and its position within a neural network (e.g., primary/first order or

higher order). A new and objective way to group photoreceptor cells is necessary to make

more meaningful comparisons between different cells. We have purposely excluded other

methods of receptor classification from our scheme because they often do not apply to the

cells conferring the dermal light sense and may rarely apply to EOPCs in general. One such

method of classification divides receptors by the types of information that they gather about

light, for example, temporal (changes in light intensity over time), directional (differences

in intensity in a gradient), or spatial (true image formation). Furthermore, these types of

information are also often thought to be linked to particular structures or photoorgans; for

example, it is thought that spatial vision is generally restricted to eyes however, see Hypoth-

esis I in the section titled Hypotheses and data for dispersed photoreception. Photoreceptor

cells have also been traditionally categorized as either ciliary or rhabdomeric (sensu Eakin,

1972), but dermal photoreceptor cells often do not possess either of these types of morpho-

logical modification however, see Hypothesis II in the section titled Hypotheses and data

for dispersed photoreception. We believe that the characters we have chosen, distribution

and neural identity, can be used to describe a wider set of light sensitive neurons than these

prior classification schemes. By explicitly defining the photoreceptor cells that confer the

dermal light sense, we will be better able to explore functional and evolutionary differences

and similarities between receptor cell types and propose specific hypotheses regarding the

origin and evolution of dermal light sense photoreceptor cells.

We propose that all photoreceptor cells can be classified using two axes (see Fig. 1), pro-

vided that we rely on characters of the photoreceptor cells themselves and not on characters

of the organs to which these cells might belong. The first axis in our classification scheme is

continuously varying and describes the extent to which photoreceptor cells are dispersed or

aggregated on the surface of an animal’s body. While elaborating specific details is beyond

the scope of the current contribution, we propose that this dispersed versus aggregated

9
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axis should be fully quantifiable using spatial point pattern statistics (e.g., Diggle, 2003).

For example, a null model in spatial statistics is complete spatial randomness (CSR), and

departures from CSR can occur by aggregation or dispersion (repulsion). We imagine that

photoreceptor cell distribution patterns can thus be quantified on a continuous axis, rang-

ing from highly aggregated to highly dispersed. In addition, whether photoreceptor cells

are aggregated or dispersed could be the subject of discrete statistical tests. Photoreceptor

cells that are relatively close together, like those in eyes, are strongly aggregated. In con-

trast, other photoreceptor cells may be dispersed across the surface of an animal’s body and

rarely occur next to each other. Some photoreceptor cells, like the paired pigmented cells

used for directional photoreception in animals such as acoel worms or receptors associated

with the eyespots of some spiralians, will likely be statistically indistinguishable from CSR

and will be neither statistically aggregated nor dispersed. Classifying photoreceptor cells by

the extent of their dispersion also offers a more quantitative definition of what constitutes

an eye. For example, eyes can be described as collections of aggregated photoreceptor cells

that provide spatial vision (Land & Nilsson, 2002).

The second axis in our classification scheme has two discrete states that identify recep-

tors as either first- or higher-order neurons. First-order neurons are primary sensory cells

that transduce external stimuli into electrical signals, then pass these signals onto other neu-

rons via synapses. Classic retinal photoreceptor cells, like rods and cones in the vertebrate

eye, fit this description. While the best-characterized photoreceptor cells are first-order

neurons, higher-order neurons can also be light sensitive. These higher- order neurons

(or ‘interneurons’) have many synaptic connections with other neurons and can both send

and receive electrical signals. Many higher-order neurons do not directly receive sensory

stimuli from outside the animal. Nevertheless, photoreceptive interneurons have been de-

scribed in a wide range of animals: examples include ipRGCs in vertebrates (Provencio et

al., 2000), certain neural tissues in mammals (Tarttelin et al., 2003), abdominal ganglia in
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the gastropod molluscs Aplysia (Arvanitaki & Chalazonitis, 1961) and Onchidium (Hisano

et al., 1972a), and abdominal ganglion cells in arthropods such as crayfish (Kennedy, 1960)

and lobsters (Wilkens & Larimer, 1972).

Taken together, these two axes for receptor classification produce four separate quad-

rants (Fig. 1). As described in the preceding paragraphs, photoreceptor cells can fall into

one of two distinct categories of neural identity on the y-axis, either first order or higher

order, and can vary continuously in their amount of dispersion on the x-axis. Quadrant I

contains aggregated high-order neurons, such as those found clustered in ganglia from the

marine gastropod Onchidium (Hisano et al., 1972a) and the crayfish Procambarus clarkii

(Kennedy, 1963). These receptors tend to be morphologically similar to the other neu-

rons in the ganglia where they occur. Quadrant II houses dispersed high-order neurons.

Curiously, we have yet to identify any examples of photoreceptor cells that are both dis-

persed and higher order. Quadrant III houses aggregated first-order neurons typified by

the retinal photoreceptor cells used for image formation in many animal eyes. This quad-

rant also contains the photoreceptor cells found in well-characterized extraocular photo-

organs like frontal organs/parietal eyes in non- mammalian vertebrates and parolfactory

glands/epistellar bodies in cephalopods. These cells are aggregated first-order neurons

that often bear classic retinal photoreceptor cell morphologies (reviewed in Nishioka et al.,

1962, 1966; Adler, 1976). Finally, Quadrant IV contains cells that are dispersed first-order

neurons. We argue that the receptors that confer the dermal light sense belong in this

fourth quadrant. As we are primarily interested here in defining and studying the dermal

light sense, the remainder of this review will focus solely on these dispersed primary sen-

sory cells. Henceforth, we will refer to these cells as ‘dispersed photoreceptor cells,’ part of

a ‘dispersed’ photoreception system and avoid the less specific terms ‘dermal’ and ‘dermal

light sense.’ Dispersed first-order neurons in Quadrant IV are typified by the sensory neu-

rons that tile the body wall of Drosophila melanogaster larvae (Xiang et al., 2010). More
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examples of dispersed photoreceptor cells may be found in Table 1.

Finally, we present three notes concerning the scope of this review. a) Although many

larval photo-organs and photoreceptor cells can be included in our classification scheme,

for space considerations, we are restricting our review to photoreceptor cells found in

adult metazoans. b) For this review, we define photoreceptor cells as the neurons that

convert light into an electrical signal via a signal transduction cascade (per Richter et al.,

2010). This definition restricts our discussion to neural cells; however, we must note that

there are other types of cells that also transduce light. Instead of relaying an electrical

signal, this type of cell, called an effector cell, most often converts light directly into me-

chanical energy. For example, the alga Chlamydomonas uses light-sensitive ion channels

(channelrhodopsin-1 and -2) to directly drive the flagellar beating responsible for positive

and negative phototaxis (reviewed in Hegemann, 2008). It is worthwhile to consider the

functions and evolution of effector cells, but for the purpose of this review, we will not

consider them further. c) Finally, we will not discuss other photopigments besides opsins,

like cryptochromes. Cryptochromes are well known to mediate circadian rhythms in many

organisms and can be found in numerous cell types (reviewed in Cashmore et al., 1999).

However, while cryptochromes are clearly associated with EOPCs, these cells are usually

aggregated higher-order cells, and not dispersed photoreceptor cells, and are thus beyond

the scope of this review.

2.4 The molecular basis of photoreceptor function

Although our understanding of dispersed photoreception may have changed little since

1968, enormous progress has been made toward understanding the biochemical and molec-

ular basis of light sensitivity in animals. This molecular synthesis has facilitated deeper in-

sights into photoreceptor cell morphology, physiology, and evolution (Arendt, 2003). While
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the molecular synthesis was forged primarily from data on retinal photoreceptor cells, we

assume here that all photoreceptor cells, including those underlying dispersed photorecep-

tion, may be considered within the same framework. This perspective generates testable

hypotheses about the genetics and physiology of dispersed photoreception and provides

the potential for a more unified understanding of the evolution of all photoreceptor cells

in animals (see Table 1). Photoreceptor cells can be categorized by the degree of similarity

between the molecular components that make up their phototransduction cascades. Photo-

transduction begins with a photon of light being absorbed by a visual pigment that consists

of a chromophore (often the vitamin A derivative retinal) bound to a seven transmem-

brane domain G-protein coupled receptor known as an ‘opsin.’ Metazoan opsins appear to

be monophyletic and to have originated before the common ancestor of Cnidaria-Bilateria

(Plachetzki et al., 2007; Suga et al., 2008). Based on recent reconstructions of opsin phy-

logeny, opsins can be categorized into four separate clades defined by the G-protein with

which they interact. The resulting categories include Gt-opsins, Gq-opsins, Gs-opsins, and

Go-opsins. The well-characterized Gt- and Gq-opsins are generally found in cells with cil-

iary or rhabdomeric morphology, respectively, and are thus often referred to as ‘c-opsins’

and ‘r-opsins’ (Arendt & Wittbrodt, 2001). A third clade, the Gs-opsins (or ‘cnidops’) is

known only from cnidarians. The fourth clade includes Go-opsins, which were first dis-

covered in scallop ciliary photoreceptor cells (Kojima et al., 1997). Although relatively

poorly known, other Go-opsins have been found in lizard parietal eyes (Su et al., 2006),

amphioxus ocelli (Koyanagi et al., 2002), and mammalian neural tissue (Tarttelin et al.,

2003). Furthermore, genomic surveys indicate that Go-opsins may be found across Meta-

zoa (unpublished observation).

The four opsin clades are each associated with distinct sets of downstream secondary

messengers and ion channels. For example, Gt-opsins activate transducin, which signals

through a cyclic nucleotide second messenger that closes cyclic nucleotide gated (CNG)
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ion channels (Fu & Yau, 2007). In contrast, Gq-opsins involve the secondary messenger in-

ositol triphosphate that leads to intracellular calcium release and the opening of transient

receptor potential cation (TRPC) channels (Hardie, 2001). In a box jelly, the Gs-opsin cas-

cade involves adenylate cyclase (AC) (Koyanagi et al., 2008), and in the hydrozoan Hydra,

a closely related opsin colocalizes with CNG (Plachetzki et al., 2010). Finally, although the

majority of known photoreceptor cells use opsin-based phototransduction cascades, other

methods of light detection exist. For example, lite-1 and its homologue, Gr28b, are light-

sensitive gustatory receptors in Caenorhabditis elegans and D. melanogaster, respectively

(Edwards et al., 2008; Xiang et al., 2010). Interestingly, lite-1 and Gr28b use a mix of

secondary messengers and ion channels; for example, lite-1 interacts with Gi/o-proteins,

guanylate cyclase, and cGMP to open CNG ion channels (Liu et al., 2010), while Gr28b uses

TRPA1 ion channels (Xiang et al., 2010). As these unusual results clearly suggest, discov-

ering previously unknown photoreceptor cells may reveal unique molecular solutions for

detecting light. Elucidating distinct phototransduction cascades contributes to a mechanis-

tic understanding of variation in photoreceptor cell physiology and vice versa, as the state

change of the ion channel following phototransduction changes the membrane potential

of the cell. The direction of the voltage change depends on the type of phototransduction

pathway involved. Using this link between biochemistry and physiology, we can generate

testable hypotheses about which phototransduction cascade a cell utilizes through electro-

physiological investigations of photocurrents using intracellular or patch- clamp recordings

(e.g., Nasi & Gomez, 2009). For example, hyperpolarization (an increase in membrane po-

tential) is seen in cells employing the Gt-opsin cascade, which involves CNG ion channels

and phosphodiesterase (PDE). Depolarization (decrease in membrane potential) is seen in

cells using the Gq-opsin cascade, and more specifically, the TRPC ion channel. However,

membrane depolarization is also associated the Gs-opsin pathway, which uses CNG instead

of TRPC, but differs from the Gt-opsin pathway by using AC instead of PDE. Using either
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PDE or AC alters whether the second messenger decreases (PDE) or increases (AC). How

the second messenger acts on CNG ion channels depends on the direction of change in

second messenger concentration and can cause hyperpolarization (for Gt-PDE cells) or de-

polarization (in Gs-AC cells) (see Su et al., 2006). Thus, while physiological data by itself

can inform hypotheses about the underlying molecular machinery for phototransduction,

integrating other types of data allows us to better understand photoreceptor cell functions

and compare functions across cells types to address evolutionary questions.

2.5 Hypotheses and data for dispersed photoreception

Armed with our current understanding of the molecular basis of photoreception, we can

incorporate molecular techniques, such as antibody staining and in situ hybridization, with

existing data on behavior, morphology, and electrophysiology to locate and identify differ-

ent photoreceptor cell types. By integrating data from different experimental approaches

and taxa, we will gain a more comprehensive understanding of dispersed photoreception

that we can use to form specific hypotheses about its mechanisms and evolution. Although

there are data for dispersed photoreceptor cells from many taxa, we have chosen to focus on

four phyla that we believe currently provide the least incomplete data sets. In this section,

we will present data from the literature that address three hypotheses regarding dispersed

photoreceptor cells. Before embarking, however, it is worth defining spatial vision, a key

idea for two of our hypotheses. An organ that provides spatial vision must be able to form at

least a crude image and so must possess two or more photoreceptor cells (Land & Nilsson,

2002). This strict definition of spatial vision excludes cases where a single photoreceptor

cell gathers directional information about light and allows an animal to move up or down

a light gradient.
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2.5.1 Behaviors mediated by dispersed photoreceptor cells

Hypothesis I

Dispersed photoreceptor cells are used for many different tasks, but rarely any that

require true spatial vision.

Mollusca Behaviors mediated by dispersed photoreceptor cells are relatively well docu-

mented within the mollusks. These behaviors include phototaxis, which is the directional

movement of an animal towards or away from light (Jekely, 2009), and the ‘shadow re-

sponse,’ which describes an animal’s defensive response to a sudden decrease in illumina-

tion. Neither of these tasks require an image-forming eye, only the ability to detect broad

spatial or temporal differences in light intensity. Eyeless bivalves display both phototaxis

and a shadow response. Lasaea rubra, an eyeless lamellibranch, is negatively phototactic;

photosensitivity is located at the animals’ foot, not the relatively small and immobile siphon

(Morton, 1960). However, in a number of other eyeless lamellibranchs, like Mya (Hecht,

1919; Light, 1930) and Spisula (Kennedy, 1960), siphon retraction in response to sudden

increases or decreases in illumination is well documented. In these bivalves, the siphon tip

is the most sensitive to light, although reduced responses can be elicited from other parts of

the siphon (Light, 1930). Gastropods also use dispersed photoreceptor cells for phototaxis

and a shadow response. For example, the pond snail Lymnaea stagnalis orients positively

to light and withdraws its head and foot under its shell when shaded (Willem, 1892; Liche,

1934, as cited in Duivenboden, 1982; Pieron, 1911; Dawson, 1911, as cited in Cook, 1975).

These responses are observed even when an animal has been blinded or had its eyes and

tentacles denervated (Cook, 1975, but see also Stoll, 1972, 1976; Duivenboden, 1982).

Nassarius reticulatus also retracts its siphon and lowers its shell in response to shadows;

again, both responses persist after eye removal (Crisp, 1972). Similarly, in Onchidium ver-
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ruculatum, the shadow response persists following removal of stalk and dorsal eyes, but

not after the removal of the labial palps and peripheral region of the mantle (Hisano et

al., 1972b). Photosensitive central nervous system neurons in Onchidium do not respond

to sudden changes in light and thus cannot contribute to the shadow response (Hisano

et al., 1972b). Finally, siphons isolated from Aplysia californica habituate to both electri-

cal stimuli as well as light, suggestive of dispersed photoreception (Lukowiak & Jacklet,

1972). In polyplacophoran mollusks (or ‘chitons’), dispersed photoreceptor cells again ap-

pear to govern both phototaxis and a shadow response. In the eyeless Chiton tuberculatus,

younger and older animals are negatively and positively phototactic, respectively; photo-

sensitivity is likely conferred by dispersed receptor cells in the girdle and aesthetes, which

are a set of projections from the peripheral nervous system that fill narrow channels in the

dorsal shell plates (Arey & Crozier, 1919). Negative phototaxis has also been observed in

a number of other eyeless chitons, including Acanthochiton spiculosus (Grancher, 1920),

Ischnochiton purpurascens (Grancher, 1920), and Ischnochiton maorianus (Boyle, 1972).

Nearly all chitons, including those without eyes, also display a defensive shadow response

(Arey & Crozier, 1919; Boyle, 1972; Speiser et al., 2011), at times to very small changes

in illumination, such as that caused by a fly passing overhead (Hyman, 1967). Dispersed

photoreception may also be present in cephalopods. Chromatophores, the pigmented neu-

romuscular organs responsible for dermal color patterning in these animals, may directly

respond to light; however, descriptions of this phenomenon are minimal (Steinach, 1901 as

cited in Steven, 1963). Chromatophores in denervated or low motor tone skin respond to

brief flashes of light, after a 1 s delay, and in whole animals, populations of chromatophores

in illuminated skin respond by expanding, whereas shaded skin pales (Packard & Brancato,

1993).

As demonstrated by the above examples, dispersed photoreception may be prevalent

within mollusks. Furthermore, dispersed photoreceptor cells in this phyla mediate be-
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haviors that are clearly important for an individual’s survival, such as phototaxis and the

shadow response Because these behaviors can be evoked in animals that naturally lack eyes,

or even in experimentally blinded animals, it is evident that they do not rely on photorecep-

tor cells that confer spatial vision, a finding consistent with our hypothesis that dispersed

photoreceptor cells generally mediate behaviors that do not require true spatial vision.

Cnidaria Among the eyeless Cnidaria, behavioral responses to light vary (reviewed in

Martin, 2002). In the anthozoan sea anemone Metridium senile, isolated mesenteries con-

tract under light, even after anesthetization with magnesium chloride, which suggests that

the parietal muscle may be directly photosensitive (Bohn, 1906 as cited in North, 1957;

North & Pantin, 1958; Marks, 1976). Another sea anemone, Calamactis praelongus, has

concentrations of nerves associated with regions of translucent skin in its oral disk and

tentacles (Marks, 1976). Like Metridium, Calamectis also shows light sensitivity by some

muscle cells, which leads to column bending. They can also detect light with sensory cells

located near other muscles that are not themselves light sensitive (Marks, 1976). Yet an-

other anemone, Anthopleura elegantissima, exhibits phototactic behavior correlated with

the presence of symbiotic zooxanthellae (Pearse, 1974). This species (A. elegantissima) may

also tune the photosynthetic behavior of its symbiotes in response to longterm changes in

light conditions (Shick & Dykens, 1984). A related anthozoan, Anthopleura xanthogram-

mica, displays a range of wavelength-dependent behaviors: different wavelengths of UV

and visible light are associated with specific behaviors such as tentacle flexion, tentacle

retraction, and oral disk flexion (Clark & Kimeldorf, 1971).

So-called dispersed responses to light in animals without pigmentation or eyes are also

known from polyps of each of the four Cnidarian classes (reviewed in Martin, 2002). For ex-

ample, even though the hydrozoan Hydra magnipapillata lacks eyes or ocelli, dark-adapted

animals display a series of predictable and repeatable postures that culminate in a tight
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retraction of the animal into its most condensed state upon presentation with bright light

(Passano & McCullough, 1962; Tardent & Frei, 1969). Overall, behaviors mediated by

dispersed photoreceptor cells in Cnidaria are consistent with our behavioral hypothesis,

as they mostly consist of phototactic movements and responses to changes in illumination.

Furthermore, since many Cnidaria lack eyes entirely in one or more life stage, at least some

of these behaviors cannot rely on photoreceptor cells that confer spatial vision.

Echinodermata Light-influenced behaviors are well documented in echinoderms. These

responses include phototaxis and a shadow response, as observed earlier in mollusks, as

well as changes in pigmentation, podia extension and withdrawal, spine movement, cov-

ering, conspecific aggregation, and dark shelter seeking (see Millott, 1975). Many echin-

oderms have a classic shadow response, but brittle stars are also negatively phototactic

and react strongly to direct illumination by moving towards darker areas (Cowles, 1910;

Hendler, 1984). Several sea urchin species also use spatial information to detect and crawl

towards (or away) from dark targets of certain sizes (Blevins & Johnsen, 2004; Yerramilli

& Johnsen, 2010). Interestingly, the two urchin species in the above studies had different

numbers and densities of spines, and the species with the more densely packed spines was

able to detect smaller targets. Thus, spatial resolution in sea urchins may correlate with

spine spacing, meaning that dispersed photoreceptor cells in urchins may act like the in-

dividual ommatidia of a compound eye spread across an entire animal’s body (Woodley,

1982; Yerramilli & Johnsen, 2010). Brittle star chromatophores may serve a function simi-

lar to sea urchin spines, at least when it comes to light perception: the chromatophores are

positioned at the skin surface and it is possible that they screen underlying photoreceptor

cells in a manner that facilitates spatial vision (Aizenberg et al., 2001).

Unlike the other animals discussed thus far, sea urchins contradict our behavioral hy-

pothesis by demonstrating that dispersed photoreceptor cells can provide spatial vision.
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Although further verification is necessary, brittle stars may provide a second counterex-

ample to our hypothesis. Nevertheless, the most common light responses in echinoderms,

phototaxis and shadow responses, do not necessarily require cells or organs specialized for

spatial vision.

Arthropoda Finally, although behaviors mediated by EOPCs have been reported in arthro-

pods, behaviors specifically attributed to dispersed photoreception are rare. Some butter-

flies use a small set of EOPCs located at the end of their abdomens to control copulation in

males and oviposition in females (Arikawa et al., 1997; Arikawa & Takagi, 2001). Recently,

Xiang et al. (2010) determined that some light avoidance behaviors in D. melanogaster

larvae are controlled by neurons that tile the body wall. In particular, these dispersed

neurons mediate negative phototaxis in response to high-intensity short- wavelength light

(blue-UV). Although data within Arthropoda are limited, the examples above demonstrate

behaviors that are mediated by light intensity and wavelength, not spatial information, and

are thus consistent with our behavioral hypothesis.

2.5.2 Morphology and neurophysiology of dispersed photoreceptor

cells

Hypothesis II:

Dispersed photoreceptor cells are rarely used for true spatial vision and so should not

have the morphological features that allow other photoreceptor cells to maximize light

gathering power or restrict the direction from which light is collected, such as expanded

membrane surface areas or pigmentation, respectively.
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Mollusca Only a handful of dispersed photoreceptor cells have been identified in mol-

lusks, so the morphology of these cells is not well established. Within bivalves, potential

photoreceptor cells were identified by morphology in siphons from the clam Mya, but their

presence has not been confirmed by other means (Light, 1930). These cells are similar in

structure to phaosomes, photoreceptor cells best known from annelids that have a central

intracellular cavity filled with large microvillous membranes (Uhlich et al., 1970). Pallial

and peripheral siphonal neurons showed both excitatory and inhibitory response to light

in the surf clam Spisula (Kennedy, 1960). However, the author could not determine if the

recorded neurons were primary sensory cells responding directly to light or were higher-

order cells responding to input from other photoreceptor cells.

Within the gastropods, sensory-type cells in N. reticulatus were identified in the siphon,

but it is not clear if these cells function as photoreceptor cells (Crisp, 1972). Potential

photoreceptor cells have also been identified in the tentacles, lips, and foot of Lymnaea

(Zylstra, 1971). These cells possess a few (1-3) cilia, lie below the epidermal surface,

and project dendrites to the surface between epidermal cells (Zylstra, 1971). The firing of

inferior pedal nerves in Lymnaea are inhibited by light, although it is again not clear whether

the recorded nerves are themselves primary sensors (Chono et al., 2002). Based on these

limited data, the morphologies of putative photoreceptor cells in mollusks are consistent

with our morphological hypothesis for dispersed photoreceptor cells. For example, the

putative photoreceptor cells described above lack pigmentation and are not associated with

pigment cells. Many of these cells do possess cilia or elaborated microvilli, however, which

are morphological modifications associated with enhanced receptor sensitivity.

Cnidaria Currently, there are no morphological studies of putative dispersed photore-

ceptor cells in Cnidaria, but neurophysiological experiments have confirmed and localized

neural responses to light in this phylum. Marks (1976) recorded consistent pulses from the
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nerve net of Calamectis when light was directed at the upper portion of this anemone. He

subsequently focused the light on 1-mm diameter spots, which occasionally evoked a sim-

ilar neurophysiological pulse, although only when light was shone on the outer margin of

the oral disc, and then only with longer exposure times than when the whole upper portion

was illuminated. The specific sensory cells involved in this light response were not identi-

fied. An experiment on A. elegantissima (Sawyer et al., 1994) suggested that this animal’s

light response is conferred by endodermal cells, which runs counter to the observation that

photoreceptor cells are generally confined to the ectoderm. Due to the sparseness of the

data available in Cnidaria, it is difficult to draw any conclusions about dispersed photore-

ceptor cell morphology in these animals. Many cnidarians are unpigmented and lack the

discrete pigment cells that are often associated with other types of photoreceptor cells. In

this way at least, dispersed receptors in cnidarians are consistent with our morphological

hypothesis.

Echinodermata The morphological basis of dispersed photoreception in echinoderms is

perhaps best understood in brittle stars (Ophiuroidea). The calcite skeleton of the brittle

star Ophiocoma wendtii includes plates that cover the arms and form a three-dimensional

mesh with relatively regular small openings called stereom. Within the dorsal arm plates

in O. wendtii and other photo-responsive brittle stars, some stereom contain transparent

lens-shaped objects. It is hypothesized that these ‘microlenses’ focus light onto bundles of

neurons; it is also thought that they are actively shaded in bright environments by nearby

chromatophores (Hendler & Byrne, 1987; Aizenberg et al., 2001). Extracellular recordings

from the O. wendtii radial nerve cord confirm that photoreception occurs within this ani-

mal’s arms (Cobb & Hendler, 1990). However, it is unknown whether the neurons that lie

underneath the stereom are actually photosensitive. Ciliated cells at the tips of the arms

of the brittle star Ophiura ophiura have also been identified as putative photoreceptor cells
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(Cobb & Moore, 1986). No recordings have been taken from these cells in either O. ophiura

or O. wendtii due to the technical difficulty of accessing them under the skeleton (Cobb &

Hendler, 1990). Like the brittle star stereom, sea urchin spines may allow dispersed pho-

toreceptor cells to gather spatial information (Yerramilli & Johnsen, 2010). As in most

echinoderms, relatively little is known about the location of sea urchin photoreceptor cells;

however, recent evidence suggests that these cells may be found in sea urchin tube feet

(Lesser et al., 2011).

Our morphological hypothesis predicts that dispersed photoreceptor cells will lack elab-

orated membranes and/or associations with pigmented cells because they are not used for

spatial vision. As we have outlined earlier, behavioral studies indicate that dispersed pho-

toreceptor cells in echinoderms may gather information that facilitates spatial vision. Al-

though there have been no detailed morphological studies of dispersed photoreceptor cells

in this phylum, these cells are often associated with pigmented cells. Thus, the morphology

of dispersed photoreceptor cells in echinoderms is inconsistent with what we see in other

phyla, but it is possible that echinoderms have evolved a unique method for gathering

spatial information that relies on dispersed photoreceptors cells.

Arthropoda There is limited evidence for dispersed photoreception among arthropods,

but the examples we do know about provide us with our most detailed understanding of

dispersed photoreceptor cell morphology. In the first example, dispersed photoreceptor

cells in the butterfly Papilio xuthus have been described in microscopy studies. Here, there

are four photoreceptor cells located near the Papilio genital region, two cells per side, asso-

ciated with specific male or female anatomic structures (Arikawa et al., 1980). These cells

are similar in structure to phaosomes, which are annelid photoreceptor cells with large

intracellular microvillous membranes (Miyako et al., 1993; Arikawa & Miyako-Shimazaki,

1996). From extracellular recordings, we know that Papilio’s dispersed photoreceptor cells
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respond to flashes of light with a pattern of rapid firing, which decreases in frequency as

light intensity decreases (Arikawa & Aoki, 1982). Ablation of these photoreceptor cells

dramatically affects both male copulation and female oviposition behaviors (Arikawa et

al., 1997; Arikawa & Takagi, 2001).

In a second example, green fluorescent protein expression in D. melanogaster larvae

showed a set of photoreceptor cells (called class IV dendritic arborization neurons), which

are tiled across the surface of their body wall; the dendritic arbors of these neurons fill

much of the space between cell bodies (Grueber et al., 2002; Xiang et al., 2010). Short-

wavelength light directed at these cells generated increased signals of the calcium indicator

GCaMP3, which indicated that these cells directly respond to light. Genetic ablation of

the class IV dendritic arborization neurons also decreased the light avoidance response of

Drosophila larvae, while expression of channelrhodopsin-2 and stimulation with green light

was sufficient to increase light avoidance in these animals, even when their larval eyes

(Bolwig organs) were ablated (Xiang et al., 2010). Taken together, these results clearly

indicate that the class IV dendritic arborization neurons are required for D. melanogaster

larvae to avoid short wavelength light.

We hypothesize that dispersed photoreceptor cells lack the morphological modifications

commonly seen in photoreceptor cells that provide spatial information. Consistent with our

hypothesis, the dispersed photoreceptor cells in the two arthropods described above lack

pigmentation. However, these cells do possess elaborated membranes. Expanded mem-

brane surface area increases the number of visual pigment molecules potentially expressed

by a cell, which in turn increases the proportion of available photons that a photorecep-

tor can gather. If a higher proportion of photons are collected by a photoreceptor, the

photoreceptor is considered to have a higher sensitivity. It is evident then that dispersed

photoreceptor cells in arthropods are modified so that their sensitivity is improved, but, be-

cause they lack any association with pigmented cells, it is unlikely that they gather spatial
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information. Thus, dispersed photoreceptor cell morphology in arthropods is consistent

with our hypothesis that these cells are not used for spatial vision.

2.5.3 Molecular basis of dispersed photoreception

Hypothesis III:

Dispersed photoreception systems originated a number of times during evolution and

may have co-opted existing phototransduction pathways.

Mollusca With the exception of the pond snail Lymnaea and the cuttlefish Sepia, the pho-

totransduction pathway genes involved in dispersed photoreception have not been iden-

tified in mollusks. In the gastropod L. stagnalis, the shadow responses of both sighted

and blinded snails are not affected by a TRPC channel inhibitor, suggesting that the r-

opsin (Gq-opsin) phototransduction pathway does not contribute to dispersed photorecep-

tion in this species (Pankey et al., 2010). However, the shadow response in this species

is significantly hindered by exposure to the CNG channel inhibitor L-cis-diltiazem, which

suggests that dispersed photoreception in Lymnaea is provided by CNG-dependent pho-

toreceptor cells (Pankey et al., 2010). Based on consistent, observed associations between

TRPC channels and light-induced cell membrane depolarization and between CNG chan-

nels and light-induced membrane hyperpolarization, these results indicate that a c-opsin

(Gt- or Go- opsin) phototransduction cascade is used by Lymnaea dispersed photoreceptor

cells. In contrast, the opsin messenger RNAs (mRNAs) expressed in the skin of the cuttlefish

Sepia officinalis are similar to known cephalopod r-opsins (Mathger et al., 2010).

Previous investigations into the molecular basis of phototransduction in the retinal cells

of Lymnaea (Chrachri & Nelson, 2005; Sakakibara et al., 2005) and Sepia (Brown & Brown,

1958; Bellingham et al., 1998) indicate pathways initiated by r-opsin (Gq- opsin). The ob-
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servation that Sepia dispersed photoreceptor cells, like the retinal photoreceptor cells, rely

on r-opsin suggests that retinal and dispersed photoreceptor cells in this animal share a

common photoreceptor ancestor. In contrast, the use of CNG ion channels, instead of TRP

channels, by dispersed photoreceptor cells in Lymnaea suggests independent origins for

dispersed and retinal photoreceptor cells in this snail. Finally, although there is insufficient

information at this point about dispersed phototransduction cascades in other mollusks

to generalize more broadly, Lymnaea and Sepia appear to use different phototransduction

pathway genes for dispersed photoreception. This, combined with the differences between

the phototransduction cascades employed by Lymnaea dispersed and retinal photorecep-

tor cells, suggests different evolutionary origins of dispersed photoreceptor cells in these

groups.

Cnidaria The molecular components of dispersed photoreceptor cells have recently been

determined in H. magnipapillata (Plachetzki et al., 2007; Plachetzki et al., 2010). These

components in Hydra are similar to those involved with retinal cell phototransduction in

the cubozoan (or ‘box jelly’) eye (Koyanagi et al., 2008; Kozmik et al., 2008). The Hydra

genome contains multiple opsin genes that, together with opsins from other cnidarians,

form a distinct clade called cnidops (Plachetzki et al., 2007; but see Suga et al., 2008;

Plachetzki et al., 2010). In situ hybridization indicates that these opsins are expressed

in neurons throughout Hydra polyps, particularly those surrounding the hypostome (the

apical region near the Hydra mouth). This pattern of opsin expression is consistent with

the involvement of dispersed opsin-expressing photoreceptor cells in the light-induced con-

traction response observed in these animals. In addition, other phototransduction genes in

Hydra, including CNG (Plachetzki et al., 2010), are co-expressed in the same cells as opsin.

Behavioral assays further support a role for CNG in cnidarian phototransduction: the CNG

channel inhibitor l-cis-diltiazem ablates the light-induced contraction response (Plachetzki
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et al., 2010). Finally, retinal photoreceptor cells in cubozoan eyes employ a previously un-

known phototransduction pathway wherein cnidops initiates a Gs-AC cascade that leads

to an increase of cAMP (Koyanagi et al., 2008). The full degree of similarity between this

cubozoan phototransduction cascade and the cnidops-CNG pathway from Hydra dispersed

photoreceptor cells remains unknown. If the cnidops-based cascade in cubozoans is also

employed by Hydra, it will suggest that cubozoan retinal photoreceptor cells and hydrozoan

dispersed photoreceptor cells may share an evolutionary history.

Echinodermata The molecular components of phototransduction in echinoderms are known

almost solely from genome sequence identity, rather than from functional studies. Six

opsins were identified in an analysis of the sea urchin Strongylocentrotus purpuratus genome;

all six of these opsins fall within the range of known metazoan opsins, but they are only

distantly related to each other (Burke et al., 2006; Raible et al., 2006; Rubin et al., 2006).

Furthermore, it was found that various opsins are expressed in the pedicellariae, tube feet,

neural ring, and neural tube of adult animals (Raible et al., 2006). In situ expression pat-

terns generated for several larval developmental stages and adult tube feet revealed that

the urchin c-opsin homologue is expressed in widely dispersed cells (Ooka et al., 2010). An-

other study shows that urchin tube feet may express a second type of opsin as well (Lesser

et al., 2011). Antibodies against bovine rhodopsin were also found to bind to optic cushions

from sea star and brittle star arms (Johnsen, 1997). It is clear that several types of opsin are

expressed in echinoderm dispersed photoreceptor cells, but, without functional data, it is

difficult to properly categorize these photoreceptors or associate particular behaviors with

their presence. Thus, it is difficult to evaluate how many times dispersed photoreceptor

cells have evolved in echinoderms or whether these cells are closely related to any other

described photoreceptors in Metazoa.
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Arthropoda The only well-described phototransduction pathway for dispersed photore-

ception in arthropods is that found in D. melanogaster larvae. Light avoidance behaviors are

maintained in D. melanogaster larvae that were mutants in rhodopsins and cryptochrome,

suggesting that neither molecule was used by class IV dendritic arborization neurons to

mediate light avoidance. Instead, the authors found that Gr28b, a Drosophila homologue

of the C. elegans photopigment lite-1, was required for light responses using P-elements

insertions and RNA interference (RNAi), although it is not yet not clear from these exper-

iments whether Gr28b directly senses light (Xiang et al., 2010). Furthermore, dispersed

photoreceptor cells in D. melanogaster larvae likely employ the thermosensor TrpA1, a ho-

mologue of the mammalian TrpA, for responding to light, as TrpA1 RNAi expression in class

IV dendritic arborization neurons abolished light-induced changes in firing rates in these

cells (Xiang et al., 2010). These phototransduction cascade genes, particularly Gr28b, do

not fit into any canonical opsin-based pathway and represent unique molecular solutions

to light detection in this species. It is not yet clear whether this new type of phototrans-

duction cascade is used by any closely related insect species or whether it is widespread

throughout the arthropods. Given its novelty, however, this cascade clearly represents an

independent evolution of the phototransduction pathway for dispersed photoreceptor cells.

We hypothesized that dispersed phototransduction cascades evolved from existing molecu-

lar components involved with phototransduction. The novel cascades found in Drosophila

larvae contradict this hypothesis, as Gr28b is most closely related to gustatory receptors

and TrpA1 is a member of an ion channel family typically associated with temperature

detection.
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2.6 Discussion

Dispersed photoreception, or the ‘dermal light sense’, has long presented a number

of mechanistic and evolutionary conundrums for biologists. Some mechanistic questions

include: What cells underlie dispersed photoreception? How is dispersed photoreception

used by animals? Do the same physiological and molecular mechanisms underlie dispersed

photoreception in all animals? We are also interested in evolutionary questions, such as

how did dispersed photoreceptor cells originate in different groups and how are these re-

ceptors related to other photoreceptor cells? Our goal for this paper was to better under-

stand the dermal light sense in the context of the integrative biology of photoreceptor cells.

Specifically, we had three main goals for this review: a) to present a new objective classifica-

tion scheme for photoreceptor cells that will help facilitate comparisons between different

photoreceptor cell types, b) to provide key observations concerning what is known about

distributed photoreceptor cells in different animals and to propose three hypotheses regard-

ing dispersed photoreception, and 3) to discuss how the study of dispersed photoreceptor

cells informs our general understanding of metazoan photoreceptor origin, evolution, func-

tion, and diversity.

2.6.1 Classification of photoreceptor cell types

Our proposed classification scheme allows us to place any photoreceptor cell within one

of four quadrants. These quadrants are defined by two axes: the first indicates the spatial

relationship between a given photoreceptor and the other photoreceptor cells in an animal,

while the second describes the way a photoreceptor interacts with the rest of an animal’s

nervous system (see Fig. 1). Our classification scheme allows us to make a number of

comparisons between photoreceptor cells that share a quadrant, much as we have done

for some photoreceptor cells that are dispersed first-order neurons. It also lets us explore
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hypotheses about the function and evolution of cells in a quadrant. For instance, the ma-

jority of photoreceptor cells used for spatial vision are aggregated first-order neurons that

fall within Quadrant III. This grouping prompts a number of questions that we can now ask

about these cells: Are there requirements for spatial vision that almost always necessitate

that photoreceptor cells be aggregated? If there are, how do echinoderms like sea urchins,

which seem to have spatial vision despite only having dispersed photoreceptor cells, over-

come these requirements? Could their spherical body shape contribute? Similarly, we also

classified photoreceptor cells by their neural network position as either sensory cells (first

order) or other neural functions (higher order). Do first-order and higher-order cells me-

diate similar types of light-influenced behavior? Are certain types of cell better suited for

particular tasks than others? Finally, we wonder why we have no good examples of dis-

persed higher-order photoreceptor cells. This might be due to discovery bias, as dispersed

photoreceptor cells generally lack pigment and relatively few higher-order neurons have

been investigated for light sensitivity.

2.6.2 Three hypotheses for dispersed photoreceptor cells

Dispersed photoreceptor cells are used for behaviors that do not require true spatial vision

Animals can use non-directional light information to set circadian cycles, gauge depth,

monitor UV levels, detect a predator’s shadow, or, in burrowing animals, find a substrate

surface (reviewed by Nilsson, 2009). Additionally, behaviors like phototaxis require direc-

tional, but not necessarily spatial, information about light. In many cases, the photorecep-

tor cells mediating these tasks lie outside the eyes in so-called extraocular photoreceptor

cells or EOPCs. Our classification scheme splits EOPCs into at least two groups: those that

are aggregated high-order neurons (Quadrant I) and those that are dispersed first-order

neurons (Quadrant IV). Given what we know about these two types of photoreceptor, it
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appears that aggregated high-order neurons, like those found within ganglia in Onchidium

or ipRGCs in mammalian eyes, are employed for a different set of non-visual tasks than

dispersed first-order photoreceptor cells. For example, light-sensitive interneurons in the

abdominal ganglia of Onchidium are thought to influence tactile and water pressure inputs

associated with mantle-levitating or pneumostom-eclosing behaviors (reviewed in Gotow

& Nishi, 2008). Melanopsin (r- opsin) expressing ipRGCs are important for circadian re-

sponses, such as pupil reflexes and photoentrainment, in mammals (Panda et al., 2002;

Hattar et al., 2003). Thus, aggregated higher-order photoreceptor cells may preferentially

be used for tasks associated with relatively long-term physiological responses like photoen-

trainment. In contrast, we have presented evidence that suggests that dispersed first-order

photoreceptor cells are used for short-term movement- based behavioral responses such

as phototaxis and shadow responses. Furthermore, based on these behaviors, dispersed

photoreceptor cells are capable of collecting both directional and non-directional light in-

formation. While we have a lot to learn about these two very different classes of photore-

ceptor cells, it appears that each may be specialized for particular tasks related to either

directional or non- directional light collection, but most often not true spatial vision.

Dispersed photoreceptor cells are morphologically unspecialized

Our hypothesis for the general lack of morphological specialization in dispersed pho-

toreceptor cells is that they are rarely used to gather visual information and, thus, need

neither pigmentation nor a close association with pigmented cells. Our hypothesis also im-

plies that dispersed photoreceptor cells may not require the increased sensitivity afforded

by elaborated membranes (reviewed by Nilsson, 2009). To the extent that dispersed pho-

toreceptor cells have been positively confirmed in the four focal phyla, support for this hy-

pothesis is ambiguous. Putative dispersed photoreceptor cells in bivalves and gastropods

are not pigmented. Some appear to possess cilia, but the cilia themselves are not folded.

However, those cells that resemble phaosomes, like those described in the clam Mya, do
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have expanded microvilli. In the cnidarian Hydra, photoreceptor cells located near the

group of battery cells associated with nematocysts lack both pigmentation and membrane

folding. However, the morphologies of dispersed cells in echinoderms and arthropods do

possess some specializations for directional light collection. In the echinoderms, putative

photoreceptor cells beneath the brittle star stereom were identified; these cells possessed

fine neural processes but lacked membrane elaboration or pigmentation. However, sepa-

rate pigment cells in echinoderms, specifically chromatophores in brittle stars and spines

in sea urchins, are thought to interact with these neurons in response to light. Finally, in

the arthropods, both examples we present show evidence of membrane expansion but not

pigmentation. The cells in butterfly genitalia resemble phaosomes, which possess an extra-

cellular space that is filled with microvilli. In Drosophila larvae, the ligh-sensitive neurons

bear large dendritic arborizations, which increase the surface area of each cell.

How are these photoreceptor cells used by animals in these four phyla? Shadow-

response-like movement and contraction are particularly common in the mollusks and

echinoderms, and hydra also retract into compact balls when illuminated. These types of

behaviors do not necessarily require directional information about light. Conversely, some

animals, such as many mollusks, appear to use dispersed photoreceptor cells for directional

tasks like phototaxis. Other animals, such as sea urchins (and potentially brittle stars), are

able to use dispersed photoreceptor cells for spatial vision. Thus, we can state that a close

association between photoreceptor cells and pigment cells is normally required for spatial

vision, but in some cases, the opaque body of an animal (or large portions of an animal)

can provide the screening necessary for directional information to be gathered (Milne &

Milne, 1956, as cited in Yoshida, 1979). In these cases, then, we might expect to see some

membrane elaboration, which allows increased light collection, to compensate for photons

lost through screening.

An alternative hypothesis for why some dispersed photoreceptor cells lack morpholog-
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ical specializations is that these cells may be constrained, morphologically, by factors not

directly related to photo- detection, namely the maintenance of multi- functionality. Em-

pirical evidence for this hypothesis is scarce. However, multi- functionality can arise from

dispersed receptors being either multimodal sensors or higher-order neurons that receive

input from both other neurons and the external environment. For example, cells associ-

ated with nematocysts in Hydra express mRNAs that code for opsin and CNG (Plachetzki

et al., 2010). From previous studies, we know that nematocyst firing is influenced by both

mechano- and chemosensory stimuli (Watson & Hessinger, 1989, 1994), and it appears

likely that these opsin-expressing cells in Hydra may also contribute to the nematocyst

firing response. Finally, although they do not fall under the definition of dispersed pho-

toreceptor cells, multimodal sensory neurons have been identified in C. elegans. These

ciliated cells respond to both light and electrical stimulation (Gabel et al., 2007; Ward et

al., 2008).

Some dispersed photoreceptor cells may also be higher-order neurons (in that they re-

ceive input from other cells). Although they are not dispersed photoreceptor cells, retinal

ganglion cells (RGCs) in the vertebrate eye are known to be photosensitive third-order

neurons; functionally similar interneurons could very well be common. The abdominal

ganglion photoreceptor cells found in the marine gastropod Onchidium are another well-

documented example of photosensitive higher-order neurons. These cells function as both

interneurons and photoreceptors but maintain a fairly typical neural morphology that al-

lows them to interact with many other neurons via synapses (reviewed in Gotow & Nishi,

2008). Multi-functionality could thus constrain the morphology of these higher-order pho-

toreceptor cells by not allowing them to evolve the elaborated membranes that help bolster

the sensitivity of retinal photoreceptor cells.

Dispersed photoreceptor cells use a variety of phototransduction pathways

We have noted that dispersed photoreceptor cells use a variety of phototransduction
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pathways. Thus, we conclude that dispersed EOPCs have evolved a number of times within

the Metazoa, possibly by co-opting existing phototransduction cascades. This conclusion

appears to hold for our four focal phyla. We have evidence that dispersed photoreceptor

cells may have evolved more than once within the mollusk, as the cuttlefish Sepia uses

r-opsin for both retinal and dispersed photoreceptor cells, whereas dispersed phototrans-

duction in the pond snail Lymnaea relies on CNG and, potentially, c-opsin. The cnidarians

appear to use a unique form of the opsin protein, cnidops, as well as CNG for their ion

channels. Echinoderms have at least six different opsins, and we do not yet have a clear

consensus about the specific type of phototransduction cascade employed by echinoderm

dispersed photoreceptor cells, which makes it difficult to conjecture about the evolutionary

origins of these cells. Finally, the presence of non-opsin based light sensitivity in cells tiling

Drosophila larvae clearly indicate a system evolutionarily unrelated to opsin-based systems.

Overall, molecular evidence relating to phototransduction cascades suggests that at least

some dispersed photoreceptor cells have evolved independently in mollusk, cnidarians, and

arthropods and that these cells may have even evolved more than once with each phylum.

2.6.3 Dispersed photoreceptor cells in the context of photoreceptor

cell evolution

Given that dispersed photoreceptor cells have likely evolved multiple times during Meta-

zoan history, how did these cells originate? Also, what is the evolutionary relationship

between dispersed photoreceptor cells and other receptors, including other photorecep-

tor cells within the same animal? Here our classification scheme provides characters that,

combined with a greater understanding of the phototransduction cascades employed by

different photoreceptor cells, may help unravel the relationship between different photore-

ceptor cell types. For instance, we suggest that when different dispersed photoreceptor
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cells use different phototransduction cascade genes, they likely evolved separately. We can

apply this same logic to photoreceptor cells types within an individual animal: differences

in phototransduction cascades within the same animal suggest possible independent evo-

lution of photoreceptor cell types. This may be the case in the pond snail Lymnaea, as this

snail’s dispersed photoreceptor cells seem to use CNG, while their retinal photoreceptor

cells depolarize with light stimulation, implicating TRP (or possibly CNG coupled with AC)

as the ion channel responsible for retinal phototransduction.

The scenario described above may not be unusual in animals; for instance, the melanopsin

expressing intrinsically light-sensitive RGCs in vertebrate eyes have only been identified rel-

atively recently. Thus, vertebrate eyes possess two types of photoreceptor cells that likely

use distinct phototransduction pathway genes: the canonical c-opsin pathway found in

rods and cones, as well as a pathway initiated by melanopsin, which is closely related to

the r-opsin found in invertebrate eyes (Hattar, 2002; Tarttelin et al., 2003). These two

photoreceptor types also fall into different quadrants within our classification scheme, rods

and cones into the aggregated/first-order quadrant, and RGCs into the aggregated/higher-

order quadrant. Given the morphological and molecular differences between these two

types of vertebrate photoreceptor cells, we could propose hypotheses to account for the

differences we see. For instance, we could ask whether RCGs, which are relatively mor-

phologically unspecialized, are constrained by their function as interneurons or whether

they are sufficiently sensitive to light without extensive membrane elaboration.

Finally, we may be able to ask broader evolutionary questions regarding photoreception

systems. For instance, what the ancestral Metazoan photoreceptor may have looked like,

how phototransduction cascade genes evolved and diversified and what the evolutionary

relationship may be between phototransduction and other signal transduction pathways

and other sensory modalities. By understanding different types of photoreceptor cells and

photoreception systems, we may be able to better understand the evolution of eyes, a ques-
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tion that has challenged many evolutionary biologists, including Darwin.
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After this review was accepted for publication, Ullrich-Luter et al. (2011) reported that

Sp-op4 (a r-opsin) and Sp-pax6 are expressed by photoreceptor cells in the tube feet of

adult sea urchins. These cells possess surface areas expanded via microvilli, but lack any

pigmentation; they also appear to confer true spatial vision to sea urchins. The morphology

of these photoreceptors, alongside r-opsin expression, suggests that they are rhabdomeric

type cells. Overall, these new results are consistent with two of our hypotheses for dispersed

photoreceptor cells, as they show that sea urchin photoreceptors are first order cells that

lack pigmentation and use r- opsin for true spatial vision (no other deuterostome is known

to use an r- opsin for this purpose). Finally, this paper highlights how uncovering the

mechanisms that underlie dispersed photoreceptor cells is important to understanding the

evolution of photo-sensory systems generally.
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Figure 2.1: Photoreceptor cell distributions and neuron types. Photoreceptor cell dis-
tribution ranges from aggregated to dispersed on the x-axis. Photoreceptor cell type is
either primary or higher-order neuron on the y-axis. (A) Drawing of Onchidium verrucu-
latum, abdominal ganglion with photosensitive neurons Ip-1, Ip-2, Es-1 and A-P-1, and
morphology of neuron Es-1 (adapted with permission from Springer Science & Business
Media: Journal of Comparative Physiology A: Neuroethology, Gotow, 1975; Gotow &
Nishi ©Rockefeller University Press, 2002. Originally published in Journal of General
Physiology. 120:581-597. doi:10.1085/jgp.20028619). (B) No example of this type of
photoreceptor cell. (C) Illustration of Drosophila melanogaster, micrograph of compound
eye and micrograph of single rhabdomere within eye ommatidia (from Mrabet, 2008;
Howard, 2008 and adapted by permission from MacMillan Publishers Ltd.: Nature, Hardie
& Raghu, 2001). (D) Illustration of D. melanogaster larvae, class IV dendritic arborization
neurons tiling the body wall, confocal image of a single class IV dendritic arborization
neuron (adapted with permission from Development, Grueber et al., 2002; adapted with
permission from MacMillan Publishers Ltd.: Nature, Xiang et al., 2010).
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3.1 Abstract

Cephalopods are renowned for changing the color and pattern of their skin for both

camouflage and communication. Yet, we do not fully understand how cephalopods control

the pigmented chromatophore organs in their skin and change their body pattern. Although

these changes primarily rely on eyesight, we found that light causes chromatophores to ex-

pand in excised pieces of Octopus bimaculoides skin. We call this behavior Light-Activated

Chromatophore Expansion (or LACE). To uncover how octopus skin senses light, we used

antibodies against r-opsin phototransduction proteins to identify sensory neurons that ex-

press r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin

phototransduction cascade found in octopus eyes. By creating an action spectrum for the

latency to LACE, we found that LACE occurred most quickly in response to blue light. We

fit our action spectrum data to a standard opsin curve template and estimated the λ max

of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the

light sensors underlying LACE closely matches the known spectral sensitivity of opsin from

octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light

sensitive and that this dispersed light sense might contribute to their unique and novel pat-

terning abilities. Finally, our data suggest that a common molecular mechanism for light

detection in eyes may have been co-opted for light sensing in octopus skin and then used

for LACE.

3.2 Introduction

Octopuses, like other coleoid cephalopods, create signals and camouflage themselves

by altering the color, pattern and texture of their skin (Holmes, 1940; Hanlon and Messen-

ger, 1988; Packard and Sanders, 1971). While light in the environment influences which
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body patterns are produced, exactly how cephalopods gather and use environmental light

to control their body patterning is still debated (Buresch et al., 2015). In general, body-

patterning behaviors in cephalopods depend on three major components: the eyes, the

central nervous system (CNS) and pigmented organs called chromatophores embedded in

the skin (Messenger, 2001). Chromatophores are an evolutionary novelty because their

morphology in coleoid cephalopods is distinct from those found in any other animal taxa,

including other mollusks. Cephalopod chromatophores consist of an elastic sac filled with

pigment granules and surrounded by radial muscles, which are innervated by nerves that

extend directly from the brain (Cloney and Florey, 1968; Young, 1971, 1974). When chro-

matophore muscles contract, the pigment sac at the center is stretched out, showing the

chromatophores’ color. Cephalopods seem to use their well-developed, camera-type eyes

to gather information about salient features of the light environment, such as brightness,

contrast and edges, which strongly influence changes in the appearance of their skin (Mes-

senger, 1979; Chiao and Hanlon, 2001; Zylinski et al., 2009). Chromatophores can be

experimentally controlled with electrical stimulation of the eyes or various brain regions

(e.g. optic, peduncle and chromatophore lobes), leading to an overall darkening of the skin

tone and sometimes even distinct patterns, which also demonstrates the importance of the

eyes and CNS in controlling the activity of chromatophores (Messenger, 1967; Boycott,

1961; Young, 1976; Dubas et al., 1986).

Despite the involvement of eyes for detecting light and the CNS for controlling chro-

matophore activity in cephalopods, several studies suggest that chromatophores might also

be controlled locally by the peripheral nervous system. Both Florey (1966) and Packard and

Brancato (1993) noted that squid and octopus chromatophores in dissociated or denervated

skin seem to expand in response to light, but surprisingly, neither study investigated these

observations further. These intriguing notes suggest that cephalopod skin may be intrin-

sically sensitive to light, and if so, raise the questions of how the skin senses light and to

42



Light-activated chromatophore expansion (LACE) in Octopus bimaculoides skin Chapter 3

what extent this ability contributes to rapid changes in the color and tone of cephalopod

skin.

Recent work on the molecular basis for light sensing in the skin of myriad animals

suggest that cephalopod skin could detect light using the same families of proteins that

detect light in the eyes of animals, including a subfamily of G-protein-coupled receptor

proteins (GPCRs) called opsins. There are at least three major groups of opsins: the r-

opsins, c-opsins and Go/RGR (retinal G-protein-coupled receptor) opsins (Porter et al.,

2012; Feuda et al., 2012). While c-opsins are typically thought to detect light in vertebrate

eyes and r-opsins in invertebrate eyes, various opsins are expressed in the skin of many

animals (Ramirez et al., 2011), and opsins have been localized to receptors dispersed across

the body of animals from multiple phyla, including cnidarians, echinoderms, annelids and

vertebrates (Plachetzki et al., 2012; Raible et al., 2006; Backfisch et al., 2013; Bellono et

al., 2013; Fulgione et al., 2014). Because opsins are known to function as light receptors,

the cells that express opsin may be dispersed light sensors that could underlie some light-

mediated behaviors. While opsins have not been localized to particular cells in the skin of

any cephalopods prior to this study, the same r-opsin used to detect light in the eyes of the

cuttlefish Sepia officinalis is also expressed in its skin (Mäthger et al., 2010).

The preliminary observations that squid and octopus chromatophores respond directly

to light in dissociated skin and the expression of opsin mRNAs in cuttlefish skin suggests:

(1) that dispersed light sensitivity in the skin of cephalopods contributes to some chro-

matophore responses, perhaps separately from eye or CNS input; and (2) that cephalopods

use the same r-opsin-based phototransduction genes to detect light with both their eyes

and skin. We found that dispersed, dermal light sensitivity contributes to a direct response

of Octopus bimaculoides chromatophores to light. We call this chromatophore response

light-activated chromatophore expansion (LACE). LACE behavior in isolated octopus skin

shows that the skin can sense and respond to light directly. Next, we found multiple r-
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opsin cascade genes expressed in the skin of O. bimaculoides and localized r-opsin protein

expression to ciliated sensory cells in the skin of hatchling octopuses. Finally, like the opsin

found in the eyes of Octopus vulgaris, LACE in O. bimaculoides is maximally responsive to

blue (470 nm) light. These results are consistent with the hypothesis that r-opsin-based

phototransduction underlies LACE behavior in O. bimaculoides.

3.3 Results

3.3.1 Octopus bimaculoides exhibits LACE in dissociated skin prepara-

tions

Chromatophores in skin removed from the funnels of both hatchling and adult Octo-

pus bimaculoides expand dramatically when illuminated by bright white light (absolute

irradiance=2.60× 1015 photon cm−2 s−1; see Fig. 1). While we observed slow rhythmic

contractions of the muscles beneath the skin under red light from an LED (absolute irra-

diance: 1.36× 1014 photon cm−2 s−1), the chromatophores themselves remained in their

relaxed position and only expanded in response to either a gentle mechanical stimulus or

bright white light. While the light remained on, the chromatophores remained expanded

and appeared to pulse rhythmically, but would sometimes contract again after prolonged

exposure to white light. When the white light was switched off and the chromatophores

were illuminated with only red light, the chromatophores in fresh preparations contracted

back to their original state. As preparations aged over the course of 1+ days, their responses

to light became erratic: chromatophores would no longer respond to white light, or remain

expanded, regardless of whether they were under white or red light. The direction of the

response of the chromatophores to light (to increase in size) is consistent across samples

(see Fig. 2; binomial sign test, N=10, P=0.002).
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A B

Figure 3.1: Chromatophores in isolated Octopus bimaculoides skin expand when illumi-
nated. Stills from infrared video of isolated adult O. bimaculoides funnel skin showing
LACE (light-activated chromatophore expansion). (A) Chromatophores remain in their
contracted state after 3 s of exposure to bright white light. (B) Chromatophores have
reached their maximum expansion after 6 s of exposure to bright white light. Scale bars:
100 µm.

LACE caused a statistically significant increase in the size of chromatophores in both

adult and hatchling skin, a five-fold average increase for adults (one-sample t-test on log-

ratio, t=8.9246, d.f.=8, P<0.0001; Fig. 3A) and a two-fold average increase for hatchlings

(one- sample t-test on log-ratio, t=11.915, d.f.=200, P<0.0001; Fig. 3B). Although both

adult and hatchling chromatophores expanded significantly after LACE, the log-ratio of the

increase differed significantly between adults and hatchlings (two-sample t-test, t=5.4578,

d.f.=9.245, P<0.001). The mean latency of LACE from the beginning of the white light

stimulus to the time when maximally expanded was significantly different between adult

(6.54±2.42 s) and hatchling (15.37±12.74 s) samples (two sample t-test, t=-5.19, d.f.=

64.06, P<0.001; Fig. 3C). Once they began expanding, chromatophores took an average

of 4.97±5.1 s to expand fully (Fig. 3). There was no significant difference in the duration

of chromatophore expansion between adults and hatchlings (two sample t-test, t=-1.48,

d.f.=83.68, P=0.14; Fig. 3D).
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Figure 3.2: Chromatophores expand dramatically under bright white light (binomial sign
test, N=10, P=0.002). Paired bar plots of mean chromatophore areas (in pixels) before
and after LACE. Each bar is the average size of a single chromatophore measured from
at least three trials per animal. A1 and A2 are adult samples and H1-H8 are hatchling
samples.

3.3.2 R-opsin phototransduction cascade genes are expressed in Oc-

topus bimaculoides skin

We searched for the molecular components of r-opsin phototransduction using degen-

erate PCR. Based on PCR amplification, we found opsin expressed in adult skin samples

(N=5) from the dorsal mantle. These sequences are essentially identical to the r-opsin

expressed in O. bimaculoides eyes, with only one confirmed nucleotide difference in skin

sample 3, indicating that the opsin expressed in the skin is also an r-opsin (GenBank acces-

sion no. KR140162).

46



Light-activated chromatophore expansion (LACE) in Octopus bimaculoides skin Chapter 3

Start Max

0

5000

10000

15000

20000

25000

30000
A

Adult MaxAdult Start

5000

10000

15000

30000

25000

20000

15000

10000

5000

0

Start Max

0

1000

2000

3000

4000

5000

Hatchling 
Start

5000

4000

3000

2000

1000

0
Hatchling 

Max

B

Adult Hatchling
0

10

20

30

40

50

60

0

60

50

40

30

20

10

Adult Hatchling

C

Adult Hatchling

0

5

10

15

20

25

30

35

Adult Hatchling

0

5

10

15

20

25

30

35

D

* *

*

M
ea

n 
ch

ro
m

at
op

ho
re

 a
re

a 
(p

ix
el

s)
La

te
nc

y 
(s

ec
on

ds
)

D
ur

at
io

n 
(s

ec
on

ds
)

M
ea

n 
ch

ro
m

at
op

ho
re

 a
re

a 
(p

ix
el

s)

Figure 3.3: Box plots of mean adult and hatchling chromatophore size before and after
LACE, latency to LACE and duration to maximum chromatophore expansion. (A) The
mean size of adult chromatophores at the beginning of LACE and at their maximum ex-
pansion. (B) The mean size of hatchling chromatophores at the beginning of LACE and at
their maximim. (C) The mean latency to expansion of the chromatophores from the start
of the white light stimulus to the beginning of LACE responses (Adult, N=2; hatchling,
N=8). (D) The mean length of time from the beginning of LACE to maximum expan-
sion of the chromatophores (Adult, N=8, hatchling, N=8). Asterisks indicate statistically
significant differences (P<0.05).
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Figure 3.4: Peripheral sensory neurons in the head and siphon skin of hatchling Octopus
bimaculoides express r-opsin proteins. (A) A hatchling O. bimaculoides; the yellow rect-
angle indicates the region enlarged in B. (B) Fluorescent confocal z-stack of one of four
lines of peripheral sensory neurons on the head of a hatchling octopus. (C) Fluorescent
confocal z-stack projection of peripheral sensory neurons that comprise the lines found on
the head and funnel skin of hatchling octopuses. (D) 3D z-stack projection of r-opsin-ex-
pressing peripheral sensory neurons in the head and siphon skin of hatchlings. The cilia
bundles attached to sensory neurons embedded in the skin of octopus hatchlings project
out onto the skin surface. R-opsin proteins are expressed along the lengths of the cilia
bundles and the tops of the cell bodies. Blue, cell nuclei stained with DAPI; green, α- and
β-tubulin antibody labeling; white, r-opsin antibody labeling. Hatchling photo credit:
Markos Alexandrou.

Peripheral sensory neurons express r-opsin proteins in hatchling Octopus bimaculoides

skin We found that α- and β-tubulin antibodies bind to many multi- ciliated peripheral

sensory neurons spread over the entire epidermal surface of the mantle, head and arms.

Typically, the cilia of these cells were packaged into bundles, although sometimes the indi-
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vidual cilia were visible. A set of these peripheral sensory neurons form four lines on the

head and one on the funnel of the O. bimaculoides hatchlings (Fig. 4).

The octopus r-opsin antibody specifically binds to the cilia of many of the primary sen-

sory neurons on the mantle epidermal surface. When the opsin stain is co-localized with

tubulin in these cells (Fig. 4), the length of the cilia binds the opsin antibody, but the tip

of each cilium appears to only bind tubulin, not opsin. In some cases, the opsin antibody

also bound to the topmost portion of the cell body.

3.3.3 LACE action spectrum

We found that LACE responses occurred more quickly (shorter latency) under blue light

(470-480 nm) than other wavelengths of the visible spectrum (Fig. 5A). We estimated the

λ max of the LACE response to be 480 nm when fitting to the Govardovskii opsin template

(Fig. 5B). The Govardovskii calculated spectral sensitivity of opsin from O. vulgaris eyes

using data mined from Brown and Brown (1958) matches what the authors reported for

octopus opsin, with a λ max of 474 nm (Fig. 5B).

3.4 Discussion

Here, we show definitive evidence of dispersed light sensing in octopus skin and doc-

ument the expression of a candidate light sensor in skin of the same species, Octopus bi-

maculoides. Two previous studies have speculated that cephalopod skin may be intrinsi-

cally sensitive to light, noting that chromatophores in both squid and octopus skin seem

to expand when the skin is illuminated, but neither study provided more than preliminary

observations (Florey, 1966; Packard and Brancato, 1993). We found that chromatophores

in the skin of O. bimaculoides expand significantly and repeatedly when exposed to bright
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Figure 3.5: LACE behavior is maximally sensitive to blue light. (A) The action spectrum for
Octopus bimaculoides LACE shows that the latency for LACE is shortest between 470 and
480 nm. Each box represents four data points for each wavelength, corresponding to the
mean latencies across three trials of one skin sample from four adult animals. Black dots
are the means at each wavelength average across four animals. (B) Govardovskii opsin
models for octopus LACE latency (solid line) and data on the spectral sensitivity of Octopus
vulgaris eye opsin mined from Brown and Brown (1958) (dotted line). The predicted
λmax for octopus LACE is 480 nm. The Govardovskii predicted λmax for octopus eye
opsin is 474 nm, the same λmax reported by Brown and Brown (1958).

white light, a behavior we call light-activated chromatophore expansion, or LACE. We at-

tribute LACE to light, as we minimized heat reaching the samples by using fiber optics to

50



Light-activated chromatophore expansion (LACE) in Octopus bimaculoides skin Chapter 3

illuminate the skin, which itself was submerged underwater. LACE responses clearly show

that O. bimaculoides skin can detect light by itself, independent of eyes.

While octopus LACE is a robust behavior, we found that some of the parameters of

LACE differ from those noted by Packard and Brancato (1993). For instance, they report

that chromatophores in denervated Octopus vulgaris skin expand 1 s after a flash of bright

white light, which differs from the average 6 s (adults) or 15 s (hatchling) latency for

LACE we found in O. bimaculoides. This incongruence in latency may be attributable to

differences between the species and/or the preparation itself, as it seems that Packard and

Brancato did not isolate skin samples, but denervated portions of skin still attached to

the whole animal. We observed a high degree of variation in both the latency of LACE

and the time to full expansion of the chromatophores in our preparations and attribute

at least some of this variation to differences in the time between dissecting the tissue and

running LACE experiments. We also observed differences in LACE between the hatchlings

and adults, where adult skin responded more consistently and robustly than the skin from

younger animals. We speculate that this could be caused by the presence of more light

sensors in adult versus hatchling skin. However, despite these differences from preliminary

reports, our data are the clearest demonstration to date that Octopus bimaculoides skin is

intrinsically light sensitive, and that light detected by the skin causes the chromatophores

to expand.

We hypothesized that r-opsin, a key light sensing protein in the eyes of octopuses and

other animals, may also detect light in octopus skin and underlie LACE. To support this hy-

pothesis, we looked for evidence of opsin expression in the skin and determined the action

spectrum for LACE. Consistent with our hypothesis, we found that r-opsin is expressed in

the skin of O. bimaculoides. This result is similar to Mäthger et al. (2010), who detected

r-opsin mRNA from one PCR trial of skin from another cephalopod, the cuttlefish Sepia

officinalis, although it is not yet known whether cuttlefish have LACE. Additionally, opsin
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expression by itself is weak evidence for the ability of skin to detect light. Other essential

r-opsin cascade genes, including G-protein α (q) and phospholipase C, are also expressed in

the skin of O. bimaculoides, suggesting that the necessary genes for functional opsin-based

phototransduction are expressed in octopus skin (Speiser et al., 2014). Finally, the LACE

action spectrum is also consistent with our hypothesis. Spectral sensitivity analysis of the

opsin from the eyes of another octopus O. vulgaris shows a λmax of 474 nm (Brown and

Brown, 1958). If the same opsin found in octopus eyes underlies octopus LACE, then LACE

activity should peak close to the known spectral sensitivity of octopus opsin. Indeed, we

found that the latency to LACE is shortest in blue light, and fitting the Govordovskii curve

to the action spectrum data gives a λmax of 480 nm. Taken together, these data strongly

support our hypothesis that opsin phototransduction underlies LACE. Future work should

continue to test this hypothesis by manipulating the function of opsin phototransduction

proteins and observing how they affect LACE.

Because r-opsin is known to function in light sensing, cells in octopus skin that ex-

press opsin are excellent candidates for dispersed light sensors that could underlie LACE.

We identified ciliated peripheral sensory neurons in the skin of hatchling O. bimaculoides

using α- and β-tubulin antibodies. These cells were similar in morphology and position

(Sundermann-Meister, 1978; Sundermann, 1983; Mackie, 2008; Buresi et al., 2014) to

cells described as mechanoreceptors in both squid and cuttlefish (Budelmann and Bleck-

mann, 1988; Bleckmann et al., 1991). It is not yet known whether these peripheral sensory

neurons act as mechanoreceptors in the skin of O. bimaculoides. Intriguingly, we localized

r-opsin expression to these same peripheral sensory neurons in hatchling skin, raising the

possibility that aside from a mechanoreceptive function, these sensory cells may also be dis-

persed light receptors in octopus and other cephalopods. Unfortunately, the precise con-

nections between candidate dispersed light sensors in octopus skin, the chromatophores

and the CNS remain unclear, as does their relationships with LACE and merits further in-

52



Light-activated chromatophore expansion (LACE) in Octopus bimaculoides skin Chapter 3

vestigation to test the hypothesis that the r-opsin-expressing neurons detect light.

Our finding of opsin expressed in known mechanoreceptors raises the question of whether

opsin has a role in mechanoreception, in addition to its well-established role in light detec-

tion. While our work is the first description of this opsin expression pattern in mollusks,

opsin-expressing mechanoreceptors have been recently described in the annelid Platynereis,

zebrafish and Drosophila (Backfisch et al., 2013; Senthilan et al., 2012). From work on

mechanoreception in Drosophila antennae, we now know that opsin is required for annte-

nal mechanoreceptors to detect vibrations, highlighting a previously unknown role for opsin

in senses besides light detection (Senthilan et al., 2012). We do not yet know whether the

opsin-expressing cells we found in hatchling O. bimaculoides skin function as mechanore-

ceptors, light sensors or both, or the extent to which opsin is required for detecting either

of these stimuli. Still, our results compel future research into the role of opsins in senses

other than photoreception. We believe that the phylogenetic spread of opsin expression

in mechanoreceptors among vertebrates, annelids, arthropods and now mollusks, suggests

that such mechano-sensory roles for opsin could be ancient in animals.

Finally, uncovering dispersed light sensitivity in octopus skin raises the question of how

it evolved to underlie LACE in octopuses. Our study is the best evidence so far for light-

sensitive skin in cephalopods and we hypothesize that LACE may play a role in modulating

body patterning for camouflage, alongside the canonical control exerted by the CNS. How-

ever, while cephalopods are unique among mollusks for their body-patterning abilities, we

know that most other mollusks, especially bivalves, gastropods and chitons, are able to

sense light with their skin. There is rich literature describing behaviors like phototaxis

or shadow responses and physiology linked to light sensing in the skin of other mollusks

(Ramirez et al., 2011). We do not yet know if or how cephalopods use their light-sensing

skin for these other more typical molluscan behaviors. However, the widespread distribu-

tion of dispersed light sensing and associated behaviors throughout the phylum suggests
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that dispersed light sensitivity could be an ancestral molluscan trait that has been co-opted

in the cephalopod lineage to mediate novel body-patterning behaviors in response to light.

Understanding the underlying molecular mechanisms for dispersed light sensing across

the mollusk classes would help clarify the evolutionary history of dispersed light sensing

and associated behaviors. Our study provides a framework for future comparative work

that can integrate already known behavioral data with molecular data for light-detecting

components in various mollusks. This work could address the question of whether diverse

mollusk behaviors that rely on dispersed light sensing share a common molecular mecha-

nism for light detection, and thus whether dispersed light sensing was present in ancestral

mollusks.

3.5 Materials and Methods

3.5.1 Sample collection

We obtained 11 adult Octopus bimaculoides Pickford and McConnaughey, 1949 from

marine collectors at the University of California, Santa Barbara from 2010-014. We housed

the animals in flow-through tanks supplied with filtered seawater. Our hatchling octopuses

came from a clutch laid by a captive female in the winter of 2013, and the animals hatched

during the following summer. Octopus bimaculoides hatch as fully developed octopuses

that are immediately able to hunt and change body patterning. The hatchlings we used for

these experiments were between 0 and 4 months old. To kill animals, we first anesthetized

them in a seawater solution containing 5% ethanol and 7.5% isotonic magnesium chloride

until the chromatophores no longer responded to gentle poking and ventilation slowed,

followed by quick decerebration (Moltschaniwskyj et al., 2007; Andrews et al., 2013).
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3.5.2 LACE behavior under white light

We used insect pins to mount dissected funnels from adult and hatchling octopus (N=10)

to Sylgard-lined Petri dishes filled with fresh seawater. To record the activity of the chro-

matophores on these isolated funnels, we used an infrared CCD camera (LCL902HS, Watec,

Newburgh, NY, USA) mounted on a dissecting microscope. We measured the absolute ir-

radiance for our light sources using a spectrophotometer (Jaz, OceanOptics, Dunedin, FL,

USA) placed at an equivalent distance from the light source as experienced by the skin sam-

ples. We recorded under red LEDs (max intensity: 636 nm, full width at half maximum:

16 nm, absolute irradiance: 1.36× 1014 photon cm−2 s−1), which did not stimulate LACE

behavior. We allowed skin samples to dark adapt under red light for at least 2 min between

trials. The white light stimulus was provided by a fiber optic light source set to maximum

brightness ( peak intensity: 681 nm, full width at half maximum: 150 nm, absolute irra-

diance: 2.60× 1015 photon cm−2 s−1). The light stimulus lasted until the chromatophores

reached maximum expansion or 2 min, whichever was shortest.

We measured multiple aspects of LACE, including the latency of the beginning of LACE

from the onset of the stimulus and the time to maximum chromatophore expansion from

the video recordings. We also captured individual still images from the video at the begin-

ning of LACE and at the time of maximum chromatophore expansion to measure the change

in chromatophore size. These images were processed by thresholding and analyzing parti-

cles in FIJI (Schindelin et al., 2012), which allowed us to count the number of pixels of the

chromatophore before and after LACE. We performed multiple light trials on each sample,

but because the chromatophores do not behave independently, we only measured one ran-

domly selected chromatophore per trial, and averaged the chromatophore area pixel count

within each of the 10 samples to get the mean chromatophore size before and after LACE.

For all statistical tests, we assumed that similar mechanisms underlie LACE in both adult
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and hatchling octopuses, but because we found significant differences in the specific values

for latency and chromatophore change after LACE, we analyzed the adults and hatchlings

separately. To test the hypothesis that exposure to light causes an increase in the size of

the chromatophores, we used a binomial sign test (N=10, P=0.5). Because we wanted

to compare LACE-dependent changes in chromatophore size between individual animals

which also varied in size, we report the log-ratio of the mean area pixel count before and

after LACE for each sample. To test whether the change in mean chromatophore size af-

ter exposure to light is significant, we used a one-sample t-test of the log-ratio change in

chromatophore size after LACE.

3.5.3 Identifying opsin phototransduction cascade gene expression

For long-term storage of dissected skin and eyes prior to RNA extraction, we placed

samples in RNAlater (Life Technologies, Carlsbad, CA, USA) and stored them at -20°C.

We extracted mRNA from adult eyes and dorsal mantle skin samples stored in RNAlater

using the Nucleospin RNA XS kit (Qiagen, Valencia, CA, USA), following the manufacturer’s

protocol. To make a single- stranded cDNA library for each sample, we used the Superscript

II RT reaction kit following the manufacturer’s protocol. We stored all cDNA libraries at -

20°C, and diluted them (1:200) before using them as PCR templates.

We created species-specific PCR primers using the coding sequence for O. bimaculoides

eye opsin found in Genbank (accession no. AY545172.1). The forward primer sequence

was: GCGGCATCAAGAAAATGTCC; and the reverse primer sequence was: TGCAAGAA-

GAGCGATGATGG. These primers amplify an approximate 340 bp region of the opsin cDNA.

The PCR thermocycler program was as follows, repeated for 40 cycles: denaturation, 94°C

for 15 s; annealing, 55°C for 30 s; extension, 72°C for 120 s. After 40 cycles, there was a

7 min hold at 72°C for final elongation. To sequence the PCR products, we cloned them
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into TOP 10 cells (Invitrogen, Carlsbad, CA, USA), extracted the product and sent to UC

Berkeley for Sanger sequencing. We used MUSCLE (Edgar and Sjolander, 2004) in Seav-

iew (Gouy et al., 2010) to align the sequences. We amplified and sequenced opsin products

from the eyes (n=2) and dorsal mantle skin (n=5) of adult animals.

3.5.4 Antibody staining

We fixed samples for antibody staining in 4% formaldehyde in phosphate buffered saline

(PBS) overnight at room temperature. We washed them with PBS, dehydrated them step-

wise into 100% methanol and stored them at -20°C. We rehydrated formaldehyde-fixed

samples into 100% PBS, and dissected as necessary. The samples were then blocked (4%

donkey serum, 10% bovine serum albumin in PBS/0.1% Tween-20) for at least 1 h. Next,

we incubated the samples in primary antibody solution (1:2000 Îijl antibody in blocking

solution) using anti-octopus rhodopsin (LSL- LB-5509, Cosmo Bio USA, Carlsbad, CA, USA)

and α- and β-tubulin as neural markers (α- tubulin: T7451, Sigma-Aldrich, St Louis, MO,

USA; β-tubulin: E7, Developmental Studies Hybridoma Bank, Iowa City, IA, USA) for 4 h

at room temperature or 24 h at 4°C. We then washed in PBS three times for 5 min, and

transferred them to the secondary antibody solution (1:250 goat anti-mouse Cy3: A10521;

goat anti-rabbit Cy5: A10523, Life Technologies, Carlsbad, CA, USA) to stain for 2 h at

room temperature. Samples were then washed in 100% PBS twice for 5 min each, then

transferred to PBS containing DAPI (0.5:1000 Îijl) for at least 10 min before two more

washes in 100% PBS. Samples were mounted in glycerol and visualized using a confocal

microscope (Fluoview 1000 Spectral Confocal, Olympus America Inc., Center Valley, PA,

USA).

57



Light-activated chromatophore expansion (LACE) in Octopus bimaculoides skin Chapter 3

3.5.5 Creating the LACE latency action spectrum

To generate an action spectrum, we collected 6-mm-diameter skin punches from the

distal surface of adult O. bimaculoides funnels (N=4). We used the same white light source,

red LED light, video camera, digital converter and computer software as described for the

initial LACE trials. Briefly, each skin sample was visualized using a dissecting scope and

infrared CCD camera. We lit the samples with narrow-bandwidth light through a 1 mm fiber

optic cable that we positioned just above the surface of the water with a micromanipulator,

such that it illuminated the area of skin captured by the video camera. The fiber optic

cable was not moved from this position during a trial, although the exact position differed

slightly between trials and samples. On the other side of an opaque partition, we used a

white scope light (LG-PS2, Olympus America Inc., Center Valley, PA, USA) as the initial

light source and lenses (Qioptic, Fairport, NY, USA) directed white light through one of

two color filter wheels (Thorlabs, Newton, New Jersey, USA) before the filtered light was

directed into the fiber optic cable. Each filter wheel contained 11 colored filters. Together

the filters spanned the visible spectrum from 375 to 660 nm (375, 400, 405, 420, 430, 440,

450, 460, 470, 480, 488, 500, 510, 520, 532, 540, 560, 580, 600, 620, 640 and 660 nm).

To ensure that each skin sample within a trial was exposed to similar photon counts

for each wavelength of light, we measured the photon counts for each filter at maximum

intensity of the white light source. Within the range of the spectrum we expected to find the

peak sensitivity of the LACE behavior (between 440 and 660 nm), we adjusted the power of

the light source such that photon counts for each filter were equivalent to the max photon

count at the wavelength with the least power in the spectrum. For our particular white light

source, we calibrated the photon counts for filters between 440 and 660 nm to the photon

count at 510 nm. To do this, we used a spectrophotometer (Jaz, Ocean Optics, Dunedin, FL,

USA) to measure the absolute irradiance (in photons cm−2 s−1 in the position of the sample,
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and another spectrophotometer (SM700, Milwaukee Instruments Inc., Rocky Mount, NC,

USA) to monitor the overall output of the white light coming from the back of the scope

light. For each colored filter, we adjusted the power of the light source until the photon

counts matched those measured at 510 nm, and recorded the output of the monitor white

light.

During the experimental trials, we used these lux values to adjust the power of the

white light to standardize photon counts that the skin received. Our white light source

was less powerful for wavelengths under 440 nm, and so photon counts for 375-430 nm

consistently fell below the 510 nm count standard. For these wavelengths, we used the

maximum power allowed by the scope light to maximize the photon counts for the filters.

Receiving fewer photons potentially increased the latency of the LACE response at these

shorter wavelengths, but in doing so we maximized the likelihood of LACE occurring at the

wavelengths surrounding our predicted λmax, based on previous reports of λmax of opsin

from the eyes of Octopus vulgaris (Brown and Brown, 1958).

To induce LACE, we illuminated the samples with light through each filter for 45 s, then

allowed them to sit under red light for 90 s as a dark adapt period before trying another

wavelength. We recorded the activity of the chromatophores continuously within a trial,

and performed three trials for all but sample 3, which only had two trials for technical

reasons. Each trial consisted of 22 light stimuli, presented to the skin in randomized order.

From the video we recorded the start time of the light stimulus and the time when a LACE

event began (marked by first noticeable expansion of the chromatophores) after the start

of the stimulus. This duration is the latency of LACE for that particular wavelength. We

excluded LACE data at 375 nm from our analyses because we were unable to measure the

photon count at 375 nm.
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3.5.6 Quantifying the spectral sensitivity of the light-sensing protein

We estimated the λ max for the octopus LACE action spectrum using the Govardovskii

model to fit an opsin specific template (Govardovskii et al., 2000) to the data by minimizing

the sums of squares using the optimize function in R (R Core Team, 2013). We extracted

data on the spectral sensitivity of O. vulgaris eye opsin using Data Thief (Tummers, 2006)

from Brown and Brown (1958).
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4.1 Abstract

The opsin gene family encodes key proteins animals use to sense light and has expanded

dramatically since it originated early in animal evolution. Understanding the origins of

opsin diversity can offer clues to how separate lineages of animals have repurposed dif-

ferent opsin paralogs for different light-detecting functions. However, the more we look

for opsins outside of eyes and from additional animal phyla, the more opsins we uncover,

suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin

diversity in animals. To estimate the number of opsin paralogs present in both the last com-

mon ancestor of all bilaterians, and the ancestor of Cnidaria + Bilateria, we reconstructed a

reconciled opsin phylogeny using sequences from 15 animal phyla, including the tradition-

ally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire

of nine opsin paralogs in the bilaterian ancestor and four opsin paralogs in the last com-

mon ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose

much earlier in animal history than previously known. Further, opsins likely duplicated

and were lost many times, with different lineages of animals maintaining different reper-

toires of opsin paralogs. This phylogenetic information can inform hypotheses about the

functions of different opsin paralogs and be used to understand how and when opsins were

incorporated into complex traits like eyes and extraocular sensors. Key words: reconciled

tree, eye evolution, extraocular photoreceptors, phototransduction, vision

4.2 Introduction

As the protein component of visual pigments, opsins are used in the majority of light-

detecting cells found in animals (Nilsson 2013). Opsins are G-protein coupled receptors

which bind a light-sensitive chromophore via a Schiff base linkage at a conserved lysine
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residue (Terakita 2005). When the chromophore absorbs a photon, conformational changes

in the chromophore and opsin protein result in the activation of a G-protein based signal

transduction cascade (Terakita 2005). Despite their widespread importance in animal pho-

tosensitivity, most work on the function and evolution of opsins focused initially on those

expressed in the eyes of vertebrates and arthropods (Nathans and Hogness 1983; O’Tousa

et al. 1985). Only recently has work on opsins included those expressed outside eyes

or from other animal phyla (Velarde et al. 2005; Radu et al. 2008; Hering et al. 2012;

D’Aniello et al. 2015; Hering and Mayer 2014). We now know the evolutionary history

of opsins is one of many gains and losses of genes across time and among species (Col-

bourne et al. 2011; Henze and Oakley 2015; Davies et al. 2015; Liegertova et al. 2015;

Feuda et al. 2016). This kind of high gene turnover requires broad taxonomic sampling of

opsins to fully reconstruct their evolutionary origins, simply because we know that ancient

losses may result in the complete absence of some opsin paralogs, even in major groups

of animals. Previous large-scale opsin phylogenies have also found many sequences that

fall outside of the well-known opsin groups, typically identified in phyla for which we have

sparse data, e.g. arthropsins in Daphnia or Echinopsins B in echinoderms (e.g. Colbourne

et al. 2011; D’Aniello et al. 2015). Most analyses do not address the nature of these

orphaned sequences. While they may be recently-diverged, lineage-specific duplications,

another possibility is that they represent entire opsin paralogs that are not found within the

phyla that have been most heavily sampled, and have thus not been recognized. Without

an accurate picture of how opsin paralogs are distributed among animals, it is challeng-

ing to address how diverse opsins really are, when that diversity arose, and how different

opsins integrated into different kinds of light-detecting structures through evolution.

Opsins evolved very early in animals (Plachetzki et al. 2007; Feuda et al. 2012; Oakley

and Speiser 2015), likely first expressed in light-sensitive cells and later in more complex

structures like eyes (Arendt and Wittbrodt 2001; Nilsson 2013). Historically, opsin diver-
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sity has been partitioned among three clades which we will refer to as ‘canonical c-opsins’,

‘canonical r-opsins’, and ‘tetraopsins’, formerly ‘ciliary’, ‘rhabdomeric’, and ‘Group 4 opsins’

sensu (Porter et al. 2012; Liegertova et al. 2015), respectively. A possible fourth clade of

opsins, cnidops, are currently known only from cnidarians (Plachetzki et al. 2007; Feuda

et al. 2012). To understand how many opsin paralogs were present in the last common eu-

metazoan and bilaterian ancestors, we need to understand when these major opsin clades

arose and how they are related to each other. Because cnidarians are one of the earliest

branching animal lineages with opsins, the opsin repertoire of cnidarians likely represents

opsin paralogs present in the last common ancestor of eumetazoans. However, relating

cnidarian opsins to the major animal opsin paralogs has proved difficult, and hypotheses

on how cnidarian and bilaterian opsins relate vary widely between analyses. For exam-

ple, the recent prevailing view suggests most recent ancestor of eumetazoans had three

opsin paralogs: c-opsins, r-opsins and tetraopsins (Suga et al. 2008; Feuda et al. 2012;

Feuda et al. 2014). But cnidarian genomes have been hypothesized to encode either the

cnidarian-specific cnidops alone (Porter et al. 2012; Liegertova et al. 2015), both cnidops

and c-opsins (Plachetzki et al. 2007; Vopalensky and Kozmik 2009) or c-opsins, r-opsins

and tetraopsins (Group 4) in common with bilaterians (Suga et al. 2008; Feuda et al. 2012;

Feuda et al. 2014). Based on in-vitro assays, an opsin from the coral Acropora palmata cou-

ples with the same G-protein q alpha subunit used by r-opsins (Lee et al. 1994; Mason et al.

2012). Together with the hypothesized phylogenetic position of this opsin, the functional

test suggests that some cnidarians may possess canonical r-opsins (Mason et al. 2012).

Still, the exact placement of cnidarian opsins is highly sensitive to the specific substitution

models and gene sampling regime used in each analysis. At the same time, a solid under-

standing of their placement is important for understanding the origins of bilaterian opsin

diversity.

The reconstruction of opsin evolution in the bilaterians poses yet more challenges. Early
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estimates of opsin diversity in the last common bilaterian ancestor identified two (Nilsson

2005) or three (Plachetzki et al. 2007; Porter et al. 2012; Feuda et al. 2012; Feuda et al.

2014) paralogs, corresponding to the canonical c-opsins and canonical r-opsins, or canon-

ical c-. r- and tetraopsins respectively. No bilaterians seemed to have direct orthologs of

cnidops, the most commonly identified opsin paralog in cnidarians. Recent sampling ef-

forts to survey new taxa and extraocular tissues have expanded our current view of opsin

diversity, and we now recognize that multiple clades of opsins found in extant animals

were present in the last common ancestor of bilaterians, based on their presence in both

deuterostome (e.g. vertebrates and echinoderms) and protostome (e.g. arthropods and

molluscs) genomes. This raises the minimum opsin paralog count in the last common an-

cestor of bilaterians to five (Terakita 2005; Vopalensky and Kozmik 2009; Suga et al. 2008)

or six (Hering and Mayer 2014; Liegertova et al. 2015; Feuda et al. 2014), distributed be-

tween the bilaterian c-, r- and tetraopsins. With these additions, a pattern emerges – as we

catalog opsins in diverse phyla and from different types of light receptors, we uncover a

greater diversity of opsin paralogs.

Thus, the goal of our analysis is to reconstruct a more taxonomically comprehensive

evolutionary history of animal opsins to understand the origins of bilaterian opsin diver-

sity. We achieve this in two ways. First, we include newly published opsin sequences from

multiple studies that have yet to be synthesized in a large scale phylogenetic analysis. Sec-

ond, we identify additional new opsins from both publicly available transcriptomes and

nine unpublished mollusc transcriptomes, as molluscs are the second most speciose phy-

lum but lag far behind other large taxa in terms of representation in opsin phylogenies to

date. With this more comprehensive data set, we produced the first large-scale reconciled

opsin phylogeny to better estimate the number of opsins present in the last common bila-

terian ancestor. This approach allows us to infer nine opsin paralogs were likely present

in the last common bilaterian ancestor. Further, we find that all cnidarian opsins are sister
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to three opsin paralogs found in other animals, rather than forming cnidarian-specific par-

alogs. From this distributions of cnidarian opsins, we infer that the last common ancestor

of eumetazoans had at least four opsin paralogs. These results suggest a rapid radiation

in opsin diversity prior to the origin of bilaterians, followed by unique patterns of duplica-

tions and losses specific to different animal lineages. Finally, these results urge a renewed

focus on surveying opsins in understudied phyla (prime candidates include Annelida, and

non-bilaterians like Cnidaria and acoels), on including sufficiently diverse sequences when

resolving opsin relationships, and on performing functional experiments to determine both

the roles of non-visual opsins and the extent to which orthologous opsins in divergent phyla

perform similar functions.

4.3 Methods

4.3.1 Data collection:

We searched both NCBI and UniProt using BLAST (Gish and States 1993) with a bait set

of 5 opsin sequences (accession numbers: BAG80696.1; NP_001014890.1; CAA49906.1;

O15974.1; P23820.1, see Suppl. Table 2 for more info) and an e-value cutoff of 1e-5. Our

goal was to maximize the identification of potential opsins from understudied taxa, so we

excluded vertebrates and arthropods from our BLAST search on NCBI and downloaded

the top 250 hits per opsin bait. We searched Uniref90 with the same bait sequences and

cutoff value, then downloaded only lophotrochozoan (NCBI taxonomic ID: 1206795) se-

quences/clusters. We combined all the sequences we recovered from NCBI and Uniref90

with sequences from other publications, which include tardigrades, arthropods, ambul-

craria, cubozoan cnidarians and vertebrates (Hering and Mayer 2014; Henze and Oakley

2015; D’Aniello et al. 2015; Liegertova et al. 2015; Davies et al. 2015). To this initial
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database of published sequences, we added mollusc opsins that we gathered by running

Phylogenetically Informed Annotation, PIA, (Speiser et al. 2014) on transcriptomes from

7 cephalopods, 5 chitons, 1 gastropod, and 1 bivalve (see Suppl. Table 1 for species and

sequence Genbank accession numbers).

4.3.2 Data grooming:

Because our initial data collection was permissive, our raw dataset (over 1,600 se-

quences) contained both duplicates as well as a number of non-opsin GPCRs. We used

CD-HIT (Li and Godzik 2006; Fu et al. 2012) to cluster together sequences that were

more than 90% similar to each other to remove duplicates and short sequences that were

identical to longer sequences already in the dataset. This also allowed us to reduce the

sample size in the alignment by cutting highly similar sequences, while maintaining overall

diversity of sequences in the dataset. To remove non-opsin GPCRs, we first ran the dataset

through SATé-II (Liu et al. 2012) using the automatic settings. SATé-II runs FastTree 2

(Price et al. 2010) on an initial MAFFT (Katoh and Standley 2013) alignment, then subdi-

vides the alignment into subproblems (maximum size is 200 for the auto setting), which are

each realigned with MAFFT. The realigned subproblems are then merged using MUSCLE

(Edgar 2004), and a new tree produced by FastTree, and the maximum likelihood (ML)

score is calculated. This process is iterated until a pre-defined stopping point. For multiple

sequence alignments, SATé-II performs best overall compared to other alignment programs

like MAFFT or MUSCLE (Pervez et al. 2014). We used FigTree (Rambaut 2007) to visual-

ize the tree from our SATé run, rooted with melatonin receptors (Feuda et al. 2014). We

then trimmed this tree to exclude non-opsins using a custom python script called Super-

cuts (Swafford 2016) and retained the ingroup clade for subsequent analyses. Next, we

removed any sequences from the alignment that lacked the conserved lysine residue ho-
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mologous to K296 of bovine rhodopsin. We also manually trimmed the beginning and end

of the alignment to the first and last aligned blocks using Aliview (Larsson 2014). Finally,

although they lack the conserved lysine, we added the Trichoplax adherens placopsins back

to our dataset as a close outgroup to root our tree, as Feuda et al. (2012) showed that pla-

copsins are sister to all other animal opsins. In total, our groomed dataset had 789 opsins

with the conserved K296 (plus three placozoan opsins without the lysine) from 368 species

across 15 phyla.

4.3.3 Tree estimation and support values:

To create the final alignment for our dataset, we ran SATé on our dataset using the

following configuration: a subproblem fraction of 0.025, stopping iterations after 5 unim-

proved ML scores and FastTree under the GTR gamma model. We used the MPI version

of IQ-TREE 1.4.0 (Nguyen et al. 2014), to select a substitution model based on our SATé

alignment, infer a maximum likelihood tree, and compute support values. IQ-TREE incor-

porates an approach for calculating ultrafast bootstraps (UFBoot), which have fewer biases

compared to other bootstrapping methods (Minh et al. 2013). We were also able to per-

form the SH-like approximate likelihood ratio test (SH-aLRT) and the approximate Bayes

test as implemented in IQ-TREE to assess support for single branches to complement our

UFBoot analysis (Guindon et al. 2010; Anisimova et al. 2011). SH-aLRT branch supports

are often more consistent and conservative than bootstrapping methods (Simmons and

Randle 2014; Simmons and Norton 2014). The IQ-TREE substitution model test selected

the LG+F+R8 model for our alignment based on BIC. Because we had a large number

of relatively short sequences, we performed 50 ML tree searches varying the perturbation

value (0.1-0.5). We also extended the number of trees IQ-TREE searched once it found a

tree with a better ML score to 500. This helped ensure that the algorithm was exploring
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the tree parameter space and not getting stuck at a local maximum. Two trees had virtually

identical high log-likelihood scores, and so we ran IQ-TREE again, setting each tree as the

starting tree, to break the tie and to get UFBoot, SH-aLRT and aBayes values for the final,

highest log-likelihood tree. The code used for this analysis, our dataset and the resultant

tree are available on BitBucket (UCSB Phylogenetics).

4.3.4 Tree reconciliation and rearrangement:

We used NOTUNG 2.8 (Chen et al. 2000) to reconcile the gene tree with a metazoan

species tree based on NCBI Taxonomy. This animal phylogeny places sponges as sister

to all other animals, and unresolved relationships between ctenophores, cnidarians and

bilaterians. While the order of branching in early metazoans is contentious, our results

are unaffected by this uncertainty. To perform both a reconciliation and rearrangement of

weakly supported branches, NOTUNG requires a fully resolved species tree. We used the

ape package (Paradis et al. 2004) in R (R Core Team 2016) to randomly resolve polytomies

present in the species tree. Because our analysis focuses on major splits in the animal phy-

logeny that are well supported, e.g. protostomes vs deuterostomes, the random resolution

of more shallow nodes did not impact our results. We set the penalty for duplications to

1.5, losses to 1.0 and the edge weight threshold for rearrangement to 95.0. After recon-

ciling the tree, we used NOTUNG to rearrange nodes with UFBoot supports that fell below

the 95.0 threshold to create our final reconciled tree.

4.3.5 Tree visualization:

We used FigTree 1.4.2 (Rambaut 2007) and TreeGraph2 (Sötver and Müller 2010) to

collapse opsin clades by hand according to major taxonomic group (chordates, echino-

derms, lophotrochozoans or ecdysozoans), and Evolview (Zhang et al. 2012) to format
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the tree color, branch length, etc. for Figure 1. We used iTOL (Letunic and Bork 2011) to

combine the tallies of opsins per phylum or molluscan class with animal and mollusc phy-

logenies (Figures 4 and 5). We made final adjustments to the outputs of these programs

using OmniGraffle Pro (v. 6.5, Omni Group, Seattle, WA).

4.4 Results

From our reconciled tree containing 789 unique sequences, we infer nine bilaterian

opsin paralogs spread across four eumetazoan paralogs (Figures 1 & 2, complete gene and

reconciled gene trees in Suppl. Figures S1 & S2). We recover the six bilaterian opsin paralog

groups described in previous publications: canonical c-opsin, canonical r-opsin, Go-opsin,

RGR/retinochrome/peropsin, neuropsin and arthropsin. Our broader taxonomic sampling

also allows us to infer three previously undescribed bilaterian paralogs, which we have

named ‘xenopsins’, ‘bathyopsins’ and ‘chaopsins’. Because adding so many new bilaterian

opsins changes the relationships between paralogs, we establish new, named hypotheses

for these relationships, as often done in species-level phylogenetic analyses (see Table 1).

In addition to new clade names, we also use Roman numerals for eumetazoan paralogs and

Arabic numerals for bilaterian paralogs to help clarify which opsin clades are inferred as

eumetazoan versus bilaterian paralogs at a glance in the text and figures.

4.4.1 The last common eumetazoan ancestor had at least 4 opsin par-

alogs

All cnidarian opsins included in our analysis fell within three opsin paralogs also shared

by bilaterians: the canonical visual opsins (I), chaopsins (II), and xenopsins (III) (see Fig-

ure 1 and Suppl. Figs S1 & S2). In our gene tree, Anthozoa II (Hering and Mayer 2014) is
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Last common 
eumetazoan 

ancestor opsin 
paralogs

Last common bilaterian 
ancestor opsin paralogs Previously named clades within each group

UFBoot sup-
port

I- Canonical 
visual opsins

1. Bathyopsins echinoderm and inarticulate brachiopod bathy-
opsins 99

2 .Canonical c-opsins
chordate TMT, chordate encephalopsins, echin-
oderm encephalopsin-like, arthropod pteropsins, 
Platynereis c-opsin, vertebrate visual c-opsins

96

3. Non-canonical r-opsins lophotrochozoa, ambulacrarian and cephalo-
chordate 'arthropsins' **

4. Canonical r-opsins
lophotrochozoan visual r-opsins, platy-
helminthes r-opsin, chordate melanopsins, 
arthropod visual r-opsins, arthropod arthropsins

99

II- Chaopsins 5. Chaopsins echinoderm Echinopsins B and Anthozoa I 100

III- Xenopsins 6. Xenopsins cnidarian cnidops, lophotrochozoan xenopsins 99

IV- Tetraopsins

7. RGR/Peropsins/
Retinochromes

chordate Rrh/RGR/peropsin, echinoderm RGR-
like, mollusc retinochrome/peropsin-like/
arthropod peropsin-like

98

8. Go-opsins echinoderm, cephalochordate and lophotro-
chozoan Go-opsins 100

9. Neuropsins
chordate, non-mammalian vertebrate, ambu-
lacrarian, lophotrochozoan and arthropod neu-
ropsins/opn5

100

Table 4.1: Summary of opsins present before bilaterians and present in the last com-
mon bilaterian ancestor. We considered UFBoot values above 95 as strong support for
the monophyly of that group, but allowed branch rearrangements below that threshold.
Asterisks (**) indicate support for the node based on reconciliation with the species tree.
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II-Chaopsin III-XenopsinI-Canonical visual opsin IV-Tetraopsin

1. Bathyopsin 2. Canonical 
c-opsin

3. Non-
canonical 

r-opsin

4. Canonical 
r-opsin

5. Chaopsin 6. Xenopsin 7. RGR/
Retinochrome

8. Neuropsin 9. Go-opsin
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Figure 4.1: There are nine bilaterian opsin paralogs spread among four major eumeta-
zoan opsin paralogs. The four major eumetazoan opsin paralogs are indicated at the top
with roman numerals. The nine bilaterian opsin paralogs are indicated with arabic nu-
merals and are color coded to match the corresponding branches. Each opsin clade has
been reconciled and collapsed into five major taxonomic groups: chordates, echinoderms,
ecdysozoans, lophotrochozoans, and cnidarians. Colored branches indicate the presence
of an opsin in at least one species within the major taxonomic group. Light gray dashed
branches indicate absence of an opsin paralog from the taxa indicated at the tips. These
absences likely represent true losses of opsin paralogs. Ultrafast bootstrap (UFBoot) sup-
ports from IQ-TREE are given at the nodes they support. All unlabeled nodes had UFBoot
supports <95% and were rearranged during tree reconciliation.

sister to the canonical c-opsins, but with mixed support from UFBoot (67) and single branch

tests (aLRT = 91.2; aBayes = 0.998). Our reconciliation analysis minimizes duplications

and losses using only bootstrap support values, and so places Anthozoa II sister to both

the bilaterian paralogs containing both the canonical c- and canonical r-opsins as the most

parsimonious arrangement (as seen in Figure 1). However, given the difference in support

for the placement of Anthozoa II based on bootstraps vs. single branch tests vs. parsimony,

we cannot confidently place these cnidarian opsins. On the other hand, the cnidarian An-

thozoa I (Hering and Mayer 2014) are well supported as sister to echinoderm chaopsins

(UFBoot = 100; aLRT = 98.6; aBayes = 1.0). Similarly, the cnidarian-wide cnidops (Pla-

chetzki et al. 2007) are also strongly supported (UFBoot = 99; aLRT = 95.4; aBayes =
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1.0) as sister to lophotrochozoan sequences, together comprising the xenopsins. Because

all cnidarian opsin paralogs fall sister to bilaterian sequences, we infer that these three

opsin paralogs arose prior to the split of cnidarians + bilaterians, and were thus present

in the last common ancestor of eumetazoans. Although we did not find extant cnidarian

tetraopsins, our reconciled tree infers that the last common eumetazoan ancestor did have

a tetraopsin, raising our estimate of eumetazoan opsin paralogs to four.

4.4.2 The bilaterian ancestor at least 9 different opsin paralogs

I-Canonical visual opsins

This grouping consists of multiple clades of both previously and newly described opsins,

encompassing the canonical visual opsins in both vertebrates and invertebrates. Because

the relationships between these clades generally received low UFBoot support, their current

placement together comes primarily by our reconciliation analysis.

1. New opsin group: Bathyopsins

The opsin paralog we have named bathyopsins is a small but well supported, mono-

phyletic, bilaterian clade (see Figure 3, UFBoot=99). Sequences from the echinoderms,

Echinopsins A (D’Aniello et al. 2015), represent deuterostomes, and sequences from the

genome of the brachiopod Lingula represent prostostomes.

2. Canonical c-opsins

We have renamed as ‘canonical c-opsins’ the monophyletic clade of bilaterian opsins

such as vertebrate visual and brain c-opsins, arthropod pteropsins (Velarde et al. 2005),

and Platynereis c-opsin (Arendt et al. 2004). We recovered the canonical c-opsins with high

support (UFBoot=96, see Figure 3). Despite mining numerous mollusk transcriptomes for
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Figure 4.2: The history of opsins is marked by ancient diversity and subsequent losses of
paralogs along different animal lineages. Summary of known opsin complements in major
animal phyla. Major subdivisions of metazoans are indicated on the phylogeny as yellow
dots with italic labels. Phyla are represented at the tips, except for cnidarians, which
are broken down into the two major cnidarian splits. Colored bars with roman numerals
indicate opsin paralogs present in the most recent ancestor of eumetazoans. The nine
bilaterian opsin paralogs are indicated by slanted colored bars and full opsin names. Filled
squares represent presence, empty squares absence of at least one sequence from the opsin
paralog group for each phylum listed. Gray Xs mark losses of opsins that are strongly
supported, based on absence of that opsin paralog in any genomes from the phylum.
Note that no extant phylum included in our analysis seems to have the full complement
of bilaterian opsins. The maximum is seven opsin paralogs in both echinoderms and
brachiopods. The anthozoan I- canonical visual opsin paralog falls sister to bilaterian
orthologs, and is indicated by the light blue bar.

opsin sequences (n=14), we did not recover any additional lophotrochozoan or protostome

c-opsins that clustered with the canonical c-opsins besides the single c-opsin reported from

the annelid Platynereis dumerilii.
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Figure 4.3: The ancestral mollusc likely had seven opsins from six of the bilaterian paralog
groups. Summary of known opsin complements within the molluscs. Colored bars with
roman numerals indicate opsin paralogs present in the most recent ancestor of eumeta-
zoans. The nine bilaterian opsin paralogs are indicated by slanted colored bars and full
opsin names. Filled squares represent presence, empty squares absence of at least one
sequence from the opsin paralog for each genus listed. Gray Xs mark losses of opsins that
are strongly supported, based on absence of that opsin paralog in the Octopus bimacu-
loides genome. The major classes of molluscs are noted with yellow dots and italic labels.
Argopecten irradians retinochrome was not included our original analysis, but is present,
noted by an asterisk.

3. Non-canonical r-opsins

The non-canonical r-opsins are sister to the canonical r-opsins with high support (UF-

Boot=100, see Figure 1), though we do not have strong support for the monophyly of the76
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non-canonical r-opsins, even after reconciliation (see Figures 1 & 3; Suppl. Figure 1). The

non-canonical r-opsins contain sequences from deuterostome lineages like echinoderms,

hemichordates and cephalochordates, and previously unannotated sequences from proto-

stomes groups that include annelids, brachiopods and molluscs.

2. Canonical c

Platynereis dumerilii
Branchiostoma floridae

Chordate TMT
69/0.95/97

Vertebrate encephalopsin
100/1.0/100

Panarthropod pteropsin
98/1.0/100

Echinoderm c-opsin
100/1.0/100

Vertebrate visual c
97/1.0/100

96/1.0/96

56/0.55/981
73/0.94/922

1

2

5. Chaopsin
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86/0.94/99
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Platyhelminth visual r
97/1.0/100

3. Non-canonical r

90/0.99/923
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100/1.0/100
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87/0.97/100

93/1.0/86
90/0.98/82

63/0.96/75

95/1.0/97
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Figure 4.4: Opsin paralog trees for the Gq-opsins and C-opsins, representing the relation-
ships between opsin orthologs by phylum. Each tree shows opsin sequences collapsed by
clade. Values below the clade name represent SH-aLRT/aBayes/UFBoots. Only clades
with bootstrap supports >75% are shown.

4. Canonical visual r-opsins

This opsin group is well supported by our tree (UFBoot=99, see Figure 3) and in-

cludes the following four clades: the canonical visual opsins of arthropods; the chordate

melanopsins and arthropod arthroposins; the canonical visual opsins of mollusks; and the

(presumably) visual r-opsins from annelids, brachiopods and platyhelminths.
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II-5. New opsin group: chaopsins

The opsin group we have named chaopsins consists of two previously described clades

of opsins, a group of cnidarian opsins called Anthozoa I (Hering and Mayer 2014) and

the echinoderm Echinopsins B (D’Aniello et al. 2015). The grouping of these anthozoan

and echinoderm sequences as monophyletic chaopsins is well supported (see Figure 3, UF-

Boot=100; aLRT=98.6; aBayes=1.0).

III-6. New opsin group: xenopsins

The opsin group we call xenopsins consists of sequences from a variety of lophotro-

chozoan protostomes (molluscs, rotifers and brachiopods) and cnidarian cnidops. This

clade is well supported in our tree (see Figure 2, UFBoot=99; aLRT=95.4; aBayes=1.0).

We did not find support for any other protostome (e.g. ecdysozoan) or deuterostome

xenopsins. We recovered both the lophotrochozoan xenopsins and cnidarian cnidops with

strong support (see Suppl Figure 1). The xenopsins are well supported as sister to the

tetraopsins (UFBoot=98; aLRT=90.8; aBayes=1.0, see Figure 1 and Suppl. Figure 1).

Many xenopsins were initially described as c-opsin-like in previous analyses, including

sequences from the genomes of the mollusks Crassostrea gigas and Lottia gigantea and the

rotifer Branchionus sp., and those from gene expression data generated from the larval eyes

of the articulate brachiopod Terebratalia transversa, the optic lobes of Octopus bimaculoides

and the adult eyes of Idiosepius paradoxus (Passamaneck et al. 2011; Albertin et al. 2015;

Yoshida et al. 2015). However, we believe that the limited taxonomic scope of previous

analyses lead to the incorrect classification of these sequences as c-opsin-like. Our tree

is the first to include all of these sequences into a single analysis, and our results clearly

support them as a monophyletic clade. Finally, in addition to xenopsins that were previously

described, we found 7 new mollusk xenopsins from combing through transcriptomes (see
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Figure 4.5: Opsin paralog trees for the tetraopsins and xenopsins, representing the rela-
tionships between opsins by phylum. Each tree shows opsin sequences collapsed by clade.
Values below the clade name representSH-aLRT/aBayes/UFBoots. Only clades with boot-
strap supports >75% are shown. Each asterisk ‘*’ on a branch represents a shortening by
five branch length units.

Suppl. Table 1).

IV- Tetraopsins

Similar to previous analyses (Porter et al. 2012; Hering and Mayer 2014; Feuda et

al. 2014), we recover the tetraopsins (IV), formerly ‘RGR/Go’ or ‘Group 4’ opsins, as a

monophyletic group with strong support (UFBoot = 100; aLRT = 98.9; aBayes = 1.0).

They consist of RGR/retinochromes/peropsins, Go-opsins, and neuropsins. Because our

tree shows strong support for these opsins as most closely related to each other, we have

renamed this clade of opsins tetraopsins. Further, we find that each of the previously rec-
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ognized, major splits within tetraopsins has representatives from both protostomes and

deuterostomes. (see Figure 1)

7. RGR/retinochromes/peropsins

The RGR/retinochrome/peropsin clade is well-supported by our tree (UFBoot=98, see

Figure 2). Deuterostome RGRs include the original RGRs identified in vertebrates, as well

as RGR-like sequences in cephalochordates, hemichordates, and echinoderms (Jiang et al.

1993; Holland et al. 2008; D’Aniello et al. 2015). Deuterostome peropsins include RRH

from vertebrates as well as peropsin-like sequences from cephalochordates, hemichordates

and echinoderms (Sun et al. 1997; Holland et al. 2008; D’Aniello et al. 2015). Pro-

tostome retinochromes include the originally described retinochromes from cephalopods,

plus retinochrome-like sequences in bivalve and gastropod molluscs (Hara and Hara 1967;

Katagiri et al. 2001). We recovered an additional 3 retinochrome-like sequences from

mollusc transcriptomes, including 1 from the gastropod Bithynia siamensis goniomphalos

and 2 from the chitons Stenoplax conspicua and Chiton virgulatus. In addition to the mol-

luscs, we found retinochrome-like sequences in the brachiopod Terebratalia transversa, pre-

viously described as a Go-opsin (Passamaneck and Martindale 2013) and a sequence pre-

viously described as a peropsin in the annelid Platynereis dumerilli (Marlow et al. 2014).

We also found a small clade of protostome sequences that fell outside of the protostome

retinochromes, including 4 sequences from the genomes of the mollusks Crassostrea gi-

gas, Lottia gigantea and Octopus bimaculoides (Albertin et al. 2015). Finally, non-insect

arthropod peropsin-like sequences (Henze and Oakley 2015) also belonged in the clade

of protostome retinochromes. It is unclear from our analysis whether RGR/retinochromes

and peropsins are separate bilaterian paralogs. We did recover distinct groups, suggestive

of of two bilaterian clades, but had low support values at these nodes, and so we collapsed

the groups together (see Suppl. Figure 1).
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8. Neuropsins

The split between the protostome and deuterostome neuropsins is well supported (UF-

Boot=100, see Figure 2). Deuterostome neuropsins/opn5 sequences include a large clade

of vertebrate and cephalochordate neuropsins, a large clade of non-mammalian verte-

brate neuropsins, plus neuropsin-like sequences from the Ambulacraria (including those

from both hemichordates and echinoderms). Neuropsins from protostomes include se-

quences from annelids, both Platynereis dumerilli (Gühmann et al. 2015) and Capitella

teleta (Simakov et al. 2012), bivalve and gastropod molluscs, and from the brachiopod

Lingula anatina (previously annotated as a peropsin). We recovered an additional bivalve

neuropsin from the transcriptome of the scallop Argopecten irradians. We also found two

pan-arthropod neuropsin-like sequences from water flea Daphnia pulex (Hering and Mayer

2014; Brandon 2015) and the tardigrade Hypsibius dujardini (Hering and Mayer 2014).

9. Go-opsins

The deuterostome and protostome Go-opsins form a well supported clade of bilaterian

opsins (UFBoot=100, see Figure 2). We recovered the same deuterostome Go-opsins from

echinoderms and cephalochordates as identified from previous analyses (D’Aniello et al.

2015). From protostomes, we found previously described sequences of Go-opsins from

both bivalve and gastropod mollusc, and also sequences from brachiopods and annelids.

We also recovered a new Go-opsin from the transcriptome of the scallop A. irradians.

4.5 Discussion

Reconstructing the evolutionary history of opsins is vital for understanding how evolu-

tion produced light-detecting structures like eyes. Unfortunately, the problem of how and
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when opsin diversity arose is made difficult by the large number of duplications and losses

that have occurred within their evolutionary history. While most analyses of opsin diversity

to date have focused on understanding opsin complements within a set of focal taxa (e.g.

Plachetzki et al. 2007; Feuda et al. 2012; Hering and Mayer 2014; Feuda et al. 2014;

D’Aniello et al. 2015), we included multiple poorly-sampled phyla to ensure the broadest

phylogenetic scope to date, for a total of 324 species from 15 phyla. Our analysis reveals

three previously unrecognized opsin paralogs in extant animals, and the surprising result

that these three additional opsin paralogs likely arose early in the evolution of bilaterians,

followed by losses and duplications within those opsins that remained.

Our first major finding is that the diversity of opsins in extant animals suggests the

presence of at least seven separate opsin paralogs in the bilaterian ancestor, and we in-

fer a total of at least 9 bilaterian opsin paralogs. In addition to the 6 previously identi-

fied bilaterian opsins (c-opsin, r-opsin, melanopsin, Go-opsin, peropsin/RGR/retinochrome

and neuropsin), we propose three additional bilaterian opsins– xenopsins, bathyopsins and

chaopsins. While we acknowledge the need for additional sequence and expression data

to confirm the monophyly of these clades of opsin paralogs, our results are consistent with

the hypothesis that these opsin paralogs were all present in the last common ancestor of

bilaterians. Hints of the three new opsin groups we have identified can be seen in previous

opsin phylogenies (Hering and Mayer 2014; D’Aniello et al. 2015), but hypotheses for how

these orphaned sequences relate to other better-studied opsins remained obscure with less

broad taxonomic coverage.

For example, cnidarian cnidops have historically been difficult to place consistently

within opsin phylogenies. They are sister to the c-opsins in some analyses (Plachetzki et

al. 2007; Porter et al. 2012; Hering and Mayer 2014; Liegertová et al. 2015), and the

tetraopsins in others (Feuda et al. 2012; Feuda et al. 2014). The fact that cnidops changed

positions between analyses suggests that the sequences in the clade are divergent com-
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pared to others in the dataset. We found that cnidops fall sister to the lophotrochozoan

xenopsins with high bootstrap and branch support, suggesting they are a monophyletic

clade. Further, the hypothesis of xenopsins as the sister clade to the tetraopsins is also well

supported both by UFBoot and single branch tests. If our reconciled gene tree is correct,

the grouping of lophotrochozoan and cnidarian xenopsins suggests that xenopsins were

present in both the bilaterian and eumetazoan ancestors. This differs significantly from

previous opsin phylogenies (e.g. (Plachetzki et al. 2007; Feuda et al. 2012), since those

did not include bilaterian xenopsin-like sequences, and so found that cnidops was its own

eumetazoan opsin paralog that was lost from bilaterians entirely.

Lophotrochozoan xenopsins are a well-supported monophyletic clade, suggesting that

xenopsins were present in the lophotrochozoan ancestor. Interestingly, xenopsins are ab-

sent from publicly available Platynereis opsins and the Capitella and Helobdella genomes.

However, because our sampling from annelids is so sparse given the large number of species

in the phylum, it seems likely that annelid xenopsins could be uncovered after broader sam-

pling. Xenopsins are also absent from both the ecdysozoan and deuterostome taxa included

in our analysis. Given that arthropods, chordates, and echinoderms are now well-sampled

for opsin diversity, it seems unlikely, though possible, that xenopsins could be uncovered

from unsampled species belonging to these phyla. Thus we hypothesize that the absence

of xenopsins from these groups in our dataset reflects true losses of xenopsins from ecdyso-

zoan and deuterostomes lineages. Given this hypothesis, we infer that xenopsins were lost

at least three times in bilaterians: from ancestors of the annelids, Panarthropoda, and the

deuterostomes.

Increased taxon sampling also allows us to hypothesize the bathyopsins and chaopsins

as paralogs present in the last common ancestor of bilaterians. These opsins are are un-

usual because of their extreme phylogenetic sparseness, suggesting that if our gene tree

inference is correct, these opsin paralogs were lost in the majority of bilaterians. How-
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ever, we interpret this sparseness more as an indication that even our inclusive dataset may

still be under-sampling true opsin diversity in animal phyla, rather than representing an

accurate distribution of these opsins among animals. Bathyopsins are found in only two

phyla so far, Echinodermata and Brachiopoda, and are well supported as a monophyletic

clade in our tree. Given that bathyopsins are represented by one deuterostome and one

protostome, we must infer that bathyopsins were present in the last common bilaterian an-

cestor. We have not yet found chordate or hemichordate representatives. In protostomes,

we infer that the lophotrochozoan ancestor had bathyopsins, but since bathyopsins are

unknown in ecdysozoa entirely, it is possible that they were lost in ecdysozoa after the

lophotrochozoan/ecdysozoan split. Because opsins from chordates and arthropods are well

sampled, it is unlikely, but possible, that these phyla possess bathyopsins. We have not un-

covered annelid, mollusc or rotifer bathyopsins. However, because lophotrochozoans, and

especially annelids, are underrepresented even in our analysis, it is possible that opsin sur-

veys from lophotrochozoans will reveal additional members of the bathyopsins in these

phyla.

We found chaopsins in only two phyla so far, echinoderms and cnidarians, and their

monophyly is supported by both high UFboots and single branch tests. Given our data

set and analyses, we hypothesize that chaopsins were lost up to three times in bilaterians:

twice from deuterostomes (chordates and hemichordates) and once in the ancestor of all

protostomes (including both ecdysozoans and lophotrochozoans). We also find that antho-

zoans are the only cnidarians that have chaopsins, which suggests another potential loss

of chaopsins from the ancestor of hydrozoans and cubozoans. As with the other new opsin

types we have described, we are more confident that chaopsins are truly lost from chor-

dates and arthropods because of the extent to which those phyla have been sampled. We

are much less confident regarding the loss of chaopsins from the lophotrochozoans, which

are extremely poorly sampled, especially considering the amount of animal diversity found
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in the group.

The second major finding is that the eumetazoan ancestor likely had at least four opsin

paralogs, based on the distribution of cnidarian opsins in our analyses. This differs from

previous reports which divide cnidarian opsins into their own lineage-specific clade (Suga

et al. 2008; Porter et al. 2012), cnidarian specific and cnidarian c-opsin clades (Plachetzki

et al. 2007) or as cnidarian members of the c-, r- and tetraopsins (Feuda et al. 2012;

Feuda et al. 2014; Hering and Mayer 2014; Liegertová et al. 2015). We do find that

extant cnidarian sequences fall sister to bilaterian opsins, but to different opsin paralogs

than previously reported.

Our analysis places cnidops sister to the lophotrochozoan xenopsins with high support,

whereas in the past, cnidops has typically formed its own clade or else fallen sister to the

c-opsins (Plachetzki et al. 2007; Feuda et al. 2012; Feuda et al. 2014; Hering and Mayer

2014; Liegertová et al. 2015). Unlike the other cnidarian opsin paralog groups which

contain only anthozoan sequences, cnidarian xenopsins have representatives from all the

major classes of cnidarians. We did not recover strong support for Anthozoa II as sister the

canonical c-opsins as found by other analyses (Plachetzki et al. 2007; Suga et al. 2008;

Feuda et al. 2012; Feuda et al. 2014). Instead, we found ambiguous bootstrap vs. single

branch support for this placement, and after reconciliation, Anthozoa II fell outside of the

clade containing both canonical c- and r-opsins.

Unlike a number of recent analyses that placed chaopsins from Anthozoa I (Hering and

Mayer 2014) with the canonical r-opsins (Feuda et al. 2012; Feuda et al. 2014; Hering

and Mayer 2014), we recovered this relationship with moderate support in our gene tree

only. After reconciling the gene tree chaopsins fell sister to the clade containing xenopsins

+ tetraopsins. Finally, from our phylogeny, we infer the loss of cnidarian opsins belonging

to the tetraopsins. However, because cnidarians are not well sampled, it is possible that

a cnidarian ortholog of the bilaterian tetraopsins may be uncovered. Overall, we success-
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fully identified well-supported bilaterian orthologs of at least two cnidarian opsins, cnidops

as xenopsins, and Anthozoa II opsins as chaopsins and infer that the last common ances-

tor of eumetazoans must have had at least 4 different opsins. Adding more opsins from

non-bilaterians (Cnidaria and acoels) may help solidify deeper relationships between well

documented opsin paralog like the canonical c- and r-opsins and the opsin paralogs we

have identified in this analysis.

We used a traditional animal phylogeny to reconcile our gene tree, with ctenophores

placed sister to cnidarians, and these two phyla together as sister to bilaterians. How-

ever, the traditional view of ctenophores as sister to cnidarian (Coelenterata hypothesis)

is challenged by multiple studies that instead place ctenophores sister to all other animals

(ctenophore-out hypothesis) (Dunn et al. 2008; Ryan et al. 2013; Moroz et al. 2014;

Borowiec et al. 2015; Pisani et al. 2015; Halanych et al. 2016). There seem to be two

opsin paralogs in ctenophores, but the relationship between those opsin paralogs and opsins

from other animals is contentious, particularly the placement of Mnemiopsis 3 (Feuda et al.

2014; Schnitzler et al. 2012). Although Mnemiopsis 3 does have the conserved lysine that

aligns at bovine rhodopsin position 296, it was excluded from (Hering and Mayer 2014)

because there is an additional insertion that is absent from the other Mnemiopsis opsins.

Its placement in the metazoan opsin phylogeny is also highly sensitive to outgroups as seen

in (Schnitzler et al. 2012; Feuda et al. 2014). For these reasons, we did not include Mne-

miopsis 3 in our analysis. Overall, the results of our analysis are not affected the current

controversy about the relationship between ctenophores and other animals (Borowiec et

al. 2015; Pisani et al. 2015; Halanych et al. 2016; Pisani et al. 2016). Our results also

cannot support either hypothesis, as the ctenophore opsins we included were not placed in

the animal opsin phylogeny with high support.

Our opsin dataset includes more sequences from more phyla than any previously pub-

lished opsin phylogeny. These conditions meant that many nodes were difficult to resolve
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with high statistical bootstrap support (see Supp. Figure 1) and so we used a unique combi-

nation of methods to produce our final tree, incorporating both maximum-likelihood (SATé

and IQ-TREE) and gene tree-species tree reconciliation (NOTUNG). Because we were in-

terested in knowing how many opsin paralogs were present in the common ancestor of

bilaterians, we needed a better understanding of how different opsins were related to one

another. However, because the history of duplications and losses of opsins can make a gene

tree by itself difficult to interpret, we reconciled the opsin gene tree to a species tree using

NOTUNG, which looked for the most parsimonious pattern of duplications and losses to

account for known species relationships. This tells us how opsin paralogs might be related

to each other, specifically whether any pair of opsins found between species arose from du-

plication events (paralogs) or speciation events (orthologs), and allowed us to determine

which groups may have bilaterian or eumetazoan origins. It is worth noting that while

reconciliation can bias counts of duplicates and losses (Hahn 2007), we estimate the same

minimum number of opsin paralogs in the most recent ancestor of bilaterians with both

our reconciled tree and the IQ-TREE gene tree (Suppl. Figures 1). Overall, where we have

overlapping data, our final reconciled tree is generally consistent with other large-scale

opsin phylogenies (Porter et al. 2012; Hering and Mayer 2014; Feuda et al. 2014).

Opsin evolution is surprisingly complex, and this complexity hints at just how much we

have yet to learn about how animals use opsins, how these functions shaped the evolution

of the gene family and the physiology and behaviors that require opsins. It is not yet clear to

what extent the loss of an opsin paralog within an animal lineage suggests the concomitant

loss of the organismal function, or whether other opsin paralogs can take over that function.

At present, we have no functional data for the majority of the 700+ opsins included in this

analysis. While we can make some inferences about the function of a particular opsin based

on what we know about orthologous opsins, the data we do have suggests that different

animal phyla use related opsins for different purposes, e.g. r-opsins likely mediate vision
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in many protostome eyes, but the related orthologous melanopsins in vertebrate retinal

ganglion cells only have roles in non-visual tasks.

The discovery of opsins restricted to traditionally understudied groups like echino-

derms, molluscs, annelids, and brachiopods strongly underscores the need to look outside

well-sampled phyla like vertebrates and arthropods for opsins. Additionally, many of these

traditionally understudied animals are not well known for possessing eyes, and yet our

analysis (among others) shows rich repertoires of opsins in these clades, urging us to look

beyond animal eyes for opsin expression. By now it is exceedingly clear that opsins are

expressed across the bodies of animals (Ramirez et al. 2011), and our results show that

there may still be opsin paralogs to discover outside of animal eyes. Further, many analyses,

including ours, use the presence of a conserved lysine residue (bovine rhodopsin K296) as

diagnostic for opsins (Terakita 2005). However, we found that keeping this requirement

eliminated 500 sequences recovered by BLAST. While many of these are likely closely re-

lated, but non-opsin GPCRs, some may be opsin duplicates that have lost the conserved

lysine (Henze and Oakley 2015). Future analyses of these opsin-like sequences may reveal

even more ancient diversity than what we have recovered so far.

Finally, our analysis raises an urgent and intriguing question– what was the last common

ancestor of Bilateria are animals doing with 9 opsin paralogs. Cataloging opsin sequence

diversity alone is insufficient to understand why animals have so many different opsins. We

must also take what we learn from an analysis like our own to understand how changes

to an opsin‘s sequence alter its function and how animals use opsins for different tasks.

Besides spatial vision, opsins are used for myriad purposes, as depth-gauges, for circadian

rhythms or enabling private communication between conspecifics (Bennett 1979; Lythgoe

1979; Bybee et al. 2012). Further, while opsins are canonical light detectors, two recent

studies have shown roles for opsins in both heat sensing and detecting mechanical stimuli

in Drosophila (Shen et al. 2011; Senthilan et al. 2012). These studies provide a tanta-
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lizing glimpse into opsin functions in sensory modalities besides light detection. Without

understanding the true extent of opsin diversity, we cannot understand opsin evolution, the

evolution of eyes and other light sensors, or even how a complex trait like eyes can evolve.
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5.1 Abstract

At macroevolutionary timescales, do novel behaviors evolve through reuse and tinker-

ing of underlying components? We asked whether deep homology of a dispersed light sense

in mollusc mantle may have contributed to the evolution of Light-Activated Chromatophore

Expansion (LACE), a novel behavior of the colored chromatophore organs in octopus skin

that we have previously hypothesized uses the same phototransduction cascade to sense

light as octopus eyes. We surveyed the literature and 45 publicly available mantle tran-

scriptomes from five major molluscan lineages for the expression of opsin phototransduc-

tion genes, the primary molecular mechanism that animals sense light. After excluding

transcriptomes that fell below our quality threshold, we kept 28 species in our analysis. A

total of 20 mantle transcriptomes had at least one opsin expressed. R-opsin cascade genes

are expressed in the mantles of 18 species from 5 molluscan classes. We combined these

data with mantle expression data from a few species in the literature, bringing our total

count of r-opsin expressing mantles to 21. The broad distribution of these data suggest

that ancestral octopus skin could have been light sensitive prior to the evolution of their

chromatophore organs. We performed an ancestral state reconstruction for r-opsin expres-

sion in the mantle of the last common ancestral mollusc, and found that this ancestor most

likely expressed r-opsin in its mantle. These results suggest that an ancestral light sense

existed before the origins of chromatophores in cephalopods and may have been co-opted

during evolution and integrated with chromatophores. When this happened, it allowed

octopus chromatophores to respond to changes in light in the absence of the central ner-

vous system. The molecular basis for light sensing, r-opsin phototransduction, is already

known as a deep homology, since r-opsin phototransduction arose, at latest, before the last

common bilaterian ancestor. Our results are consistent with the hypothesis that a dispersed

light sense in the mantle is also deeply homologous and pre-dates the origins of cephalopod
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chromatophores and their LACE behavior in response to light.

5.2 Introduction

Chromatophores are small, pigmented organs embedded in the skin of coleoid cephalopods

like octopuses, squid and cuttlefish. When chromatophores organs expand and contract,

they change the tone and color of the animals’ skin in an instant, creating visual displays

for used for remarkably sophisticated camouflage and communication. No other molluscs

have such a diverse and complex behavioral repertoire, and cephalopod chromatophores

are a major reason why. This complexity is a lure for scientists interested in understanding

behavior, but also raises the question of how such complex and novel behaviors evolve? Be-

cause behaviors are the output of underlying levels of biology, we can start to understand

how behaviors evolve by understanding their component mechanisms and when those el-

ements themselves evolved.

We consider cephalopod chromatophores as evolutionary novelties, or “novel traits or

behaviors, or novel combinations of previously existing traits or behaviors, arising during

the evolution of a lineage, and that perform a new function within the ecology of that

lineage” (Pigliucci 2008). Chromatophores perhaps originated before the last common an-

cestor of the coleoid cephalopods (350-250 Ma), as they are not present in modern Nautilus

spp., the sister taxon to the coleoids (Kroger et al. 2011; Warnke et al. 2011; Tanner et

al. 2017). As organs, chromatophores differ in their structure and function compared to

pigment cells found in other animals, changing shape via a unique mechanism. Instead of

pigment granules dispersing within a fixed amoeboid cell membrane, the cell membrane

containing pigment granules in cephalopod chromatophores is highly elaborated and elas-

tic. When the radial muscles attached to the pigment cell contract, they stretch the cell

membrane taut, allowing pigment granules to disperse within the now larger area of the
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cell. The effect is a dramatic increase in the apparent size of the colored spot, and be-

cause the muscles are under direct neural, rather than physiological, control, the change

in chromatophore size can happen almost instantly.

Chromatophores typically respond to environmental light indirectly, mediated through

cephalopod eyes and brains. However chromatophores in the mantle skin of Octopus bi-

maculoides expand in response to light when completely isolated from the central nervous

system and eyes, a behavior called Light Activated Chromatophore Expansion, or LACE

(Ramirez and Oakley 2015). Since cephalopod chromatophores are evolutionary novel-

ties and LACE is a behavior of chromatophores, we argue that LACE itself is an evolu-

tionarily novel behavior. Though evolutionarily novel, LACE is also relatively simple, es-

sentially requiring only the chromatophore organs and a local light sense in octopus skin.

Though we know very little about the evolutionary or developmental origins of octopus

chromatophores themselves, light sensing in animals is well studied at both the molecular

and behavioral level in an evolutionary context, providing a solid foundation for under-

standing the evolutionary history of this component of LACE. We want to ask whether there

is evidence of deep homology and evolutionary tinkering in light sense underlying LACE

behavior, and in particular, whether the light sense itself might be a deeply homologous

trait.

From previous work, we hypothesized that octopus skin likely senses light using opsin-

based phototransduction, the same mechanism used by almost every animal eye, although

different eyes use different opsin paralogs (Yau and Hardie 2009). Opsins are a large family

of 7-transmembrane domain, G-protein coupled receptors found only in animals, though

they are missing from the sponges (Feuda et al. 2012). Opsins seem to have originated early

in the evolutionary history of animals, based on the shared distribution of opsin paralogs

among distantly related phyla. As we estimated in Chapter 4, the last common ancestor of

most bilaterians (excluding Xenacoelomorpha) may have had at least nine opsin paralogs,
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setting the stage for large numbers of subsequent duplications, but also losses of distinct

sets of paralogs in different bilaterian lineages (Ramirez et al. 2016).

The same r-opsin and associated phototransduction cascade genes that sense light in

octopus eyes are expressed in octopus skin, and the spectral sensitivity of octopus eyes and

LACE to blue light (474 and 480nm respectively) also supports the hypothesis that the same

light receptive protein, r-opsin, is used in both octopus eyes and skin (Brown and Brown

1958; Ramirez and Oakley 2015). LACE has not been shown for chromatophores from

other cephalopods (though see Florey 1966 and Packard and Brancato 1993), but r-opsin

is also expressed in the mantles of the cuttlefish Sepia officinalis and several squid species,

Doryteuthis pealii, Euprymna scolopes and Uroteuthis edulis (Mathger et al. 2010; Kingston

et al. 2015; Kingston et al. 2015; Pankey et al. 2014). Outside of cephalopods, genes from

the r-opsin phototransduction cascade are expressed in the mantles of bivalves Argopecten

irradians and Patinopecten yessosensis and in the aesthetes of chitons (Porath-Krause et al.

2016; Wang et al. 2017; Ramirez et al. 2016). While we have these few specific examples,

it is not clear how widespread expression of opsins in the mantle, including r-opsins, is

across molluscs.

The likely use of r-opsin in LACE represents deep homology of the molecular mechanism

for sensing light. The fact that r-opsin phototransduction genes are expressed in mantle

tissue across multiple molluscan classes raises the question of whether this expression in

the mantle represents independent evolutionary events in different molluscan lineages, or

the inheritance of r-opsin expression in the mantle from an ancient molluscan ancestor.

If the former, then the expression of r-opsin cascade genes in cephalopod mantle might

have evolved at the same relative time as their chromatophores, and separately in the

mantles of bivalves and aesthetes of chitons. If the latter, then not only would the molecular

mechanism underlying LACE be deeply homologous, but also its tissue-specific expression

pattern in the mantle, perhaps indicating the deep homology of the dispersed sensory cells
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which express r-opsin and allow the mantle tissue to be sensitive to light.

We used a comparative transcriptomic approach as a first pass to try to pinpoint when

in molluscan evolutionary history r-opsin cascade genes were expressed in mantle. We

mined 28 mantle transcriptomes total from 9 cephalopods, 2 gastropods, 5 bivalves, 6

aplachophorans and 6 polyplachophorans (chitons) for genes used in opsin-based photo-

transduction cascades. While we were able to find almost all of r-opsin cascade compo-

nents in the majority of the transcriptomes, the opsins themselves were more often not

recovered. Although we did not recover an opsin from every transcriptome, the broad dis-

tribution of each opsin type in the mantle transcriptomes is consistent with the hypothesis

that these opsins were expressed in the mantle of the last common molluscan ancestor. We

used an ancestral state reconstruction framework to test this hypothesis more rigorously.

The results of the ancestral state reconstruction suggest that the last common ancestor of

all molluscs expressed r-opsin in its mantle, making the r-opsin expression in the mantle

of modern molluscs deeply homologous. The results strongly support our hypothesis that

LACE evolved by the incorporation of a phylogenetically old light sense in the mantle with

the phylogenetically new chromatophore organs.

5.3 Methods

We gathered transcriptomes from mollusc mantles either from assembled transcrip-

tomes provided by collaborators, or by assembling mantle transcriptomes from data avail-

able on NCBI in the SRA database.
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5.3.1 RNA-seq Transcriptome assembly

Sequence Read Archive (SRA) files were downloaded from NCBI using SRAToolkit command-

line utilities (v2.8.0). The raw reads were assembled using Trinity (v2.3.2, Grabherr et al.

2011) using default parameters. Briefly, Trinity calls Trimmomatic (Bolger et al. 2014) to

trim the raw reads with quality scores below 20, normalizes the raw read counts in silico

before assembling. Longest amino acid coding sequences were predicted from the Trinity

contigs using Transdecoder (v3.0.0 Grabherr et al. 2011).

5.3.2 Finding r-opsin phototransduction cascade genes using BLAST

and Phylogenetically Informed Annotation

Because gene expression levels can vary among samples for both biological and tech-

nical reasons, and because most of our transcriptomes were made from a single mantle

sample per species rather than multiple biological or technical replicates, we decided to

simply count a gene as expressed if we were able to find it in the transcriptome and vali-

date it as a good hit using a custom script to run the Phylogenetically Informed Annotation

pipeline via commandline (Speiser et al. 2014). First we used BLAST (v. 2.6.0, Gish and

States 1993) with pre-established sets of gene-specific sequences from Speiser et al. (2014)

as baits, and a cutoff threshold of 1e-7. We combined the blast hits for each gene from all

species into a single file, then aligned the hits into a fixed PIA alignment for each gene

with MAFFT-profile (Katoh and Standley 2013). We then placed the newly aligned blast

hits into a fixed topology PIA gene tree using RAxML (v. 8.0, Stamatakis 2014). The gene

trees contain landmark sequences that have been functionally implicated in phototrans-

duction as well as other closely related sequences. Once blast hits were placed within the

fixed gene tree, we only counted a hit as validated if it fell within the clade containing the

validated landmark sequences, and counted phylogenetically validated hits as ‘present’ for
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each species. For the mantle-specific analysis, transcriptomes that had under 1000 core or-

thologs (identified using HAMSTR) were considered to be of too low quality and excluded

from further analysis, unless we recovered at least one opsin candidate of any kind. From

the r-opsin phototransduction cascade, we looked for expression of arrestin, G-protein sub-

units alpha, beta and gamma, diacylglycerol kinase, G-protein receptor kinase 1 and 2,

protein kinase C, rdgb, rdgc and transient receptor protein (TRP).

We took additional steps to validate and categorize opsin blast hits before including

opsins in the full presence-absence table. We created a new opsin phylogeny with a large

dataset of metazoan opsins and non-opsin GPCRs from Feuda et al. (2012) and Ramirez et

al. (2016) to use as the backbone tree for PIA. The non-opsin GPCRs were added to help sort

candidate opsins from sequences of closely related, but non-opsin, GPCRs. Adding distant

non-opsin GPCRs is known to destabilize in-group relationships among opsin clades (Feuda

et al. 2012), which changed the tree topology from published trees, but is still useful for

sorting most of the blast hits into their appropriate clades. We also incorporated opsin

blast hits from Xenoacoelomorpha, the hypothesized sister clade to all other bilaterians,

and which are not currently present in any opsin phylogeny. We aligned using SATe-II

(same configurations from Chapter 4 and Ramirez et al. 2016; Liu et al. 2012) and created

a new opsin phylogeny with Ultrafast bootstrap values using IQ-TREE (1.4.0; Nguyen et al.

2015). Some sequences fell into inappropriate phylogenetic clades in the resulting gene

tree, which could represent either real mollusc sequences that were ambiguously placed,

or else contamination of the sample transcriptome from other sources. While some of these

may reflect true mollusc opsins that were poorly placed because of sequencing or assembly

artifacts, we excluded them to be conservative.
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5.3.3 Counting and visualizing presence or absence of phototransduc-

tion genes

We used a custom python script called LOIC to programmatically create lists of gene

presence (Swafford, 2017), based on the landmarks for each opsin clade. For categorizing

opsins, we used opsin paralogs previously described in Ramirez et al. (2016). We created

a presence-absence table of these PIA-validated hits using the ‘presabs’ function from the

R package ‘fuzzySim’ (Barbosa and Márcia Barbosa 2015). Finally, we visualized gene

presence-absence across the mollusc phylogeny using Evolview (Zhang et al. 2012).

5.3.4 Ancestral state reconstruction of opsin phototransduction gene

expression

We identified orthologs in all of our mantle transcriptomes using a lophotrochozoan

gene set from Kocot et al (2016) implemented in HaMStR (Ebersberger et al. 2009). If

a transcriptome had no opsin BLAST hits and had less than 1,000 core orthologs found

using HaMStR, we excluded that sample from the ancestral state reconstruction. To cre-

ate our data matrix, we required that each gene ortholog set contain at least one of the

species with the fewest number of core orthologs. This requirement was necessary because

a few species (Corbicula fluminea, Mercenaria campechiensis, and Margaritifera margari-

tifera) had less than 100 core orthologs from HaMStR, but had at least one opsin. To align

sequences for each gene, we used MAFFT with default settings, except a ‘maxiterate’ value

of 1000 (Katoh et al. 2005). To clean up the alignments and remove ambiguously aligned

sites, we used Aliscore (Misof and Misof 2009) and Alicut (Kück 2009), and we used trimAl

(Capella-Gutiérrez et al. 2009) to remove very short (>10 bp) or empty sequences with

the ‘-resoverlap’ and ‘-seqoverlap’ functions. We made single gene trees for each alignment
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using FastTree (v. 2.1.9; Price et al. 2010) and removed paralogous sequences using Phy-

loTreePruner (Kocot et al. 2013). After all the filters, we retained 55 orthologs and used

FASconCAT-G (Kück and Meusemann 2010) to create the final data matrix. We used RAxML

(v. 8.2.9; Stamatakis et al. 2014) to create a maximum likelihood tree for our species, par-

titioning the matrix on each gene. We used the setting ‘PROTGAMMAAUTO’ to find the

best-fitting protein model for each partition.

Using the presence/absence table and species tree generated above, we used the R

package corHMM to infer the probability of r-opsin phototransduction expression in the

mantle at each node in the species tree. We varied the number of rate categories (1 or 2),

and the root probability calculation (equal or ‘maddfitz’- which allows the root probabil-

ity to be set using the transition rates calculated from the tree) and compared the models

using AICc weights using the ‘akaike.weights’ command in the package ‘qpcR’ in R. To con-

struct the ancestral state of r-opsin expression, we made two key assumptions for these

data. First, because non-canonical r-opsins have only been described recently (Pankey et

al. 2014, Ramirez et al. 2016), we do not know whether they function as the canonical,

visual r-opsin clade does. Given this ambiguity, we decided that because they fall sister to

the canonical r-opsins with high support, we would lump together the counts of canonical

and non-canonical r-opsins. Additionally, because the only known function of retinochrome

is as a photoisomerase integral to r-opsin phototransduction in molluscs, we counted the

presence of retinochrome as evidence of r-opsin phototransduction in the mantle, even if

we were unable to recover either a canonical or non-canonical r-opsin from that species. Fi-

nally, we visualized the ancestral state reconstruction of mantle-specific r-opsin expression

using Evolview (Zhang et al. 2012).
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5.4 Results

5.4.1 Mantle-specific opsin phototransduction cascade gene expres-

sion among molluscs

We recovered a total of 32 new candidate opsins from the mollusc mantle transcrip-

tomes we analyzed, in addition to recovering 14 opsins from transcriptomes that had al-

ready been analyzed and previously described (see Figure 1). We found 13 new opsins

in chiton mantles, including xenopsins, canonical r-opsins, retinochromes and Go-opsins.

We recovered multiple opsin-like sequences from aplacophorans, a small class of shell-less,

benthic, deep sea molluscs. However, the aplacophoran candidates were difficult to iden-

tify using our phylogenetically informed annotation, and so we were unable to determine

which opsin clades they belong to. Many of the aplacophoran sequences fell in between

known opsins and non-opsin GPCRs, and some appear to be contamination from cnidarians,

the food source for most aplacophorans. Only one aplacophoran sequence, from Tegula-

herpia spp., fell within the opsins. We recovered 7 opsins from 3 eyeless bivalves. We also

recovered 6 candidate opsins from 2 different snail species.

We recovered at least one opsin sequence from 20 of the 28 mantle transcriptomes that

met our minimum quality cutoff (see Figure 1). In total, the distribution of opsin types in

this dataset is consistent with the types characterized by Ramirez et al (2016) in Chapter

4, namely that molluscs as a phylum have 6 of 9 hypothesized bilaterian opsin paralogs.

Retinochromes were recovered most often (18), followed by canonical r-opsins (12), then

xenopsins (9), Go-opsins and non-canonical r-opsins (4), and finally neuropsins (2). We

found r-opsins (including both canonical and non-canonical r-opsins) expressed in mantle

of 18 mollusc species, from 4 major mollusc classes, including chitons, bivalves, gastropods,

and cephalopods. Retinochromes were similarly distributed, overlapping with expression
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of either a non-canonical or canonical r-opsin in all but one case. Xenopsins also had broad

distribution, found in the same 4 major mollusc classes are r-opsins. Go-opsins are present

in bivalve and chiton mantles, but not detected in cephalopods, consistent with their known

absence from the Octopus bimaculoides genome. Interestingly, no transcriptome expressed

all 5 of the opsins known from mollusc genomes. Our bioinformatic mining also found

many genes known from arthropods and vertebrates to be part of the r-opsin phototrans-

duction cascade, including Gqα and TRP ion channels (see Figure 1).

5.4.2 Ancestral state reconstruction of mantle-specific r-opsin expres-

sion

The best model according to Akaike weights was the reconstruction with 1 rate cate-

gory and the root probability calculated based on the transition rates, rather than equally

weighted (AICc weight = 0.55 vs 0.44 for the equal weighting model). Our ancestral state

reconstruction for r-opsin expression in mollusc mantles suggests that the last common

ancestor of molluscs most likely expressed r-opsin in its mantle, and that this pattern of ex-

pression was conserved throughout the evolution of different mollusc lineages (see Figure

2). Consistent with the lack of opsins recovered from aplacophoran transcriptomes, the

ancestral state reconstruction suggests a loss of r-opsin expression in the aplacophorans.

5.5 Discussion

We considered the macroevolution of octopus LACE, a novel behavior, by tracing the

evolutionary history of one of its components, an r-opsin based, dispersed light sense in its

skin. Our question was when the dispersed light sense originated relative to the origins of

the other major component underlying LACE, the evolutionarily novel chromatophore or-
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Figure 5.1: The distribution of opsins recovered from the mantles of 28 mollusc species
from 5 major mollusc classes, including chitons, aplacophorans, cephalopods, bivalves
and gastropods (top to bottom), with an additional 3 species from the literature only.
Dark pink = xenopsin, light green = Go-opsin, dark green = retinochrome, light blue =
noncanonical r-opsin, dark blue = canonical r-opsin. Blue dots represent the presence of
r-opsin phototransduction cascade genes in mantle transcriptomes. Empty squares and
circles represent absences from our dataset. Black squares are missing data from species
that are known to express r-opsin in mantle, but weren’t part of our transcriptomes. Yel-
low boxes are opsins that were previously described in the literature and recovered in
our analysis. Those squares with white asterisks are only included as present from the
literature because we lacked transcriptome data from those species for this analysis.
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Figure 5.2: Ancestral state reconstruction of r-opsin phototransduction expression in
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gans in cephalopod skin? Mantle tissue-specific r-opsin expression might represent a deep

homology at both the molecular and sensory system levels that was inherited from a com-
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mon molluscan ancestor, or a relatively recent innovation in cephalopods, and independent

at the cellular level from the origins of the cells expressing r-opsin in the mantles of other

mollucs.

Previous work in a handful of other molluscs had shown that opsins, and especially

r-opsins, are expressed in mantle tissues in cephalopods, bivalves and chitons. The results

from this analysis offer more data points in a wider assortment of molluscs, including the

first sequence data for the expression of opsins, including r-opsins, in the mantle of two

gastropods. A fundamental aspect of defining a homology is establishing phylogenetic con-

tinuity, in this case, of expression of opsins in mantle as our proxy for a dispersed light sens-

ing system. We used ancestral state reconstruction methods to more formally test whether

r-opsin phototransduction genes were expressed in the mantle of the last common mol-

lusc ancestor. Our reconstruction strongly suggests that this is most likely the case, based

on the distribution of r-opsin expression among the molluscs that we sampled. This is a

clear result, but could be even better supported by a more targeted sampling regime. We

assembled the only extensive survey of mollusc mantle tissue for opsin expression, using

samples collected by others for other purposes, primarily phylogenomics. Many were not

deeply sequenced and/or only one biological and technical replicate was sequenced con-

tributed to the gaps in expression data. Also, the taxa that were sampled were typically for

within-class phylogenomic studies, and so we are missing data from key outgroups, such

as scaphopods and monoplacophorans. Future work should include these taxa and deeper

sequencing to be able to have more confidence in absences in the dataset.

The fact that the last common ancestor of molluscs likely expressed r-opsin in its mantle

suggests that the dispersed, dermal light sense underlying octopus LACE evolved prior to

the evolution of chromatophores and LACE. Thus, the novel LACE behavior may be the

result of the new combination of more recently evolved chromatophore organs with an

older dispersed light sense in the an ancestral cephalopod. We are only just beginning
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to be able to evaluate gene expression in an explicit rigorous comparative phylogenetic

framework, which is important for moving beyond the assumption of homology of gene

expression restricted to shallow comparisons among traditional model organisms.

5.5.1 Additional caveats and future directions

Unfortunately, despite our efforts to get as many and broad mollusc mantle samples as

possible, our efforts to characterize opsin complements across the molluscs was hampered

by the fact that many transcriptomes seemed to lacked opsin sequences. We believe it is

unlikely that all of these absences of evidence for any opsin expression are true losses, given

that almost half of our transcriptomes did show tissue-specific opsin expression. There are

numerous reasons why opsins may be present but weren’t detected in our transcriptomes.

First, opsins outside of eyes may be relatively lowly expressed, driven in part by the cell

distribution and morphologies described for extraocular photoreceptor cells in Chapter 1.

Extraocular photoreceptor cells, especially those in skin, lack the elaborated surface mem-

branes seen in photoreceptors in eyes, which limits how much opsin they can store. The

cells also tend to be dispersed over a larger area and not found near each other, so that a

piece of mollusc mantle contains far fewer photoreceptor cells than even a much smaller

eye sample. Indeed, it has been difficult to locate the cells expressing opsins in mollusc

mantle at all– they are not pigmented and so we have to rely on immunohistochemistry

and in-situs for opsin to see them. Thus, sequencing depth may make a big difference in

whether opsins are recovered. The steady decrease of sequencing costs may help partly

overcome the low expression obstacle, since we should be able to sequence samples more

deeply for less money. Target-enrichment during sequencing may also help find opsins by

focusing on the opsins themselves, but requires at least some previous knowledge of opsin

sequences to be successful.
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Another major challenge with this analysis is accurately identifying sequences that are

likely true opsins versus those that are not. This challenge arose from two sources. First,

opsins are part of the largest group of GPCRs, the rhodopsin-A class. In our assemblies we

found many sequences that bore a passing similarity the opsins that we used as baits for

our BLAST search. Typically, true opsins all possess a conserved lysine at position 296 (of

the bovine rhodopsin) that has been used as a diagnostic for opsins, as this residue and the

residues that surround it are not found in other GPCRs. While we were able to find the

conserved lysine for many of the opsins we recovered, the sequences of others were too

short and did not cover that particular region of the protein. Most of the mollusc mantles

that we found sequencing data for were from species for which those data were the only

data. This is likely to be an issue going forward in comparative analyses. Using a Hidden

Markov Model profile framework, such as that implemented in hmmer3 may work better

then BLAST for separating true opsin candidates from closely related sequences, since it

relies on a global profile rather than purely sequence similarity. In the future, I would like

to create an HMM profile for opsins to be used in hmmer3, as well as a database of opsin

motifs that are shared among opsins but not with other non-opsin GPCRs. MEME Suite

(Bailey et al. 2009) is a set of tools that can search and create a number of motifs de novo

from a set of training sequences. These motifs can then be used to search through a set of

unknown sequences, and the order and placement of the motifs within the sequence can

be visualized and directly compared.

Finally, because RNA-seq is relatively new, we are only just beginning to have datasets

like the one I have analyzed in this chapter, transcriptomes from one specific tissue type

across many species. While these data are important for unraveling the evolutionary his-

tory of organismal traits, we also do not yet have a very solid foundation for analyzing

large-scale gene expression datasets in a phylogenetic context, though we are starting to

establish best practices (like those in Dunn et al. 2013). Gene co-expression networks have
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become more popular as a rough way to link co-expression with potential co-function, but

are currently limited in a comparative context because of the myriad sources of both bio-

logically relevant and also spurious variability in gene expression within a transcriptome

(see Dunn et al. 2013). Simple comparisons of transcriptomes also suffer from very strong

“species-signal”, which may be the result of concerted evolution within a lineage, com-

plicating direct comparisons of gene expression levels and networks (Musser and Wagner

2015; Ruan et al. 2016).

5.5.2 Updates for studying EOPs in mollusc mantles and beyond

For this analysis, we used opsin expression as a proxy for opsin function, but when

there are multiple opsins expressed in a tissue, we do not have a lot of good options

for figuring out which opsins are doing what. For example, aside from their role in light

sensing, opsins may also function in other sensory modalities, like mechanoreception, and

these roles might be independent of light. This possibility has really only been explored in

Drosophila melanogaster so far, where r-opsins that function as light detectors in fly eyes

also are important for both heat-sensing and mechanoreception in other parts of the fly

body (e.g. Shen et al. 2011; Senthilan et al. 2012) . The ciliated r-opsin expressing cells I

described in Chapter 3 are thought to be mechanoreceptors, again highlighting the impor-

tance of not only looking for expression, but being able to functionally test how opsins are

used in mollusc mantles.

In Chapter 1, we outlined some of the technical issues in studying the function of ex-

traocular, dispersed photoreceptor cells and opsins. Many technological advances have

arisen since that paper was published in 2011, but fundamental issues still remain. The

challenge of visualizing the dispersed cells expressing opsins raises another, namely that

even when we can find cells expressing opsin, or find opsin expression in mantle tissue, we
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struggle to directly connect opsin expression with function. Electrophysiological record-

ings would be the gold standard at the level of the cell, but even when researchers have

been able to record from dispersed photoreceptors to show that they sense light, there

are few ways to experimentally manipulate opsins in-vivo. There are only two compounds

that have been shown to affect opsin function: hydroxylamine and opsinamides. Hydrox-

ylamine affects opsins that can be photo-bleached, like the c-opsins found in vertebrate

eyes and vertebrate, arthropod and echinoderm nervous systems (Pepperberg and Okajima

1992). Many opsins are bistable, meaning that they are not thought to lose their chro-

mophore when hit with photons of light, and hydroxylamine does not appear to alter the

function of these opsins (Sexton and Van Gelder 2011). Opsinamides have been shown

to ablate the function of melanopsin, a vertebrate r-opsin, in-vivo, and thus may be useful

for altering the function of other r-opsins in other animals (Jones et al. 2013). There are

other compounds that affect downstream components of the phototransduction cascade,

but our inferences from these are dependent on our assumption that what we know of

c- and r-opsin phototransduction from vertebrates and flies holds in other animals. This

assumption must be tested going forward, because it is possible that differences in pho-

totransduction mechanisms have evolved in these two lineages. All drug trials also suffer

from the spectre of off-target effects, needing both negative and positive controls that can

be difficult, if not almost impossible, to establish.

More recent technologies like heterologous expression, RNAi and Crispr-Cas9 are mak-

ing it more possible than even to manipulate gene expression in even non-model organsims,

and may hold the key to directly testing opsin properties, protein-protein interactions in

the phototransduction cascade, and the function of particular opsins for particular animal

behaviors. Opsins expressed in-vitro could be probed for their spectral sensitivity, and the

sequences manipulated to test the impact of particular amino acid changes on function.

Crispr has already been successfully applied to start manipulating gene expression during
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the development of the slipper snail Crepidula fornicata, and could perhaps be applied in

molluscs to both more easily visualize opsin expressing cells by driving GFP (as was done

in for the marine worm Platynereis dumerilii in Backfisch et al. 2013), or in a knockdown

to test for function in behavior (as in Guhmann et al. 2015).
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protein expression in the Kölliker’s tufts

of paralarvae from Octopus rubescens
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A.1 Background

Kölliker’s tufts are distinctive, conical bristle structures found dispersed over the skin

surface of recently hatched octopuses, including Octopus rubescens (reviewed in Brocco et

al. 1974). The tufts consist of a large bundle of chitinous rods produced by and connected

to a single, microvillar ‘chaetoblast’ cell at the base, as well as muscles which allow the

tufts to move, all enclosed in sac protruding from the epidermis (Boletzky 1973; Brocco et

al. 1974). While performing antibody staining for r-opsin in Octopus bimaculoides skin for

Chapter 3, I also received a batch of O. rubescens paralarvae (pelagic stage before adult)

and so performed a preliminary experiment to look for opsin expression in O. rubescens

skin.

A.2 Methods

For antibody staining methods, see Chapter 3. I used the same tublin and opsin anti-

bodies for this experiment. One difference is that I used a yellow-green Cy-3 secondary

antibody to bind to the opsin primary, instead of the infrared Cy-5 secondary I used in

Chapter 3. I mounted the paralarvae whole on slides and imaged using the same confocal

microscope from Chapter 3.

A.3 Preliminary Results

I found that the Kölliker’s tufts of O. rubescens paralarvae fluoresced strongly in the

green channel I used to image the opsin antibody staining, particularly in the chitinous

bundles and also what I presume are the chaetoblasts at the base of the tufts (See Figure

1). There was no tubulin staining associated with the Kölliker’s tufts at all, although the
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ciliated cells I found in Chapter 3 in O. bimaculoides skin could be seen clearly and also

bound the opsin antibody. The antibody seemed to bind strongly to the chitinous ‘rodlets’

that form the tufts (see Figure 1A), as well as the basal chaetoblast from which the tufts

are produced (see Figure 1B).

A.4 Preliminary Discussion

These results suggest that the Kölliker’s tufts may express opsin. Given opsin’s known

role in light sensing, these results suggest that Kölliker’s tufts may be sensitive to light.

However, given that there was no tubulin staining, which acts as a neural marker, then

the outcome of phototransduction might be different in Kölliker’s tufts than what we know

happens in neurons, namely an electrical impulse. Another possibility, as discussed at the

end of Chapter 3 for the ciliated neurons in O. bimaculoides skin is that opsin is being

used for mechanoreception, although this may have the same caveats in terms of being ex-

pressed in non-neural cells as for light sensing. A final possibility is that these preliminary

results that look like opsin expression may be simply autofluorescence. The green channel

is well known to cause autofluorescence in mollusc tissue, and I did not complete the nec-

essary negative controls for opsin to compare to. Future experiments should perform the

controls and image using a long-wavelength secondary antibody to avoid autofluorescence

confounding the signal.
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A B

C

Figure A.1: Tubulin (red) and opsin (green) antibody staining of the Kölliker’s tufts on the
surface of O. rubescens paralarvae. A) 10x magnification of the mantle, where multiple
Kölliker’s tufts and multi-ciliated cells on the skin surface. B) 60x magnification of Köl-
liker’s tuft, with chitinous rods C) 60x magnification of chaetoblast, below the chitinous
rods.
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