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An Analysis of the Effect
of Operator Splitting and of the Sampling Procedure

on the Accuracy of Glimm's Method

By

Phillip Colella
Abstract

We investigate Glimm's method, a method for constructing
approximate solutions to systems of hyperbolic conservation
laws in one space variable by sampling explicit wave solutions.
It is extended to several space variables by operator splitting.
We consider two fundamental problems:

1) We propose a highly accurate form of the sampling
procedure, in one space variable, based on the van der Corput
sampling sequence. We derive error bounds for Glimm's method,
with van der Corput sampling, as applied to the inviscid
Burgers' equation: for sufficiently small times, the error
in shock locations, speeds, and strengths, is no greater than

()(K{//ogfll‘)) and the error in the continuous part of the
'solution, away from shocks, is 0(4//0}4//\ . Here /L
is the spatial increment of the grid, with the estimates

holding in the limit of 1!‘—;'C) . We test the improved



sampling procedure numerically in the case of inviscid
compressible flow in one space dimension and find that it
gives high resolution results‘both in the smooth parts of
the solution, as well as at discontinuities.

2) We investigate the operator splitting procedure by
means of which the multidimensional method is constructed.
An 0(l) error stemming from the use of this procedure near
shocks oblique to the spatial grid is analyzed numerically
in the case of the equations for inviscid compressible flow
in two space dimensions, and a method for eliminating this
error, by the use of suitable artificial viscosity, is

proposed and tested.
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Introduction

The problem which motivates this study is the numerical
calculation of time-dependent, discontinuous solutions to
compressible fluid flow problems in one or more space variables.
There are three criteria which such approximate solutions must
simultaneously satisfy.

1) The approximate solution must be reasonably accurate in
regions where the flow is smooth. Continuous waves should move
at the correct speed, have the correct shape, steepen or spread
at the correct rate.

2) Discontinuities which are transported along characteristics
should be modelled in the approximate solution by sharp jumps
which are transported at the correct speed. Examples of such
discontinuities are: contact discontinuities (across which the
density and temperature have jump discontinuities while the
pressure and velocity remain continuous); the interface between
two different materials, or between two different thermodynamic
phqses of the same material; lines or surfaces across which the
solution is continuous, but some derivative of the solution is not.

3) Nonlinear discontinuities should be computed stably and
accurately. Such discontinuities occur, for example, when there
is mass transfer across the discontinuity, as in the case of

shock fronts in an ideal gas.



The main method for computing such solutions has been to
solve a set of finitevdifference equations approximating the
differential equations of motion. However, it is difficult to
conétruct difference methods which satisfy all three of the above
criteria. For example, it is well-known that a high~order
difference method, which would perform well in smooth regions, may
generate oscillations in the presence of discontinuities in the
solution or its first derivative, or, as discussed in
Harten, et. al. [20], even introduce some 'unphysical" discontinuity
(i.e., one violating the entropy condition; see § 1.1). 1In spite
of these difficulties, many problems have been solved by the use
of difference methods over the last thirty years. A good deal of
effort has been spent refining them, and they have often been used
in conjunction with some specialized technique to adopt them to
a specific problem or class of problems in applied physics. For
a cross-section of the application of difference methods to a
variety of compressible flow problems, see volumes 3 and 4 in the

Methods of Computational Physics series [2], as well as the

Proceedings of the International Conferences on Numerical Methods

in Fluid Dynamics [5], [22], [44], [53] for more recent work.

We will be examining here an alternative approach to computing
discontinuous fluid flows, known as Glimm's method. The method was
first used by Glimm [15] as part of a constructive existence proof

for solutions to systems of nonlinear hyperbolic conservation laws.



It was developed by Chorin [ 6], [ 7], into an effective
numerical method in the case of gas dynamics. 1In the first
reference Chorin alsg introduced a multi-dimensional version of
the scheme; in the second, he applied the method to reacting gas
flow in one space variable. Since that time, the method has been
used to compute compressible flow in cylindrical or spherical
geometry (Sod [47], [49], [50]), and in applications to some
problems in petroleum engineering (Concus and Proskurowski [ 8],
Albright, Concus and Proskurowski [ 1]).

Although one computes solutions on a grid with Glimm's method,
it is not a differeﬁce method. Rather than computing a weighted
sum to arrive at the value of the solution at a grid point, one
samples values from an explicit wave solution. Thus, the method
has built into it an approximate form of wave transport and
intefaction, without the smoothing of such information inherent
in averaging. The introduction of such a sampling technique as
a numerical method is quite recent, compared to the length of time
difference ﬁethods have been in use, and has not been subject to
the extensive scrutiny and application from which the latter has
beﬁefitted; One of the purposes of this study is to indicate
some of the features of Glimm's method which might make developing
it worth the effort, as well as a few of the directions the

development might go.



We consider in this study two fundamental problems.

1) We introduce a more accurate form of the one-dimensional
sampling procedure than that used in [ 6], which uses the
van der Corput sampling sequence (see § 2.1), and analyze some
simple examples, comparing van der Corput and random sampling.
We perform a rigorous error analysis of the approximate solutions
obtained using Glimm's method with van der Corput sampling for
the inviscid Burgers' equation, and obtain the following result:
if the initial data is piecewise C:L then, for sufficiently small
times, the error in the shock location for the approximate
solution is bounded by a constant times 'A{ ”03)#/[ )
uniformly in compact time intervals, and the sup norm error in
the approximate solution away from discontinuities is bounded
by a constant times L//Og,{// ., Here A, denotes the spatial
increment of the grid, with the estimates holding for £L-=o0
(For a more precise statement of the results, see Theorem 2.4.)
Unlike Glimm's theorem, which is simultaneously a proof of
existence and convergence, Theorem 2.4 has as one of its
hypotheses the existence of a sufficiently regular solution.
However, the information obtained in the latter is more useful
from a computational point of view. Finally, we study numerically
the dependence of the solution on the sampling sequence in the

case of gas dynamics.



2) We investigate the operator splitting procedure by
means of which Chorin constructs a multi-dimensional scheme from
the one-dimensional method. A source of error stemming from this
procedure, not noticed in [ 6], is analyzed here numerically in
the case of gas dynamics. A method for eliminating it is
proposed and tested.

For both the one~dimensional and two-dimensional cases we
obtain, in the end, results which, for the test problems
considered here, are competitive with or superior to those
obtained by difference methods, in meeting the three priteria above.

This thesis is divided into four Chapters. In Chapter 1,
we give brief introduction to the theory of Hyperbolic
Conservation Laws in one space variable. Chapter 2 is devoted
to Glimm's method in one space variable: in § 2.1 we define Glimm's
method, and the various sampling strategies, and analyze some
simple examples; § 2.2 contains the statement and proof of the
error bounds for Glimm's method as applied to the inviscid
Burgers' equation; and §v2.3 contains some numerical experiments
pgrformed using Glimm's method with various sampling strategies
for gas dynamics in one space dimension. Chapter 3 contains the
discussion of the operator splitting technique. Chapter 4 is
devoted to a general discussion of the results, some comparisons
of Glimm's method to difference methods, our conclusions, and some

suggestions for future work.



Chapter 1 Hyperbolic Systems of Conservation Laws

§ 1.1 Definitions

We wish to consider the initial value problem for

hyperbolic conservation laws in one space variable:

U, 2 -
W, 2(FWY) =0

Unt)z U R Rufp,n) — R" (1.1.1)
Ulx,0) = Yig)
where the flux function F : MR — ﬂ?u is a Cmap satisfying
the condition that the Jacobian matrix Dv F = A(U)
has N real distinct right eigenvalues A (U)< AU ). < lw(v))
known as the characteristic velocities. The function {:fR—3 R

is the given initial data.

Example 1.1 The inviscid Burgers' equation was first studied

by Hopf [23] as a model equation for discontinuous fluid flows.

au Q_(!LJ =0 wlRi—=R (1.1.2)

It PSRN S

The single characteristic velocity for 1.1.2 is ‘k(“) =U.

Example 1.2 Fuler's equations for the one-dimensional motion
of an ideal compressible gas are the best-known physical example

of a system of hyperbolic conservation laws.



D s 3
RS Tl U=£)U.ﬁ2, R
53_%‘ *%(%L*P>:O (1.1.3)
2 — ) -
G p)) =0

Here P is the density, M is the momentum per unit volume,
and £ is the total energy per it volume. We can express
in terms of these variables the more familiar quantities WU
the velocity, and € the internal energy per unit mass of the
gas: M’-% and € ° % "5—_'1— . The pressure P which appears
in the equations is a function of f))E S pE (x\"i>PE
where the constant X\>i is the ratio of specific heats. The
relations for P’ M)F in terms of the conserved quantities

T
/J)M)E can be inverted: VV\'—JO%)E:ﬁ'l*%—iA)
so that the state of the gas at a point is uniquely determined
by the values of P ’ M) P at that point. Another quantity of
interest is the thermodynamic entropy, defined (up to an additive

and a multiplicative constant) as S= IO%(Pf—X\) .

The three characteristic velocities for the system are

KI(U) = LL—-C) 11LU)= u ¥ RJ(U)" u+C

where C_—-/%P is the sound speed.



It is well-known (see, for example, Courant and Friedrichs
[ 9]) that continuous solutions to the problem (1.1.1) may not
exist for all time t >0 even if the initial data is C
We admit piecewise smooth (F "as initial data, and look for
piecewise smooth weak solutions, i.e., ones which satisfy the

equations (1.1) in the sense of distribution:

JIQ ﬂU + %P(U} d/i(“: + f,: $ia) 470(4)0) q//x_:o

* ot
for a11 Yz C*HRY) | (1:1-10)

If we admit this wider class of solutions, there may be more
than one solution to (1.1.1) - (1.1.1la) for a given ?
A set of additional constraints on the solution, the so-called
entropy conditions, were proposed, in varying degrees of generality,
by Hopf [23], Lax [26], and Oleinik [42], in the case of a single
equation, and by Lax [26] (later extended by Liu [30], [31]) in
the case of systems, in order to make (1.1.1) - (1.1.1la)
well-posed. This was shown to be the case for a single equation in
{237, [26], [42]; for systems of two equations, uniqueness of
solutions to (1.1.1) - (1.1.1a) has been proven in the general case
by Liu [321, see also [131, [171, [24], [43], [46].

In examples 1.1 and 1.2, the entropy condition reduces to
the following conditions, given by Lax [26]. Assume that the
set of points in Wfi where Lndﬁﬂ)is discontinuous consists

of a collection of piecewise smooth curves 6[(¢)/i) .

We say that such a curve is a shock associated with the



characteristic velocity Ak. (or, more simply, a k ~-shock) if

MU0 1) > A (U (L00),0)) > s(x) (1.1.4)
> AU die) ) s A (Upldie)e))

—

44

wherever 5“J=d and the limits

£)=Ullm)t) mMU(«)t) AOAVIORD

are defined. Lax's condition says that all discontinuties in

bﬁn>U¥¢,

the solution must be [ -shocks, for some k"b.~ er '

For gas dynamics, it can be shown (see [ 9]) that the shock
conditions are equivalent to the restriction that the
thermodynamic entropy of any particle of fluid is non-decreasing

as a function of time.

Example 1.3 Consider the inviscid Burgers' equation (1.1.2) with
initial data consisting of a piecewise constant function having a
single jump discontinuity at the origin:

= UL (<O

= Uy A>0

P

For U < lighthere are at least two weak solutions to (1.1.2), one

)

continuous, one discontinuous (in fact, there are an infinite

number) .
L(((K-,’t) = /)(/t uﬁ_z ,x/t vt l(L'
= Up e > Up_
. = U, m:<ﬁﬁyﬁ
Upln,t)
= ua ¢/t > U +{p

|
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However, UD(N,'LB does not satisfy the entropy condition,

U+ uR
LY )

does satisfy the entropy is U.C(/Y')t> which satisfies the

since Y < Up > U%_% . The only solution which

entropy condition trivially, since it has no discontinuities
for £>0 . For U, >U, , there is no solution continuous

for t>0O , the only discontinuous solution satisfying the

entropy condition is
= U 't/t < q—*—id'z
Us (8

"

Ue 4 > Li'f'ii("



§1.2 The Riemann Problem

The simplest piecewise smooth initial data for (1.1.1) -

(1.1.1a) is a single jump discontinuity at the origin.

= U_. <o ; N
(_eo(/y_) _ U £ 50 UL_)UPZIQ
- R
This problem, known as Riemann's problem, was first considered
by Riemann [45], (but solved incorrectly) in the case of
gas dynamics. Every piecewise smooth weak solution
satisfying the entropy conditions has the following properties:
Self-similarity . U(4,t) = (%) ,t>0

N
for some piecewise continuous ’A //2 -3 /D

Finite propagation speed There exist CL)Q = CL)p(_U:)U;z)’O

such that
Tt U, %< Cl
//u)t . -
- U, 4y > Co
Additivity For any f’i R ) let UM be the vector

U/f)ti)l HQN Then the function
Ume) ~ o)

M

is a solution to the Riemann problem with left and right states

Uc. , UM . Similarly, the function
= U, %<

- Ur) % zf

is a solution to the Riemann problem with left and right states

Vv, L)

AU—M) UR ] k Geometrically, this says that the solutions

11
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fit together to form 1J- (figure 1.1).
Given any choice of the flux function F in (1.1.1) the
Riemann problem can be solved if ”\fg‘ljkll is sufficiently
small. For some special choices of F the Riemann problem can

be solved without restriction on 1j;,17g .

Example 1.4 In Example 1.3, we solved the Riemann problem for
in inviscid Burgers' equation: If U, ,Ug are the left and right

states, then

for MLS Mﬁ_

u,r) = L Upgd L > u
3 t

L.
for UL>ue
VR
= ML_ €'>‘S
Wiy, +
! ) = U, %<S
where S < (uL+u&)/QF (figure 1.2).

Example 1.5 The Riemann problem for the system (1.1.3) is
discussed extensively in Chorin [6], Courant and Friedrichs [9],
Godunov [18], and Sod [48]; the first and last references also

give detailed instructions for constructing the solution numerically.

We will describe only qualitatively the structure of the solution.
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We denote by

{)"'Q f‘-'Q
UL)K 7| Mo ’ Fb)ﬂu")e’ 8
E“I& }%"f— + 28__—" uL,P—

The special case of the Riemann problem for gas dynamics in which
U= MR:O is often referred to as the shock tube problem. It is
named after the experimental situation which it models; that of
instantaneously removing at t= ') the partition in a long tube
with the gas on the two sides of the partition in different
thermodynamical states.

The solution to the Riemann problem for (1.1.3) (figure 1.3)
is made up of four regions I,T ,m,m‘ where -[j('y)'f_> is
constant. These four regions are connected by three waves, each
associated with one of the characteristic speeds. These are:

a backwards facing hydrodynamic wave (associated with u-C= ,(II(U) )
between ,(,'b and [hb ; a contact discontinuity (associated

with y = 17_( U)), occuring across the line [5 s and a forward
fécing hydrodynamic wave (associated with u.¢ = 13((])) between

/,){ and A, f The pressure and velocity are continuous across
the line A5 so they are equal to some fixed values p“,u*

"
in II and ﬂ Only the density P changes across /5('0'-‘(4 t)

X X
from /)L_ to f& .
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As was discussed in [9], the hydrodynamic waves are uniquely
determined by knowing the state of the gas on one side of the
wave, and only the pressure on the other. Tor the backwards facing
wave, for example, there are two possibilities. If P* >,>,__
then n*< U, ,Ff >Ft— }[l,L =/1)b and the wave is a shock
associated, in the sense of (1.1.4), with the characteristic
velocity u-C . If P“\< P, then we have a backwards facing
centered rarefaction wave (see [9]): [;)5 '#/,_,5 ) P(">t) Q"d))(";t>
are continuous strictly monotone decreasing functions of ¢/t )
and U.(/Y)“:) a continuous strictly monotone increasing function
of '¢L ) for (’L)“(”-) between [{,5 and 1,b - The description
of the forward facing wave is the same, replacing U‘_ by U(Z

U by -l and U+C by U-C .
In figure 1.4 we show the solution at a fixed time to the

shock tube problem

Fl—: 1.0 PR: .1
P‘* = 1.0 ))gr 0.125

U =0 Ue =0 =14

The waves which occur are a backward facing rarefaction wave @ 5

a forward facing shock @ 5 and a contact discontinuity @



Chapter 2 Glimm's Method for One Space Variable
§2.1 Definitions

We want to construct approximate solutions to (1.1.1) - (1.1.la)
which take values on a grid in (7,t) space. Let £ - A’t/q__
be a spatial increment, ﬁ,fﬂt a time increment. We
assume that, at time n‘é, ) the approximate solution is

constant on intervals of length 7.%/ :
&) ; " N
U (/v)m‘c> - U&_ © R
(!—1)1 = 4<(0¢+1)L Fronoeven.

We wish to compute an approximate solution at time

having the same property.
—nef

Ul“(/u)mu_)é> =U,_,
(%—'L)foi <(¢L ;m even

(Note the shift in the grid by { at each time step.)
The procedure is as follows:
- 1€
1) Compute (]n -1 (’%t) the exact solution to

; . )1’ — N "
the Riemann problem with left and right states (.);_,L ’-UJ'
centered at ({}-I_)A/, mﬁz) (figure 2.1). Assume %
is sufficiently small; then the waves generated by the adjacent

Riemann problems don't intersect and we have an exact solution
to (1.1.1) - (1.1.1a) for y]é < ¢ < (M*i),é/ with

(%)
initial data Q-”(w = U (’l}nﬁ) .

15
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A condition which guarantees this is

é:ﬂ ' (SuP ﬂ(agm)(/ﬁ,t»)’

L:)),..,ML (2.1.1)

ALY

When doing computations, one USually uses the more easily verified
N\ -
é ] <« (s‘v M ')
L ‘) -2

where X is a constant ) 0< < j— .

+"“¢" (2.1.2)

2) Pick a"e¢ (-£,1) and take
%%} - 7€ 4
= ~4)+a™ k)
UJ—" %*1,4“3’ ) M’ he L :
(figure 2.2). Notice that the procedure gives an approximate
1
solution for all (’l)t) LS Q+ which is an exact solution
e
in the strip nﬁ< t <(V\‘i)f‘b . If U~1)n is discontinuous
at (((é-i) +a"")k Q’lri)k) ) then we adopt
Nn+4
the convention of setting U& equal to the right limit

e
of U‘rl.n
This procedure was first used by Glimm to prove the

existence of global (in time) solutions to (1.1.1) - (1.1.la),
assuming the initial data was sufficiently close (in total
variation and sup norms) to a constant. He showed that, under

. . . a-/a' Gt
these -assumptlons)for any choice of sampling sequence @={Q4), )e - )
that the set of approximate solutions is precompact in the space

: , . 1 N :
of all functions which are in L,u in the A -variable,
uniformly on compact £ -intervals, with respect to the topology
given by these conditions. Then he showed that, for almost

o)
all 4 (in a suitable measure-theoretic sense), some subsequence,
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converged in the above topology to a weak solution to (1.1.1) =
(1.1.1a). For this proof to hold, the flux function F in
(1.1.1) was subject to some technical restrictions (genuine
nonlinearity: see Lax [26]).

Since then, several authors ([3], [11], [12], [16], [34],
[35]7, [361, [38], [391, [40]) have extended the range of F—
for which the estimates léading to precompactness hold, as well
as weakening the restrictions on the initial data. TFor the case
of gas dynamics, see Liu [34], [35].

In order to study the dependence of the solutions constructed
using Glimm's method on the sampling sequence a we introduce
the following notation to measure the regularity properties
of a Let H be a subset of the positive integers,

Iz ) zgz H | a family of subsets of [—i,i) We denote by
N{%t H N abz IG ’f the number of g contained in [
such that aG is contained in If If I_-‘ is independent of g)

we write M{@f H)ag(IE .
N has the following properties:
o o1 I3¢IY foran - H,J then
NfgeH ,ateI¥ & NfgeH atcIPf
ii) If Hi )H,L ~ are disjoint, I% defined

for gi {'{1 U Hﬂ. )

N§ gz HOH, N} ngj =
Nig ey ot T T e NfgeH, oIt

(2.1.3)

then
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iii) If L4 )J"L are disjoint and independent of g )

then

Mf%t H) ate IiUI,_’fﬂ\)é’%‘H) 0gtl—i]+k){gi/-/)4€zf2:{

Definition Let LCL1,1) be an interval, |L! = length
of T normalized so that |C-1,1)] =1 . We define the
residual |
SG: myn, T) = L N{gefnet,.n} ,abeLf — [T{
hen, J
N

and we say that @ 1is equidistributed if

llm S(a:y)”mq)I\) =0

ny—n o
for all intervals I) I independent of no,N, .
The following is an immediate consequence of (2.1.3).
Lemma 2.1 Let 5 be equidistributed, and let Is,g:”'*i)' '*)/)1/
be subsets of E‘.f,i) such that
Cypyp) < I C Lepogep)
forallﬁ , for some %’})}0 );>/;(f+7./)_'1'hen

ﬁ-—hl M{ﬁz {n;i).,.,";{ )GZEI%} B }:ﬁ}

< 5(@3:n n, )(':;*(3) é'}o))
+ g((—f n,n, )C,}-f))gihp)) + [0



A fundamental result, due to Liu [35], is particularly
relevant from the point of view of this study. Liu proves
that, whenever Glimm's estimates hold, and if a:is equidistributed,
then all the accumulation points of {Ij“>) ‘,>()} y the set
of approximate solutions obtained using Glimm's method, are weak
solutions to (1.1.1) - (1.1.1a). Thus equidistribution is a
sufficient condition on the sampling sequence a. ;3 as we will
see below, it is a necessary condition as well.

We will be most concerned with the following two
sampling procedures.

oo
Random Sampling Let (/4 ,Cl“ > = j_T\/ ([‘i,i),dm ) be the

Cartesian product of an infinite number of copies of the interval

C—i, i) each bearing Lebesgue measure dM 5 normalized so that

V)’l([*i )i)) =1 dM being the infinite produce measure

)

B ~ >
(Dunford and Schwartz [14]). If A = {01 ;4'. a is equidistributedf

then by the ergodic theorem (Breiman [4]) A (}4 ) =1 .

—
A random sampling sequence is some @ chosen at random, the

probability that @ will be in some subset 8 C A being A(B)
N

-~

A sequence Q for which the first [~ elements have statistical
properties close to those of Z{ can be constructed on a computer
by means of a pseudorandom number generator (Hammersley and
Handscomb [19], Lehmer [29]). A Ufi)k,_) stratified random
sampling is a particular type of random sampling, defined as

follows. Let k” J‘L be integers 5 k1> kz ) ki)kt

19



20

S =
relatively prime; we construct 0/ from A by the rule

: it L, . .A
ot = QZL(% *%)/k, -4 ) where g is defined recursively
by gt = gri *’kz , MoD ki : ?, is an arbitrary integer
e < g, < Ifi . For both random and stratified random sampling,
it is a consequence of the central limit theorem that

> T L —
2(a 10, N )_L) = O(n ‘) for almost all @ . As is discussed
in [19] and in Chorin [7], the stratification of a random

sampling sequence reduces S(azO)ﬂ)I) by a factor kiz
d (3" o}m)f) = k-fg('a‘:o)n)f ) .
In the next example we construct sampling sequences
5 ) Q;' ![_-O /i> . These are easily turned into sequences
taking values in [~{ )i> by a simple scaling GLI-%‘LQL;i
which leaves their distribution properties intact.

Quasirandom Sampling The simplest form of this sampling

procedure is due to van der Corput (see [19]). Let

Mmoo k -
Z LK:Q‘ =) )Lk :O>i be the binary expansion of
k=o mo . -(k,i)
n .
R, . Then &= Z 2

k=p

In the following, we will refer to this as van der Corput
sampling, to emphasize its nonrandom nature.
The easiest way to see how the sequence is constructed

is to write down the first few elements in it:
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L= 1. at= .5 = 1,
2 = 10, o' = .25 = of,
3= 11, a’ = .75 = 11,
4 = 100, a'=.125 =.004.
5= 101, @®=.625 = .401,
SR EIRY 0t = 375 =.0 1,
7= 111, ot = g75 = 111,
X:iOOO,L_ a&’ - 0025 :.OOO;{_(
so q° £ .5 if (s 2\5? ; %5 qe< /%_i .

LEJ,(L) mop Ut ; 2:0)1,1,3/ where  £(6) =0,
J,(l)r’b )d{(2)=1)q¢/3/=3.1n general, if one divides the unit
interval into the subintervals [r 2_6,(7“1)1—5) ,F=0,. .. 9—5’1-)
then bfor each ¥~ there is exactly one g for which {afg<Zo+9~j
such that qbz E!"Q,.S,(VWi)?——g) .

We will have need of a variant of this procedure for use in
multi-dimensional problems. Let ](l )[(,L >0 be integers,
k‘>!~<1) ’<i>l<L relatively prime. The (I(”f(,l) van der Corput

= n ¢ ~(£+4)
Q = Z ge(k/) )

sampling sequence Q@ 1is given by ‘

=0

. L S

where gcz 1<L(_1 "°O,éi ) and %Lﬁh =N
is- the base k:t expansion of ¥] . Thus the binary van der Corput
sampling sequence given above is the special case J<4_=Z) I:;_’—'fl .
The van der Corput sampling sequences are all equidistributed;
the detailed distribution properties of the binary sequence

are given in the following lemma.



m ok
Definition Let 2 LLQ- =r be the binary expansion
k=0 roo.
of a positive integer [ Then X{(V\) = %Lk -
- )
Lemma 2.2 Let 4 Dbe the scaled binary van der Corput sequence

on C‘i,i) ) I an interval
P s Y g ‘e "1
n fat-at (>3 or , {.f< (2.1.4)

2) N{%l{n,fi,...,nl} )051 Ii{ - (NN lf\} < W“-.“",)

(2.1.5)

» 1 |Ile of and  N,-h <L
then Ni %( fﬂ,fi,...ﬂqz )a( 2 Ij{ < Zm—g* 1 (2.1.6)

To prove this lemma, we will prove the analogous facts
about the original sequence 3 on Eo)i) - It is trivial
to show that the results obtained imply the results given
in the lemma for the scaled sequence.

It follows immediately from the fact that the first .2“’1
sample ‘points are all of the form %‘w ) an integer that

lat-at'| =& gp yref. <",
from which follows (2.1.4).

- To prove (2.1.5), let I be an interval, ICCO,i)
lIl[o)i) = length of I normalized so that ][o)i ) I -1
Let ia Lka = h, I be the binary expansion of

k=0
iy - V\' . We write

22
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“\)i%t [n\d,.,. ,v‘\,ﬁ ) a‘tf} - (I\Eo)i)("fnl)l

< [0 geineiat ot T ~1Th) i

"y ko L
+(:Z_:o Ni %t {""ﬁol'j'j" *i)... , :{»o"ga' "‘13 /aszf

- lk'ilf l[o,i)> i—;«i l

b3 -
In every sequence of A’ consecutive elements of Q

there is exactly one in each interval of the form
- -S ; >
Cr‘Lg,(W‘)’—) r<0,...,2°-1
thus, each summand in the above expression is bounded by 2, and

N{%tiwl'ir“'n"? ;““IZ --(l/l,l_——ﬂ\) lI{E";i.‘]}

™M, A
< ‘Z,IZ-L[( :ZX(’I'i/MJ)){f‘OM

which follows (2.1.5).

In the following, we will use {2.1.5) and (2.1.6) in
conjunction with (2.1.3), i.e., if I% )g‘ f"‘*i,“-»nm}
satisfy

c IV Ty-paxf)
[7{(’;3’(’) YO

then

“\)f%z{n,vi). ..,n,& ,a‘zf‘z - '}f{- {

< ‘0 r'Lf(ﬂL—n,) (2.1.7)
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1 IS cT ,Z‘{""i"“’"* )IIIS?._I ) M-y < 2
then

Ni 61{/\,*1)”,)}'\,& )aeil—.gg =< élm-[*?._ (2.1.8)

Lax [27] was the first to propose the use of a non-random
equidistributed sampling sequence in Glimm's method, the well~-
equipartitioned sequence of Richtmeyer and Ostrowski. We shall
not discuss this sampling sequence here. In numerical experiments,
and for simple analytical models, one obtains results using
the Richtmeyer-Ostrowski sequence similar to those obtained
using van der Corput sampling. However, the techniques used
to prove Theorem 2.4 make use of some special properties of the
van der Corput sequence which do not hold for the Richtmeyer -
Ostrowski sequence.

We now analyze some simple examples.

Example 2.1 Consider the initial value problem for

%E + Cg.,‘-;‘,__o u;f{??qﬁz (2.1.9)

u(r,0) =@y

1
\? piecewise C ) ¢ a real constant.
The exact solution to this problem is {f(a-ct) = uln,t)

In particular, the solution to (2.1.9) in the case

- UL A2< 0
Gie) Mh)qafmz
= Up A >0



(i.e. the Riemann problem) is

A
=uk ‘E(C’

u(t,L)
’ =u,  EscC

The discontinuity propagates with velocity C .

Let M'L nzo ) J,—\‘/l even be the solution to

(2.1.9) obtained using Glimm's method. The Courant condition

(2.1.1) reduces to ‘/L ’15%

One easily finds that

=l A et )
ut it amelle 1)

&"'L

ned

M}fi

so that the whole solution is shifted to the left by L

p » +4
if aﬂi<2c or to the right by( if «” 31C

)

If we define

k
[(Vl) = ”f‘“{i)---w"‘z )4 i[_:i,lc)?
~NSkefe, . n} akel1e 1)}
° N
then u; = Uegtny = (‘P((f— /(‘4))4)
Thus Glimm's method models the travelling wave nature of the
exact solution a discrete wave whose location is determined by

the sampling (figure 2.3)

25
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If we look at the limit, for (1,t) fixed, {=0 ) o<f% A<s

n{%] }:[Z%] )n even

- £
= [i7 jd n odd
f J

then the error
W d k) ulnt) < 0 —ule,t)
= Qgh~L L) = ix-ct)

will be completely determined by (/l-'Ct) = Q{'{_ ‘//ﬂ)x )

whether the solution is continuous or not.

-
If Q@ 1is equidistributed, then

[dmk -Renh [ < L (80 .0,n £1,10))
+g(d’;o,m)[’,\c)i)))

and
| (t-ct) —{{l-lln)ulf %{Q(&’;o,n[ﬁ,flc )
+SG@;o,n, (e, ¢)) *(q*:l){’,

—> o0 as L >0

-
If g 1is a random sequence,

ety fh-Aok) < G - (L)

26
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If @ is van der Corput,

a-c) = (h~leoh) | < CHw) o(é//OfL/)
h
Other than the error involved in discretizing the solution
at t =0 , the only error introduced by the sampling is an
error in the location of the discretized wave, which is

proportional to the residual of the sampling procedure.

Example 2.2 The initial value problem

(2.1:10)

QE + DI )Qg = b A "J5{RL
M P1Di_o s Ry

= u,_ A<0 U ,Up T fR

Ui, 0) :<p(%)

puss * CRY, s fpto, ot 00l ¢

is not a conservation law; nevertheless it can be solved using
sampling and error estimates derived.
The exact (distribution) solution to (2.1.10) is given

by (Courant and Hilbert [10])
v Llt)

=

U

", a> L)

ua, t)

it

27



where .l(t) satisfies the ordinary differential equation

al P(I’[t)) {lie) =06
dt

We solve (2.1.10) using Glimm's method, sampling an
approximation to the Riemann problem.
For short times,
P0e) = f(t,) -t plits) + O/(é -¢%)
using this approximation to the Riemann problem in Glimm's

method, we obtain (figure 2.4),

o= m;_-f IF a":Ei)ﬂP(;L)>
K} m;;i i a”t[Xp//,A)Jl>

The solution at time step N to (2.1.10), using Glimm's

method with the above approximate Riemann solution is

=u. e g0

boaue w23 00)

where

,[m("“i)*i F a f[l Zp//mn 1_)4))
%ot 0mc CL Tptr )

///4{0) _

/(M}M)

28
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The approximate solution converges to the exact solution if
4[/“(’1) ) the location of the approximate discontinuity,
converges to ,/(t) the exact location of the discontinuity;
that is, if in the limit {20 with ﬁ 1 <C° ) [i]
wae §%0k M) = C ,
uniformly on compact t-intervals.
Let a(f(o/i,) and assume that there exist C; >0
such that ;“ S(Cl /,M ?ﬂi)m I_/,M) < CL m™
where the coggg;nt <:L and the sequence of subsets Iy,»q
are to be specified below. Then there exists C; >(})

independent of A, for A: sufficiently small, such that

A Yn) //t)/ Cye °elﬁi J (2.1.11)
uniformly in compact t-~intervals.

The idea here is quite simple. We bound the differences

orgmik) = finh ) = mb plliaf))] € 2o0m)
11%em) b i he = mhpl oy KD | < £50m )

the first using Taylor's theorem, the second using the assumed
bounds on the sampling sequence, choosing M so that

L oTm) v f;(M) - Then the total error in the location of
the discontinuity after N time steps is bounded by a

constant times e‘”é% E,(Wl) .

tee me[ 4] nelp]et, Co= (2]t
|1“‘)(S+}M5 ’flh)(fm)/ < m
| pUMsagm) ~ ptt®mh) £ Comk < C A gesem

Then
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Take the intervals I},m to be I};M"[;i,XP[[“%}m)( )}.

By our assumption concerning the sampling sequence, and Lemma 2.1,
{ (
H/ )(/dyi)m){ ‘/ U(;m)L - ﬂm{ P((“Z;m)/»)/

Lo - L
< C,K'"‘ML tam ™ S Csl”"“

By Taylor's theorem, if 0<sS<sm

[Lisumit) ~0mb ) ~shpllimk )] < Com™E's oA

Thus
£ “lgryy L~ Llgron) |
< [lyrt) —/’“(/‘m){ ¢ mk lpllyns ) -p/ﬂém)z )l
H(CyrCIATE
< (e Comk ) [0k ) -Gk | VG A=

If we take (?0: C:‘:{] ) S5¢ = ’1‘0{0”1)

then

|0 -2k < [ttr-frab) |
b Wk )L ok - UL Gy K]
gk =L Yk |



< Chigmk s i(h(’mé)"tf e

(4 ka)j' (/(o)—-[/ o)/L)
< Cate Ly e Chnt g <

-~
If & is taken to be the van der Corput sampling sequence,
then the above hypothesis concerning the sampling sequence

holds for all A, 0<X< 1 giving a bound in (2.1.11)
LEf

proportional to for € arbitrarily small. By using

)

special properties of the van der Corput sequence, one can

actually obtain a bound proportional to [L .
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Example 2.3 We want to look qualitatively at how Glimm's

method models the initial value problem for the inviscid

Burgers' equation (1.1.2) for the following special cases.
1) Rarefaction Wave: Let

= {4 4>1
wir,0) :Q('\L) = A ~f{<n<1

<-4

[}
|
[N

The exact solution to this problem is

{ A2 (L+1)

"

1

Ui, t) Ygety ~(ert)e 1< (+2)

= -4 1< = (¢+1)

so that the wave is spreading (figure 2.5).

The initial data for Glimm's method given by (AJ‘_ t(\o{;ﬂ)
1/ even, satisfies Uj, {M:.,q_ ) ’Uilé 1 for all
so that for the first time step, we may take ‘/A_: ﬂé 1
Then there are three possibilities. If a's [*1)—1)
then the sampling point lies in the left state of all the
Riemann problems, which are all rarefaction waves, so the
/)

solution is shifted to the right by A : M;,,i = MO[

for allj.
If 4t C}) 1) then, by similar reasoning, the

/
solution is shifted to the left by { and M}“ = ad'_ .

If Q'ZE:{)%') ) then there is exactly one O{O

32



| ° o
such that 11*:;0{ a < /AM}OM__ o Then a'fun

for }}40) a'> ’/\ui for 45 o{o ) and we have

4ot TU

I 0

1]

u&?i = (AA, 1’2/0"'1—‘
! _ o (
Yaott T

(figure 2.6). So the sampling procedure models the spreading
of the wave by moving part of the approximate solution to

the left, part of the approximate solution to the right, and
i

inserting a new value % in the gap, in such a way that M:!-'
s . . o l 1] <
still satisfies (A&é (APL) ’M&I <1 and therefore,
) n ¢ n n S i
at time step W ) M}- Md’*t ) [UJ' 1
In the exact solution, 93 = ,‘1‘76‘ at all points
ax I
where ul¥,E) #td so, at each time ¢ the amount of

spreading is spatially uniform. In order to obtain the

same behavior in the approximate solupion, one wants to use
a sampling sequence such that the % are distributed

as evenly as possible throughout the interval, i.e., that the
residual S(CT\,O) V\)I > is as small as possible for
as many intervals I as possible, uniformly in ]:
Otherwise, one thains results as in figure 2.7 where the
solution to the problem is computed using random sampling,
pieces of the wave spread apart from each other at an uneven

rate, leaving flat spots in between. Van der Corput sampling



has more desirable distribution properties, as seen in the

results in figure 2.8.

2) Compression Wave: Let

= —i /{21
uir,0) =gy . -/ -f<y< 1
= 1 <-4

Then for £< 1

Wia,t) = ﬂ’/{(:-i) €t <acl-t
= 1 as €14
for t=>1
=1 A>0
ulv,t) - 1< 0

So uld)t> consists of a continuous wave, which gets steeper

until t=1 when it becomes a shock (figure 2.9).

‘The approximate initial data used in Glimm's method

u(_‘; :(p/&ﬂ,) )é; even, satisfies M: > M;w. Ilk:_’ <L

. o o 0 6 o
with (A&> Uprr for 4Lf}5‘#£ /(,{QL:UFL

. . . 0 o
otherwise. Those Riemann problems for which UJ- 4 (4*_,,1__
have as their solutions shock discontinuities propagating at

‘5:'1 :(“Z* “:n\//?_ so that we may take é/{,=251
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As was the case with the rarefaction wave, if
0'c [1s, 1) (a'c [1,%5.) )

the solution is shifted to the left (right) by AL . Here
S a Ji(i+ M;x{u; . (A;# f.}’)

+

s_ = L (-1« r‘lm){ui: MI¢-1?>

If a' 7 [;ls_)ls,,) then there is a Jo such that

[4

G W< o g
Q' > 5;1 for PRSP

(figure 2.10), so that
{ . 4 l( '
u&ﬁi = MJ’ ; 40
= >
l/}_i uer 1 Lo
and the value U;a does not appear in the solution at time step 1.
{ !
As before lulﬂsi 5 M;L—ié M}w‘i
. l { ;! < !
with u}-l_> U}oi ; JLEi - éR )

! !

U*_i = “*.1 otherwise

but with 1/'2 - }’l_: (}‘;_ *QL‘L) -9 .

The steepening of the wave seen in the exact solution is
modeled in Glimm's method by successively removing intermediate
values taken on by the wave.

The modeling of a compression wave is rather sensitive
to the choice of sampling. For <1 the exact solution

is continuous; so that one wants the approximate solution to
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also be smooth, i.e., if II{L ={-2 one wants

u’ -u" ’ZO( )

o

(W)= Wy +O(E) = W 0Ck)

i

If one creates larger jumps between states by fluctuation in the
sampling procedure, the effect will be amplified; artificially
large jumps lead to incorrect shock speeds

(uI_,_J-u:_)/L - M;tz >>/L for r)é <1
and eventually cause the compression wave to steepen into a
shock prematurely. Figure 2.11 shows an example of this having
occurred for the above problem. We used random sampling in
this run, and the wave has steepened into several strong shocks.
Van der Corput sampling was introduced specifically to control
this problem. In figure 2.12 we show the problem at the same
time as that shown in figure 2.11; the wave is much smoother.
In the next section, we prove that, if one uses van der Corput
sampling with Glimm's method, then for “;—1. /“;

n n
in a compression wave lua, —M&-‘L( < CL for all n)

: —
n{(<7:, for /0 sufficiently small, but independent of L )
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§ 2.2 The Inviscid Burgers' Equation

In this section, we will analyze and derive error estimates
for Glimm's method, as applied to the initial value problem

for the inviscid Burgers' equation.

Ju . 2_(_“_”) =0 u('y)t)= U'.HZ"[O)Toj "%r"z (2.2.1)

Y il

ult,0)= Pl
We will make some simplifying assumptions on the initial data.
2
We require LQ to be (: except at a finite number of points;
/ i
at those points where L? fails to be Cl) (p, ‘ﬂ)gﬂ
/ " O
may have jump discontinuities, so that //‘///,‘, )//(p //”)//w //°° <
- Sv [fix) :
where || {“w ,t:F:sEovnuuow ML 0 We will also make a

rather serious restriction on T; _Let C:uF = - /ZF cpl{"') )
then we will require ‘T;< T;RJT where T:Qn- is the largest
time satisfying the condition 1_' TZL”-CLngéto . This restricts
us to times sufficiently small such that no compression wave has
a chance to steepen into a shock: the only discontinuities in the
problem are those present in the initial data. This is a
restriction imposed by the limitations of our error analysis:
the problem(2.2.1) is known to be well posed, and Glimm's method
known to converge for it, without restrictions on 7;.

Hopf [23] first studied discontinuous solutions to (2,2.1):

his results were extended and generalized by Lax [26] and

Oleinik [42]. 1In the following, we will state without proof



some basic facts about the solutions to 2.2.1; for further
details, see Hopf [23]. The lectures by Lax [28] give a good
general introduction to the subject of discontinuous solutions
of a single quasilinear hyperbolic conservation law.

In the following, we wili denote by (:L; Kl constants which
may depend on 1:, the initial data (P and the parameter }’ ééL
in Glimm's method, but are independent of the spatial increment 41
and the grid locations (%A)Hé) ”és?:)' The C;_ 's  will denote
constants whose values remain fixed throughout this section; the
KL'S will be fixed during the proof of any given Lemma, but may
be reused in each Lemma.

Weak solutions to 2.2.1 which are piecewise continuous and
satisfy the entropy condition exist, are unique and have a finite
number of shocks, i.e., the set of all points in miﬂ(U';T;]
where W fails to be continuous can be représented as the union
of finite number of continuous connected curves
() = Ree, 7,7 Ll T,1—=R
at all points of which ( has a jump discontinuity. We call such

curves shocks. The solutions are also uniformly bounded:

uly £ < 1Yl
(N,?)‘inEAEO,To]I A \ - [L( . (2.2.2)

Let (a,,t,) be a point in R*[O)To] where
is continuous. We define a characteristic through (4m)t;b)
to be the line segment in EXEO)’ro]
(C(Ul(d-o)toB)/x'o)tO)'t> )t>
ClulAg,ty) Ao Lo, t) = Ay~ ulty,to)(tot )
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such that ogts to y or t>t, and for all {1/)
toé t’ﬁt_ ) W is continuous at
(c(u(’to,to),ft,,ﬁo;t/))t’) .
Characteristics have the following properties.
1) There is exactly one through each point
where W is continuous.
2) WA, t,) = Hlclult, to) Ao,te; t3,8)
~for all t> 0 where the characteristic is defined. If
is continuous at ((‘.(u(/ta,to))/ﬂ,,to; O),O) )
then WU satisfies the functional equation
Wihy to) = Pletula,e) Ay te0) ) = Pla,~uln, 2,)¢E,) .

3) 1If L( is not continuous at C((A('V-,,tb),'lo,ﬁ‘,}()) =4,
. = Vi) < b = [m fla)
then L;’V\M (P(’U ALY e by “’M(F )

1
We call a, a rarefaction center. Conversely, if /\(,1

is a rarefaction center, then for every V7, ‘ﬁ_(/h_)ﬁ V< %/’zi)
there is a characteristic passing through (A4,0) which we
denote by (c(v, %4 )Ojt),t ) where

Clu,Ne 0t ) = A+ tv defined so long as U
is continuous at (,C(V,41,O;£,),tl)
for all t'4t and satisfying w(C (v, /Zi)O;f_))t) =V
for all £> O - We can invert the relation /A = A +U(2t)t
to find M(/\(,t) explicitly as a function of (’1,t):

uia,e) = (-Aa)/fy
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Let [[t) be a shock. At all but a finite number of times

t, ,‘::‘: N ) the limits

" wa ey = u (A0,E)
(r, )= [JlE,) t,)
A< fle)

Uy, (fe),t)

1

Im u(a,t)
(,{){-) _‘D(/[to),to>

A>LL)

exist, and

df ( = sllleoy £,) = & (w0t Ul f1e) te) )
dt i, |

with Slj{f-o))to> satisfying the entropy condition
%f]“w%to)> S(IQohto> >u2(/ﬁﬁ%f¢> (2.2.3)

A useful parameter is the shock strength

ste(f1e),,) =k lfle,) ta) ~da (Lle),t,) )
At times 4, (= 1,.,.)N) / is overtaken by one
or more shocks, i.e., there exists Ag(t) .., A (t), Le)=4,(¢)
for some k  for which Lie)<. .. < lt) for E<tC

and [im /Zé(t‘> =L independent of . In that case,
et
//é):,@(t) for all 0{'—‘/»-'-,"1) £>€. . Ko shock

ever disappears, although the number of non-coincident shocks

decreases by at least one at each time f[_ .

39



The following limits also exist

[im U, R’((t) 1) u:lg U’ft),t)

i

1

[ MLR(/(L t) = “:,R%Zt))t) :u:‘)ﬁ(ji(t),t)

titi
for all 4,,[{ /ffﬂé < M with the entropy conditions (2.2.3)

continuing to hold in the limit:

uL t)t}>$(//t)t)>t(//{é)t)
(e ) = % (W ) e g U0, &)

(2.2.4)
We also have
TRLCARIOE U D L) = u(Ale), t0)
Wk (e, ) = g (L) 1) = g (Lulte), {_>
(2.2.5)
Given a shock [/ﬁ) ) UL,R///f))t ) is a continuous

function of £ except at times when it is overtaken by another

shock, when “-.,a(/“t)lt ) may have a jump discontinuity.
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By (2.2.2), Sup [s(dle),t )] < vl
¢

{ .
so [(t) is a piecewise C uniformly Lipschitz function of t:

)
[ty = fie0) | & il le-t!] for all &,¢/< T,
The strength of a shock Sf—"(/(é))t ) is a positive

continuous function of f except at the times when the shock
is overtaken by another shock. At those times it has a jump
discontinuity, which, by (2.2.4) and (2.2.5)) increases the
strength of the shock. Therefore, there exists A >0

such that, for all shocks (j(t), t) o< ts 7_0

strn(l),t)> 4 (2.2.6)

Let //fo) be a shock. Define, for o< t< éo
c(u “'>(m Y, te), Alte) to,t)
= flts) +(ﬁ te) " (Lle),t,)

We call the line segment

(el (Uit £,) et )t ) 0 ety

a backwards characteristic from (j(ﬁ,,)/ 6‘,)
For t4t, it coincides with some characteristic of the

continuous solution, and satisfies the relation

W (20e,) ko) = ul el (L), te) Lle) 6, ) L)



1f C, is the minimum distance between discontinuities in the
initial data i.e.

CO = MW {l’t.;"ﬂé'. ({) | is not continuous at /ﬁ;_)’l&' Z
and if ClulD (L), 60) [lE,) t,;0)

is a rarefaction center, then

g_t_(f(t) ~ C(M“'—) (I(fo),to ))[/to)/to)t>>!t=t/‘

LR

C, < tesvp

Oct’et,

< LO'LHLP”‘”

More generally, if u(«cc,h) is a point in a centered

=
then

Co-’z < 2t,(%l (2.2.7)

rarefaction wave satisfying |[%,- l(to)

We can represent graphically, in the (’l,t) plane a typical
solution to (2.2.1) (figure 2.13). The bold lines represent
shocks, the light 1lines characteristics. There is a
rarefaction center at @ . The two shocks ®
overtake one another at point @ to form the shock @ .

We can now derive some smoothness results, given the
struct;ure of the solution as described above., If W 1is
continuous at {4}'—5 and kp continuous at C(U(’l—,t),”’)tio),
then U has the same smoothness properties at (’L,‘t)
as (-P does at C(u(’f',f—))’l,{’—)o ). For example,

1
assumete is C* at C(‘wl‘\l,t),’v)t)0>



Then

9_! - winr§ ) —ula,t)

T4 c0 (2.2.8)

1 !
= I m Qﬁg = Q;/
AlC.—-SO AC 1+t%ﬂ (i+t(PI) C(U(‘(,C)Mt,O)
C.. ) )

AC = c(u(hg)t),/l,t;o) ~clulx t ),4,¢;0 )

ALP: %(C{M(’l*g,t)}df){-)'(}) /—(-?{C(L((d,)t)//v_)t/'())

A similar calculation yields

I l -
%Li = Yy /(i*t‘(') clutn,£),4,t;0) )
!
and in the case where kP has a jump discontinuity at

clulee), 4 ;0

> -ulx b)) 29 1
’IM wix g ]t) u ) - {(M =

- p! [
/leT/c(um,t\,/t,é;c) /”-"‘U‘pl ) A,

The same results as obtained by formally differentiating
the relation Ut = H”(fx - tuly,t ))

and solving for %—‘t :

u = 24 = !
%:w’—t%w => 5’3 (‘0/(1+t‘€’)

%‘i: _ug,‘i = W”/{iftw)



Hereafter, when deriving such formulas, we will do so by such
a formal manipulation, omitting the calculus proof.
; . . . . k
More generally, if Le is a continuous, piecewise C
function in the interval [, ,C,1 having only a finite number
of jump discontinuities in its derivatives, and WU is
continuous in the region
finey s grellle) s cut‘plw,t“o}
. , , ck , ( € .
then U 1is also a piecewise function of r,~) in

k
that region. If Le is C at C(L(M,t)}/Y}t)'OB

then
res (rss) ; (2.2.9)
_:_),__.SA_. = Q,\S({'—)LP,LP". ,kp )/(ift(el)“r'ﬂ—i ,
I ’ Cluta ) A0 )
for all YV+sS% k where Qr,s is a polynomial in [r+S+2
(res)
variables. If L( has a jump discontinuity at
r+s
clute,t), .t 0) th 2 u h j
LRPRL RN ) en SVTITE as a jump
discontinuity at (ﬁL)t> with
lim '%:B_ (2.2.10)
svo 247 les )
(S
2Urss)-1
sbo Cluln,e),n, t;0)2 §

If the interval [¢y,C4] contains a rarefaction center at

Co ,Cts Cos Oy and W 1is continuous in the region

fla ) @) 1160y Corfreptsa=c Y et tfteg

b4
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then, for ‘ﬁ_( C) <V < (pe(co\) , U
is a C* function at (C(V)Co,ojt))t ) )

_ ‘
since M('ltl,f‘-q E ,L'-E,—§° for all (’i/,t> near (C('U')‘CO,O)'E)J'C,>

U .
f U= QL(CO))WQ(CO) ) then 37 )g-,%_ have jump
discontinuities at (C(V Co)O)'t))t ) since, for

example, the formula (2.2.9) for

[im fz‘,_u_l( |
$y0 I c“(’,Q(Co\,co,o;thS)t)

cannot be expressed as

[ 24| =L

0o 21 HC9,(6),¢,,0:£)7% ) t.
for any finite value of

[

im (‘F(Cor8>

$do ~
At a shock, we denote by 9”’5u ) (&lsj

T4 Its L) 94"9*(_ R
the limits (if they are defined)
rss rs

i s E<Q’T~“s> (10, o)
(10)3Ue)) 37O [1g 1y \ I/

< ft)

- S ) (fie) ¢, )
Q |

[ W] s ( '::'— ~ t§
r«',u-s{[/e,),t‘) 49t Iy 1) pr

x>



res

(%{Fg;;‘{’)ha(“?“}’t”} exists if U, ,alllto)to)

exists, and if either ¢ 15 C at C(uL,e(Wto))“))/{%)/{%'o>
or  clu g ({1t t.) M16) 450 )

is a rarefaction center /Lo with

w U ko) £ Cin,)

e (Lt) 1) # D(x,)

In the former case

(’Dmu ) (Wfﬂ,tﬂ (2.2.11)
\ Y 7e e . .
. Qpﬁ(t,hp,.,.,(p‘ sD/(th(,)u -1

where Qf‘s is as in (2.2.8) and in the latter case
]

gros : 904-5 ,:_'\l_o
), (o= L (22

\

clu, ol U,t.,),/(é,),g}-o)

(1“0))t0 \

(f . (r.-g) .
If e )Qﬂ are uniformly bounded, then, by (2.2.11),

.

and our restriction on /o

res \
<§'¥.’9(:.‘ )L;Q ('((ta)’t")

is bounded independent of L, ¢ Tc .
: rs ‘
If (P is piecewise C with only a finite number of
jump discontinuities in then there are at most a finite

number of times ta when

ans
(ﬁsh,@(ﬂﬁ)}tg

can fail to exist: when //LJ is overtaken by another shock;

46



when W is continuous at C(UL,R([(@J,ﬂo))[(to),ﬁo) 0 )
but L()(r's) isn't; and when C(U_g (Lits), £s) ,[(1‘.,),\‘_0 ,O)

is a rarefaction center A4, with uwk(f(ﬁd,to) = qa({O)
or uheﬁf(éa))to) ’LPe(la) . The total number of times
this can occur is finite, since a characteristic intersects a
shock at most once. At such times the limits

(%*BL,Q - 4'{2 (SMZS)L)R(Z(fISB,ﬁ*S)

exist, and can be computed in a similar fashion as the limits
(2.2.10) were.

For the initial data we are considering, the above
discussion implies that the solution Mlift> is piecewise

with

wp || s C=CUD) <, osrisaa
qpsD | J7IL '

for any compact subset D c [IQ’( [o )T° j such that D

does not contain a rarefaction center. The set where 4 fails
z

to be (: can be represented as the union of finite number

of continuous curves (A(ﬂ),{,} , 0<Et< 7: which are

either characteristics or shocks.

Finally, we need some knowledge of the smoothness properties

of ‘//f) )Lhﬂg{/[é),ﬁ ) as functions of £ . We already
4
know that ,[ is a piecewise C”™ function of f,j Ubﬁ([vf&ﬁ)

piecewise continuous, with only a finite number of jump

47
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1
discontinuities. If [{t) is C and

wello,6) | ) (f0,¢)

continuous near (:o » then
(2.2.12)
d ({le) t = du C{Z_ +<g~g-\
J‘;:(u“‘a / )> t, (j_'z—)l,‘&c{t at /JL,Q
. 9..%) (5 —U._,)
(9,4 Le ® (£0¢),¢)

So

Cﬁg = C-LS- = d—("ih_.*uﬂ)

der|, dv T dv L

- (@—’%)g "(929(.5 ( u‘%ﬂ> ’{m.u,,)

Similarly, if (914, Le, L, , LR
are continuous functions of { near to
R

d——(“a.,q)f(

dt* VITRET

= L,Q((g%%)u)@ﬂ%)n )@ﬂu)(g’ﬁ‘)k )ug,ug> !(”‘o’,to)

where pL,R is a polynomial.
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Lemma 2.3 We can choose constants C1>—’ 1 ) 0< C:z s Cl

independent of £|ftt£ T; such that the following holds:
Ry ~Llep e Colti-tad

If HL,R(I(t),t,> is a continuous function of t.fCE;,tzj

then

i (2.2.13)
/ /

WL,RU{U,f—)'“L,a(W‘- )] s C,le-t]

for all £t 1 [t,,E~]

If uu,ﬁm ) (%%)L )@%)k  are continuous functions of

T then

(2.2.14)

(1) -fte) - s(Le,e) =) [« Cy (e-e)"

fuce (1€ ) er) - u  (Li6)¢)
(2

ey

> (e ),6) (s U0~y (00) £))(e-¢")

'

< C,le=e)"
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2) Let U be continuous at (4.,,{;5) with

) |4,—ﬂio)’
< MAx { %") 4/ (‘L"“f Y ) ) q%“f)

then there exists a shock ,( and time € >‘ﬁ° such that

D (), 0) 1o e to) = Ay
with ‘

le-tol < Como 1= £lea) | (2.2.15)
The bounds in part 1 of the Lemma follow from Taylor's Theorem,
(2.2.12) and (2.2.10).

To prove part 2, assume for example, that there is a

shock 1, l(t,) ?./{_u such that

Le)-n, = 7o ﬁ}'*’ /[{{o)"/{o/ |
and that, for 0< (t-¢) < CL'ZO) c(u{“"’t")’d"ﬁ")'t)
is defined and does not intersect a shock. Then it suffices
to show that CL is bounded above independent of 7{0
We also assume that S(ﬂ(ﬁ), t) is a Ci function of ¢
for 64 t-t, < CLY . The extension to the case when
this fails at a finite number of times is straightforward.
If ¢, <A< /[{_o) and Uiz ,t,) 1is in a rarefaction fan
centered at (al,,0) then, by (2.2.7), £, (”Z/C—‘/i/-/
So for all («,t) ) C(L((fy,o'to'))/to)x‘,o)'t> < A ;z({— ) )tEf‘é

we have



< MAX{'UL”-. el }

l’%{(",” = 4G )l"T;C,.)r

4_(/“_) - c(uwo,ta),%)toi"*))
dt

=str(d(t),t) cu [fle) ) — uletumgts) A, tst)e)

!
vA/ + (I(t)’C(U(Qv,‘LO)' o) O)L)HRX[”(‘P” ”LPH f

YCo » i"/ th

where (_ is the minimum shock strength, defined in (2.2.6).

If ve set 7)) = Q0= clutn, e 2,4, )

then 7/{7 satisfies a differential inequality of the form

[
d ¢ goqmlifr BT

with C,“i [ 4/, .

b

This 1nequa11ty is easily integrated to show that

77/6)5 7/50) — %(t-t,,) =
7/1‘_)50 IF 7(&)% > ()

7
so that C.Lé —

L



To apply Glimm's method to the initial value problem (2.2.1),
we take M;'= (p{é /v) for * even, and assume é’ 1{/ )
where ;{f i/lf‘f//,o . The solution to Riemann's problem for
the inviscid Burgers' equation is given in Example (1.4): since

L] < Mnx{}u,_l)luz]}

it follows easily from the definition of Glimm's method that the
approximate solution M}_ = U(“(!ﬁ )"“éf) ) f;* n even,
at time step | satisfies the bound

sep WiLe sep el < 49w
The condltlon (2.1) reduces to 4AL }. < /;qo/”
(see Example (1.4)), which is clearly satisfied. In particular,
this insures that waves from adjacent Riemann problems do not
overlap.

We are going to want to trace various wave structures in the
approximate solution; the first step in doing so is to identify
such structures in the initial data. By our assumptions on q)
the approximate initial data may be partitioned into a finite
number of intervals of four different types. We define (:3
and integers l{]/"‘ rkd with —e= k, < lf.l<. .. < kd e
and C,,C{ independent of 4_ for Z, sufficiently small,

by the following conditions®
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1) For each interval [kfpkpi—] J,: !, --,d"i
one of four possible conditions is satisfied:
i)
o
uok > ukrt L k ‘("2 )k&‘i
- >
( ™ k ) £ - <j3

uk—- “m < ?_K Wt”oo

We say that approximate initial data consists

of a compression wave between k& and k;fi
ii)
¢ 4 . -
uki‘uk"L l("‘ k*)k*‘rl)')k"_L

We say that the approximate initial data consists
of a rarefaction wave between li* and lﬂui

iii) There is a rarefaction center at ‘<&+i .

0 (4
kd"if kd"‘.l ukrl - Uk* E C3

iv) There is a shock discontinuity at k&'*i;

Q\L*i’ ‘

0 0
‘fl Hk&— uk&f1> C3

2) 1If the interval [ it &*1—,1 satisfies i) or ii) there are

(2.2.16)

no larger intervals E‘L&/, <‘,+1 ] ECL“[(*AJ such that those

conditions are satisfied.
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There is a one-to-one correspondence between shock
discontinuities and rarefaction centers in the initial data for
the approximate solution, and the corresponding discontinuities
in the exact initial data. Let 4,<...< 45 be the points
where ‘f has a jump discontinuity. We can associate with

an integer P‘— , Czl, - S ~ such that

9,01 = Uhms | [ Gpl0) - Upan ] S 2L, 2an

el 2 ek
Piet . ®
]P‘J»*/E;l < 44

We can define and track in the approximate solution the

approximate analogues of the shocks and characteristics of the

exact solution.

Denote by '(},n) the point (M_,ni> x iR Eo)Toj )
4} h  even. Then we can define b(},ﬂ;% )
the approximate backwards characteristic from (,i’ n) at

time step 2 ,Oé%ﬁ n o, as follows:

13
Define Sz = (ui‘t f"‘&_g) /'.L

]
if UE_L > Upg and ¢ syt
1 = SE |F uk—L uk"i
") 1]
k % ¢
= uk.i tF Up g < “ku.

Then we define

B

' n-L > n-t
b(},n}n—i) 4ti F Q < v

and

b(&,,,).%) - b(.b(qt_,n,-ga),gu)’g)
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It follows easily from the definitions that
“)(},M%)‘} lé n-9 (2.2.18)
and that % > u’
a lz(a' - b(é_,ﬂ)‘%)
It is also easy to show that approximate backwards

characteristics cannot cross, i.e., if js; ) then

E(&,n;%) < b(gﬂ‘%g) (2.2.19)

for all g< h . From the definitions, we have

b(vt’, "4 = b(},n,'g ) - M%”;Z*U ~ 6/01) n)-gfL):o)tQ

since }/—OL is even, the result follows from the second part
of the definition of b([;)ﬂjg) .

Similarly, we define approximate forward characteristics

g(&,"")g ) from L\{,/)) for gZV]

n
1) If u&_,_> M} 5 then

fpnmesy= e of @™ 1

I'_( M;—i S (/(1 , ‘d\&’\

fipmpnee) =gzt f 4

nat f ;{(A;—

D {90 ={/Fq,mg—i%g*i;z)
As was the case with approximate backwards characteristics,

approximate forward characteristics cannot cross, i.e.



flaf > Fegonig o< 44,059)

although they can coincide. We also have
{(5(&;”3”‘1 ))W—i.') Vl> < 1’
(g0, 0ot et n) 2 4

from which follows, by induction

%(b(},n;%))%5h3 51; g<n (2.2.20)
b({/é)n;g))g;m) 24 47N

We can also trace approximate shock paths forward in time.
”

4 _ " -
Let [{m) be such that “1’%)-1 > u,l“)(n),.L )

' i“)
we say that at time step V] there is a shock located at [ (’l)

Then we define

(¢ < "
[(L)(Vhi) :j (n)t{ 17[ d" > XSIIH(”)

We need to make sure that there is a shock located at

. nei N L
i.e., that MI( Yneg)-1 > u,l"'(mt,)ri There are only the
1 net

.. el o4 04 Ny
following possibilities for U/,‘,{”“)_t ) d//n{m‘_),_i
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] n
,[% ﬂﬁwm_j > ”‘2“‘)('\)-—1 ) then
_ n ‘ sh < C("( y
Tk = Uyim-3 Ao At
JLAUCE Sty "
- uﬂ“’{n)—i otherwise&
then

n 4
%fsl("(q) ) uﬂ“){u)-ﬁ%
n n
< a”< ;{u;“"(m-L

%*M i¥ 1MA

I

ofﬁerwzsﬁ

11

n
W g®on- 1

et « by
a Sﬂ(()(n)

Iy n
_ vk . A
- (A'L[")Ln)‘_g LF ’Ase(h)(n)‘_l

ne i

WWined)ed  a
- uw,(n)’i otherwise
I{' u;(u(n\dé M:{b)(n)*g ) then
WS T g;'i f ﬂu’l\'“’{n)fif a”
JICTIENESS < Ame gr""t'w)u:(“wh;{
oﬁﬁcrwsa

M'\
= Wk 4
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From this, it is easy to see that it is impossible for

”,j_ noi
Y0 me)-1 2 rnagy o1

2l o o

Thus, given an [ (0) such that szk)(o)_f uj“"(o)*i
we can define, by the above procedure, the location of the
s o jlk) . X
discontinuity (n) at time step WM. However, we will
reserve the term approximate shock for those discontinuities

en L% . o .
for which (0) is a shock discontinuity in the initial data,
in the sense of (2.2.16).

By similar arguments as those used for backwards

characteristics it is easy to show that

[fl{“)(n)—[m("*%)] < g (2.2.21)

0
Similarly, if L +4 is a rarefaction center, then

b(f(”(%)ﬂ 150 ) = l”

only if '
12 fue = [%"’z] -4 (2.2.22)

TS
{

and if Il ) 44 are two approximate shocks for which
(M) 2L e (2 L)
for g > f“ :

So approximate shocks may neither disappear nor cross,
althodgh they may coincide after some time.

We need to define several quantitiés associated with

an approximate shock //L’/g)
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5(17(“(6) ) = S}L)lg) - (uﬂ?h'(g) 1+M’Z{L('6) e )/L

g ¢ ~ |

"

uL(I[“(%))

{
utu)(g -3

MQ(W“(%)> = M}(U% )+3

The latter two being deflned only if

[M’?? mll (g) -2 /g /

By the correspondence given in (2.2.17) there is a
“)

one—to-one correspondence between approximate shocks ,/
and shocks in the exact solution .ZQ%) given by the condition

,'( {//“/0) —//0)/ <4f (2.2.23)
Finally, as was the case for characteristics in the exact
solution, we restrict the definition of approximate forward
characteristics to the situation where they never intersect
a shock. Specifically ) ((F,ﬂ;ﬂr 1) will be defined only

}

i€y 400 1125

j‘
Given a shock /[)we will denote by /({0{//1)) the

vector (//f))l'f(,///f )/t )) [’{Q(//f);t>> whenever HL,U‘Q

are defined. Similarly, given ,{“;',) a shock in the
/0 /%)

approximate solution, we will denote by K/ 4?) )

the vector (;{//L)/Z ))[{ (//‘/g) [(p //‘/g)) )

whenever those quantities are defined.
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The following Theorem is the main result in this section.

Theorem 2.4 Let T' liTmT where °(<% and

-]—CR_:SUP§t: {- tlf’f’fll‘el’“ >Oz

(o»;’ wuols AT A

’

Let u(q,{:) be the exact solution to (2.2.1) for
(/L’{) z f’R"CO)To] , and let U\S: be the approximate solution
obtained using Glimm's method, using the binary van der Corput
sampling sequence Q= (a',a”,. o)

1) Let D be a compact subset of i x (O)Toj
such that U is continuous at (*,%) for all (fl.,t) fD_
Then there exists A>O such that, for all A ‘sufficiently
small, IU";_ “uwyt>[ 5A£//0?4/
where ({,/) are chosen such that

WYY Y PYR Y8

with the bound holding uniformly for a1l (2,t) 7 D
2) Let f(t) be a shock, and [¢,,£,] an interval
such that [(t) is not overtaken by another shock at any time
+ 7 Ct‘-,,tmj . Then there exists 6>O such that,
for all { sufficiently small
| jzt)) SRR TAY 7)l< R4 //o‘;l/
where j ’ is the approximate shock associated with /

t
by (2.2.23)) f fCEj)with the bound holding uniformly

in Ctl)ttj
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We will prove this Theorem in a series of Lemmas.
Lemma 2.5 says that Glimm's method is stable in Lipschitz
norm (see (2.2.24)), and that, as a consequence, approximate
characteristics possess the main properties of the
characteristics in the exact solution, modulo small error
terms. The approximate solution differs from being constant
along characteristics by 0(4 >/and the approximate

characteristics themselves differ from straight lines with

slope equal to the solution along them by 0(4//07"{/> .

Lemma 2.5 Assume that the strength of all the approximate

shocks (/4)/1?) ) ff{o,foéf 7:}13 greater than or equal to 4/7_
independent of l )g where < is as in (2.2.6). Then there
exists a Cq independent of /{, such that the following holds:

(k) (k)
1) If ai':/ /%) for any approximate shock path /

and {)(4,‘1)@)'0 ) is not the left state of a rarefaction
center, then
Mfd ~(Ag_1[ < Cq{i (2.2.24)

If bg-i) g; O) is the left state of a rarefaction center, then
: g . % ( < ’[/agt_g j
[(’LJ,*.L - u+—i - 9\

D 1 e U’/“(Z)—qdf3 ('““P'S)) then

" /b%%i@/ ) *1“)/5’”/’33 (resp-5) (2.2.25)

for all g/{g :
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{
3) Let (},g) be such that /;— / ‘)(g) / >3
for all shocks £’
If b(}>%;0 ) is not the left state of a

rarefaction center, then

!
IMS’ "Mtlé’%;%/)lé C(}L

If b(},%;o ) is the left state of a (2.2.26)
rarefaction center, then
~[log 0’1
ut - uf ,lflh”
J, M}:%}%)

In either case
“3(4,%)-%') »ﬂ(z-g/)uf/ (2.2.27)
< 12(4(7—{’) +C¢,¢[/g-g’,)
< ( //OJ'L/

oo fing g is defined, then there exists J,
independent of such that
1, 2 lﬂ}»%; 1) - BW} ’?53”))@”53> (2.2.28)
for all ¢, pcg”<g ‘.
'5) Let k'+4 be a rarefaction center f<g,m)
Then for every UV, U < V¢ “E"vz,

. —Llog, 07
there exists 1_ : such that /u(f ~vl< It + qu./)

b(};%}@ )~ Lo



63

There also exist fL’ e such that
[#] P ‘

o
b((;L)g;O) - é
N
b[/fl;g)'o) Tk, KT
In order to prove this Lemma, we have to analyze the
propagation in time of the wave structures in the initial
data (2.2.16).
f
Let /(G,!‘g be integers, rf>o ) 2 +g even.

We call ‘42‘1-1_4_ 4’:07,. . r%+i_

a compression wave (at time step g ) if, for all 0[70,. .-,rg
§
Mks*‘ll, > uk‘-rz(&-'i) ,
g (k) L‘)
and if | +LJ’+1 #j (8) for all approximate shocks / .

Lot

Given a compression wave uit,z‘!", =9

at time step Cg one would like to define

~{
gt - rf + 1
Wty g0, Mt
a compression wave at time step Z+;{ which is the wave
¢ - = IN% +
uks +ﬂ_‘_ 1/ o) PR ) 1—

advanced by one time step. We shall do so, first under the
foilowing assumption about the Riemann problems at the left

and right endpoints

o e khartet)



(2.2.30)

i) The Riemann problem just beyond the
endpoint results in a rarefaction fan:
TN ube < uf
A A A S A
ii) Condition i) doesn't hold, and the
endpoint state of the wave does not change during
the time step:
oL g Sg
“%s > uii at {, D‘Skfu >,'l kﬁ_—1>
-2 A
W ub asfi# Dst st N\
t ] ) .
8, K ) Kbt -1
We then define the successor at time step ? +1. to the

compression wave in terms of a partitioning of the interval [;i,i.).

"Let

3 {
1.1) = (5?. U@i v O(E% UOLkL,_"" Uo(k%nu‘hi)

where

¢ - ¢ .
ocfz*%;dflsieﬂw) S‘L‘H}—i) /}‘i"")r\ )

o E¢ = [1 ngszzm )ui‘-vj ) /'l uLg 3

if (2.2.30, i) holds at the left endpoint;

=

if (2.2.30,ii) holds at the left endpoint;
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¢
O(Etnm 1) - [Aub Khalrd +2) )1“'”{ itrarben) “k‘*z“‘mﬁ

if (2.2.30, i) holds at the right endpoint;
et = 6
Berlrted) =
if (2.2.30, ii) holds at the right endpoint.
Notice that O(Zgz'
+d_ ? . .
increases, i.e., if /A £ K&'v‘té;_ )t =/,

are arranged in decreasing order, as

then 0{( %L implies /{»1< Lo
We define ﬁ“ )pﬁ by
rbt ¢
(gz = {azC-i 1) q «&s To THE (EF T OF (J /,Z,,,LJ_?
L ) ' 4
?

0]

ref g
- focConrs o erro e pearor b ]

Then, reasoning as in Example 2.3, we can define the new
%41 ' GLi

compression wave Ukt‘*‘%/ ) 6/:0)‘ o N +1

at time step g,i as follows:

(q gr! Ig? )
1 If ﬁ,_, 4
'i % 1
set kg =k +1 (kg—!_) )f\g =P%

The wave remains unchanged, except for a translation:

ubt b ; g+1
L“'nér ‘uk“z& F00 7
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+1 4
2) 1If q*",;(xz% (a% lﬂ(kht(r\hi))/

so (2.2.30, i) holds at L‘ (Qhwe.,i))
P ta) (BeEes) et et

we define

)

then . s
uk94+i&: 041& ) o £.-.,r )
with 4ot . .
! ' ¢ - u
“i;'i h %‘f ) "(Lé“ntr"‘ +1) kBralrtie)
. g o1
%14- _ 9 g4 _ Q_ )
( Uypset = Uy ) ukqpi.l(r‘rl"i) *
1 3 _ el
3) If C(ef T dk%\‘?—a_.o }O = .'(/-- ,r

+1 < .
we define L‘(, = L%-wi , (‘% - f‘%——_’{_ )
then
%11— % < . <
ukgd 42‘; :ML‘r‘L(z_'i) O—-J/ ;Lo
et . < rzfi
o uk?"lj, io<¢_ +i

In all three cases we obtain again a compression wave at
4 604 ri

time step zf4- between b¢ and k= ra(rt *i)

In particular, the inequalities

ul (2.2.31)
q gt o b “E'%L

Up = “k,.i 81 7
gol

¢ *1 'S 23
uh%.‘q_(f""i) - ks "‘L(V‘% +i> kb+2 AV 10T Y

hold.



8
Given ui‘iqu_{; 1: 0, ..N"+1L P a compression wave at

time step %‘ we can define by induction the successive
compression waves uzgﬂ{" )é:O). .-)('ze-i ?,f?fgi

provided (2.2.30) is satisfied for g, < g Sg,L , and

we call uE"*’Lé )4,20).--/\%“1) Z[fffg,,, a compression wave.

Let u{gﬂy J,TG}.._)rq‘i )OégﬁP be a compression

wave for which there exists {,_) Zﬁ such that

%
(2.2.30,i) holds at k,o for s

; (2.2.32)
(2.2.30,11) holds at K, e for §>{..@

Then it follows from the definitions and (2.2.28) that, for all
! /
14 1§ YEP
! N /?/ /
(Q#L{ < b( L_%Q})%;%) < k +7,(Y‘t~l>
' g
ub .= u
b(Feg, 054 khery

¢ ¢
L"NLP = Kb(k’“z&,%;g'}

&

for al ge2,,0t-t g ar ol ‘MEM}) (2.2.33)
for some 419.,..~,f‘%“1 then ]C“JVZJ/)%)-B.,:L)

is defined, and

b(ﬂk%*lgz)%')%d'})%*i)%> = /<$+2.qu }
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Y
R L(kﬁn(r%-i),z)g) )

U v,
}:)’L Mk(ﬂ.} - é”‘ﬂg*‘f’z;ﬁ') /<3+1.J/

/ /
6 ' Ul
0(?(‘6 U Oék%‘,?/ - 0(‘&8 v “ibia

/ /

{ ? S S
O(k%f'urﬁ U A’k‘ﬂ,(rfni) < mﬁg"tf“ U O(,ég,z(f*hz) .

r
Let m :[o [:I."]fi and let M%% ' )(f:O/..\){\%*i Ofgé/)<g °
6 31. 4 k +1.1, )
be a compression wave for which (2.2.32) holds. Then we

want to show that, for étr‘i).-,,r‘g"i

Bhod - At o8
a f“’(é’rz if and only if R4k +1.JJZ’,’O)
f (2.2.34)
N
where (U is the binary van der Corput sampling sequence.
ﬁ»lz o X . 81-1. g .
That a o(b( kﬁ-ﬂ&,‘g; o) implies z 0(/4?*7—60
follows immediately from (2.2.33). We prove that
[
Bo! ‘i . . g+t
a’ . “khzgf implies Q%" z & b(k6411,)g}0>
by induction. Trivially, the implication is true for g:())'
/ 6,1 g
assume that it is true for g <g but a4 z dkg"zf')
%fi d e . B
a q A(kgr’lj.)?)'0> . we show that this leads to
a contradiction. By (2.2.33) there exists an § ,

b(k%#"%)O) < (<V+QS < b(“g*urt”l),? ; o ))
Cras # blKbag,gi0) @t e Koy
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-(m,-1)
< L, /°
Since | OLok'c»?_slé CWF‘?\{. & ) a* « Oékoﬂ.s
for at most one‘ V4 1< [f:lmo_j- ) by (2.1.4).
So Qaio(;:‘ﬂs , /5 g and it follows from the

induction hypcthesis, and (2.2.33) that there exists
o
/4. —
4'#4, 1< ‘¢’< P-4, such that H(KSezgg;0) =f+25
o
Thus (1o, < kgﬂ({‘ 0{,3{% which provides the
required contradiction.
Using the above assertion we can derive a bound, uniform

1n1g

Blhiag,g;0) —~ bk 0], gozrt
Assume that, for every (/f/ %,,.-./;, there exists
as 1< <Z< Mo~ 1 such that @ ¢ dl—*zqt )
where q<é ) ‘; < r-4 By (2.2.34) and (2.1.4)

gd 0< k n_I- — lK CIUF‘ (0!°fi)
Whlch 1mp11es »
< 14 INE ~(mg-4) KC ) < C,ur 1 \
4 ZO (2 =2 wF (._f_:—CwF/.

It follows from (2.2.33) and (2.2.34) that for every S,

E(L[‘,u}—i),z;o) <s < E(L"u?‘)g;o)

there exists g/< g such that QG £ oA flso o'

with  L({(s o)g -1), % -1 o) =
L8y < fis oo 1) s ! ﬂur%'—ﬂ
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Then it follows immediately that

lL(kh’L?,t;O) ~ E(k%fz(}—i),g;o >)

Cw 2 < 7T
£ 2 FU‘—,—-‘ Cmr} '

From (2.2.34) also follow bounds on
b(k"+1,<5,‘0)-— L°
Porety - b(Ertgio) o

L

; -1
Assume that 4% 1 O(Sk‘ =y ) but at i &E"im_

for g;_gg gg’ ZL'.,_,_ . Then
b(kﬂﬂz,%;o )—1: b(W‘ +7 gh)o) t<
+b<*7—,g 0) - bkcb‘( o)

But  blk¥ o, g ;¢i-1 )= ERey - thos
b(k%‘«*z,‘ﬁa;ﬁ) RNV ZL’i}OJ <J, ,a

by induction,

b(k%J/L) %}() )—-Lof koJr?, - ‘<0 *@;* _{.>Nz(ﬂZ{l)...,g—iz)a[zdf,'j
<qe (T AW efe, gt el dfy, U]

< 7

T

e

Mo
where J’L is independent of {/ fo -1 by (2.1.8) and

(2.2.16).
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Similar arguments show that
<

—

< QI,L w rf=o

k2ear®et) - blkYhars, g0 ) T, & rt>o
o

bliSsz,g;0) ~ bk g50)

The following bounds follow easily from the above:

(2.2.35)

' g 0 e .
0 < uk%n.(J—i) B ukfo-q.d;_ u’)(kb*z(é—i)lsz) qb(ktﬁ-i)g)oj

< ICIUFK’ j’zz-‘-,pg
4 o (]
O< uzg—uu&ﬁ L(ko" U’/g/k”*r_)giG) < Z]:er’{?

6 < ufe*sz —u£‘+zlf3+i) = lekﬁ*if‘g;g;@—u/;’fz(r“z)é z :)—l ’OFL
o< bikbragpig?) - blkei0 )
< A//<g+zoz,g)-o) —A(A&z?-i),g)-a)

< =
<J, g7z,
We can extend the results in the above discussion to

the case of a compression wave overtaken from one or both

sides by an approximate shock. If uk,ni’ /4:0) orhea

is a compression wave at time step g) then we can define
=)

T TY ) A . gt _ ol

C ,l< for the compression wave uk“‘+a&, ?;-0).../P3 +1

in the following cases:

1) If /(7/4}@> ré‘z—i,

"
wa a8 e Db, A5k, )

(2.2.30) holds at Lfrbiq
set kT L%y ,f‘“‘zr?~i)



72

u
2) If ( g *2'”‘*3 ) (2.2.30) holds at 1<g

and 0%1[[19“*2,-8_,1 )XSI"’lg)> )

set K5t o gBes | rftl ptot

L s
Otherwise, we define 'A as before, since, if

£t 3
attd [bx"’(g)) L?-fi (a 7 [Zslf.gﬂ.ff*i ) 23},10(8) )

/f
then (2.2.30, ii) holds at kf [F "Z(/‘hi) - This definition
9 { 78
also covers the case when / {fﬁ /é 'f) /i /f) T/é!‘:Zi"g{}

CXS (Ug £’+£> n Cl k‘#zﬂgf’ /( //‘)[g ) é

rét

Since it is possible that <O (corresponding
to the shock completely overtaking the compression wave),
s'l ,L} g{ o, )V‘zd+i is well-defined as a compression
wave at time step gf'l. only if r\griéo otherwise,

/
the compression wave is not defined for Z >g .

If fk%‘%i} } 0, rﬂ‘l is defined, then
/ (4) el
(A(g)" Lg"i implies / (g »1) fée —~1
oL
and ,((“(g = £ f’ur’+3 implies / AK)f*_[_):Af fzr,gfij.

Let ME‘*%, ,$=0)..-,"\3+i )0<5£P be a compression
wave, and assume there exists fL_ ) z@, such that, for

9 u s
f‘ ZL | k‘— < (’(IJ» t KR ) k‘n.(rha.) k‘hz(rhi))

and that for ?’.Z,‘) g—i =//‘)(g)
(geg&)éngrhz-/“g))



Then it follows from the definitions there exists a compression
wave U%ﬁ},1=0,'--);%+1 ;Oézsp

with ’LP: kp, VP = P ) which satisfies (2.2.32)

so that (2.2.35) holds without modification for the

~
compression wave “{"mj, , 4’:0,. P 1

. ?
Let kb )P% be integers, rgz'\) )k *% even. We
say that MT&’% c1;0). - )r$+ 4 is a rarefaction wave
¢
at time step g\ if “i‘% < Mgkg”_f S fuk5+z(rg‘.i)

As was the case for compression waves in the approximate solution,
< 1 { +4

we want to define ‘dgr )V\?’f such that Me,:srl-mﬁa,j,’o)""rb +L
is the wave (A%k,”_? )411 O, - )rfui advanced by one time
step. We do so in two steps.

1) If

+1 4 ¢ >

0¥ 2 sy, Witagen

for some {fo—-o,. .- ,V“% ) then define

'Lg,i: {:z—-i F;%u= V\%+1

)

iy Wy 1 H

0ht = uf

upqﬂé N (’(th(}—l) 4>5(0
I\J%#i . _ Qg"t

el T 0
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If
1 ?
ab* ¢ [1&1; )/l“kfn(rfui) )

Set
4 4 ~go1.
'lzgii_;_k@fi ( % ‘(s 15 % :r% m‘f. Hé‘ (Akg*t&)lo F;j_

for a‘“ to the left (right) of Cxuég ) 1“%@,2(/‘301) )

2) (a) If ,
<
uhe s E‘ ) UEQVLU\L.“ S Uigatrten)

then we set ltgd k (il ,r‘” = F‘*i
(b) Assume that there is a shock or compression
wave just to the left or right, or on both sides of the
rarefaction wave, i.e.,
“t%--,_ > u‘tk% ) u:‘m.(f‘«-i) > Misn(rf,?_)
or both. Then we have the following four cases:
i) If
ab e ['lu%kgﬂ ,’/\Sis_i 3) a¥*: C15Z¢+lpc,3,luim,-g )
(so that \Aign < Szg_i and “Esﬂps > st”rhg
define U,i - ":91 ‘9 , (f:‘qu_. szgu'
ii) If i) doesn't hold and
0%t < Clubﬂ,lsi'—i )
(so that u%kc,ﬂ_<5§6—1 ) )

+ L et
define kb*t= Lhen rbEaEiog



iii) If i) doesn't hold and

a bt Cﬂsi‘nr’q) 1‘4?&'1"8 >

f
(so that uihqr‘l > ‘Ske tarfes )

+ Tt . .
define AR )[\i':f‘i‘_i

)

iv) 1) - iii) do not hold, then kgrl)f"%’i

is defined as in (a).

As was the case with compression waves, it is possible
that (\%“ <O . So MI&;’LP /J,f O/...)P“%‘i is defined
as a rarefaction wave only if r‘l‘ri >0 otherwise, it is
not defined.

It is easy to check that, with the above definitions,
“1’314 =0 e

’4‘
is a rarefaction wave at time step g«i if 'nf >0 ) and

gél - ~ {)tt _ gt
(/(kgfl‘_,Lé/" {Ak%'t"zj' ’4‘6),,\)"\ +i
Thus, given a rarefaction wave
at time step we can define by the above procedure the

successive rarefaction waves HE%%; )ézoj, . .)I/\%-l-i , Z,SZS;‘L
provided P‘LMZO %né?é f?._i We call

% - rb s <G <

oy 470,00 qeg s gy
a rarefaction wave.

1 - rt i
Let MILQ*'I(P/ 4:()),.. ) +1 be a rarefaction wave, as

defined above for Cg,f zfzq_, Then the following facts
follow immediately from the definitions for 2/

and for general z/) Zlf Z(?/S ?L by induction.
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1) For every 1'“—'0)... )FQ +1 there exists a

4, osgertee such that  b( k‘/n}’,g’;gﬁ UM.J,.

We also have ,

l)( k%lmj,/) %/; % ) > MAX f k‘*iq. :é:o,..., f‘eq_) uimiwfﬁfw,} (2.2.36)

/
2y 1 rhee 2> 20 then

b(((%l H'J-H 8/)‘%) - b(kzlﬂé’-’g/j%) 54"1_4;1’ (2.2.37)

! %/ 4
3) u-ig' 2 Uti }u'kﬁl.,q_(rg’-a-i) < u‘[:‘rl({‘h_{)

Consider the set of real numbers

H {u F'Ljr:FG*"" Pc*i} U{ %— : f<=g+1,...,z/f

— ¢, ) (2.2.38)
jst 5%’3/ : ukgl <5< “/(eﬂlrfa-i)z

' / / !
oyt ¢ e/ / = ’
= {uig/”‘%, “k'/< a’/{‘l‘iJ <L{A{T1(fg*i))$~1),..)r(j

5) Let ULE%*%, J_'-‘O)...)f‘gti 9:< Zggl

be a rarefaction wave or a compression wave, such that

kg'+‘1(/\'"+i): EG‘ )O“ Ec'*l(f_‘f‘+1) = /(gl

Then we have, respectively,

Beatetor) = (8 kbaawe ety = kb (2.2.39)
for all ¢, §,${<Ga - If /“(g,):ée'—i
or ,[M}(g)fég'nl‘"*f} then

(L)

L) = kb1 /“(g)—ég»*zfﬁs,
respectlvely) for all ?, < f g“' .
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Consider now the special case of a rarefaction wave

U&%P %?@.~J4+1 ,oszgz,

which, at time step g:O has r’=0 and /fr)*i a
rarefaction center in the sense of (2.2.16). We call such

a wave an (approximate) centered rarefaction fan. It has all
the properties of rarefaction waves; in particular, (2.2.36)
holds, from which it follows that b{ksvz,qt ,IG )'O)"‘ /(o

for all J,=O; o >’r\8 /

We turn now to the proof of Lemma 2.5. Consider the
partition (2.2.16). of the initial data into compression waves,
rarefaction waves, rarefaction centers, and shocks. We can follow
these structures forward in time using the above discussion,
if we assume that compression waves satisfy (2.2.32). They
do so at time step f: o - We shall assume that they do so
for all Zéf //; ) deferring the demonstration of this
claim to the end of the proof of the Lemma.

By (2.2.16), (2.2.39), every

satisfies one of the following four conditions:

1) d{'= /4"'15 ) s=1,.. .)"J\ for some compression wave
'“ihiy. 10, 1YL, g0, N with (2.2.16)
holding for (Lio”_} ) 4:01' ~.,P°*i .

2) J:kﬂrZS ,520,... "l for some rarefaction wave

”thz% ?:oy..)r*+i , {0, N with (2.2.16)

. ] 0
holding for Mk"-’u& )ézo,...)r‘ +1 .
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" "
3) 1: k"+2s  s=0,...,M 41 for some centered

rt , 0.0

rarefaction wave uzk‘flé, )1710,.,
) K
i= 1(((‘4)?.1 for some shock/ )(n)_
”n ”n
Similarly, for any pair of states “J-L ,HJ,i
n n n
we have k < 1-1)4;1 < k"+ale *4) ) where “Esy,_;,swr-'r%‘ri)
% =0,..., N is some compression wave, noncentered
rarefaction wave, or centered rarefaction wave satisfying
(R
(2.2.16) at time step 0, or 4_31( th)
0
for some approximate shock /
The inequalities (2.2.24) follow immediately from (2.2.35)
n n '
wvhen Vy-1,% .t are in a compression wave, from (2.2.37)
when UI_,_) u;,i are in a rarefaction wave.
To prove (2.2.25) it suffices to show that, for example
(k) ~ L)
if }1‘%)_ with g4 (g>=35+1
for any ,{ /3 ) ¢/ (g) > then b(;g g—i)-/ (g -1)#3.
In order that b%i 8 -4) -—/ ( 1.) 3
(L
we must have b(; % 1.) 4 -4 [ Q 1_) / /g)“
-l.
so that af = C‘I- 1'1!’ ) n E’le"’(&{_) )1‘)
/(U/
Since there is no shock 1 /Z -1) ¥ g -1 ) such that
L)
L0 )¢ B2 < b(ppsp-2
. . L)
by (2.2.24), and our assumption concerning the strength of /

ci 6t vt C A < _d .
’ V <Uu ul“’(g'i) +j_ L S (‘)(gi) é +7 Cqéj

£ s



thus it is impossible for C'i /ﬂvg—f ) ﬂ[;{ssl.’i’(g—l))i} 7&45)
and the assertion is proven. The remaining cases }—/ {g) :.5‘) +3
are dealt with similarly.

If MQ" is not in a centered rarefaction wave, then either

¢

% - % 7 G: U‘ = . r\s
u(- “W@%’) in the case when ‘4& L84es 5] i),. )

for some compression wave U AR or

0 ¢

Ubtpg500 S Whipigy < “55; o2, v
by (2.2.36), which implies lu® “i(, ,‘(, )I = “LP [

so that (2.2.26) holds.

In both cases, we have
by sy ) =g N kslgen,g'hatr Oy kwi)}
..N{kz{vir“,g}) z[i 7L@7gkﬂf

By (2.2.25), 5‘}1Z;£> %/{“/‘L’i>

. ()
for any approximate shock so,

-4 k-1
Va0 = “& E 'Vb(u ©) Mbstfz;‘-i){

t I“L,t“ k1) ("f [
< Cyf + 19l 2k
so that (2.2.27) follows from (2.1.7)
If b(a’,lg')o) + L is a rarefaction center, then (2.2.26)
follows from (2.2.36) and (2.2.38). To prove (2.2. 27) in the
case of ;’ lcnﬂs for some centered rarefaction wave

P - P -
l}kp+L5 S-O),_.)r‘ *1, P‘O).v )n
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we partition {\f*i yo - N z into three sets:

S, = {p blpmp)-t= ket te) Z+1'</>snf

St = {P b(é,njf))*i = LP*’ g+1<_P§V1z
S, = fviy,wnz -—(31()g1>

£ pr o1 then bf,n; p4) = bign;po-t
{lp-1) + by, p)

p-1 p-1
by (2.2.25); thus ubl@;"jp)bi )Mbli,:ﬂjf-’)"i

are points in a compression wave or noncentered rarefaction wave,

and

p-1 _ p-1 < C /L/
0= Vqu;p) UB%W;P’“L i

by (2.2.24), and

o P-i n [+
u“é)"so)u *C‘#/L < “L(;,n).fo)—i < Md, < aé(q{,ﬂjo)r_'{_

by (2.}2.35) and (2.2.38). Thus {V:{;"jt’) -u}!s Zcq{L
and

- _ . aP n
IM{PI Qi, aPz Cﬁi),lv:(;,l";ng N[thi )0 t[—i)lu& }:(7 l)

N~ ¢C. - aft " [
Wfpese o T, 0 )] NEpes e LA, il

< YClin-g ) < K

by (2.1.8).
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If pe §1 we find, similarly to the previous case, that
D - = . +1 -
b(&,n)r ) b%J”)F) )
HP_' p -4
L,(&,n).P)v-i ) blé P-4

are either in a compression or noncentered rarefaction wave, and

ua "’UP—l [ < Cc}%_ .

o VP—L l ‘ o
IML"" b‘&)")’l’) ) k ht W p-L) =

Let ,M oko\ :’Z by (2.2.34), either =0 ) or
~Clog, ] t h_ Pt
1z 2 wE I &-ukul lu¢ V"‘é' " p) l-<-7+€?{/

However, by (2.2.38) (P 1) (l}(J,C K,) < q_ :

and the number of elements in 61 is bounded, independent

of g by [T{S:_C‘;'kji-i = gMAX . By (2.1.8),
-1 . aPz [- oo
IU{PfSLIGPz [-1 1vf(“P)) N{PtS‘z.a (:Lluk\“
< M pe S af e [Quge-Cl 10}
< 4nCl sk,

N peS, a?e B4, Jup ) = NfpeSe o G4 )|
= Nfp: §L;QP:CXM10,1US>?
= I\)[Pf{i,,..,fgm, a? ¢ [hul, u’ 3 SE K,

so that

INfpeS,iafelt, /-h/b';ln )}-I\)[/)rSL:prfl,ﬂud-")}
<K K =Ky



Similarly, we obtain
IU[PI S,:aP« [ :(ll’ P) f-v\){]ocsizaprﬂu;)i)ﬂf /(zf
-1 P et
z 53 then kP < b(o(,n)'P)ii < ‘< t2(rf*e1)
(g ) > > Pt

and it follows from (2.2.36) and (2.2.18) al < b(}),,).)p)\

> n P _ n
if and only if ap< ud‘ Since a "M& for at

most one P )

H\)fpz 5, :aPzC?\VC("}"n}P))U?' Mipz%: 4')‘[;[“:) i\J? })

“\){P[ga .0’z E{‘) lubi:;'i*”iPQ? -N;‘/DZS’J ._aP([:j) 1(1‘; )}}
<1

Combining the above results we obtain, using (2.1.2a)

Nfpefpee, ot P2 L0 )2
Nfpefges. ot ot OF |
[N(pefyee, ol am e CLTE o
| ~pr1{1+1,~..,nf - Q')’[’f)z“fﬁ/
< K K+

and the result follows from (2.1.7).
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To prove (2.2.28), we first claim that
b({(&,@jg’) ~2,9%9) < btfg:t), %9

for if [ < 6(((4,13%')—1)8'5‘6 I
then {({,059') {15870
with &F‘-><{ which contradicts (2.2.20). Thus (2.2.28) follows
from (2.2.37) when /

W {1,450+ KPeaths) for uf,;zqt-,,oﬁo,..,wfiz:
a rarefaction vave, and from (2.2.33) and (2.2.37) if

Kt < f(oc,g;g') L 8artiey , for “/f::'»z;;’ vfl:o’ eohfed
a compression wave.

If Mﬁ 5=0 ..,r‘€+i. is a centered rarefaction wave,

l&r’ls
then it follows from (2.2.22) that for %<fMN)

Hﬁg“/({{)/g)t )]Lf+1ll‘5+1) —/M()g)] >3

)

%) £
for any approximate shock / so é(/fg ) ab€+2(/\8+i)

must be either part of a compression wave or a rarefaction wave.
If the former holds, then NEQ —MZO(S ’ZTJ.(/ )

by (2.2.35): if the latter holds, then n,(zg = Ugpo

In particular

> (Wye i V=Ko 4,

e ptie) «y
and an induction argument implies that the wave is defined for
all g< g,q,o and, by (2.2.38), that (2.2.29) holds.

Finally, we need to prove the claim that a compression

wave initially satisfying (2.2.16) satisfies the assumption
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(2.2.32). To this end, we prove the following fact. Assume

that, for gg g" the claim is true, and let
ui;&n{' 4:0,_..,{\.?4'1 OSZSZIEXO l;=/)’L.

o ) 0
be two compression waves, with )(0 +2(rl41) < k u <y
] 1 ) Pl d.v'k—
g P L]
for all é,) ‘(|42(P+i) /“Jr <LL
Then, for all g,? Z?O at least one of the following

two inequalities hold:
¢ ¢° \ >K
1) (LL ~({<i +'L(f} i)))'{ 7
B
2) U;"%_ - qk?’]({\ﬁ*i> ? K1

0 Q ° 0
At ¢:0 uaL ’0{€ L,*Z(ﬂd)}..,kl consists of one or more

rarefaction waves separated by rarefaction centers, so one of

these alternatives hold. If (1) holds for %= 9] ) then
it holds for ¢, g>0 by (2.2.35) and (2.1.7), if
(2) holds at §= 0, then it holds for {,> {>0

by (2.2.35). In either case

g
u%ff uf% dl': k?’“'\?*i)r“;kt

)

To prove the claim, we notice that if (1) or (2) hold

then there are one of three possibilities for the approximate

$
solution adjacent to a compression wave f'c 1’1

Lﬁ't').{, é *%)

\1 .
For example, there exists k%‘ 2 k +a( W\b *i>

£
with ui' < ufl for l:s' > 12 ko valrdiet)

3 >
such that either M%’q, - “ki‘*“ff"*i) = K’{

t)
(B8t M 2 Ky o Ftag </ )



Similar conditions hold to the left of Mt; It follows

easily that the assumption (2.2.32) holds for a compression wave
at time step lg,*i ) Mg’;;'iin‘!, ) §70, - ,Qg"in‘i) if it exists.
Since (1) or (2) hold at time step g =0 the claim is seen
to be true by induction.

It follqws from Lemma 2.5 that the various quantities
associated with the approximate shocks are well-behaved as
functions of the time step. y If

1() )
m-; *‘f"}g)/ (g) v /g)/>4
I@LL(I{"’(&)) +up(/m(g)))/L - 5(/(“/5))/ < 04%/

then

(2.2.40)
t ]1 —/{/ =6 then
B, W ) 26
lu,_(/w(g)) ’C{L//“}{,‘z))/ <
L %)) - wlt % e0)) | < GH |
: 6 ¢ i
~Liegafan’]

Here C,Fl = WH[( Cy /Z/CRF;Z ) “’>k<'nﬂ' - ffz
with fmu as in (2.2.22).

The following Lemma is the estimate of the error in the
position, speed, and strength of a shock on either side of which
the solution is smooth. The argument is an elaboration of that
used in Example 2.2.

Let AC‘E )/4': {4:~f is CTat 4 or 4 is a
rarefaction center ? ) then [E’A consists of a finite
number of points. We can partition lq into a finite number of
disjoint sets Si FE) Su ) each of which either corsists

of a single point, which is a rarefaction center, or is an
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open interval. In the latter case, So‘ is uniquely determined
by the requirement that (-P is C'L on 61. )and that there is no
larger interval on which ‘*P is Ci containing 5‘4_

If ¢ 1is continuous at (’V,t) we say that U(’!}t)
satisfies condition ¥ if c-(u/«z,t )1t 0) 1 S'r\
and, if Sr = i’loz that ulxt) # (pb("o)/ "pe('to) .

We say that u,_)k([(t), t} satisfies condition ©_ p
if Clu, ,(0o,e) fle) £ ;0)7 5,1’2 and, if Sﬁ,k:{’K»’f)
that y, ,({(t)t) ¥ (v”l_(’l/cﬂ ;Yo (//t//t)'— %/’l,) ,

A shock //C) satisfies (/\.., Fz ) if
uL{/[t)/t) ) “e(//t)){_) exist, and satisfy, respectively,
conditions I, 'AK .

Given a shock /[t) , o<t < T—o ) there are, according
to our discussion of the exact solution, at most a finite number
of times £ such that /[?‘-_) doesn't satisfy (/},/y) for any
possible VL,PR Since characteristics can't cross one
another, if [/tf,) 5 //lé,_) satisfy conditions (Q)/‘g)

then A(t) , t<t< €y satisfy conditions (V;_)f\g>

So that for each (ﬂ_ )r\@) the set of all ¢ }0<ﬁ < /0

86

such that /[t) satisfy conditions (‘/‘,_,/\9) is an open interval.

We define, with slight modification, what it means for

(4
w" , M /J/—— { {n)[ >3 to satisfy condition [
¢ M
If §r is an interval, then “; satisfies condition I™ if

b/&,w)-o)t qu//oi/L/ ANV



If Sr is a rarefaction center /A, ) then W" satisfies

0 o0
condition r if b(é,n)'O) = l( -4 P where K
is an approximate rarefaction center associated with Z,
by (2.2.20). We say that an approximate shock ,(M?n)

“U) Y
satisfies conditioms (V7 v‘g“) if ,C}"r’ /% /[ (n) ‘/ {'7)/34}
| o JUPN Cen )
and L{J (n) ) ) (/(a( (n) satisfy, respectively,
conditions I, Mg .
/(l)
Lemma 2.6 Let /(, be a shock in the exact solution
and the associated approximate shock. Assume that, for all
(k) .

q )fzégfg'L ) //g))[/fé) satisfy

conditions (1, PR) , that the hypotheses under which Lemma 2.5

L
{)st) ,

was proven hold, and that Mb}//‘/,) ) - /’y///f/é)) /5 §543‘

Then there exists 65 >{  independent of A,f,)fz , for 4

sufficiently small, such that
]‘/’m//m(g ) - %p(//gé ))/5 CS HAX[Q, ;f//of%/( (2.2.41)

We define m = C‘{‘_ IO}L‘EJ and without loss of
generality assume % = Kt//o Al . We want to find an
expression for ?{L)(/{L()(;ri)lm) "’wl’{)[ (‘)[flm>)
analogous to that found for the exact solution in Lemma 2.3.
Recall that one of the assumptions under which Lemma 2.5 was
pfoven was that, for 42’”‘ g f#”)tm y  the strength of

[/“{g ) is greater than or equal to ‘4/7/
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By (2.2.40),
m
(u(%) ) /(;9, )| < (2.2.42)

H’( /L)g )) 110 ///‘/;ZQ )/f C‘{/LD'ZM fz.“fg <9”);1'4
[U‘Z[ r2)2"M) = /( (12
”ﬁ H\J{Zi[}z”*i {;H)Q a c[l 15“) lz})u))}
—U{g f‘;:zu (Gtmif at: [ZS// 0) i)}

By (2.1.7) and (2.2.42),

[ //ﬂﬁ“)l / Qz) 2" s/ {/,1"’))/ Wi/{a,ni
< K (2.2.43)

Next we look for an appropriate expression for

w4 rn™)) = u (092%))
There are two cases, corresponding to whether S‘VL is an
interval or a rarefaction center.

First, we consider the case where Sr. is an interval.

Introducing the notation b( ki )&L) = b([(“/»éﬂ”) *3 ) AQ";AQ”%

for kP k20 [k :1(4)&3}\) N //4)//CQM))
s5,= s({™2")) for bxo0 |
We write
b by - L(b%+14) (0.-3))
x b(§+i 9) ff)(%)o) o U - f
b(éd)}){/‘f—g) (El(;ri,o) *6@0))'{

(2.2.44)



assuming the denominators of the last two factors are nonzero,

and estimating each term in the broduct separately. By (2.2.27)

“)(((,4143 —‘{1‘}“_3) ~7(1”MH&+1 ,fi»kcl:/.liw\f /(7,

\blyid_ [ -3) - 2" (5 —u, 0] (2.2.45)
<:Z’"[C /(1+/(—Lfk3

Since the strength of ‘j/Aﬁzﬂf") was assumed to be greater thah 4{)

lblm,@ ;3) > 9 2" -k, A2"CA

= K 2" (2.2.46)
Since B b(yi)}))}y‘”‘)-o ) = b(dbi)O/\

we have, by (2.2.23), (2.2.24)
(2.2.47)

jb(é*1;(.>-( —'3) 142 ( L,(yi o)~ ub(}ob
"()( 4 o) B(éo)t
< (| K +1M) 141(6% f//é)
‘B(}H,o\, —b(&,a\) (E KGQM)

since, if

° T >_g_7_{ bls,0)- 5(*1 />_Q_L
MUPI)O) ‘){J,)O) Q_T ; J 27" //(VI//

by (2.2.21): otherwise, by (2.2.24)

bl;r o)*é(otiOJ =" K(W(]t) X& J_RMZ>/(2
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Denoting by XQ«MA, QML f& J_'?.’_

(2.2.48)

' Aip1,0) - B(f,o)

- 1
b &-'1 }) ([ 3D %ii’f—g_((l('/ﬁ“t'ab,}))y

£

e

4,00 ~hl4,0 ( 1,00~ %, |
W e )

. uj 00" I'{o( 0 - 1

e = )

4 / |

/(1%4((/(5(4,0343) - i//1+t}¢7/'ZAtJ ”‘-zf)} l

D L a2 ) 2GR K

L/QM 1i- T-CH)F’ 2L~ TC/UF (—Z /rcwr)

L o)
QM
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(2.2.49)

uL,k*i ——UL‘)‘{ _ (_{)l(f&ﬁ_ —'LJ_H‘_)"/B k
\(B(Ju,o)-b/@,o))ﬂ/

<

e Mot =4 —4 4___,__._—' Wyt ’“i/ 0 ‘
i (5(14,0) -b(é,o >>L (6/‘(;+1),o)—6(J,o))Z

JERECNTS
| (byo1,0)-big,) )k

f {L()(/E/J,o) L) ."%Yé[‘ t; U'“’dﬁ

<26l N‘("'Uob(zfa,g)&"ll
ba"C T

e (ke qu%; )
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: ()
In both (2.2.48 and (2.2.49) we have used the fact that ML//(/J'I)l"))

u‘_Ul“)(J'J-'")> satisfy condition [ in that 1)(01‘,0)4)
b(};t,oyi. [}L% 4o

and (2.2.49) in (2.2.44), we obtain

z §, . Combining (2.2.43), (2.2.48)

/ (2.2.50)
Uigor ™ Mg~ w5 -4, >LM k¢ 4‘-4%%#’//44-1{4))/
<EA (il k) (A Gl |

k‘t /"cW’ *Kkj(i vl k&y)

INF

UL

ALy e 14l KA (141 ¢ K
< ](104//024/

If SV‘L. is a rarefaction center with associated
o m
approximate center ko+1 ) 12 > g,....) . By (2.2.39) and

(2.2. 40

P‘M <! |
I“Lr(pi b(st 4_3 [ - Cq' {'

Ik *;’\4,2 Ltéfi ) B E(}\‘l)é ) )
o 0 A=) | £ G Mgl

G, gee = i) A2 = et g0 (/—3>,
& } }4 zC(/o Ll (%2"0 X/ K)L//O/(/
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Thus we have, by (2.2.43)

1“,_) v ’qL, -(5; -4, m
e hog @WMM
< (U - (btyes 1)U, ~3))
oty -t
4 I [!t! -3 (."L,Ffi 1‘7-'" “e(i*i.é) \
101&"

4 Jo : L8]
§*

+ {QA‘-I}*L - (AL ) ‘1’1’”

_W%QM

/ am
<l Moy« ¢yl ket 10K27)
< KBU/OJ/V/

u,_)é,p HL,?;G&*“L)J)EA 5{(13{//0?94/ (2.2.51)
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Similarly, we obtain

/
- (s, ~dp UL -T ) l
¢ R)()‘ ¢ ¢ ’24/1 " l///// ﬁddﬁ‘}

< K,L/A’ 4/ (2.2.52)

“a,&*i - “Q)ia

if S'AR is an interval)
]MR)J_ri ’Ue,‘;L - (S& —“kyp/t- lf K3{//00;l/ (2.2.53)

if 5{\ is a rarefaction center .

3
Define \/(] M,_)L(e)t) = V Q — /E

by

UL e £ = (e b f (Len), el ,qe)

where {L”&([){),L) = (('/(/"é’(>/(i.+t4ﬂ///"t¢>

if SVL:PQ is an interval)
1
?L-)K (/g,t) /l ) - /‘{,
if §'V ~ is a rarefaction center.

Using v we can express the estimates (2.2.50) -(2.2.53) as
{
[’\{/‘“LZM lyro2”) - Kb(//‘} 2")
)
o YU )1 bl

By Lemma 2.3 we have

K(eom) *?”///z‘{-)) By VW///% >),tc,'>/é Cor<



3 1
Here "V/’ﬁ M‘”\ M’/) ( ’l/"U“) 'D—EIQ Since 7?45 :/ﬁ

L=1,2,3 h)
only if f,“, }l ) and since 1t) / /g) are assumed

to satisfy (1, r") we have

W(’W//t&)))t ) - l/('y/”‘//m{f/ »;) )/ (2.2.54)

AR Gom)e)].

We turn now to the proof of the Lemma. By (2.2.42)

W(//gé)) @lL(//‘ g f (2.2.55)

< U o)) YU /@)] W///Z)’) W/»/%}) )
) e d)

< Ky t” +/W“//“g')>~W/g%))/

if o< g "g/ < vai ) so it suffices to assume fz—f, >2_“:d'

Let %,) %1_ satisfy f </ QM(/‘Q'nffq_ )
Q "'Zl ) g “‘0[-1.2’ <2

)
By assumption, the strength of /{ /g)
is greater than 4/1/ , So that (2.2.46) holds. Thus,

by (2.2.51) - (2.2.54)

10U M gs)2") ~V(ite,))]
£ (1o KU yam)) - 0l Hoph ]

By induction,

W“)/Z/“(ﬁ‘") )-Wle) | £
K,9 g‘)%(i + t/(k)s/{//o;f/
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r Lkt T L) -9 Y 20))
echw’t(,{//o;&//;,-/,)/(ﬂ Kok {’)

_4_ Kloek.ch g

Thus (2.2.41) follows fromv(2.2.55).

In the following Lemma, we show that, for points [¢”gok>
sufficiently far from any shock, there exist }o
such that the approximate backwards characteristic from
(fo L)ga£‘) is a distance no more than O{{//o;l/)
from the backwards characteristic from (1o)goé‘)

in the exact solution; and that

—[log. 001
u‘g; = m,,gok%O(i)z b
if G%o '€°é‘> is in a centered rarefaction fan,
ui: - Wit foR) +O(4)

otherwise.
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Lemma 2.7 Assume that the hypotheses under which Lemma 2.5
was proven hold; that, for all % ) fégc ,goés Ts
and for all shocks ,( that P
i) L k| < § < &
where /“) is the approximate shock associated with /

by (2.2.23); and that, for 4,t¢/R )7 )
M) '/Io—[(gok)!
2
2 g [ 40 W0 Gy R ] -CeA )

where CC is a positive constant to be determined. Then) for ‘A,

sufficiently small there exist C-; )}o such that

15(10,8050)4 - C(a(d,,)g‘,é),fto)g,éjo)/ s(_J}a)/u
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. where J; is as in part 4 of Lemma 2.5;

N _ L) = ‘

pe ol 2 _

I“/’ro)goé) "‘if;o !) /ZOA."/[O, f MAX{‘.Z*EIO?"Z’.]) C,ﬁ//o;i/?

if utda,%,é~> is in a centered rarefaction fan )
go -
/u(’!b)zok) - MP [) /;oﬁ- /Lg/ 5 C? 4//0;4/
otherwise.

First we wish to show that, for-{, sufficiently small,
MO [ ClUln,,t,) e te; tT) L)

IDONZIN N §+C¢’/Z//0@A/ t Ch . (2.2.56)

Since shocks cannot cross one another, it suffices to show that,
for  Aplt) >ue> L (L)

ClUlhy E0) Aoty t!) L (1) L, 0¢7) - ClUt, 24), 1, L, ;")

> &+ Cu/ 4//0;L/+C€k

: /
where ,/L) ée are defined by the condition, for all ¢ < 60

7~

there are no shocks £ such that /;(t') >,?7t/) >/4(é/> .
We prove the bound for /L_ ; the proof of the other
inequality is identical.
There are two cases. First, assume there are no
rarefaction centers in the interval
[ C(('(ﬂ(Il—(t;)’tt-"\)/'[l-(éo))(:")‘O>) C( u(ya't°))¢o){_o,'0>j

then it suffices to show that

clutt, to) Ay, to t) _C(ag([‘_[to)}t_o>)//to))éojtl) :
> S CQ.IL//O;A/ r CA



since ILIU) <C(UR(//t,),ﬁo),//fo))to)-C/)
for all s to - We have
/¢°—1(_(to) = C(“(’l—o){:o),/r’o)tojt',)
~Clug ey, tq) )/(to>,to jt’)
bt (ulty,ted - u ({16), ¢, )

(C Uyt e) A, b ) - ClU b8, 402,) ¢, 52"))
~ (1*(‘“11 afcr( w> (e,-2!
(g ) ) -l ) e 1)
x (1 +I/0//‘/'//w)

Here

I, = Cey, (Ut),0) 1, (60 4,58 )  Clulr, ), 2, ¢ t/)])‘ (2.2.56)

2) o)
follows immediately from the hypotheses of the Lemma.

If
Cetug (it ) Jle) 60 0)  CLUL, 20), Ay 2650 ]

contains a rarefaction center /L) then)for t> _Q.Q.-h

il

-
=

we have, as before

/[o—/L[to) < (CCU(io,to)l'ﬂo)to} t/) ’C(“g([l.(éo)/to)/ (éa)/éo)t ))

(tofsg %) Te)

1
with the second factor bounded by 1+ To M4 x {”Y ”w, 4%@/“’}
o

and the argument proceeds as before.
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/

1f te Co ) then there is an A
4191l »

/
A (e <l < el ) Neoyto; b )

for which C(u(e',t/),a’ t/50) =4
so that

/ /
Clutt, ey, A b 3 &) ~Ale) > A L) > %

by (2.2, 7).

To prove the Lemma, we consider two cases, depending on

whether or not

CC(‘{(’tmto);duto}O ) _(Ioﬂ’}%’/ C(M[/tO)“’O)/M’)ébjo) +(‘]_0+3)£’j

contains a rarefaction center; here .j; is as in (2.2.28).

If
Ec(q{/xo,é_a)’/zo)to O)“(J—O*S)A )C(L(('ie){o>,/Lo)éojO)"(J_o*?)A,j

does not contain a rarefaction center, then Lemma 2.7

follows immediately from Lemma 2.5 1if we can show
¥(})c)'%o\> = J’o is defined, where
J
e = 2 u."‘u)to))#g)to'o)]
¢ » Tk

If ‘{(@,O;fi ) is defined, then

\‘Lfli'“o)-ﬁ ) = Clulrg,t0) %0 b0 0) —géa(vo,td)l
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tN

[b(f(10,0),8,0) -ctut, b, o0l
Flulve,ty) q“% ( ﬂ{e“ _
C*{_//o}élf (f(#?_)l~ + 7;{@4+Z//‘)ﬂl//“, )/{/

In

by Lemma 2., 5

(7,050 -4 1)
> (c(u//yo,ﬁo)/lo,ta)-gé) ——//g'é)[
S Mloghl = () a3

> s{

by (2.2.561, with the appropriate choice of Cg s thus )((3_,0)'37‘1>

if defined, and the result follows by induction on g

If

Cotw ( a,,t,), 4, )t,jo)-@;+3)£,)c(uzxo,6,,>/zo, 530)+(Tm) A ]

—

contains a rarefaction center /A with associated approximate
0

rarefaction center k +4 , the result follows

immediately from (2.2.26), (2.2.29) if tléng .

If ‘é ?"“" then by (2.2.29) there exists {  such that
Msm» cutt, by [ 2 (¢ (T3 1le ~C) L

If {(1’ g,“, f is defined, again, the Lemma

follows from parts 3 and 4 of Lemma 2.5 by taking

zo:— {(() gm»; go )
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The argument showing that {(&7{Mu);607
is defined is identical to the one showing the approximate
forward characteristic existed when there was no rarefaction

center in

[cwu,,to))m,)t,;o)-(J,rg)A yelulagyty) 10,845 6) t(1,+3) K—_()

details are omitted.

According to the discussion preceeding Lemma 2.6,
at all but a finité number of times, shocks in solutions
to (2.2.1) satisfy conditions (PL,Fk_> for some choice
of e In the following Lemma, we prove a
corresponding fact about shocks in the approximate solutions,
bounding the length of time that approximate shocks do not
satisfy conditions (Vi () for any choice of V7,
which implies a bound, by Lemma 2.3 and (2.2.40), on the
amount the error can increase at those times.

Lemma 2.8 1) Assume that the hypotheses under
which Lemma 2.5 was proven hold, and that there exists
times t,o< b, ¢ b and a constant S < 4.5 such that
the following holds:

For every shock [(t) there exists (Vl,fk) ,(rlﬁfk')

ﬁo , 0¢ goé’ﬁo < g such that //6) satisfies
! /
condition (Fu,lg) for t,<t <'€| y (") )

«)
for t,é t<sty ; that the associated approximate shock X
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satisfies condition (f_,/ %) at time step f, ; and that

{h)
it A (gl) satisfies condition ("U,Me)  for {o% g /{g )

gh<ti , then W) =P Ulgrd )] <6

and ll“')/g”) —/[g”/;) £$ for all f”<g
Then there exists (g =1 independent of £, ¢ for A
sufficiently small, such that the following holds:

There exists

0< t,ﬂg,uﬁ , fouré— e, < Cod (2.2.57)
such that [""/g) satisfies condition (°,g)  for
(o€ fiv ) and that ("/g.,r satisfies condition (f.}f})
with
[(p®( f“lg o)) “H//gmk)) 1 < G (2.2.58)

and

[[(“{X) —//fé) | <GS (2.2.59)
for all g < fwf :

If [ is not overtaken by one or more shocks at time

then

P -G | € G for s <goor

2) If //6) satisfies conditions (’}_,f;_) for 0<f-<f_,
then there exist gozr )ffuré < Cgl//ofxf/ )

such that /(‘)(X:w) satisfies ("‘,_,r‘g)) and
4(Lnt)) -¢"2z’%f )| ¢ Glllbgh/
for ¢ < four .
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Let {,.,4-1 be the first time step such that
1“}(f:u*i ) does not satisfy conditions ("L,V‘g)
for some shock /((“with f") Ego ) fmé<t/

Then one of the following three cases hold:

~(L)
1) There exists / such that

/2’{‘?&»*1’) "/({“(fwri )/ =4

2) (1) doesn't hold, Sp (S},_) is an interval,

and ]/X_L)(.L-Ab([“)(i'u*i) __3) f"} +1 /. O) l < C)!f {//{}A/
\

({/V'g’rz—’46(’(“)/{’”{1>+3){w*1; 0)/ < a, ///?Z/)

where /LL»R\.MR,PQ is the left (right) endpoint of S,\L (S,«& >
3) (1) doesn't hold, 5,1 (S,»&> is a rarefaction

center /L?'L ("l?& ) with associated approximate center
6
kopoi (krg+1) , and
{ ) 0
b(/( U[r"‘ +1 )‘3)%,7-1;0) *14 é(“—
(b U™ e) 3 et 0 = b, )

- To prove (2.2.4), we show that each of these three cases

imply a bound on ﬁl—gn)é of the form (2.2.57).

(h T4
Case 1) Assume, for example, that / )/g,,;):/ ({,u)—c'



' fhen /[i),ui) </?f,,,£) )
Higt) ~Tyutd] < 11200 ~Ap.4)]

n /{Z“)/[w) */7{,.,5)(

+ /{/4)%}) %[/’ZJ/

< SJ—S-{» GA, :L§+GL
Thus [(t, )rfmlﬁ,) ) and N

l(z,dé)< cla” (fie) ¢, ),[/ﬁ,),“—,;f»é)<//[,.,£)

and (2.2.57) holds by (2.2.15).

«'y
Case 2) If condition (L fails to hold for Y, /[wai) >)

then

[ewdig,e) i L.k, f,,,é 5004 |
< | c(uL(/({,,é),Z’mé ), 0.4 )t ;0) -ﬁ”%ﬂ%ﬁ»;mj
UL 0,)3, 50) ~1e |
£ Gk + Spub aCdlbgh! 12k puk

K, (4//0}A/+ 6)

N
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Since

Y0, < C(u:{/(t,),é_,‘,(/ﬁ )4,;0) < ¢l (4 ué)f,‘,ﬁ //,,, fﬁ O)

we have

i) - Gclblen, ), fiep, 0,0 < kg 5o KT KLY e

I”F)

which implies (2.2.57) by (2.2.15).
Case 3) 1If conditi fails to hold f CIT AN
ase condition {‘L ails to hold for U _ { /f")fi>,

then

{uJ(fg»,i{pi)*%(%é){ [u ///‘/) (//’tr i
[u (/A/fﬂ) aL//Z{/ )f:vé)j
£ 4GS

Since

o< e, ;é) — il ) L 4 b )
| £ S +y
f.m)t
and (2.2.57) follows from (2.2.15).
The proofs of (2.2.57) when condition I, fails to
hold for un(/{'"(g) ) are~similar, and are omitted.
According to our discussion of the exact solution, and
by (2.2.41), either £=L1p | for some L= .. M
with 4, dw overtaking one another at time ¢, )-
P d- Zpa L= i) 0128 > K

for all shocks [ such that f(¢,) #,(/t ) .



Next, we show that, if ,(T /k for some L:‘/)---,"f
such that ,/l/£)<,..(4,/f) overtake one another at time 1)
(4 ()
then /( /g) = ..~ = /M /g) fOr all ZE fSHOCK)

where ¢ , t %S > ZSHOCK
llll‘)lg,,,){ - /:A[)g,,,)é [ < /L/,“;f,.,)—/é/[owé)[
LG Lk

*//f/f,JL) —/,q/f,uﬁ/
< k§

(//A gi.J = ““(//fuﬂ) 4 v ety M

uof'” > “LU(Z)‘@N ) - qu B . for

) (4 .
Pgurege fisgn) i

by‘ (2.2.24),
If ](3g ‘Li{ 2 fé 2 ?m'é ) then, for 4, sufficiently

small, up(/:“/{)) > ”L/K,(A?g)) Hm-1) (4 —Q%S)%O
(i) a2 4 ~(6+C, )G

for (=1 M by (2.2.40).
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Thus
s(lf‘}gﬁ ~s lff’/g)> > (< '((J*Cﬂqz/g )
and the result follows from (2.1.7), for an appropriate
choice of K3.
Define ¢, * mx{g,,,o“)[i’]d} if { is overtaken by

. t . .
one or more shocks at time ﬁ,j f,‘ [;i]*i otherwise. Since

(g,a ) é 2 (kf‘ Cg)g we have, for Z'U {fs[,

Ui -Lghl < 11k L bl g d )2 GoA]
A1) L
£ KS

Let
= Ll k) (45 +C/4//7{/ )
« MAx {14;1/((”//“ //‘f’%cj) k

wnere 7= (Trod ((Cohllaghl «@a3)4 ) (12 1977,
1f Sy is an interval ; %~ (J,+0)4
if Gn/  is a rarefaction center.

Then  1{(ph) - 44 < Ked
and it follows from (2.2.29) that 4, satisfies condition 1’ .

In the case where S,/ is an interval, the argument

used to show (2.2.56) can be applied to show that



/(,Q)r;_/ - C u("LI)ZlA))'h ,glé—jO)

> ¢ (QL([(?,/L), f,é)) //g,é 5;,4;0 ) —c/am,)f,é)}fz,,/éﬁ,@)

> Oy dllogh ~(Tr3)h

So that the interval

[ct 1(4,4,4)}4”Z’lé)'0>-c4{//ajl/—0;+3)é)

C(K(’V,,g/é))/f/)fié—;o) T Cl“{//aot{/r(\/:fg)[j

is contained in ng »  In either the case of S"Ll

an interval or rarefaction center (2.2.27),

. (%)
Lemma 2.7 imply that there exists dLl such that / (g{)~q(,£3 |

§

/
'A. . . . . I"\
and {(!‘)8'}8) satisfies condition [/_

(2.2.28) and

for all fgf,

for which f(;ug‘}g ) is defined. We also have

[},/L ‘//f,é)/ < kg S )

We shall prove (2.2.58) and (2.2.59) with

foor = [ M b foy 1T s tepy
if we denote by

o

/L,z[é) = ’//)N (t)

[RY/A /é) = ab/ﬂ (Z)R(t))f)
- /4
//24)2/2)7 /"M/Z)

__{K /Z} _ Z)

if /( is overtakeﬁ by »{1, /["1

at time fj_)'
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{ (&) = [t
Toolt) = uo ((o,e)

“(

0 in- & /g)
M’) E) U, jmlg))

otherwise.

Then -(:(-(_)Q“) )[L,Q(t> are Lipschitz functions of T
gwégé-f&wé-)' similarly
7o ©oyl et 1w Sy [ <A
I L,/z(f“J ’jw(g) - “ie (gt L e
for all w g ZOUT by (2.2.40% and, for T>¢;

(>4 ) |
Joole) =AY 5 e lt) u, )

(1. () <{* Ny Ef,ﬁ)(g RNy
Thus /w{“(//“/g)> - %///g%.))/f V.S
for g,{ 7 fg’our : :

To show that U, ( “/)gou, )) satisfies condition 13/
it suffices to show that, for some f f,g[{fwr 5 ,,((//‘;5))
satisfies condition [, , where ¢ may vary from shock to
shock. If this is true, then an argument similar to the one
used to from (2.2.57) for f§, shows that uL(/“?f,uf))

A /
satisfies 1. -
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%)
Proof 1is by contradiction. If U,__” (8)) does not satisfy
r!  for all ' g(fszadr ) then F{/.,f,;g)

is defined for all ¢ | f/ < ffio.,-,— ) and

5 < /(‘?3’)*;/‘;)/,;5') < 1_%5 rKS+L € kS
/“)(Zwr )~ p{fl)[: ,'fauf )

< /(“{7’) - b/)['/;“ Z,)'fauT))fwT )Z’)

~Nipu=pa) la o - s/ ”/;%ﬂ))

figsi5900r)
£ Qo 90K, 8+ Vg ) + Ly
< KS 9 - i/gour —fl) [L— k/l [;/S_ '(Iog)

r K, §
< 0

for /L sufficiently small, thus obtaining the required
contradiction.
The proof of part 2 of the Lemma proceeds along similar

lines to that of part l: the details are omitted.
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Proof of Theorem 2.4: First, it suffices to prove the Theorem

under the assumption that the strength of the approximate shocks

are always greater than (1/,L , so that Lemmas 2.5 - 2.8 hold.

Then the bounds proven below, combined with an induction on the

time step ? similar to that used at the end of the proof of

Lemma 2.5, show that the assumption holds for all géf 7; :
Let O=t, <t ... < ty = To be times such that

for every shock g} there exists r\(_(‘;)l) )(\Q(L)()

such that /(‘t) satisfies conditions (PL(L,/ ) ,'WR(L',Z ))

for ¢, < <ty and take % sufficiently small so that

[
(0] ¢ A5 logh] <

and that Lemmas 2.6 - 2. 8 hold. Then, by Lemma 2.8, there

exists ggur) gmﬂé C 4//0;,4/ such that

every Shock,{ and associated approximate shock /[4)

satisfies LQU,[) )FQ(1,/) ) and

[V - UG L)) < Gl h]

for g}é g:ur . By Lemmas 2.6 and 2. 8, for every (,

¢ (-1 3
there exist {/v , goUT 5 with

o< t; ~€,0/¢ gowé Livs <(C,'Cy) / //o L/
such that, for " fg (g’,u ,//;é) / [f)

our

satisfy conditions (f‘ (L ( /L,/))

|V Ul )) - Wlph ) | < ( C/Q,) ‘L*//a;l [</3
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If gm g gow then, by Lemma 2. 8,
ﬁ"’/g)aj/fé){ < (/LCM £ //OVV(/ K

if { is overtaken by another shock ac t; otherw:tse
I*P(")(//“zp)«%(//{é)) J« ¢ ¢, //o}/v/

thus part 2 of the Theorem follows immediately.

To prove part (i) of the Theorem, let

0< twr = WESt: (1,100 D1
6 <d e = NF{UL -2 tat)sDY

Choose A sufficiently small so that

dr > 2 C,fl {//O?A{ + MAX [lfcfl'?(TI/,)(“t//W//")f
x('{f *64/4//0}A/+€€4)

then, by Lemma 2. 7 for every (/y)f_) 4 D there exists 0{6

such that

«Efo 1_210!’
) _ub| < G 2R jfs Kk
- ¢

{u(v}g
ot 1 < Gy
where 2,4, are as in the statement of the Theorem.
since iy Wi ~ ol =2 Gl llog k]

_there is no approximate shock L0 /ZO between £, and Vi
thus, by (2.2.21)
uea,t) -uf l< tuin ) -uyh B [gh g f)-ub |
t /u“ —L{f/

d°
< Z('Z‘“’"[t o/ 191 /1 TCM)F)Z
1 max {aw ) gty {/(1—7;(,”;)} )



114

t (,k *C;L{//D}A/
£ 4 (//0;4/

The techniques used to prove Theorem 2.4 do not generalize
to the case of random sampling. In particular, it is not clear
what the appropriate analogue to Lemma 2.5 is in the case of
random sampling. However, in the case where the solution consists
entirely of rarefaction waves, we can apply the central limit
theorem more or less directly. |

Theorem 2.9 Let (()(U be a monotone increasing

u_uy i deyzu.

function such that for some L>0

for A<-L, W=Un) for x>0 . 1wy t;?)

}

is the approximate solution to (2.2.1) obtained using Glimm's

method with random sampling, with initial data LP) then

o {3

—(L, +{'—q_)

r~ -~
_ (ﬁ%‘?gm e v-C[r/

for some (~<oo , where é‘: :2 < //(//4;1 ) M:[—f[:—(

and the measure A4 1is the one defined in the discussion of

(L+5u)

(u(»z,t)—u“)(i)né}é‘))o{’%<v%lg

random sampling.
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Proof: Let 8%(5): K(L*Tb(f) u(’\){1,gé)-6> d?L

(Lt
(Lot

Reasoning as in Example 2.3)for 6£ <t
FS 2 - - g A
5,6(0)—€%_,(o) —.Xgla) )(g (et )

where

foat) = (u-u) o ofe (1)
:(’L—fz—(“gm))é A @t e[l Au,)
= (“,.“(-)(_ LT/ ﬂgfczl(*)i)

i £ o )=
We have also used here the fact that (/( )("(L *f”—)/gé) a ) 4-
(h L a ) =
u )(L+1“v)€é)a)’ M~; for all ?é'(-é.
The random variables XG are independent, identically

distributed

Et) = [H@ du - E(HaDdet -k (uiout)

If we define Y% = Xf/{ , then )/f are independent, identically
distributed, with E( Y@ )) E ((Yg “E( Yg ))’L) = O\L

finite and independent of (}

G(s,) ~ )(Um/d)o) dr — gé (a;‘zla})

Since | 1is a weak solution to (2.2.1) )



Lrtu)
St Wi ) da = (um)ovofot

‘fl(tf%u_)
\ )
;%f*’ o~ (Legu) e/ ) d e
0
t /
~Ii—(a(/_’_r‘%u{.)t1)7dt

E f wlt ord . — (U -ul)
1

lguw,t)d{/x——E(SJ \é K/\ )

Since

central limit theorem.

for some K independent of { the result follows from the
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§ 2.3 Gas Dynamics in One Dimension

In the case of systems of equations, we have no results
corresponding to Theorem 2.4 for any general initial data. For
the Riemann problem, analogues of Theorems 2. band 2.9 can be
proven rather easily using the additivify property
In this case we have ()(A/hjil)accuracy both in the continuous
part of the solution and for the location of discontinuities
using van der Corput sampling, and the central limit theorem
holding for random sampling. This is a very special situation,
however, since there is no wave interaction. In an effort to
understand the errors introduced by the interaction of the
sampling and the coupling between the modes, we looked at the
following test problem for the gas—-dynamical system ({/.3) .

The initial data consists of a shock and a rarefaction wave of

the same family (forward facing) next to one another (figure 2.14).
The shock overtakes the rarefaction, the cancellation between

them weakening both (figure 2.15 )<:> ). The nonlinear coupling
between the modes produces waves of the other two families in back
of the shock and moving to the left, away from the shock. These
are, a weak backwards facing compression wave (figure 2.15 )(:) ),
with a weak gradient in the pressure and velocity, and a strong
density/entropy wave (figure 2.15 )(:> ), advected passively by

the velocity field u(d,t) .
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In figures 2.16 - 2.18 we display the calculation of this
problem by Glimm's method using, respectively, the random
(7,3) stratified random, and binary van der Corput sampling
procedures., All.calculations were done on the spatial interval
(0,4} with boundary conditions at 0 and 1 obtained by assuming
the solutions satisfy 37 n=0,1 =0 . The various solutions
being compared were computed with A4 = g1 and are represented
graphically by circles for the computed values at mesh points,
interpolated by a dotted line. Also plotted on each of the graphs
with a solid line, is a solution obtained using Glimm's method,
with vén der Corput sampling and D = 0025 . Having compared
the latter solution with a similar one done for Q04 =.005
we found that the two results differed by less than .5%, so that
the method has converged for NAA = .00A% . For the purposes of
comparing the various Ar=01 solutions, we treat the
AN =.000LS solutions as exact, against which the Mo=,01
solutions can be compared.

The sampling governs the rate at which the shock and
rarefaction interact., If 5% is the speed of the shock)located
| . . 1w, +Co )

at mesh point g at time step N, and . g1 9+t

then the shock will cancel with a piece of the rarefaction wave,
and produce more wave of the other two families, at time step n + 1
if and only if a™*t [%/I\i)% SE ) Thus the loss of
gradient information observed in the randomly sampled solution

(figure 2.16)
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is a result of random fluctuations Zn the rate of interaction
between the shock and rarefaction which is producing the wave.

The use of stratified random sampling (figure 2.17) produces
smoother profiles, but the shape of the entropy wave is incorrect;
in particular, there is a sizable deviation in the density profile,
a failure to conserve mass. The profile obtained using

van der Corput sampling (figure 2.18) is in much closer

agreement with the A&41=.0025 result, the rate of wave
production being modeled much better than in the other two cases.
In fact, if one uses van der Corput sampling, one can use a much
coarser mesh and still get good results for this problem. In
figure 2.19, we present the results obtained on this problem with
binary van der Corput sampling, and A71% i/30 . The absolute
locations of the waves, and their locations relative to each
other, are to within ﬂdL ; more important, the size and shape of
the waves, which are more sensitive to the cumulative error
introduced by the sampling, are in very close agreement with

the Ax=.0025 result. In all the calculations, the shock

discontinuity is sharp, as guaranteed by Glimm's method.
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Chapter 3 Operator Splitting

In [ 6], Chorin proposed a method for computing
multi-dimensional unsteady compressible flow using Glimm's
method by means of operator splitting. We can write the

equations of motion for an ideal gas in two space dimensions as

AV + 2 T + =
VL L (Fu) %'L(G(U” 0
U: R [o,0) - R’

U(”‘;‘(};t) y
U(&I?)O) \P(«)f'{)) \02 ﬂa‘l--ma R

i

il

P " )
ve(n) R e ) GIU)
n ) )

E hn

Here P is the density, M 1is the x-component of momentum,
n is the y-component of momentum, and E is the total energy.

-—
We can express the velocity V  and internal energy ¢

in terms of the above variables: Vi= M is the x-component of

the velocity, 'U?&= :LL is the y-component of the velocity, and
.
€ = J% - Ji(v‘m‘ ’U:t ) »  The pressure P is a function of

P and € @ P- (-1 )Pé where f ) the ratio of
specific heats, is a constant assumed to be greater than 1. As

was the case for one space variable, the value of U at a given



point is uniquely determined by the values of P 5 P and T
at that point:
—_ = = e 'L
m_f)luj ;N P'V'}} E‘-ﬁz»f g('u; Mfi‘)

We wish to construct approximate solutions

Ut (g nb) = UL R

(-0 /H < 4 <) hy

gakys g <oty
where Ad,’o,(,{ )AAJfaA,AJ, are spatial increments, At= %,
is a time increment, and i,g,, N are integers, with 17!/1 )
C+ N even, N20.

Assume we know ‘U;?&' and want to find Ui,r::j,'&.i )
the procedure is as follows:

1) For each 1/ perform one time step of Glimm's method
for the equations g—}_[* %(F(V)):O » taking as J'_Pitial
data Vyp = U;,é, : Set the result V,i,f -U;.:l;j/

A n v
(we denote this procedure by (L‘_U )L'iii, = i*",i‘, )

which is now piecewise constant on
Lh, < AL Z'x
- (+1
/j 1)13}41/0; )4#, , >

2) TFor each fixed ( perform one time step of Glimm's
W, 9 :
method for the equations It ¥ j'Z(G(W)> o
0 ﬂ'% é
taking as initial data wl = it 2 ) time step .
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—rd U"'L
Set the result Vr£+1 - (g {1 (we denote this procedure
L
/}, V\'\_) _ ned )
by (L£U i ges = ULvt,J}L
The solution thus derived at time /nvi)é. is interpreted

as being the piecewise constant function

n+1

U‘1‘{?(«;A}){n*i)é> = Ul—:*i)é}-_f_ (_'+y),1,n even

oy < <o)Ly

JL}< 4 <(0(;+7,){3/

A necessary condition on the time step é, is that it must
satisfy (2.1.3) for each of the one~dimensional calculations.
In practice, a somewhat different condition was used:

{S.up. ('VL-T?' *CZ,Q < A, i}f

R g . R
where C,-(/”??- is the sound speed, and [(¥~!= (U3 'vi )

The above procedure is formally the same as is done to
construct multi-dimensional difference methods from one-
dimensional ones (Sod [51], Strang [52]1). However, the
mechanism by which Glimm's method propagates the solution to
the equations in one dimension is rather different than that of
difference methods, as it requires many time steps for the
cumulative effect of the sampling to give the correct wave

speeds; therefore the actual justification of the splitting

procedure, currently unknown, is likely to be quite different than

the usual truncation error analysis for difference methods.
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The Riemann problems in question are easily solved, given
the solution for one-dimensional gas dynamics. For example, to

solve Riemann's problem for

\

V
St %(F(V}) O

take the solution P(M)t) , f;('l,ﬁ) ) U(‘l,'t->

in example 1.5 with
wRF P_L.p. G F"’R yUuc= U, 1Ue™ -‘U;-,R_
ptr, )= pt) plar=put) , i) :uh(,t>)-

%(’k)t) = 'U.:J_,L,

if (4)t) is to the left of the contact discontinuity [S

1'5—7*(4 )= Ve

if (/\L)'C_) is to the right of the contact discontinuity [S )
Thus in the x-sweep, we have ordinary 1-D gas dynamics, with
the discontinuity in 7 passively advected. To solve the
Riémann problem for %%'71\- 9%-&- (GW)) =0 ) interchange the
roles of ¥, and ’U"}

To test the validity of this procedure, we looked at the
simplest two-—dirﬁensional test problem possible (figure 3.1).
We took our computational domain to be the unit square

with the computational mesh aligned with the x- and y-axes,



and took the initial conditions to be
- 1 >
U—K n "a/
= U vy

P Pe -

- (J‘_’Uf,','__~ _ (’LVN,R

UL vy Uﬁ Pe %3 -
b-" &

Pooer + &m0 Py + £etmaag )

This is the Riemann problem, for which we have an analytic solution.

Computationally, it is a two-dimensional problem, since the initial
discontinuity is at a 45° angle to the mesh directions.

We denote by ’U’N the component of the velocity normal to

n= /Lé/ ) ‘I)} the component parallel to A = '\k .
v, F 'U; -V Y <= v+ UL
N T + T _7%-_——‘3,
= - Vy
% e ‘V’: ‘UV;Q ’)}‘1: R = ,U:. RY .
S o S
’V:),,_ = Tﬁ,l—"vz\‘ - L= ’Z);:L"’,Ug,l.

\es ) T
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Throughout these test calculations we will set v}u_::®732: 0O
i.e., we will be looking at problems for which there is no slip
line in the exact solution. Unless otherwise indicated, the
calculations éhown were done on a 50 x 50 grid: A= Aﬁ}='oa'
The results of the calculations are displayed by plotting the
profiles of various quantities along the line ?,= 1-~ )
and comparing them with the exact solution. In these plots, the
computed values at the mesh points are graphed as circles,
interpolated by a dotted line: the exact solution is plotted as
a solid line. When boundary conditions are required, we assume
the solution is constant on lines parallel to the initial jump.
This was quite effective in preserving the symmetry of the
solution, and enabled us to run for long times without noise
from the boundary affecting the results.
The one-dimensional calculations using Glimm's method
D
in the x and y directions require sampling sequences 04)(1%’
which we took to be two independent van der Corput sampling
- -
sequences: 4, was the (3,2) van der Corput sequence, and (2¥

was the (5,3) van der Corput sequence. This insured optimal

distribution in the square [-I_}i ) X Ei,i> .

In figure (3.2), we show the results for the following problem

P": 3583 j),a:.i (3.1)

PL: 4.0 FQ:.S

v, = -LF Vs -116 Yercc?
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The exact solution is a strong, right-facing shock. It is
alﬁost stagnant (after 175 time steps, the exact shock point has
moved only two zones). By this time, the oscillations
(+807% of the exact post-shock value in the pressure) have begun
to make themselves known by a three zone error in the shock
location, the shock moving a distance more than two times greater
than it should have. We see substantial values (+60% of
fﬂﬁ,b'Tﬁhgl) for 1§(4q14tg> the tangential component of the
velocity appearing. Finally, the density profile shows a
substantial deviation from conservation of mass.

The fundamental reason why large errors occur in this problem
is that, although each half-step L:Z_‘LEE models the resulting
one-dimensional gas dynamics well, the problem it is modeling is

C)(i.> incorrect from the point of view of the two-dimensional
flow. For example, consider the problem one solves (one for each
value of 1, ) in the first x-pass in the test problem 3.1.

They are each the same Riemann problem for a one-dimensional gas
flow, with the jump taking place along the diagonal. The left
and right states
Pl.k
Vo ™| Pon e
) P“'é (%)L,Q

e« (Tt T ) on
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for the one-dimensional problem are

—

Fk;Q :P'-IK PL»Q= PL_,&

=
1

™ J = 7 v’ = U7 Voo, = U
Rk I L =
T L~

A

The jump in the velocity E_-UQ is less than Wy - .
>

so a weaker forward-facing shock than that of the original

~ two-dimensional problem is produced, as well as a backwards-

facing rarefaction wave. If we sample anywhere in the fan other

nft

than the left or right states, we get a ('V;):.,& >—u—‘_ ,JR

pu m,{- ”‘&L_ : .

The new values (1)’)2"’ S P:.' depend only on the
) )f)‘—)(} J =

sampling value C(fl and the ratio 'é/{,‘ but not on A and A,(
separately. So the difference between these and the exact
answer is an O(i) quantity relative to the mesh spacing. In
particular, there is an O( 1) contribution to the tangential
component of the \}elocity. Since there has been an O(i>
change in the thermodynamic variables P and P , there is
no reason for the y-pass to produce a tangential velocity to
cancel the one produced by the x-pass, and in fact it does not.
Similar phenomena occur for a shock tube, (figure 3.3) or eveﬁ
a Riemann problem whose solution consists of two (continuous)
rarefaction waves (figure 3.4); in the latter case, there is an
O(i) error introduced due to the incorrect modeling of the

discontinuity at t = 0 in the first few time steps. This is a
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start-up error.and does not get amplified at later times, in
contrast to the error produced at shocks, which is produced and
propagated as long as the shock exists.

The above failures in the splitting procedure in situations

-
when there are discontinuities in P,W’ can be viewed as a
consequence of an invalid interchange of limiting procedures.
Analytically, shock solutions are obtained as limits of viscous
solutions as some set of diffusion coefficients go to zero. One
might try to obtain the shocked solutions by using an operator
splitting method to solve the viscous equations; the splitting
procedure is then known to converge as ot > 0. Then, in the
inviscid limit, the viscous solutions converge to the physically
correct shocked solutions. In a difference method, the two
limiting procedures take place simultaneously, with the
coefficients multiplying the numerical diffusion approaching
zero with at. The use of operator splitting with Glimm's method
corresponds to letting the diffusion coefficients vanish for
nonzero At . This interchange of limits is valid for continuous
solutions, or near contact discontinuities, but near discontinuities
-

in P or U” the two limiting procedures are singular with respect
to each other, and cannot be interchanged freely.

In an effort to solve this problem, we introduce some artificial
viscosity into Glimm's method, to be used in the presence of large
pressure or density gradients, but designed so as not to diffuse

contact discontinities. 1In terms of the above discussion, this



will introduce into Glimm's method the limiting procedure used
in difference methods, but only near discontinuities in P
or V.
The general form of the viscosity used here is due to
Lapidus [25], who developed it for use with the Lax~Wendroff
. nvt
difference method; see also Sod [48]. If U is the array of

conserved quantities after half-step in the x~direction, we define

(Lv«sU ) J} = UL,J'_

o B 15 *—aaf'“ JA(VM”IAUM,

L—N

+ '/LxC A {/l ((V)‘L ’)u:,,—} Aun}}

§L} - {L

=

P. S

<=
!

4_}4'/

We define L%‘S similarly, interchanging the roles of L and l;)
/ !
replacing UV, by ’U;&)#L,lby /Lq’)and A/‘ by A‘é/ the latter defined

P

by AI ]( - " ——{"J»'L . The vectors C(,,c1
pok
and the numbers So, g‘_ are parameters to be set at the beginning
A ) . U’l'i
of the calculation. If U is the approximate solution array,

at time step n + 1, using Glimm's method and artificial viscosity, is
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Un'i = {_f1r L%L Lfv,gLLU

Vis

Note that it may be necessary to make further restrictions on the

time step &_ than (2.1.2) for the scheme to be stable; see [25].

When applying artificial viscosity with Glimm's method, one wants
s =

to choose the parameters Co;C1 ’So;gL such that the artificial

viscosity will not spread the sharp contact discontinuities

generated by Glimm's method.

There are some difficulties with the use of the above
artificial viscosity with Glimm's method in the presence of
extremely strong shocks. Since it acts on the conserved quantities
momentum and tétal energy, it is possible, in one time step, to
diffuse a large amount of momentum across a shock. If there is
little or no diffusion of mass, this leads to an artificially
large preshock velocity, which, when used to compute the pressure
from the total energy, may yield a low or even negative pressure.
One way to alleviate this problem is to use a smailer time step;
another is to allow the artificial viscosity to act on the density,
but only near strong discontinuities in F) or 6;7

In figureb3.7 we display the result of using Glimm's method

with the above artificial viscosity for the shock tube problem.

PL: 1.0 Pz:'ii5 (3.2)
F‘": i.O PK:-i
Vo = V5e<=O P=1y
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The artificial viscosity parameters in this calculation were

E:-_—(O'S'S)s> C1:(0)25’257Q-5) So_- g|: O

Since CL-:C%==O) the numerical viscosity was not applied to

the density, which insured that the contact discontinuity

remained sharp. Comparing this solution with the one obtained

for this problem using Glimm's method without artificial viscosity
(figure 3.3), we see that the post-shock oscillations seen in

the latter solution are, in the artificial viscosity solution,
virtually eliminated from the pressure and density, and strongly
attenuated in the velocity and internal energy. The shock is
spread over three mesh points, but the contact discontinuity
remains sharp (for a comparison to difference methods, see

Chapter 4).



Chapter 4 Discussion and Conclusions

In one space variable, Glimm's method has directly built into
it an approximate form of the propagation of information along
characteristics, without the smoothing of such information, as
occurs in most difference methods, and without any complicated
bookkeeping; the sampling procedure determining the weakest wave
or wave interaction to be resolved. If a pair of characteristics
have speeds C, (,, (> C, , the waves carried by each of them
move toward each other at time step Z if ngC,IC.L, /‘{41 \ .
To model smooth flow correctly using this scheme, one needs 5?

to have good distribution properties with respect to all intervals

to the above form, even if the length of the interval is

—%O

approaching zero, as n-—=e0 | S(Q ;”o;"‘o"n;]:»\)p\_a,a

where In :Cc{,d +£%-)> for as many -(\(n) as possible,

independent of d ,A, . This is the motivation for using

van der Corput sampling. A comparison of Theorem 2.9 and part 1

of Theorem 2.4 indicates the gain in accuracy in going from random

to van der Corput sampling in the absence of any interaction. The

numerical examples in figures 2.16 and 2.17 show how the randomness

can cause a loss of information in a wave interaction situation.
The assumptions of Theorem 2.4 explicitly exclude the case

of a compression wave steepening into a shock. This is likely
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to be a failure in technique, rather than in the result itself, as

seen in the following example. Let M(’V,L) be the solution to

the inviscid Burgers' equation, with initial data

= 1 ¢§—1

wr,0) = -4 -4 <a<d
= -1 A1

Then
t<1 = 1 1 < "(i‘t)
urt) = "V(i—t) -(1-t)<s A € (1-¢)
= -1 A > (i"t)
t>1 = 1 A< O
ulr,t)

= -1 A>0

It is easy to show that there exists T; independent of ‘A/

for all ﬁ, sufficiently small, such that Glimm's method with
van der Corput sampling applied to this problem gives a solution
u(‘)(/t,t‘:) - consisting of a single jump discontinuity between

1 and -1 for all {_37;>1_ But an estimate in Liu [35],

specialized to this case and van der Corput sampling, says

*
that the integral of U )

(/l,t) across the shock differs from
%
the exact answer by no more than O({L “ng{L !> so the

location of the discontinuity is correct to O ({\«{ l Io}{" l>
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In fact, there are many similarities, both technical and
conceptual, between the proof of our Theorem 2.2 and those in
[35], as both are baséd on the idea of tracing approximate
characteristics. But we are willing to assume the existence
of.a sufficiently regular solution and prove that the approximate
solution converges to it. This yields more detailed results for
a single equation; also it is likely that any extension of the:ze
results to systems would not require the restriction on the
initial data needed in [35].

There do not appear to be analogous results to Theorem 2.3
in the case of difference schemes. The study of the accuracy of
difference schemes in the presence of discontinuities for linear
equations (Majda and Osher [36], Mock and Lax [37]) gives some
indication of the situation. It is shown in [36] for example
that, in the presence of a discontinuity, the true order of
accuracy of the approximate solution obtained from a difference
scheme can be substantially less than the formal order of
accuracy defined in terms of the truﬁcation error of the scheme.

Sod [48] compared the performance of a number of the more
wideiy used difference schemes along with Glimm's method, on a
one-dimensional shock tube problem for gas dynamics. The results
obtained there using Glimm's method were not the best possible,
due to the use od stratified random sampling. On the other

hand, comparing difference schemes to Glimm's method on this
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problem is not entirely fair either, since the latter has the
exact solution built into it. In any case, we present in
figure 4.1 the calculation done with Glimm's method but using
van der Corput sampling. The result obtained is clearly
superior to any of those in [48]. It would be interesting to
compare the schemes in [48] on the test problem inb§ 2.3.

The original proposal in [ 6] for using Glimm's method with
operator splitting for multidimensional gas dynamics was seen
to give incorrect results for flows in which there occur large
jumps in the pressure or velocity along surfaces oblique to the
mesh directions. The inclusion of artificial viscosity appears
to be successful in eliminating these errors, without degrading
the rest of the solution.

For the purpose of comparison with the results in Sod [48]
obtained by the various difference methods, we computed the shock
tube problem (3.2) using Glimm's method with artificial viscosity,
but on a 100 x 100 grid ( AA=.01 )A"a,=-01 ) (figures 4.2, 4.3).
In principle, the problem solved here is more difficult than the
one solved in [48], since in the latter it is solved as a
one-dimensional problem. But the exact answer is the same for
both, and the results are worth comparing.

The calculation of the rarefaction, and the width of the
shock transition in the results obtained with Glimm's method

compare favorably to the best results by the difference methods.
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There are still some small amplitude post-shock oscillations

that the artificial viscosity fails to damp. However, the
treatment of the contact discontinuity is clearly superior

to that given by any of the difference methods. The latter,

with one exception, spread the contact discontinuity over

4 - 10 mesh points, with the number of mesh points increasing

as a function of time. At the earlier time displayed (figure 4.2),
we calculated one intermediate value in the contact discontinuity;
but this small degree of spreading is transient, since at later
times (figure 4.3) the contact discontinuity is sharp. The

only difference methods in [48] to obtain nearly this resolution
are those to which Harten's artificial compression method [21]

was applied. But our results do not exhibit the oscillations on
either side of the contact 815continuity that appeared when

artificial compression was applied.

There are several directions in which further work is
indicated. TFor one-dimensional flows, Glimm's method with
van der Corput sampling is quite effective in modeling the
interaction of discontinuities with the smooth parts of the
flow, without introducing unacceptable errors in the latter. The
fact that the solutions to the Riemann problem we use in the
numerical scheme satisfy exactly the conservation laws is
probably not essential to the accuracy of the method, since

much of that information is lost in the sampling procedure. What
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is essential is that the solution which is sampled has built into
it the physically correct waves and wave speeds to some reasonable
order of accuracy. Thus it is feasible to try to model with
Glimm's method the dynamics of media other than an ideal gas in
Cartesian coordinates: for example, gas dynamics with source terms
or unusual equations of state, or elastic-plastic flow.

The central advantage of Glimm's method for multi~dimensional
flow is its treatment of contact discontinuities. They are
computed automatically as sharp discontinuities, and do not spread
as time progresses. This is especially crucial in shock
interaction problems where the contact diécontinuities are not
present in the initial flow field, but come into existence at
some later time on account of shock reflections and interactioné.
In this case, it is impossible to use a material interface-following
technique, such as in [41], to prevent the discontinuity from
spreading. In order for Glimm's method to be effective in such
situations, the artificial viscosity for controlling the errors
near shocks must be introduced in such a way so as not to degrade
unacceptably the rest of the solution, particularly the contact
discontinuities. In a specific test problem, we were able to
accomplish this, but more extensive experiments are required to
determine the optimum form and strength for the viscosity for

some broad class of problems.
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Finally, there are some analytical results which would be
interesting to have. One would be elimiﬁation of the restriction
on time in Theorem 2.3, by some combination of our techniques
and those in [35]. Another problem is to prove the
appropriate analogue to Theorem 2.3, in the case of systems.
This can probably be done by an adaptation of Glimm's
perturbation theory for the Riemanﬁ problem in [15] to the
characteristic equations, currently being looked at by the
author in the case of the isentropic flow equations. Finally,
one would like to see some analytic justification of the use
of splitting and Glimﬁ's method in the case of continuous
flow, even for a simple rarefaction wave oblique to the mesh.

We have attempted to assess the effectiveness of Glimm's
method as a method for computing time dependent discontinuities
compressible fluid flows. In one space variable, we obtain
results which easily satisfy the three criteria given at the
beginning of the Introduction. In two or more space variables,
Glimm's method, with the inclusion of a suitable artificial
viscosity, has the potential for surpassing the performance of
difference methods because of its treatment of contact
discontinuities. However, this modification of the method
requires further investigation to determine the limits of its

applicability.
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Figure 2.3 Discrete Travelling Wave Solutions Obtained

Using Glimm's Method for (2.1.9)
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Figure 2.5 Rarefaction Wave Solution to the

Inviscid Burgers' Equation
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Figure 2.12 Inviscid Burgers' Equation, Compression Wave

van der Corput Sampling
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Initial Conditions for One~Dimensional Test Problem
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Test Problem, van der Corput Sampling

Computed Solution to the One-Dimensional
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Computed Solution to One-Dimensional Test Problem

Random Sampling,

Ax =

.01
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Computed Solution to One-Dimensional Test Problem

(7,3) Stratified Random Sampling, Ax = .01
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Computed Solution to One -Dimensional Test Problem

van der Corput Sampling, Ax = .01
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Computed Solution to One-Dimensional Test Problem

van der Corput Sampling, Ax = 1/30
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Figure 3.1 Computational Domain and Initial Conditions for

Two-Dimensional Riemann Problem
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Computed Solution for the Two=Dimensional Riemann Problem
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