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Abstract 

The spatial properties of the optical field and hence the performance of a free electron 

laser depend on the fact that the electron beam, which acts as both an amplifying and a 

refractive medium, is transversely nonuniform. Under certain circumstances, optical 

guiding may be realized, where the optical field is stably confined near the electron beam 

and amplified along the beam over many Rayleigh ranges. We show that the three­

dimensional evolution of the optical field through the interaction region can be determined 

by a guided mode expansion before saturation. Optical guiding occurs when the 

fundamental growing mode becomes dominant. The guided mode expansion is made 

possible by implementing the biorthogonality of the eigenmodes of the coupled electron­

beam--optical-wave system. The eigenmodes are found to be of vectorial form with three 

components; one specifies the guided optical mode and the other two describe the density 

and the energy modulations of the electron beam. 

• This work was supported at various time by the Air Force Office of Science Research under Contract No. 
F49620-S4C-0012, the Office of Naval Research under Contract No. NOOO14-SS-K-OS3S, the Army 
Research Office under Contract No. DALL03-S6-0122, and the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Materials Sciences Division, Department of Energy under Contract No. 
DE-AC03-76SFOO09S. 
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I. Introduction 

The new generation of high power, short wavelength free electron lasers (PELs) are 

expected to operate in the high gain regime (exponential growth of power in a single pass). 

To achieve such a high gain, a high quality electron beam and a long wiggler are necessary. 

However, apart from fabrication issues, the useful wiggler length is limited by diffractive 

spreading of the optical field. The diffraction problem has been given much attention in 

recent years and it is found that under certain circumstances the transverse inhomogeneity 

of the electron beam may lead to a phenomenon known as "optical guiding" in that the 

optical field is confined near the electron beam with a stable transverse profIle and amplified 

along the beam over many Rayleigh ranges. In this paper we present a general formalism 

for the determination of three-dimensional (3D) propagation of the optical field through an 

unsaturated PEL amplifier. Our formalism is especially useful for the understanding and 

analysis of optical guiding in high gain PELs. 

FEL theory was originally developed in a one-dimensional (ID) model in which the 

finiteness of the electron beam and laser mode area was taken into account by means of a 

filling factor computed from the spatial overlap of the electron beam and laser mode. This 

lD model, though useful as a first approximation, is valid only under the conditions of 

weak diffraction and low single pass gain where the spatial structure of the input laser is 

barely altered by the electron beam and the 3D effects thus can be taken as higher order 

corrections[1]. 

Various approaches have been undertaken to investigate 3D effects in PELs since the 

early 1980s. Numerical simulations, though capable of dealing with most realistic system 

conditions, lack physical insight. Analytical methods have largely resorted to the mode 

analysis technique. In the later approach the optical field is expressed as an expansion in a 

complete set of transverse modes and the evolution of the field is then determined by 

dynamically solving for the expansion coefficients. 

Elleaume and Deacon[2] extended the ID PEL equations into 3D using the complete set 

of free-space modes. They showed that the propagation and amplification of an input wave 

(usually a free-space mode) results in the excitation of additional modes. Since the free­

space modes are not eigenmodes of the interacting beam-wave system, cross excitation 

2 

• 

• 

• 

• 



• 

occurs even in the linear regime. The amplitudes of the modes vary as the wave propagates 

due to the evolving modulation of the electrons. This theory, though applicable to quite a 

broad range of situations in principle, is useful in practice only at low gain where the cross­

coupling is weak and involves only a small number of low order modes. 

The breakdown of the free-space mode expansion at high gain is due to the poor match 

between the expansion basis and the spatial structure of the stimulated emission. To 

improve the efficiency of the technique, a more physically thoughtful "source dependent 

expansion" was proposed by Sprangle et al[3]. In this method the expansion basis as well 

as the coefficients are updated according to the local conditions of the driving source. At 

each position along the direction of propagation, the basis is chosen such that the minimum 

number of modes are needed to describe the local optical field accurately. The source 

dependent method as a numerical approach is useful particularly for treating more irregular 

electron beam conditions such as bending and focussing, but the local adaptive procedures 

introduce difficulties to the overall system optimization. 

Unlike the free-space and source-dependent mode methods, our eigenmode approach 

uses orthogonal self-consistent solutions of the system as the basis. The wave propagation, 

once determined by a mode expansion at the entrance of the amplifier, is known throughout 

the whole interaction region without any further calculation. The key issues in this 

approach are, first of all how to find the eigenmodes, and secondly how to descri be the 

evolution of the system in terms of these modes; in other words, how to solve the initial 

value problem. 

Several authors[4,6,9,IO,IIJ have identified a set of guided optical modes in the linear 

regime before saturation. It was found that these modes form both a discrete and a 

continuous spectrum and they can either grow, decay or propagate with constant amplitude. 

It then appears natural and advantageous to make use of these modes in the analysis of 

optical guiding. However, unlike guided modes in fiber optics, these modes are not 

orthogonal. To solve the initial value problem, approaches other than direct mode 

expansion must be used. A Laplace transform method was employed by Moore[5J,leading 

to a Green's function with each simple pole corresponding to a discrete growing guided 

mode. Moore applied this method to obtain the coupling coefficient from an input wave into 

the fundamental growing mode. However, although this technique would apply to the other 

discrete growing modes, it is unclear how it could be adapted to handle the decaying and 

the continuous modes. In a modified version of Moore's method, Krinsky and Yu[lO], 
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instead of evaluating the Green's function at each pole, expanded the Green's function in a 

particular orthonormal set of functions. As with Moore's solutions their method applies 

only to the discrete growing modes. 

The next step was taken by Kim[ll]. In Kim's theory, the evolution of the optical field 

is treated together with the coupled phase space distribution of electrons, which allows the 

initial value problem to be solved by Van Kampen's eigenmode expansion technique[l2]. It 

is implicit in this approach that the guided optical mode and the induced wave in the 

electron beam can be taken together to form biorthogonal vectors. Indeed we argue on 

physical grounds that the lack of orthogonality of the optical modes taken separately arises 

from an incomplete description of the coupled system. In this paper, we develop explicitly 

the multi-component eigenmode vectors by a much more simple method, demonstrate their 

biorthogonality, and show how they can be used to solve the complete initial value 

problem. 

Our approach starts from the single particle formalism, and each eigenmode is 

constructed as a vector with three components corresponding, respectively, to the guided 

optical mode, the density modulation and the energy modulation of the electron beam. By 

explicitly including these three physical components of the coupled beam-wave system, we 

obtain eigenmodes which are biorthogonal in the transverse coordinate space (instead of 

electron's phase space as with Van Kampen's method). While Kim's method is also 

capable of treating self-amplified spontaneous emission, our approach is simpler and much 

easier to work with. Our formulation also provides a useful link between PELs and 

traveling wave tubes. 

The organization of this paper is outlined as follows: In Section II, we derive a 3D 

linear wave equation for PELs taking electron dynamics into account and assuming small 

signal conditions. We then reexpress the wave equation in vector form in order to construct 

the proper eigenmodes for the coupled system. Based on the new formalism, the energy 

transfer process is discussed and energy conservation is verified in Section III. Section IV 

describes the solution of the initial value problem, which includes the proof of the 

biorthogonality of the eigenmodes and the determination of the expansion coefficients. 
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II. Evolution Equation 

The paraxial wave equation for the FEL can be derived[I3,14] assuming: (1) a 

monochromatic radiation field of the form: E(r,t) exp(kz - OOt), where 

E(r,t) = E(r,t) exp[i<jl(r,t)] defines the slowly varying amplitude and phase of the radiation 

field; (2) a transverse electron beam density profJle independent of the longitudinal distance 

along a uniform planar wiggler; and (3) a long beam of highly relativistic electrons, thus 

neglecting the short pulse effects and electrostatic force between the electrons. In COS 

units, the equation reads 

[ . (..a.. 1 0 )] . 41teK[JJ] k . V~ + 2ik oz + cat E (r,t) = -I 'Y n(r.L) < exp(-I~»av ' 
(1) 

where V ~ = a'/ox 2 + a'/oy2 is the transverse Laplacian, nCr J = no u(rJ is the transverse 

density distribution function of the electron beam with on-axis density per unit volume no, 

and K = eBAw/21trnc2 is the wiggler parameter characterizing the strength of a wiggler 

with peak magnetic field B and period Aw. The shorthand expression [JJ] is (for planar 

wigglers) defined as the difference of the two Bessel functions: JO[K2/(4+2K2)] -

1J[K2/(4+2K2)]. Each electron is characterized by a pair of dynamic variables: the phase of 

the electron's transverse motion with respect to the optical carrier wave: ~;: (k + kw)z - oot, 

where kw = 21tIAw, and associated phase velocity or energy detuning: v = O~O1:, where 1: = 

z/L with L being the wiggler length. The symbol < >av indicates an ensemble average in 

electron's longitudinal phase space. 

Equation (1) can be simplified to 

( V.L2+ i~) a = -2iPu(r ) <exp(-i~» 01: .1 av (2) 

with the aid of the following definitions 

z=z-ct(z), (3) 
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21teLNK[JJ] 
a;: 22 Eexp(i<!», 

me y (4) 

(5) 

where N is the number of wiggler periods. The dynamic behavior of each individual 

electron in the combined field of the radiation and wiggler magnet is governed by the well­

known pendulum equation [13] 

(6) 

In general, the coupled nonlinear equations (2) and (6) can be solved only by numerical 

procedures. However, significant analytical progress is possible in the small signal regime 

where Eq.(2) and (6) can be linearized in the field amplitude a. Under weak field condition 

I a I « I, one may solve the pendulum equation for ~ to the first order in a: 

, " 
~= ~o+vot+ J J acos(~o+ Vot"+ <!»dt"dt', 

00 

(7) 

where ~o and Vo are the electron's initial phase and energy detuning. Substituting ~ into the 

RHS of Eq.(2), keeping only the lowest order term in a and averaging over a uniform 

initial phase distribution of monoenergetic electrons. one obtains a linear wave equation 

(for brevity, from here on we will drop the overbar on the scaled transverse coordinates 

and denote the initial detuning parameter Vo simply by v) 

,,' 
(Vi + i ~) a = - Pu(r )exp(- iVt/ ra exp(ivt")dt"dt' . at .L ~J 

00 

(8) 

Equation (8) describes the 3D evolution of the radiation field self-consistently and applies 

to both the low and high gain regimes. 
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It is worthwhile at this point to examine some important features of Eq.(8) by 

contrasting it with a paraxial wave equation of a familiar form: 

(9) 

where F, characterizing a local medium response, can be interpreted as either a spatially 

distributed gain or an index of refraction or a mixture of both. In special cases, Eq.(9) has 

well-known solutions. If F is a constant, Eq.(9) describes the propagation of waves in free 

space. One type of solutions is a complete set of discrete Laguerre-Gaussian (or Hermite­

Gaussian) functions, whereas another type includes a continuum of self-similar radial 

Bessel functions (or plane waves, depending on the chosen coordinate system). The Bessel 

function solutions are also complete and thus mathematically equivalent to the discrete 

ones. Another situation occurs when F depends only on the transverse spatial variables. 

The solutions in this case are self-similar and consist of both a discrete set and a 

continuum. The discrete solutions, unlike the self-similar Bessel function solutions in free 

space, are bound and physically correspond to guided modes. In both cases the solutions 

are orthogonal (but not necessarily power orthogonal) in transverse coordinate space. 

As seen from Eq.(8) and (9), the medium response in the FEL (the equivalent of Fin 

Eq.(9)) is field dependent and nonlocal. In a FEL the electrons which constitute the gain 

medium drift through the amplifier. They can be bunched or trapped in the optical field or 

otherwise modulated in a way that depends upon the upstream conditions. Essentially, it is 

these features and consequently various special effects associated with wave propagation in 

FELs that form the subject of this paper. 

For convenience, we define: 

and 

noting 

, " 
1= exp(-iv't) f f a exp(iv't") d't"d't', 

00 

a '" a exp(iv 't), I '" I exp (iV't) , 

7 

(10) 

(1J) 



Eq.(8) then becomes: 

aj 
- ('t = 0) = o. 
a't 

2 a - -(V.l +i-+v)a=-Pu(r}I 
a't 

Taking the second derivative of Eq.(13) with respect to 't, one obtains: 

(12) 

(13) 

(14) 

Equation (14) along with the initial conditions Eq.(12) is equivalent to the original Eq.(8). 

The new equation, Eq.(14), now admits the guided mode solutions of the form 

a= g(r}exp(-iA't), (15) 

where A is the propagation constant, generally complex, and g is the transverse profile of 

the mode which can be determined by inserting Eq.(IS) into Eq.(14), yielding: 

(16) 

Equation (16) is same as that originally discussed by Moore[4]. We shall from here on 

refer it as the guided mode equation, or simply as the mode equation. 

Clearly, the mode equation defines an eigenvalue problem, but not of the ordinary 

Sturm-Liouville type because of the nonlinear term in 1/1..2. As a consequence, the 

eigenfunctions ofEq.(16) are not orthogonal to each other. However, this difficulty can be 

formally removed by breaking Eq.(14), a third order differential equation with respect to 't, 

into three first order ones. Introducing three auxiliary functions X, Y and Z relating to each 

other by the following equations: 

i~X=Y, 
at 
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(18) 

(19) 

2 
where Ll = V' ~ + v and L2 = Pu(r .l), we obtain a set of equations (17)-(19) equivalent to 

Eq.(14) if we let Y =8:. Putting Eqs.(17)-(19) into a more compact form, one obtains a 

SchrOdinger equation 

with non-Hermitian Hamiltonian 

H= 

.a H l-Ijf = Ijf 
ift ' 

o 1 

o 

and vector solution: Ijf = [ X, Y, Z ]. 

(20) 

o 

1 (21) 

Although the exact form of the transformation from Eq.(14) to Eq.(20) is somewhat 

arbitrary, the definition of the functions X, Y and Z was made to highlight the physical 

significance of these new functions as well as to emphasize the mathematical elegance of 

the resulting formalism. With the aid of Eqs.(10), (11), (17)-(19), and the definition of Y, 

it can be shown that: 

Ijf= 
a 

-L I 
2 
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The three components in the vector of Eq.(22) can be interpreted as, respectively, the 

energy modulation of the electron beam, the amplitude of the radiation field and the density 

modulation of the electron beam. Accordingly, from Eq.(12) and (22) the initial conditions 

can be expressed as: 

o 

'V(O) = a (0) 

o 

(23) 

Equation (20) is the governing equation for the evolution of both the optical field and 

the modulation of the electron beam. It defines a linear eigenvalue problem by 

HV=AV . (24) 

Each solution of Eq.(24) corresponds to an eigenmode which, by definitions (15) and (22), 

can be expressed as 

(25) 

where An and gn are the eigenvalue and eigenfunction of the mode equation (16). 

Because the Hamiltonian in Eq.(21) is real, there are only three types of eigenmodes 

defining, respectively, the longitudinally growing, decaying and oscillatory modes. The 

growing and the decaying modes are symmetrical in the sense that if A. and V are 

eigensolutions, so are their complex conjugates A. * and V*. Restricted by the boundary 

conditions, the growing and decaying modes are bound and discrete. The oscillatory modes 

with real eigenvalues are not bound and their propagation constants can take any value 

within a certain range, as shown in Appendix B. 
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It should be noted that amplification in all practical PELs is a multi-eigenmode process. 

Due to the limitations of electron accelerators, the initial state of an PEL amplifier can not be 

prepared as an eigenmode, even if the initial optical mode has the profile corresponding to 

an eigenmode, because the initial electrons are more or less uniformly distributed in phase. 

Since the electron beam can not generally be prepared in a form matching the eigenmode 

solutions, a combination of many discrete and continuous eigenmodes is necessary to 

characterize the full behavior of the system near the entrance. 

Before proceeding to solve the initial value problem, it is helpful to examine further the 

general physical contexts of the new formalism and verify the consistency of the linear 

model. 

III. Energy Equation 

An PEL is essentially a device which transfers energy from an electron beam to an 

optical wave. In the process of energy transfer the electrons are modulated by a coherent 

wave through the coupling provided by the wiggler field, and then radiate coherently 

thereby amplifying the wave. Depending on the initial conditions, an inverse process may 

also happen in which the wave is damped. In either case, the total energy of the electrons 

and the wave should be a conserved quantity. 

Along with our fundamental Eq.(20), it is useful to consider an adjoint equation which 

can be obtained by applying a unitary adjoint operator A, defined by 

001 

A= 0 1 0 

100 

to the original Eq.(20). With Eq.(20) and it's adjoint one may derive 
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where H= (HA)* and \jJ = (1jfA)*. The asterisks indicate complex conjugates, and the 

superscripts A indicate adjoint quantities, explicitly we note HA = AHA-I and 1jfA = A1jf. 

Using definition (22), an energy equation follows from Eq.(27): 

where 

and 

dll - + V.l·S = 0, 
dt 

1l=1jf'V =aa*+ iPU(r.l)(I*~ _I
dI

* + i2VII*) 
dt dt 

(28) 

(29) 

(30) 

The quantity Il is the energy density of the system which consists of the radiation energy 

* Ilr = aa 

and the energy associated with the modulation of the electron beam 

(31) 

(32) 

The quantity S is the radial Poynting vector of the radiation field. Integrating Eq.(28) over 

the transverse coordinate plane and indicating this operation with angle brackets we derive 

the energy conservation for a bound field: 

d<ll> 
--=0. 

dt 
(33) 

In particular, for a bound eigenmode, using Eqs.(25) and (29) the total energy can be 

expressed as: 

12 
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{ 2 2PRe(A) 2} [ ] 
<~>= <Igl >+ 4 <u(r}lgl > exp 2!m(A)'t . 

IAI 

(34) 

For both the growing and the decaying mode Im(A) # 0, the energy conservation Eq.(33) 

thus requires the quantity within the braces on the RHS of Eq.(34) to be zero. In each 

bound eigenmode the energy of the radiation field is positive and the energy associated with 

the modulation of the electron beam is negative. The two parts are equal in magnitude and 

make the net energy carried by that mode zero. For an eigenmode with 1m (A) > 0 the 

energy in the radiation field grows exponentially, whereas the energy of the electrons 

decays at the same rate. The inverse process occurs in an eigenmode with !m(A) < O. It is 

interesting to note that the same situation is encountered in microwave tubes [15] where the 

electron beam is coupled to the cavity modes which are, of course, the guided modes of the 

radiation field. 

IV. Initial Value Problem 

We have shown that the evolution of the coupled system can be solved as an initial 

value problem defined by Eq.(20) along with the initial condition (23) . In addition, a linear 

eigenvalue problem (24) is recovered with a full spectrum of self-similar eigenmodes (25). 

We are now ready to see that the orthogonality indeed exists in the eigenmodes. With these 

orthogonal modes the solution to the initial value problem becomes straightforward. 

A. Biorthogonality 

The eigenmodes of Eq.(24) are not orthogonal to each other since the Hamiltonian (21) 

is not Hermitian, but rather they are orthogonal to the eigenmodes of the adjoint equation. 

This property is known as biorthogonality[16]. Denoting a solution of Eq.(24) by An and 

Y n, and a solution of the equation adjoint to Eq.(24) by Am and Y~ , an integral relation 

can be formed: 

<VA HY 
m n 

A 
(A -A ) < Y Y > n m m n . (35) 
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Using definitions (21) and (25), the LHS of Eq.(35) can be reduced to a line integral at 

infinitely large radial distance 

(36) 

where gm and gn are solutions of the mode equation. 

There are two cases which need separate attention in evaluating the integral (36). If at 

least one mode is bound, the integral vanishes since it can be shown from Eq.(16) that the 

bound modes decay exponentially far outside the electron beam. In this case, we have: 

A 
<V V > = N I) m n n nm , (37) 

where Nn is the normalization constant, which can be evaluated as follows: 

(38) 

Another situation occurs when both modes are in the continuum. As shown in 

Appendix A, these modes reduce to the free-space modes far outside the electron beam, and 

thus have the same orthogonality and normalization as the corresponding free-space modes: 

(39) 

because the integral (36) depends only on the behavior of the radiation field at large radial 

distance. 

In summary, each bound mode is biorthogonal to every other bound mode and to all the 

modes in the continuum. The same rule also applies to the continuous modes, with a 

difference in the normalization. 
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B. Guided Mode Expansion 

A general solution to the initial value problem can be expressed as a linear superposition 

of all the eigenmodes, including a summation of the discrete bound modes and an 

integration of the continuous oscillatory modes: 

'I' = Len Vn exp (-iA.n't) + fe.y" exp(-iA.'t)dA., 
n 

(40) 

where the expansion coefficients are constant scalars. By definitions (22) and (25), the 

solution (40) has three parts, one for each component in the vector '1'. The component for 

the radiation field is: 

a = Leg exp(-iA. 't) + fe g exp(-iA.'t) dA. . 
nnn n AA 

(41) 

With the aid of Eq.(37) and the initial condition Eq.(23), the expansion coefficient for a 

discrete mode is: 

e = n 

<~ '1'(0) > I _ 
= - <a(O)g >. 

VA V N n < > n n n 

(42) 

This result is identical to what Moore[5] obtained for the fundamental mode using the 

Laplace Transform method; here we have shown that Eq.(42) is valid for all the discrete 

modes, including the decaying ones. The expansion coefficient for a continuous mode is, 

noting Eq.(39) 

1 _ 
e = - < a (0) g > . 
"41t " 

(43) 

The first term on the RHS of Eq.(41) represents the contributions of the discrete bound 

modes. This term as a whole describes those aspects of FEL operation associated with 

energy exchange. The power launched into each individual mode is either amplified or 

damped, but remains transversely confined indefinitely within the wiggler length. Of 

course, the bound modes are not power orthogonal, so in general the full mode expansion 

is required to solve for the power flow within the optical wave. It is interesting to note that 
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the expansion coefficient Eq.(42) is not simply an overlap integral between an input field 

and the mode, but is modified by a factor depending on the mode itself. Consequently, the 

mode is optimally excited by an input field which is the complex conjugate of that mode. 

Consider the power carried by a bound mode in the expansion (41), normalized by the 

power of the input field <la(O)l2>: 

(44) 

G has two parts, an exponential growth factor determined by the eigenvalue An of the mode 

and an input power coupling coefficient: 

2 2 
IC I <Ig I > 

G = n n 
o - 2 

<la(O)I> 

(45) 

which depends on the input field as well as the mode. While the eigenvalues An for a given 

system are fixed, the power coupling Go varies according to the profile of the input field. 

The maximal value of Go is reached with a(O) = g: . This property will be referred to as 

the conjugate input coupling condition and it's profound effects in the design and 

optimization of high gain FEL amplifiers and resonators will be discussed in other 

publications [7 ,8]. 

The continuous modes playa quite different role in the expansion Eq.(41) . By 

themselves these modes are not physically meaningful since they are not bound. However, 

the integral over a continuum of these modes describes the behavior expected from 

diffraction. In the absence of an electron beam, these modes reduce to the exact free-space 

modes in the form of self-similar Bessel functions. For this reason the continuous modes 

may also be called the diffraction modes. The integral on the RHS of Eq.(41) has constant 

energy and is power orthogonal to the sum of the discrete modes in the frrst term. 

The guided mode expansion Eq.(41) provides a full description of the 3D evolution of 

an arbitrary input field through the entire interaction region. It is valid at arbitrary gain and 

at radiation powers up to saturation. In particular, it is most useful for the analysis of 

optical guiding in a high gain system. To understand optical guiding in terms of the mode 

analysis, consider a single pass saturated high gain amplifier. The interaction region (the 
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wiggler length) can be divided into three parts. The first part is a transition region which 

starts from the beginning of the amplifier where many eigenmodes are excited by an input 

field. The excited modes, each having different transverse profiles as well as propagation 

constants and growth rates, then propagate independently (a unique property of the 

eigenmode). The transition region is characterized by an evolving transverse field profile as 

the multiple optical modes propagate and interfere. If the eigenmodes are nondegenerate, in 

particular, if the growth rate of the fundamental mode is sufficiently larger than that of the 

other modes, an exponential growth region can be reached before the end of the wiggler. 

Here, the fundamental mode dominates, thus the field grows exponentially without 

modification of the spatial profile. This region extends to the point where the field grows 

beyond the limits of the small signal approximation. In the final, saturated region of the 

amplifier, our eigenmode approach breaks down, analysis of the 3D beam-wave interaction 

becomes considerably more complicated due to the nonlinearity, and normally one has to 

pursue numerical solutions. 

According to the mode propagation picture outlined above, optical guiding is a stable 

evolution process in which an input field approaches a dominant eigenmode of the system. 

More important, guiding will inevitably be simultaneously achieved with exponential gain 

and full transverse coherence. For guiding to occur, the wiggler length L must be larger 

than the gain length Lg of the fundamental guided mode, and the gain length must be larger 

than the Rayleigh range Lr corresponding to the electron beam size and the radiation 

wavelength (assuming reasonably well chosen input profile): 

L>Lg, 
(46) 

Lg > Lr. 

The first condition guarantees high gain, whereas the second condition assures 

nondegeneracy of the eigenmodes. In the presence of guiding, the narrow electron beam, 

required by the second condition, plays the major role of discriminating between different 

modes by diffraction. Quantitative verification of the conditions (46) is presented 

elsewhere[7,8] 

We remark that the completeness of the eigenmodes in expansion (40) is assumed 

without proof. This does not seem to be a problem, at least from the physical point of view 

because, first of all, the self-similar form of the solutions assumed in Eq.(25) does not limit 
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the generality of the solutions to the evolution equation (20) since this form is a 

consequence of the longitudinal invariance of the Hamiltonian (21). Secondly, there are 

only three possible types of self-similar solutions to Eq.(24), and the expansion (40) 

includes all of them. Finally, the guided mode expansion (41) has been compared with the 

numerical simulations for a high gain FEL and excellent agreement is obtained[7,8l . 

V. Conclusions 

In this paper we have explored the physical and mathematical basis for the analysis of 

the 3D propagation of the optical field in a free electron laser with a spatially confined gain 

medium. We showed that the optical field in an FEL amplifier can be expressed as an 

expansion in the guided optical modes despite the lack of orthogonality of these modes. 

Most important, it is found that the guided optical mode is only one of three physical 

components of the eigenmode of the beam-wave system. Each eigenmode specifies the 

state of the energy and density modulation of the electron beam as well as the optical field. 

The three-component eigenmodes are biorthogonal whereas the optical modes themselves, 

do not possess this useful property. The biorthogonal eigenmodes make possible an 

eigenmode expansion describing the evolution of the system and hence a complete solution 

to the initial value problem. While several of the results of this analysis were anticipated in 

the previous research of Moore[4,5l, Kim[lll and Krinsky et al.[lOl, and by earlier 

studies by Pierce[15l of amplification in microwave traveling wave tubes, our three­

component eigenmode expansion provides a new unified and systematic approach to the 

analysis of mode formation and propagation in unsaturated FEL amplifiers and oscillators. 
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" 

Appendix A: Orthogonality and Normalization for the Continuous Modes 

In this appendix we prove the orthogonality and normalization of the eigenmodes in the 

continuum. It is noted that the orthogonality of the eigenmodes depends on a line integral 

Eq,(36) at infinitely large radial distance. Far outside of the electron beam, the mode 

equation Eq.(l6) is the same as the following: 

(AI) 

Denoting by A, f and A', f' two solutions of the above equation, an integral relation can be 

formed as: 

(A2) 

The LHS of Eq.(A2) is a line integral at infinite radial distance which should be identical to 

Eq.(36) , Then by Eq,(35), we have: 

(A3) 

Equation (AI) has well-known Bessel function solutions, thus we can evaluate the RHS of 

Eq,(A3), yielding: 

21t ~ 

< f/)..,> = f f Jo(Kr) JO(K'r)rdrdq>= 2: 15(K- K') , 

o 0 

where K 2 = A + v, It is easy to verify 

15(K - K') = 215(A _ A') . 
K 

Therefore the orthonormalization for the continuous modes is: 
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Appendix B: The Continuous Mode Are Not Bound 

It is shown in this appendix that a mode with a real propagation constant can not be 

bound. We prove this by first assuming the mode is confined, and then showing the 

contradiction the assumption would lead to. 

MUltiplying Eq.(l6) by g* and integrating over the transverse plane, we have: 

J} + vt.? - Qt.? - L = 0 

where 

and 

Equation (Bl) can be written as 

L 
A+V=A2 + Q · 

, (Bl) 

(B2) 

(B3) 

(B4) 

It follows from Eq.(B4) that A + v must be a positive quantity, since L > 0, Q > 0 and A is 

real. 

On the other hand, the mode equation (16) has an asymptotic solution far outside the 

electron beam 

g ~ J2I1C1crexp(iKr-irc/4) (BS) 

where K = Y A + v . The mode is confined only if it decays exponentially at large radial 

distances . For real A, this requires A + v < 0 as seen from Eq.(BS). This requirement is not 

consistent with Eq.(B4). 
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We thus conclude that a mode with a real propagation constant can not be bound, and 

that the possible values of A. fall into a continuous range due to the relaxation of the 

boundary condition on g at r = 00. 
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