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 In integrated photonics, most fundamental device functionalities rely on nonlinear 

or electro-optic phenomena, and optical waveguides with higher second- and third-order 

nonlinear coefficients are generally desirable for high-efficiency modulators and 

wavemixers. Silicon, despite being a material of interest due to its prevalence in the 

electronics industry, intrinsically lacks a second-order nonlinear susceptibility, so a great 

deal of work in the literature has been focused on circumventing this shortcoming by 

either (1) relying instead on free-carrier plasma dispersion or (2) generating strain-

induced second-order effects. This dissertation focuses primarily on providing a 
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comprehensive study of the nonlinear effects in silicon waveguides, with the intent of 

determining which phenomena and consequent waveguide designs are the most desirable 

for achieving modulation and wavemixing, respectively. A detailed analysis is 

additionally applied to the integration of silicon with other media with favorable optical 

properties, with the goal of designing hybrid waveguides with enhanced nonlinear 

coefficients. Electro-optic and wavemixing measurements are performed using 

combination fiber, integrated, and free-space optical setups, and the experimental data 

show conclusively that conventional silicon waveguide topologies may be modified to 

improve the performance of modulators and wavemixers in terms of (1) energy 

efficiency, (2) device footprint, and (3) speed. This work is intended to contribute to the 

study of nonlinear integrated photonics, ideally advancing the ongoing assimilation of the 

field by electronics and leading to the eventual design of hybrid photonic-electronic 

circuits.
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Chapter 1: 

Introduction 

1.1: The Current State of Silicon Photonics 

Since the initial discovery of silicon’s transparency beyond wavelengths of 1.2 

µm, this cheap, readily available semiconductor has been generally accepted as an ideal 

candidate for the guiding of light in photonics circuits, particularly in the 

telecommunication C-band ranging from 1530 to 1565 nm [1]. The field of integrated 

photonics was established with silicon at its heart in the mid 1980’s [2,3], and research 

from that point onward has been focused on the optimization of silicon waveguides in 

terms of (1) reducing their propagation loss [4], (2) increasing fiber-to-chip coupling 

efficiency [5,6], (3) controlling wavelength dispersion [7], (4) understanding and 

leveraging multimodal properties [8], and (5) exploring the generation and exploitation of 

different nonlinear optical effects [9]. To date, the vast majority of these topics has been 

exhaustively studied, and the performance of silicon waveguides has steadily improved in 

conjunction with fabrication capabilities and physical intuition [10]. 

One of the most critical obstacles still faced by integrated silicon photonics is the 

improvement of optical modulators and switches. Modulation of light has historically 

been achieved in silicon waveguides through the free-carrier plasma dispersion effect 

[11-13], in which deviations in the concentrations of electrons and holes in silicon lead to 

changes in both the real and imaginary parts of the material’s index of refraction. The 

most critical metric for an optical modulator is the switching voltage, defined here as the
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energy required to turn transmission through an optical device from “on” to “off,” or vice 

versa, and modulation based on the free-carrier plasma dispersion effect has been shown 

to have switching energies as low as 7.5 mV/bit [12]. A second important metric called 

the modulation bandwidth determines the maximum frequency at which switching may 

be performed, and consequently sets a limit on the amount of data which may be encoded 

into the optical regime via an applied voltage. For the free-carrier plasma dispersion 

effect, roll-off generally occurs beyond 1 GHz [14]. 

In order to increase this second figure of merit, some work over the past decade 

has focused on generating and leveraging second-order optical nonlinearities in silicon 

through strain-engineering [15,16]. The Pockels effect, which can be used in 

interferometric structures to achieve electro-optic modulation, is known to have a faster 

response time than the free-carrier plasma dispersion effect, and can therefore achieve 

higher bandwidths [17]. Because of this, the realization of a Pockels effect-based 

modulator in strain-engineered silicon, which will be discussed in greater detail in 

Chapter 2, is obviously desirable. However, recent studies suggest that the generation of 

this effect in semiconductors may not be as straightforward as initially anticipated [18-

20]. This dissertation will discuss the complicating effects which exist in this field of 

study, in addition to designing and testing new waveguide designs based on a more 

complete understanding of silicon’s nuanced electro-optic responses to applied bias 

voltages and currents. 

A second critical device functionality, wavemixing, is used in integrated photonic 

circuits to increase the number of wavelength data channels and consequently increase 

the data capacity of optical transceivers [9]. Around one central wavelength, degenerate 
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four-wave mixing achieves this functionality by coupling energy from a pump and a 

signal into a third wavelength called the idler [21], and this phenomenon is fairly well-

understood in silicon [22]. However, many applications additionally require photonic 

circuits to generate optical power in distinct telecommunication bands, and this is most 

readily achieved through such second-order wavemixing phenomena as second-harmonic 

generation [23]. Again silicon’s lack of a second-order nonlinearity becomes problematic, 

but strain-engineering may serve here as well to remove the material’s shortcoming. 

Several demonstrations of second-harmonic generation in silicon suggest that, for this 

particular application, asymmetric strain does show potential, but again there are other 

complicating effects at work as well [24,25]. In the context of wavemixing, just as in 

modulation, this dissertation aims to decouple the effects involved and determine an ideal 

waveguide design for the task at hand. 

If complementary metal-oxide-semiconductor (CMOS) fabrication allows [26], it 

may additionally be beneficial to combine other media with silicon for the design of 

nonlinear hybrid waveguides. The benefits of such waveguides would be that they could 

leverage silicon’s transparency and high index of refraction for the purposes of guiding, 

while additionally making use of the potentially preferable optical properties of 

dielectrics such as silicon nitride, zinc oxide, titanium dioxide, or aluminum oxide [27]. 

This dissertation will consider the feasibility of such hybrid waveguides, both in terms of 

fabrication and characterization, and will provide a theoretical analysis of their linear and 

nonlinear optical properties for both modulation and second- and third-order 

wavemixing. 
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It is the author’s hope that this dissertation will serve as a comprehensive 

breakdown of both the linear and nonlinear properties of silicon waveguides, in addition 

to introducing prospective waveguide geometries with unique, freely tunable, and 

desirable characteristics. As the demand for highly evolved optical circuits continues to 

grow alongside the field of information technology, it is anticipated that the conclusions 

drawn from this work will become increasingly important to the photonics and 

electronics academic communities as well as their industrial analogues. 

But first, the current chapter aims to introduce the reader to some of the more 

fundamental concepts surrounding silicon waveguides, including (1) the derivation of 

optical modes in transparent media, (2) the coupling of light between waveguide modes, 

and (3) the physics which define the operation of some common device components. A 

brief overview of these topics is essential before moving on to a discussion of the 

nonlinear properties of silicon waveguides, the ways in which they are leveraged, and the 

means which have been developed for their generation and enhancement.
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1.2: Optical Waveguide Modes 

The fundamental relations which govern the properties of electromagnetic waves 

are given by the collectively-named Maxwell’s equations, which came hard-earned 

through years of study and observation during the nineteenth century [28]. These 

equations are given in their differential form as: 

      fD                   (1.1) 

            0B                      (1.2) 

                        
B

E
t


 


                (1.3) 

                  
f

D
H J

t


  


                (1.4) 

where D is the electric flux density in units of Cm
-2

, ρf is the bound charge density in 

units of Cm
-3

, B is the magnetic flux density in units of Wbm
-2

, E is the electric field in 

units of Vm
-1

, H is the magnetic field in units of Am
-1

, and Jf is the free electrical current 

in units of Am
-2

. In these equations, the magnetic and electric fields and flux densities are 

additionally related as: 

               D E                  (1.5) 

                    B H                    (1.6) 

where ε and µ are the permittivity and permeability of the medium under consideration. 

Now let us assume that an electromagnetic field propagates along one direction, 

say the z-axis, and let us additionally enforce that it has a constant shape of varying 
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magnitude along an unperturbed x-y cross-section. Specifically, let us assume the cross-

sectional geometry of a conventional silicon waveguide, shown for reference in Fig. 1.1. 

 

Figure 1.1. Cross-section of a silicon waveguide with arbitrary height 2t and width 2w. 

 

We may then define the vector electric and magnetic fields of the wave, 

respectively, as: 

       ( , , , ) ( , ) j t jkzE x y z t E x y e               (1.7) 

           ( , , , ) ( , ) j t jkzH x y z t H x y e           (1.8) 

where k is the propagation wavenumber and ω is the wave’s angular frequency. The 

wavenumber may be defined in turn as: 

                       
0

2
effk n




            (1.9) 

where λ0 is the free-space wavelength and neff is the effective refractive index defined for 

the wave. By requiring that this proposed solution for the wave adheres to Maxwell’s 

equations, we may derive a relation known as the wave equation, which  relates the 

transverse gradient of the field to its wavenumber based on the medium in which the 
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wave exists and the its angular frequency. This equation may be written for the electric 

and magnetic fields as:  

               
2 2 2( )E k E               (1.10) 

        
2 2 2( )H k H                (1.11) 

 In these expressions, which must hold true in each of the constituent media in 

which the wave exists, ∇⊥ represents the transverse gradient. Despite the fact that ε 

changes value between silicon and silicon dioxide, k must remain constant for a given 

solution, and this requires the transverse distributions of the electric and magnetic fields 

to have specific functional forms in each of the media under consideration. In regions 

where ω
2
µε-k

2
 is positive, the electric and magnetic fields have solutions of the general 

form:  

                    1 1 1 1, cos sin cos sinx x y yE x y A x B x C y D y          
    (1.12) 

                   2 2 2 2, cos sin cos sinx x y yH x y A x B x C y D y          
   (1.13) 

where βx and βy are the transverse wavenumbers in the x- and y-direction, respectively, 

and the capitalized variables are arbitrary scaling coefficients. In this case, it is necessary 

that βx
2
+βy

2
+k

2
=ω

2
µε. On the other hand, in regions where ω

2
µε-k

2
 is negative, the 

solution instead takes the general form: 

                     
( ) ( )( ) ( )

1 1 1 1, y yx x
y h y hx t x t

E x y Ae B e C e D e
               

    (1.14) 

                    
( ) ( )( ) ( )

2 2 2 2, y yx x
y h y hx t x t

H x y A e B e C e D e
               

     (1.15) 

where αx and αy are the attenuation coefficients in the x- and y-direction, respectively, 

and t and h are the cross-sectional dimensions of the structure as shown in Fig. 1.1. In this 
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case, it is necessary that -αx
2
-αy

2
+k

2
=ω

2
µε. It is important to note that, in each of the nine 

regions shown in Fig. 1.1, the variables A1 through D2 are independently redefined to 

adhere to Maxwell’s equations. 

 The number of solutions which satisfy the previously outlined conditions will 

change depending on (1) the permittivities and permeabilities of the media under 

consideration, and (2) the dimensions of the silicon region in Fig. 1.1. Finite-element 

method (FEM) software such as Comsol may be used to derive the solutions to these 

equations numerically, and Fig. 1.2 plots the effective indices of the solutions against the 

variable 2t, assuming a 2h=250 nm-tall waveguide composed of silicon, an infinitely 

extending cladding in each direction of silicon dioxide, and a free-space wavelength of 

1.55 μm [29]. 

 

Figure 1.2. Effective indices of the different modes supported by a 250 nm-tall silicon waveguide with silicon dioxide 

cladding, as a function of the waveguide width. The horizontal dashed line represents the cutoff effective index, below 

which guided modes are not supported. 
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Fig. 1.2 shows data for two modes, identified here as TE00 and TM00, which will 

be supported for infinitely small waveguide dimensions, whereas the higher-order modes 

only appear after certain cutoff dimensions are reached. TE00 and TM00 are typically the 

only two modes which are of interest in integrated silicon photonics, as they may be 

easily coupled into and out of via lensed tapered optical fibers [6]. As a result, the widths 

of silicon waveguides are generally maintained at values less than 400 nm, especially 

across regions at which coupling among modes may occur, in order to limit operation to 

these two modes of interest.
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1.3: Mode Coupling 

 In this section, the theory of mode perturbation which leads to coupling either 

within or among waveguides will be briefly reviewed in the context of a 250 nm-tall, 500 

nm-wide waveguide, in which only the TE00 and TM00 modes are supported. This 

analysis, which dates back over 50 years [30,31], is critical to the design of waveguide 

gratings and couplers [32], Bragg resonators [33], Mach-Zehnder interferometers [34], 

and ring and racetrack resonators [35], among many other device components in 

integrated photonics. 

 Likely the most straightforward instance in which coupling occurs is the case in 

which two waveguides are placed in close proximity to one another, as shown in Fig. 

1.3a. If the modes of one waveguide overlap significantly with those of the other, we may 

instead think of the two as a new, combined waveguide which supports its own 

“supermodes” [36]. The two TE-like supermodes supported by the structure in Fig. 1.3a 

are shown in Fig. 1.3b and Fig. 1.3c, assuming a separation between two 500 nm-wide 

waveguides of 150 nm, and these are known as symmetric and antisymmetric 

supermodes, respectively.
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Figure 1.3. (a) A codirectional coupler, consisting of two silicon waveguides placed in close proximity. (b,c) Vertical 

electric field component of the (b) symmetric and (c) antisymmetric TM-like supermodes supported by the coupling 

section. 

 

Let us assume (1) that the two waveguides under consideration are initially far 

away from one another and are gradually brought close together, and (2) that only the 

TM00 mode of one of the waveguides has been excited at the input. For this case, 

illustrated in Fig. 1.3a, we may decompose the input mode into a linear combination of 

the supermodes supported by the coupled waveguide system. In other words, half of the 

input field’s energy will couple into the symmetric TM-like supermode, whereas a 

second half will couple into the antisymmetric TM-like supermode. Because the two 
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supermodes propagate with different wavenumbers defined by their dissimilar indices of 

refraction, listed in Fig. 1.3b and Fig. 1.3c, they will gradually move out of phase relative 

to each other, and when the waveguides are eventually moved apart, the interference of 

the two supermodes with one another will determine the splitting ratio of energy between 

the two waveguides. 

Fig. 1.4 shows the results of several two-dimensional FEM model intended to 

illustrate this effect, clearly showing that for certain coupling lengths, 100% of the energy 

contained in the input mode may be coupled from the upper waveguide to the lower one. 

The shortest length for which this occurs may be calculated based on the phase mismatch 

between the two supermodes as: 

                     
 

0

2
c

sym antisym

L
n n





         (1.16) 

where nsym and nantisym are the effective indices of the symmetric and antisymmetric 

supermodes, respectively. As the two waveguides are moved closer together, the index 

mismatch between the asymmetric and symmetric supermodes increases, and the 

coupling length Lc consequently decreases. Naturally, this type of coupling becomes 

more complicated when, for example, the two waveguides are not the same width or 

height, but a discussion of this distinction is not necessary for the purposes of this 

dissertation, and may be readily found in the literature [37]. 
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Figure 1.4. Codirectional coupling between 500 nm-wide, 250 nm-tall waveguides separated by (a) 150 nm, (b) 200 

nm, and (c) 250 nm.
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1.4: Resonant Waveguides 

Even within a single waveguide, any perturbation to the waveguide cross-section 

may additionally cause modes to exchange energy with one another. For this type of 

coupling, it is beneficial to formally introduce the theoretical approach commonly 

referred to as the coupled mode theory [30,31]. As an example, we may consider the 

structure shown in Fig. 1.5a, in which the sidewalls of a waveguide are periodically 

moved either closer to or farther away from its center. Devices which rely on periodic 

modulation to achieve reflection are known as distributed Bragg reflectors (DBR's) [38]. 

The modes supported by the uncorrugated waveguide, defined generally by Eq. 

1.7 and 1.8, satisfy Maxwell’s equations as: 

                    
 m

m

jk z

mjk z

m

E e
H e

t







 


      (1.17) 

                    
 m

m

jk z

mjk z

m

H e
E e

t







 


      (1.18) 

where m is used to distinguish between the different supported modes. The perturbation 

by the sidewall modulation presents to the normal waveguide cross-section may be 

incorporated into Maxwell’s equations as a position-dependent deviation from the linear 

polarization with which the supported fields interact [39]. The fields in the presence of 

this perturbation must then satisfy: 

                          
E P

H
t t


 

  
 

          (1.19)
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H

E
t




 


          (1.20) 

By combining Eq. 1.17-1.20, we can obtain:        

            
* * *

m m mjk z jk z jk z

m m mE H e E e H i E e P  
           (1.21) 

and integrating 1.21 over the entire x-y cross-section further yields: 

           
* * *

, ,
m m mjk z jk z jk z

t t m t m t mE H e E e H dxdy i E e Pdxdy
z




     
     (1.22) 

 An important assumption to make at this point is that the perturbation presented 

by the sidewall modulation is sufficiently weak that the total field at any point may still 

be treated as a linear combination of the unperturbed modes: 

                                          ,( , , ) mjk z

t m t m

m

E x y z A E e


         (1.23) 

                                         ,( , , ) mjk z

t m t m

m

H x y z A H e


         (1.24) 

 Applying these definitions of the total field to Eq. 1.22 and exploiting the 

orthonormality of the modes then provides us with a fairly explicit equation defining the 

spatial evolution of the amplitude of mode m: 

                         * mjk zm
m

A
i E e Pdxdy

z



  

          (1.25) 

 The perturbing polarization caused by the corrugation may be written as: 

                           mjk z

m

m

P E E e  
              (1.26) 

and combining this with Eq. 1.25 yields: 

                             
( )m nj k k zm

mn n

n

A
i A e

z
 

 


             (1.27) 



16 
 

 
 

                            *

mn m nE E dxdy                        (1.28) 

 To illustrate this point, again consider the silicon waveguide grating illustrated in 

Fig. 1.5a. For this particular device component, the index perturbation contains a 

complex term of the form j ze  , where Λ is the period of the modulation. When the 

wavelength of light is such that: 

          
2

2m m mk k k


  


       (1.29) 

Eq. 1.27 becomes purely imaginary, and energy is coupled coherently from the forward-

propagating m
th

 mode into the same mode propagating in the reverse direction. Because 

this phase-matching condition can only be obtained for one wavelength with a single 

grating period, the transmission spectra of these sidewall-modulated couplers, known 

commonly as Bragg gratings [40], strongly reflect light within their stopbands, and 

transmit data at other wavelengths. The transmission spectrum of the fundamental TE-

like mode for the grating in Fig. 1.5a, generated used the finite-difference time-domain 

(FDTD) software Lumerical [41], is shown in Fig. 1.5b to elucidate this point. 

 Coupling between the supported modes of waveguides will occur, in general, any 

time a perturbation is presented to the waveguide geometry, and coupled mode theory is a 

powerful tool in determining how and between which modes coupling will occur. In the 

next section, some of the basic components which are employed in nonlinear photonic 

devices will be discussed, bearing in mind the broad review of coupled-mode theory 

presented here. 
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Figure 1.5. (a) Illustration of a Bragg grating in a 250 nm-tall silicon waveguide. (b) Transmission spectrum for a 25 

µm-long grating with the specifications given in (a). 
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1.5: Interferometers and Resonators 

 In the field of integrated optics, a vast majority of electro-optic modulators rely on 

either a Mach-Zehnder interferometer [34], a ring resonator [13], or a Bragg resonator 

configuration. This is because, in any of the three cases, the optical power transmitted 

through the device is highly dependent on the refractive index of the guided modes of the 

constituent waveguides, as well as the optical wavelength. This allows small 

perturbations to the effective index to lead to large changes in the transmitted power, 

reducing the energy required to encode data from the electrical domain into the optical 

domain. Ring resonators and Bragg resonators find additional use in wavemixing 

applications because they increase the modal amplitude, consequently improving the 

conversion efficiency for adiabatic processes [42,43]. Here we will explain the operation 

of each of these important device topologies, paving the way for the theoretical and 

experimental analyses of nonlinear silicon waveguides which will be presented in 

subsequent chapters.



19 
 

 
 

1.5.1: Mach-Zehnder Interferometers 

 Mach-Zehnder interferometers are relatively straightforward device components 

in which the power of an input waveguide is split into two separate arms. These arms are 

recombined some distance later, and the differences in phase between the optical wave 

fronts they contain lead to an interference which translates to changes in the transmitted 

power. Below, Fig. 1.6 illustrates the basic layout of a Mach-Zehnder interferometer, in 

which codirectional couplers have been employed to redistribute the power propagating 

within the two input waveguides. 

 

Figure 1.6. (a) Schematic of a waveguide Mach-Zehnder interferometer employing two codirectional couplers. (b) 

Transmission spectrum of the interferometer, assuming L1=400 µm, L2=600 µm, a 50% splitting ratio for both 

couplers, and Pout,2=0 W.
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 The transfer matrix for a symmetric codirectional coupler may be found, through 

a treatment similar to that provided in Chapter 1.1, to be [44]: 

                               
   

   
1, 1,

2, 2,

cos sin

sin cos

o ic c

o ic c

E EL i L

E Ei L L

 

 

    
     

    
        (1.30) 

where κ is the coupling coefficient between the two waveguides and Lc is the length over 

which they are coupled. For the two arms of the interferometer, the transfer matrix is 

given as: 

                                

1

2

2

1, 1,

2
2, 2,
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



 
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    
    

 

        (1.31) 

The transfer matrix of the second codirectional coupler is the same as that of the 

first. Taking the product of these three transfer matrices, making the important 

assumption that the codirectional couplers are 3 dB couplers, we define the transfer 

matrix of the total system as: 

       

1 2 1 2

1 2 2 1

2 2 2 2

1, 1,

2 2 2 2
2, 2,

1

2
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eff eff eff eff
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E E
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   

   

   

   
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  
    

      
      
       

    
  

   (1.32) 

 Using Eq. 1.32 and assuming that (1) there is no input power in waveguide two 

(2) L1=400 µm and L2=450 µm, and (3) neff=2.5, we may then generate the transmission 

spectrum shown in Fig. 1.3b. For a more accurate result, it is additionally necessary to 

take into consideration the wavelength dispersion of κ and neff, but for the purposes of 

this work, the simplified treatment given here is sufficient. 
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 We see from Fig. 1.3b that the transmission spectrum of the interferometer 

exhibits sharp periodic dips and rises, making it a strong candidate for electro-optic 

modulation. If we assume several different values of the modal effective index, we may 

see how the transmission at a single wavelength changes in response to the waveguide’s 

optical properties. This effect is shown in Fig. 1.7, which plots the transmission spectra 

for several different values of the effective index. It is generally necessary for Mach-

Zehnder modulators to be very long, on the scale of 1 mm or more, to have dips in 

transmission with slopes comparable to those exhibited by resonant cavities. 

 

Figure 1.7. Transmission spectra for Mach-Zehnder interferometers with different effective indices. 
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1.5.2: Ring Resonators 

 Put simply, a ring resonator is a waveguide made into a closed loop, placed close 

enough to a second waveguide to exchange energy with it. A schematic of one such 

device is shown in Fig. 1.8. 

 

Figure 1.8. A ring resonator coupled to a bus waveguide. The cross- and self-coupling coefficients are labeled along 

with the input and output electric fields. 

 

A fraction of the light propagating through the straight waveguide, known as the 

bus, will be transferred to the ring when the two waveguides approach one another, as 

discussed in the previous chapter. In order to maintain reciprocity and energy 

conservation, the transfer matrix of the coupling section may be defined as: 

                          1, 1,

* *
2, 2,

out in

out in

E Et

E Et





    
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    

        (1.33)
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where κ and t are known as the cross- and self-coupling coefficients, respectively, which 

are in turn related by: 

                            2 2 1t                 (1.34) 

Within the ring, we may assume that the optical mode’s amplitude is attenuated 

by a factor τ, and that it accrues a phase shift θ. In this case, we may relate the field E2,in 

to the field E2,out as: 

                                   2, 2,

j

in outE E e             (1.35) 

where the phase change may in turn be defined as: 

                                     
0

2
effn L





            (1.36) 

In this expression, λ0 is the free-space wavelength, neff is the effective index, and 

L is the length of the ring. If we now consider a single propagating wavefront and sum 

the energy coupling into the bus waveguide from each round-trip within the ring, the 

transmitted power may be written as: 

                   
2 2 2 2 2 2 3 3 2 3 4 4

1, ...j j j j

outE t e t e t e t e                    (1.37) 

or more simply, as: 

                     2

1,

0

n

j j
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n

E t e t e   




           (1.38) 

 We have identified an infinite geometric sum in this expression, and through a 

few lines of algebraic simplification we may arrive at the following expression for the 

transmitted power: 
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 For certain wavelengths, the round-trip phase shift for the ring will be an integer 

multiple of 2π. When this condition is satisfied, there will be purely destructive 

interference at the output of the bus waveguide, leading to a sharp drop in the transmitted 

power and a dissipation of light into the ring’s cladding material. This is shown in Fig. 

1.9a, which plots the transmitted power as a function of wavelength assuming a ring 

radius of 40 µm, an effective modal index of 2.5, a t of .95, a κ of .3122, and a τ of .95. 

Because t and τ are equivalent, there is absolutely no on-resonance transmission, and this 

condition is known as critical coupling. As these two values become more dissimilar, the 

minimum transmitted power will increase away from zero. 

 Fig. 1.9b illustrates how small changes in the effective modal index of the 

waveguide lead to significant changes in the transmitted power at a single wavelength. 

The means by which these changes occur will be discussed in greater detail in Chapter 2, 

but this provides a first look at how electro-optic modulation may occur in ring 

resonators. Specifically, the change in the resonant wavelength may be related to the 

change in an optical mode’s effective index as [45]: 

                                         
eff

res res

g

n

n
 


                      (1.40) 

where λres is the resonant wavelength and ng is the group index of the mode, defined in 

turn as [46]: 

                                         eff

g eff

dn
n n

d



                      (1.41) 
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Figure 1.9. (a) The theoretical transmission spectrum of a ring resonator coupled to a bus waveguide. (b) Several 

different transmission spectra, showing how the resonant wavelength of a ring resonator changes with the effective 

modal index. 

 

For the purposes of electro-optic modulation, the only other critical factor to 

consider is the photon lifetime within the ring, which determines the maximum rate at 

which the transmission may be modulated. This term is defined as [13]: 

                           0

2
p

Q

c





             (1.42) 

where Q is the resonator’s quality factor [45]: 

                          
0

3dB

Q






            (1.43) 

In Eq. 1.43, Δλ3dB is the 3 dB-bandwidth of the resonance, or the wavelength span 

over which the transmission through the bus waveguide is less than half of its off-

resonance value. In the literature, Q-factors as high as 10
6
 have been demonstrated for 

ring resonators, and values such as these naturally correspond to incredibly low switching 

energies [47]. 
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 In the context of wavemixing, it is also worth noting that the field propagating 

within the ring resonator may be drastically enhanced at its resonant wavelengths. 

Revisiting our theoretical treatment from Fig. 1.6, we may write the field leaving the 

ring’s coupling section as: 

                   
2 2 2 3 3 3 4 4 4

2, ...j j j j

outE t e t e t e t e                      (1.44) 

 Again, we see that there is an infinite geometric sum in this expression, and a 

similar treatment to that which led to Eq. 1.39 yields the following expression for the 

modal amplitude within the ring: 
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1 2 cos
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
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 
          (1.45) 

 This term is plotted for the same ring resonator under consideration in Fig. 1.7, 

and as Fig. 1.10 clearly shows, the modal amplitude within the ring can be significantly 

larger the corresponding value at the input of the bus waveguide. This is hugely 

beneficial in the context of wavemixing, and this effect will be discussed in greater detail 

in Chapter 2. 

 

Figure 1.10. Wavelength-dependent field amplitude in a ring resonator, normalized to the input mode amplitude. 
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 For some applications, it is desirable to include a drop port to the ring resonator, 

as shown in Fig. 1.11a. In this case, a similar analysis to that which produced equations 

1.34 through 1.45 yields the following expressions for the power in the through port, the 

power in the drop port, and the field within the resonator, respectively: 
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 For the same conditions as those considered for the ring resonator without the 

drop port, these three values are plotted as a function of the optical wavelength in Fig. 

1.11b-1.11d. 
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Figure 1.11. (a) Schematic of a ring resonator coupled to both an input waveguide and a drop-port waveguide. (b-c) 

Wavelength dependence of (a) the power transmitted through the bus waveguide (b) the power coupled into the drop-

port, and (c) the modal amplitude within the ring. 

 

 Modulation of the effective index has identical effects in ring resonators with and 

without drop ports, acting in both cases to shift the optical resonances to either shorter or 

longer wavelengths. However, coupling from the resonator to the drop port generally 

reduces the Q-factor of a ring by introducing a new source of loss. For the purposes of 

modulation, drop ports increase the switching voltage and are therefore undesirable.



29 
 

 
 

1.5.3: Bragg Resonators 

  Similarly to ring resonators, Bragg resonators impose a strong spectral 

dependence on the power transmitted through a waveguide by folding the optical path 

over a single area and forcing light to interfere with itself. In Chapter 1.4 we introduced 

the Bragg grating, also known as the DBR, which couples energy among a waveguide’s 

modes by introducing periodic perturbations to its cross-section. Bragg gratings may be 

used to achieve reflection with arbitrarily high extinction ratios, and when two gratings 

are placed in series within the same waveguide as illustrated in Fig. 1.12a, an optical 

cavity, or etalon, is created between them. The round-trip path length of the cavity is then 

2L, where L is the distance separating the two gratings. Qualitatively, we may consider 

transmission through this resonator by considering three distinct wavelength regimes. 
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Figure 1.12. (a) Overhead schematic of a Bragg resonator, consisting of two Bragg reflectors and a cavity. (b) 

Transmission spectrum of a 20 µm-long Bragg resonator, showing three optical resonances within the gratings’ 

stopband (illustrated by dashed vertical lines). 

 

In the first of these, the optical mode’s propagation constant does not satisfy the 

conservation of momentum condition for the gratings. Consequently, the gratings do not 

interact with the mode, and no reflection occurs. Within the so-called stopband, however, 

the gratings reflect the optical mode, and we must consider the effects of the cavity 

between them. For wavelengths at which the round-trip path length of the cavity is an 

integer number of guided wavelengths, the wavelets escaping from the cavity interfere 

coherently with one another, leading to high transmission. When this condition is not 

satisfied, however, the transmitted power reduces drastically and energy is instead 

reflected into the counter-propagating mode. We can model a Bragg resonator using the 

finite-difference time-domain software Lumerical, and if we assume two gratings 
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identical to the one considered in Chapter 1.4, as well as a 20 µm cavity length, the 

resulting transmission spectrum is as shown in Fig. 1.12b. 

The free spectral range (FSR) and Q-factor of the cavity’s resonances decrease 

and increase, respectively, as the cavity length is increased, and the Q-factor increases 

independently of the FSR as the grating length is increased. Bragg gratings are 

comparable to ring resonators for the purposes of electro-optic modulation, assuming a 

voltage may be applied across them in an efficient manner, and as we will show in 

Chapter 3, emerging waveguide designs combined with Bragg resonator topologies show 

potential for some of the most promising modulation configurations to date. 

But before this work can be discussed, the next chapter will begin a more 

involved discussion of how some of the more fundamental changes to a silicon-based 

waveguide’s supported optical modes may occur. Additionally, special attention will be 

paid to the potential for second-order wavemixing to occur in silicon and CMOS-

compatible waveguides, based on an effect known commonly as electric field-induced 

second-harmonic generation (EFISH).
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Chapter 2: 

Nonlinear and Electro-Optic Effects 

In this chapter we will discuss three optical effects which are of particular interest 

for telecommunications applications. Two of these, the Pockels effect and second-

harmonic generation, are based on second-order optical nonlinearities, whereas the third, 

free-carrier plasma dispersion, is a result of the free charge carriers present in 

semiconductors. 

Both the Pockels effect and the free-carrier plasma dispersion effect result in 

changes in the real part of a material’s refractive index, making them appealing for 

electro-optic modulation, but because both effects are present to some degree in 

noncentrosymmetric semiconductors, it can be challenging to experimentally disentangle 

the two. In previous work, researchers have attempted to characterize the Pockels effect 

in strained silicon waveguides while neglecting the free-carrier effect [1-3], but this is 

now known to have led to significant inaccuracies in the reported nonlinear coefficients. 

More recent research has confirmed that, even in semiconductor waveguides which do 

possess second-order nonlinear coefficients, electric field screening disables modulation 

based on these coefficients. As this chapter will show, it is now apparent that free-carrier 

plasma dispersion is the dominant effect in the electro-optic behavior of semiconductor 

waveguides. 

Second-harmonic generation, an effect not immediately relevant to electro-optic 

modulation, is an additional second-order nonlinear effect which allows for wavelength 

multiplexing in telecommunications applications. The effect, which will be explained, 



37 
 

 
 

couples energy among different wavelengths of light, potentially allowing for data to be 

replicated at different carrier wavelengths. Because second-order effects such as the 

Pockels effect and second-harmonic generation often go hand in hand, it is 

straightforward to extend our analysis of  semiconductor waveguides beyond modulation, 

additionally considering the potential for nonlinear wavemixing in the same or similar 

structures.
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2.1: The Pockels Effect 

 As discussed in Chapter 1.2, waveguide configurations which exhibit sharp 

spectral dips in transmission may be utilized to achieve electro-optic modulation, but this 

is only true of the material used to guide the optical mode possesses certain desirable 

characteristics. Here we will consider the Pockels effect, which occurs in materials 

possessing nonzero second-order nonlinear coefficients, defined commonly by the 3x3x3 

χ
(2)

 tensor. 

 In general, the second-order polarization resulting from an electric field in a 

nonlinear material may be written as [4]: 

                                  (2) (2)

0

,

i ijk j k

j k

P E E                (2.1) 

where χ
(2)

ijk is the ijk
th

 component of the material’s χ
(2) 

tensor, and Ej and Ek are the j and 

k components of the generalized electric field within the material, respectively. For 

simplicity’s sake, let us assume that the electromagnetic field propagating through the 

material only possesses a component along the x-direction. If we now define a DC bias 

field applied in second direction, taken here to by the y-direction, the second order 

polarization may be written fully as: 
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            (2.2) 

 Then, by including the nonlinear polarization as a modification to Eq. 1.5, we 

obtain the following relation defining the material’s permittivity:
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Assuming the material is isotropic and lossless, we may expand Eq. 2.3 into 

matrix form as: 
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      (2.4) 

 Looking more closely at the x-component of this equation, and more completely 

specifying our electric field components, we have: 

                  (2)

, , , , , ,2xx x opt xy y DC o r x opt y DC o xxy x opt y DCE E E E E E               (2.5) 

and considering only the components of Eq. 2.5 which vary at the optical frequency, this 

becomes: 

                            (2)

, , ,2xx x opt o r xxy y DC x optE E E                 (2.6) 

 It is immediately apparent from Eq. 2.6 that the material’s second-order 

polarization has in this case led to a change in the value of εr,x, the x-component of the 

material’s relative permittivity tensor. Through a few steps of algebra, we may further 

express the change in the x-component of the material’s index of refraction as: 
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,xxy y DC

x

x

E
n

n


                   (2.7) 

 This important phenomenon, known commonly as the Pockels effect, shows how 

materials with second-order nonlinearities may be used to modulate the flow of light in 

integrated waveguides. By applying properly oriented bias voltages across either 

interferometric or resonant structures such as those discussed in Chapter 1.4, the optical 
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power transmitted through a waveguide may be modulated via a change in the refractive 

index. 
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2.1.1: The Implications of Symmetry 

In the context of silicon, however, there are two distinct problems which prevent 

the Pockels effect from occurring. First, let us consider inversion symmetry, an important 

property in determining whether or not a material will be suitable for electro-optic 

modulation. If a material is said to possess inversion symmetry, it may be inverted about 

the x-, y-, and z-axes, taking some point as the origin, without changing the positions of 

its constituent atoms. This concept is illustrated conceptually in Fig. 2.1. 

 

Figure 2.1. Conceptual illustration highlighting the fundamental difference between non-centrosymmetric (top) and 

centrosymmetric (bottom) materials. The blue circles represent atoms. 

 

The transformation matrix corresponding to the inversion may be written as: 
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 Let us again consider the second-order polarization arising from an interaction 

between the material’s as-of-yet undefined χ
(2)

 tensor and a generalized electric field, 

defined in Eq. 2.1. By explicitly writing out the summation, as opposed to the performing 

the more simplified treatment done previously, we may write the total second-order 

polarization as: 
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 If we now assume that the material under consideration is invariant under the 

inversion transformation, we may alternatively represent the electric fields in the 

transformed coordinate system while leaving the χ
(2)

 tensor unchanged, perform the 

summation to obtain the second-order polarization in the transformed coordinate system, 

and transform the result back to the original coordinate system. The result, by definition, 

should be equivalent to Eq. 2.3. This second representation of the second-order 

polarization may be written as: 
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 In vector form this becomes: 
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     (2.5) 

 However, we can now see that this second expression, which has just been stated 

to be equivalent to the one given in Eq. 2.3, is in fact the negative of it. In order for the 

two terms to be equivalent, every element of the second-order polarization must be zero, 
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and consequently, so too must every element of the χ
(2)

 tensor equal zero. What we have 

just shown, put simply, is that centrosymmetric materials, which possess inversion 

symmetry, intrinsically lack second-order nonlinearities. Silicon possesses the diamond 

lattice illustrated in Fig. 2.2, which does exhibit centrosymmetry, and because of this, the 

Pockels effect cannot occur in silicon. 

 Over the past decade, however, a significant amount of research has been done in 

the field of integrated silicon photonics exploring the possibility to deform silicon in an 

asymmetric way, thereby removing its centrosymmetry [1-3]. Theoretically, this is 

predicted to reduce the number of elements in the χ
(2)

 tensor which are identically 

required to equal zero. Consider, for example, the two unit cells of silicon’s lattice shown 

in Fig. 2.2. The unstrained case may be inverted about all three axes, taking the point 

halfway between any adjacent silicon atoms as the origin, without moving atoms to 

positions which were not previously occupied by the same atom. 

 

Figure 2.2. Single unit cell of (a) unstrained and (b) strained crystalline silicon. Blue, red, and green circles represent 

silicon atoms at corners, faces, and the interior of the cell, respectively. Gray lines represent some key Si-Si bonds, for 

clarity. The directions of strain are indicated by black arrows in (b). 
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For the strained case, however, this is no longer true. Here, the material’s 

centrosymmetry has been reduced to a weaker, rotational symmetry about the z-axis, as 

illustrated in Fig. 2.2b by the red vertical line. The transformation matrix corresponding 

to this new symmetry is given as: 

                                    

1 0 0

0 1 0

0 0 1

M

 
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             (2.6) 

 If we now represent the second-order polarization using Eq. 2.6 in place of Eq. 

2.2, we may write it as: 
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     (2.7) 

In this case there are four unique components of the χ
(2)

 tensor, χ
(2)

xxz, χ
(2)

yyz, χ
(2)

xyz, and 

χ
(2)

zzz, which are no longer required to equal zero. In coming to this conclusion, we have 

made use of Kleinman symmetry [4], which states that permuting the indices of a χ
(2)

 

tensor element will not change its value, assuming the value is considered to be a 

nonresonant one. In other words, deforming silicon generates nonzero second-order 

nonlinearities within the material, potentially allowing it to exhibit the Pockels effect for 

electro-optic modulation. 

 In past work, we have attempted to characterize some of the components of the 

nonlinear susceptibility tensor by applying vertical bias voltages across waveguides 

composed of strained silicon [5]. Fig. 2.3a shows an SEM image of the edge of a silicon 

waveguide clad with compressively stressed silicon nitride, fabricated in the CalIT2 

cleanroom facility at UCSD. The compressive stress in the nitride causes it to expend, 
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and although the bottom of the silicon waveguide is fixed in place by the silicon dioxide 

substrate, the top of the waveguide expands along with the nitride layer, leading to a 

vertical gradient of horizontal stress within the waveguide. Fig. 2.3b plots the simulated 

horizontal strain, generated in Comsol, across the device. 

 

Figure 2.3. (a) SEM image of the edge of a silicon waveguide clad with 150 nm of compressively stressed silicon 

nitride. (b) Horizontal component of strain induced in the silicon waveguide, assuming a value of stress in the nitride 

layer of -1.7 GPa. 

 

 In order to measure the electro-optic effect generated by the applied voltages, we 

fabricated Bragg resonators, as discussed in Chapter 1.5.3. The resonators’ reflectors 

were Bragg gratings consisting of 70 modulation periods, and the resonant cavities were 

100 μm in length. The passive transmission of the TE- and TM-like modes across two 

different resonators, with respective grating periods of 312 and 376 nm, are shown in Fig. 

2.4a. We observed the change in resonant wavelength for the two guided mode, as shown 

in Fig. 2.4b, and by relating our results to a change in the waveguide’s effective modal 

indices, we were able to extract the effective nonlinear susceptibility components χ
(2)

xxy=-

74 pm/V and χ
(2)

yyy=188 pm/V. 
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Figure 2.4. (a,b) Measured transmission spectra of the (a) TE- and (b) TM-like modes across Bragg resonators with 

modulation periods of (a) 312 and (b) 376 nm. (c) Measured electro optic-behavior of the TE- (red) and TM-like 

modes, showing both quadratic and linear components. 

 

 The measured second-order nonlinearities of strained silicon waveguides have 

been steadily increasing, recently reaching values as high as 330 pm/V [6]. Fig. 2.5 plots 

the progress made in the field as a function of time, illustrating this development. Until 

very recently, it seemed as if strained silicon would be a promising platform for electro-

optic modulation based on the Pockels effect. However, as will be discussed in the next 

subsection, there is an additional effect arising from silicon’s nonzero conductivity which 

may have served as a complicating variable in the work done to date.



47 
 

 
 

2.1.2: Electric Field Screening in Semiconductors 

 Silicon is a semiconductor, which means that it has a conductivity between those 

of either insulators or metals, and because of this, electric fields applied across silicon do 

not simply penetrate into the material, and are instead screened out by the displacement 

of holes and electrons typical to semiconductor-dielectric interfaces [7]. In the majority 

of the work done involving strained silicon, however, this important material property 

was not taken into consideration when extracting the material’s second-order nonlinear 

coefficient. More recently, new work has more clearly shown how capacitive free-carrier 

effects impact the properties of semiconductor waveguides [8- 11]. In this section, we 

highlight how difficult it really is to perform electro-optic modulation based on the 

Pockels effect in semiconductor waveguides. 

As an example, let us again consider a silicon waveguide which is 500 nm-tall, 

250 nm-wide, and clad with 1 µm of silicon dioxide. Furthermore, let us assume that the 

silicon is slightly p-type, with a boron dopant concentration of 10
15

 cm
-3

. A voltage may 

be applied vertically across the sample by depositing a metal, say aluminum, on top of 

the cladding layer, then touching electrical probe tips to both this top electrode and the 

silicon handle. This scheme is illustrated in Fig. 2.5a. Using the semiconductor physics 

tool Silvaco [12], we may theoretically predict how effectively the bias electric field 

penetrates into the waveguide. For more accurate simulations it is necessary to take into 

consideration the fixed charges at the semiconductor-dielectric interfaces, but for the 

purposes of this demonstration these values may be set to zero. The results, shown in Fig. 
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2.5b and Fig. 2.5c, confirm the intuitive prediction that the bias electric field does not 

interact strongly with the core of the waveguide. For voltages of either positive or 

negative 10 V, the value of the electric field is drastically reduced within the waveguide 

as opposed to the cladding. Modulation based on the Pockels effect is then clearly 

difficult to realize in silicon, even if a large strain gradient has been introduced. 

 

Figure 2.5. Magnitude of the electric field across a silicon waveguide with a p-type doping concentration of 1015 cm-3, 

assuming applied voltages of (a) positive and (b) negative 10V. 

 

For the same waveguide, we may calculate the change in the effective index of 

the TE-like mode through use of the Soref and Bennett equations, which relate the 

concentrations of free carriers in silicon to changes in the real and imaginary parts of the 



49 
 

 
 

material's index of refraction. At an optical wavelength of 1.55 µm, these are given as 

[13]:                  

            22 3 1.011 18 3 .8385.4 10 1.53 10e hn cm N cm N              (2.8) 

                       21 2 1.167 20 2 1.1098.88 10 5.84 10e hcm N cm N             (2.9) 

where ΔNe and ΔNh are the deviations away from the intrinsic concentrations for 

electrons and holes, respectively. Using these equations, we may generate maps of the 

spatially variant refractive index of the waveguide and, again using the finite-difference 

time-domain solver Lumerical, calculate the effective indices of the waveguide's 

supported modes for each of the applied voltages under consideration. This analysis will 

be performed for more physically realistic waveguide geometries in Chapter 2.3.
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2.2: Second-Harmonic Generation 

 Waveguides with second-order optical nonlinearities exhibit unique effects as 

electromagnetic waves propagate through them. Sum- and difference frequency 

generation are two such effects [4], and second-harmonic generation, the degenerate case 

of sum-frequency generation, is perhaps the most readily understood of these. If we 

assume that a TM-like mode propagates along a waveguide composed of a second-order 

nonlinear material at some fundamental frequency ω, the y-component of the second-

order polarization within the waveguide may be written as: 

                 
2

(2) (2) ( )

0( , , , ) Re ( , ) j z t

yyy yyy yP x y z t E x y e           (2.10) 

This term, proportional to the square of the propagating electric field, contains 

terms at frequencies of 0 and 2ω, and the magnitude of the latter is given as: 

                (2) (2) 2 20
,2 ( , , ) ( , )

2

j z

yyy yyy yP x y z E x y e 




          (2.11) 

If we now include this polarization as a perturbation to the normal modes of the 

waveguide as in Chapter 1.3, we may solve for the spatial evolution of both the pump 

mode and a second TM-like mode at twice the fundamental frequency as: 

                      
** 2 2j zdA

j A z A z e
dz


             (2.12) 

                           
2

2 2j zdA
j A z e

dz


              (2.13) 

where κ is the nonlinear coupling coefficient between the two modes, defined as:
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* 22 (2)0 , , ,

4
yyyE x y x y E x y dxdy 
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and Δ is the phase mismatch, given by: 

                      

2 2

2

  
           (2.15) 

 Finally, the expression for the second-harmonic power, as a function of length, 

may be written as: 

            
 
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2
sin

exp
z

P P z j z
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 

  
 

        (2.16) 

In these expressions, the phase mismatch is arguably the most important term in 

determining what fraction of the pump mode’s power couples into the second-harmonic. 

If the phase mismatch is nonzero, locally generated second-harmonic wavelets will be 

dephased from each other and superimpose destructively, leading to a sinusoidal 

dependence of the second-harmonic signal to the propagation length. However, if the 

phase mismatch is somehow set to zero, the second-harmonic wavelets will superimpose 

constructively, leading to a coherent transfer of energy from the pump to the second-

harmonic wavelength. Fig. 2.6 illustrates this effect, plotting the normalized second-

harmonic power as a function of length for different phase mismatches, assuming that the 

pump mode is not depleted and is taken to be constant. 
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Figure 2.6. Normalized second-harmonic field amplitude, as a function of the propagation length within a waveguide 

composed of a nonlinear material, for different phase mismatches between the pump and second-harmonic modes.  

 

 Whereas the semiconducting nature of silicon is problematic in the context of 

electro-optic modulation based on the Pockels effect, it does not come directly into play 

when considering second-harmonic generation. As a result, strained silicon may very 

well present a viable platform for this effect, and second-harmonic generation has in fact 

been demonstrated in silicon waveguides deformed by silicon nitride in the literature 

[14]. It has been predicted, however, that a fraction of the observed effect may be due to 

electric field-induced second-harmonic generation (EFISH), an effect in which a static 

electric field allows a third-order optical nonlinearity to act as a second-order one. For 

example, let us assume that a TM-like mode propagates along a waveguide composed of 

a third-order material such as silicon, across which a vertical bias voltage has been 

applied. The vertical component of the third-order polarization may then be written as: 

                 
2

3 (3)

,, , , Re , ,
j t z

y o yyyy y y DCP x y z t E x y e E x y
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 


     (2.17) 



53 
 

 
 

where χ
(3)

yyyy is the all-vertical component of the material’s third-order nonlinear 

susceptibility, and Ey,DC is the bias electric field. It is clear from Eq. 2.16 that the third-

order polarization will then have frequency components at both 0 and 2ω, similarly to Eq. 

2.10, and may likewise couple energy from the pump mode to thee second-harmonic. In 

this case, the effective second-order nonlinear susceptibility may be written as: 

                  
(2) (3)

, ,eff yyy y DC yyyyE           (2.18) 

 Even without an applied voltage, a static electric field may exist within a 

waveguide due to fixed charges at interfaces between two media [7]. In silicon, for 

example, interfaces with silicon nitride have been found to possess values of fixed charge 

as high as 3(10
12

) C/cm
2
, leading to large built-in electric fields, and this has been shown 

to contribute strongly to the second-harmonic generation measured in strained silicon 

waveguides [15]. It is then desirable to determine which of the potential effects discussed 

here, strain-induced symmetry breaking or EFISH, is the more promising candidate for 

high conversion efficiency second-harmonic generation in silicon-based waveguides. To 

this end, new waveguide topologies with favorable characteristics will be introduced and 

theoretically and experimentally characterized in Chapter 4.
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2.3: Free-Carrier Plasma Dispersion 

 As mentioned in Chapter 2.1.2, the semiconducting nature of silicon creates a 

serious obstacle in the effort to modulate the material’s refractive index through the 

Pockels effect. However, this same characteristic may be used to achieve modulation 

through a separate phenomenon known as the free-carrier plasma dispersion effect, and 

many silicon modulators based on this have been reported on in the literature to date [16- 

21]. Deviations in the concentration of holes and electrons away from their intrinsic 

values in silicon, 1.5(10
10

) cm
-3

 [4], lead to changes in both the real and imaginary parts 

of the material’s refractive index, as quantified by the Soref and Bennet equations given 

in Eq. 2.8 and 2.9 for an optical wavelength of 1.55 µm. 

 Although the majority of work in the literature involving free-carrier plasma 

dispersion has generated the effect by driving a current through continuous layers of 

silicon, the effect may also be realized in capacitive structures in which the anode and 

cathode are separated by one or more layers of insulating material [22-24]. In this second 

configuration, it becomes critical to take into consideration the values of fixed charges 

present at the different boundaries of the semiconductor waveguide, as these have a large 

impact on the electro-optic behavior of the device. As an example, let us consider a 

silicon waveguide clad with a thin layer of either silicon nitride or aluminum oxide, 

followed by a thick silicon dioxide cladding. Whereas the former possesses a large 

positive fixed charge along its interface with silicon, driving the p-type semiconductor 

into depletion, the aluminum oxide has a negative fixed charge, increasing the 
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concentration of holes in silicon near the interface between the two materials. This effect 

is illustrated in Fig. 2.7, which shows electron concentrations for models generated again 

through Silvaco. 

 

Figure 2.7. Electron concentration (log scale) in silicon waveguides clad with thin layers of either (a) silicon nitride or 

(b) aluminum oxide, followed by silicon dioxide. 

 

 The two waveguides’ dissimilar electrical properties translate to optical effects 

through Eq. 2.8 and Eq. 2.9, and if we extend this analysis to consider nonzero bias 

voltages we may generate the electro-refractive and electro-absorptive plots shown in 

Fig. 2.8, which were created using Silvaco in combination with Lumerical. In this figure, 

we additionally consider the case of a silicon waveguide clad with silicon dioxide 

deposited through plasma-enhanced chemical vapor deposition (PECVD), which 

possesses a small positive charge. 
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Figure 2.8. (a) Electro-refractive and (b) electro-absorptive behavior for the fundamental TE-like mode of silicon 

waveguides clad with either (blue) silicon dioxide, (red) silicon nitride, or (black) aluminum oxide. 

 

It is important to note from Fig. 2.6 that, for the case of the aluminum oxide 

cladding, the slope of either of the electro-optic effects changes sign as compared to the 

other two claddings, and this is because of the opposite sign of the fixed charge. 

We have additionally experimentally verified this predicted behavior by 

measuring the electro-optic effects of silicon ring resonators coupled to bus waveguides. 

To do so, we fabricated the three specified waveguide configurations in UCSD’s Nano3 

cleanroom facility through a combination of electron beam lithography (EBL), reactive 

ion etching (RIE), plasma-enhanced chemical vapor deposition (PECVD), and atomic 

layer deposition (ALD) [25]. The results of this process are shown for the case of the 

silicon nitride cladding in Fig. 2.9a. The bias voltages were applied by creating aluminum 

electrodes on the samples, and the ring resonators’ transmission spectra were obtained by 

coupling a tunable laser into the devices via a lensed tapered fiber and collecting the 

transmitted light with an optical power meter. 

The applied voltage induced shifts in the rings’ optical resonances, as shown for 

the case of the silicon dioxide cladding in Fig. 2.9b, and the transmission spectra of a ring 
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resonators were then fit to Eq. 1.36 in order to extract the values of both the real and 

imaginary part of the modal refractive index. The results, shown in Fig. 2.9c and Fig. 

2.9d, agree fairly well with the theoretical results, although some discrepancy is visible 

for the case of the silicon nitride cladding. This is likely due to the tendency of the fixed 

charge to vary in this case in response to the applied voltage, rather than remaining 

constant [26]. Nonetheless, it is clear from the results that fixed charge plays a significant 

role in determining the electro-optic behavior of these devices. 

 

Figure 2.9. Experimental characterization of the effects of fixed charges on the electro-optic properties of silicon 

waveguides. (a) Scanning electron micrograph of one waveguide, clad with 50 nm of silicon nitride. (b) Voltage-

dependent transmission spectra for a silicon waveguide clad with 1 µm of silicon dioxide. (c,d) Voltage dependence of 

the (a) real part of the effective index and (b) loss coefficient for the TE-like modes of the three waveguides. 
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 When properly designed, capacitively-driven electro-optic modulators in silicon 

based on free-carrier plasma dispersion have the potential to exhibit low driving voltages, 

small device footprints, and high modulation bandwidths. In the following chapter, we 

will both theoretically and experimentally characterize the electro-optic properties of so-

called “slot-rib” waveguides, which possess some of the highest sensitivities to bias 

voltages observed in the literature to date. 

 This chapter contains material which has been published in, "Tensor of the Tensor 

of the second-order nonlinear susceptibility in asymmetrically strained silicon 

waveguides: analysis and experimental validation,” Optics Letters (2014). The 

dissertation author was the primary investigator and author of this paper. 

 This chapter also contains material which has been published in, "Effect of 

dielectric claddings on the electro-optic behavior of silicon waveguides,” Optics Letters 

(2016). The dissertation author was the primary investigator and author of this paper. 
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Chapter 3: 

Electro-Optic Modulation 

3.1: Slot-Rib Waveguides 

 In capacitively driven silicon waveguides, changes in carrier concentration are 

generated by the application of a voltage across a finite thickness of dielectric material 

[1,2]. This was shown in Chapter 2.3, which specifically illustrated how the effect may 

change when a different dielectric material is chosen as a cladding material. In general, 

the magnitude of the electro-optic effects in the semiconducting region increase as the 

total thickness of the dielectric stack decreases, and this is because the length over which 

the applied voltage must fall decreases, forcing the semiconductor’s free carriers to more 

pronouncedly redistribute themselves in order to accommodate a larger voltage 

difference. To more clearly illustrate this effect, we may compare the theoretical electron 

distributions in silicon waveguides with different silicon dioxide cladding thicknesses, 

assuming the same applied voltage for each case. The results, shown in Fig. 3.1, confirm 

that as the electrode spacing is reduced, the induced carrier redistribution becomes more 

pronounced. It should be noted that, as in the simulations shown in Chapter 2.1.2, these 

models assume no fixed charge along interfaces in order to improve clarity. 
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Figure 3.1. Theoretical electron concentrations (log scale) for a bias voltage of positive 2 V, assuming electrode 

separations of (a) 2 µm, (b) 3 µm, and (c) 4 µm. As the separation increases, the accumulation of electrons resulting 

from the applied voltage becomes less appreciable (note the different maxima of the scale bars). 

 

 As the total dielectric thickness between two electrodes becomes smaller, the 

applied voltage more strongly effects any semiconducting medium between them. The 

most efficient accumulation of carriers (electrons in the case of this particular case)  is 

clearly achieved for the smallest electrode separation possible. However, as metallic 

electrodes are moved closer to the waveguide, they interact more strongly with the 

supported optical modes, and this can lead to undesirable Ohmic loss. To illustrate this 

effect, Fig. 3.2 shows how the loss coefficient of the TE-like mode for a 500 nm-wide, 

250 nm-tall silicon waveguide with an aluminum electrode above it (shown in Fig. 3.2a) 

changes as a function of the silicon dioxide cladding thickness. The plot, generated 
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through the finite element method (FEM) software Comsol, shows how rapidly the ohmic 

loss increases as the cladding thickness is reduced to values less than 400 nm  [3]. 

 

Figure 3.2. (a) Cross-section of a silicon waveguide clad with a thickness, t, of silicon dioxide, followed by an 

aluminum layer. (b) Ohmic propagation loss of the waveguide’s TE-like mode as a function of the silicon dioxide 

cladding thickness. 

 

To circumvent this inherent trade-off between modulation efficiency and loss, one 

prospective technique would be to use the silicon device layer itself to apply the driving 

voltage, employing a ridge waveguide with a 50 nm-wide slot along its center. Doing so 

completely removes the necessity for metallic electrodes, eliminating any ohmic loss 

present in the system and allowing for an effective electrode separation orders of 

magnitude smaller than what has been previously considered. In the following chapter, 

we will present a theoretical analysis of the proposed waveguide geometry, as well as 
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conducting a preliminary experimental characterization of its aptitude for electro-optic 

modulation.
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3.1.1: Modeling 

The goal of the slot-rib waveguide is to exhibit an improved sensitivity to bias 

voltages, applied as shown in Fig. 3.3a, due to a decreased separation between the two 

electrodes and an improved overlap between the optical mode and the induced free-

carrier effects. The proposed waveguide geometry is additionally expected to have 

sufficiently low propagation losses due to a lack of any metallic electrodes. In Fig. 3.3b, 

we confirm through FEM models that that this type of waveguide supports a TM-like 

mode, and Fig. 3.3c and Fig. 3.3d show the results of Silvaco simulations, highlighting 

how strongly the waveguide’s electrons redistribute for an applied voltage of only 1 V as 

opposed to the unbiased case. In these simulations, the waveguide is assumed to be 

unclad, eliminating the complicating effect of fixed charge along semiconductor-

dielectric interfaces. 
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Figure 3.3. (a) Illustration of the proposed slot-rib waveguide configuration. (b) Electric field of the TM-like mode 

supported by the waveguide cross-section. (c,d) Theoretical electron concentrations (log scale) within the waveguide, 

assuming bias voltages of (c) 0 V and (d) 1 V. 

 

 As in the case of the more conventional waveguides considered in Chapter 2.3, 

we may translate the changes in carrier concentration to changes in the effective index of 

the waveguide’s TM-like mode through use of Eq. 2.8 and Eq. 2.9, and the results this 

treatment yields are shown in Fig. 3.4. As anticipated, the reduction of the electrode 

spacing from several microns to only 50 nm significantly increases the magnitude of both 

of the predicted electro-optic effects. Changing the applied voltage from +1 V to +4 V, 

for example, already generates a larger differential change in the real part of the modal 

effective index than any of the analogous values for conventional waveguides observed 

experimentally in Fig. 2.7c. Furthermore, the symmetry of the waveguide cross-section 

results in even behavior, making the electro-optic effects sensitive only to the magnitude 

of the applied voltage and not its sign. These results suggest that, if incorporated into an 

electro-optic modulator, the slot-rib waveguide geometry may allow for an appreciable 
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decrease in the bias voltage required to reduce the transmitted power by 3 dB, the 

minimum amount required for digital switching applications [4]. 

 

Figure 3.4. Theoretical electro-optic effects for the slot-rib waveguide, in terms of (a) the real part of the TM-like 

mode’s effective index and (b) its absorption coefficient.



69 
 

 
 

3.1.2: Fabrication and Preliminary Characterization 

Based on these promising results, we have confirmed that the proposed slot-rib 

waveguide geometry may in fact be fabricated, and the fabrication process is illustrated in 

Fig. 3.5. We began with a silicon-on-insulator wafer consisting of a 500 nm-thick device 

layer and a 3 µm-thick buried oxide layer. In the first electron-beam lithographical step, 

we left the thin slot along the waveguide’s center exposed and etched through the entire 

device layer. Following this, we aligned a second lithographical step to the first and 

etched 400 nm into the pedestal of the rib waveguide, resulting in the intended waveguide 

cross section. 

 

Figure 3.5. Fabrication process for the proposed slot-rib waveguide. In the illustrations, blue corresponds to silicon, 

light blue corresponds to silicon dioxide, and green corresponds to the electron beam resist hydrogen silsesquioxane 

(HSQ).
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 The results of this fabrication process are given in Fig. 3.6a, which shows a cross-

sectional image of a slot-rib waveguide. The observed structure possesses a 60 nm-wide 

central slot, two 200 nm-wide ridges, and a 110 nm-thick pedestal, deviating only slightly 

from the target dimensions. 

 

Figure 3.6. Cross-sectional SEM micrograph of the slot-rib waveguide, confirming that the center slot (shown to be 

approximately 60 nm wide) has etched through the entire silicon device layer. (b) Overhead SEM micrograph of a slot 

waveguide ring resonator, which is comparable in terms of its passive optical properties to the slot-rib geometry. 

 

Before characterizing the electro-optic effects of these waveguides, it was 

important to test their passive optical properties and ascertain their validity for integrated 

optical applications. To do this, we measured the absorption coefficients of fully etched 

slot waveguides, which are known to have comparable passive optical properties to the 

slot-rib geometry. As in previous sections, this was done through the use of ring 

resonators coupled to bus waveguides as shown in Fig. 3.6b. The slot waveguides were 

500 nm tall, the slots were 50 nm wide, and the two silicon nanowires making up the 

guiding material were 200 nm wide. Again, the theoretical transmission spectrum through 

a bus waveguide coupled to a ring resonator is as given by Eq. 1.36, and the 
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experimentally measured transmission spectrum for our fully etched slot bus waveguide 

is as shown in Fig. 3.7. 

 

Figure 3.7. (a) Measured transmission spectrum of the TM-like mode in a slot waveguide coupled to a slot waveguide 

ring resonator. (b) Zoomed-in plot of the transmission for a single resonance of the ring (blue), shown along with a 

Lorentzian curve fit to the data (red). 

 

From this data, we can extract a passive loss coefficient for the TM-like mode 

supported by the structure of 44 dB/cm. This value is larger than that of typical silicon 

waveguides, and this is because of the high degree of modal overlap with the etched 

silicon sidewalls at the center of the waveguide, which leads to scattering loss. However, 

this loss value is still low enough to allow electro-optic modulation, and is in fact smaller 

than the values reported in other capacitively operated modulators to date [1,2]. 

 We additionally measured the effective index of the TM-like mode supported by 

the slot waveguides through the use of Bragg gratings, as shown in Fig. 3.8a. The 

effective index may be calculated simply from the measured Bragg wavelength and the 

grating period as: 

                             
2

Bn





            (3.1) 
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where λB is the Bragg wavelength and Λ is the grating period. The transmission through 

four different Bragg gratings in silicon slot waveguides is shown in Fig. 3.8, and the 

effective index extracted from these measurements at a wavelength of 1520 nm is 2.30. 

 

Figure 3.8. (a) SEM micrograph of a Bragg grating fabricated in a slot waveguide. (b) Measured transmission spectra 

of the TM-like mode in a slot waveguide through Bragg gratings with different modulation periods. For each grating, 

the modulation of the waveguide width was ±50 nm.
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3.1.3: Theoretical Performance 

 The slot-rib waveguide's improved performance stems from the reduction of the 

dielectric thickness across which the bias voltage is applied, which is theoretically shown 

to increase the magnitude of the free-carrier effects generated in the silicon ribs. Based on 

these preliminary results, we have seen that the slot-rib waveguide geometry may be 

readily fabricated, and that the propagation loss exhibited by comparable structures, 

namely slot waveguides, are low enough to allow for efficient electro-optic modulation. 

Moderately increased propagation loss was observed for slot waveguides, and was 

attributed to an increased modal overlap with etched sidewalls, but the measured value of 

44 dB/cm is still lower than the values reported in the literature for comparable 

structures. The slot-rib waveguide geometry is anticipated to have somewhat lower loss 

due to the incomplete second etch step, which reduces the total cross-sectional length of 

the etched sidewalls, and this will translate to a lower insertion loss in electro-optic 

modulators. 

 In future work, which will focus on the actual demonstration of modulation in 

these waveguides, ring resonators will likely be employed, and this is due to the fact that 

they are more tolerant to high losses than Bragg resonators [5]. The proposed device 

layout, illustrated in Fig. 3.9, couples a slot-rib bus waveguide to a slot-rib resonator, and 

based on the theoretically and experimentally obtained properties of the waveguide 

reported on previously, we may predict the performance of this device prior to its 

fabrication.
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Figure 3.9. Schematic of the theoretically considered device, which relies on the enhanced electro-optic effects in slot-

rib waveguides and the narrow spectral characteristics of ring resonators. 

 

 Employing Eq. 1.39, we may create theoretical transmission spectra for our 

proposed device. The passive spectrum is shown for a 100 µm-radius resonator in Fig. 

3.10a, alongside the spectrum under an applied bias voltage of +2 V. As illustrated in the 

figure, changing the operating wavelength similarly changes the power swing attainable 

via the applied voltage, while similarly altering the insertion loss.  

 By considering several different ring radii, assuming critical coupling may be 

attained in each case by choosing the appropriate separation between the ring and bus 

waveguides, we can see how the power swing varies as a function of the insertion loss for 

each prospective device. Assuming that the propagation loss is 40 dB/cm, a value 

comparable to the one measured experimentally for the fully-etched slot waveguides, 

optimal performance is achieved for a ring radius of 100 µm. The target power swing of 3 

dB may be achieve for this device for an applied voltage of +2 V (a voltage swing of ±1 

V) and an insertion loss of approximately 12 dB. If the propagation loss is reduced, 

through either improved etch chemistries or post-etch RCA cleans [6-8], the insertion 
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loss may be reduced without compromising device performance in terms of the required 

switching voltage. 

 Perhaps the most appealing aspect of the 100 µm-radius device is that, at a total 

area of less than 40000 µm
2
, in does not require the use of a travelling wave electrode 

and may instead be driven with a simpler lumped electrode. The photon lifetime within 

the cavity, a parameter which is critical to the device bandwidth, may be measured from 

the Q-factor of the resonance using Eq. 1.42. The optical bandwidth of the 100 µm-radius 

modulator, which may be taken to be the inverse of the photon lifetime, is plotted in Fig. 

3.10 for each of the considered ring radii, and each of the devices shows sufficiently high 

bandwidths for high-data-rate applications [9]. 

 

Figure 3.10. (a) A portion of the transmission spectra for 100 µm-radius slot-rib waveguide rings, assuming 40 dB/cm 

of propagation loss, and either 0 or +2 V of bias. Black lines indicate the trade-off between the electro-optic power 

swing and instertion loss. (b) Power-swing vs. instertion loss for ring resonant modulators with different radii. (c) 

Optical bandwidth as a function of ring radius. 
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 Finally the energy-per-bit, an interesting value to consider in the context of 

electro-optic modulation, may be calculated from the effective device capacitance as: 

                2 20
3 3

1 1

2 2
bit dB dB

Lh
E CV V

d

 
   

 
          (3.2) 

where L is the circumference of the ring, 628 µm, h is the height of the device layer, 500 

nm, d is the slot width, 50 nm, and V3dB is the voltage required to change the output 

power by 3 dB, 2V. For our device, this term equates to 111 fJ.
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3.2: Hybrid Waveguides 

 In the field of electronics, so-called “high-k” dielectrics are desirable candidates 

for the realization of high-performance transistors. In general, high-k dielectrics are 

electrical insulators with exceptionally large dielectric constants at low to moderate 

modulation frequencies [10], and the benefit of such materials is that the electric fields 

within them may be significantly smaller than those within a lower-k dielectric, given the 

same transistor geometry and applied voltage. Because of this, a lower voltage falls 

across the dielectric, causing larger portions of applied voltages to drop across 

neighboring semiconductors. This effect is illustrated in the simple one-dimensional 

Silvaco models shown in Fig. 3.11, which compare two semiconductor-oxide-

semiconductor (SOS) structures consisting of either silicon dioxide (k equal to 3.9) or 

titanium dioxide (k equal to 80) [12]. For the former case, approximately 30% of the 

applied voltage drops across the silicon dioxide, whereas for the high-k dielectric 

structure only 10% of the voltage drops across the titanium dioxide. This reduction in the 

voltage drop across the dielectric is beneficial because it increases the magnitude of any 

free-carrier effects which occur in the semiconductor, and this has obvious applications to 

the slot-rib waveguide modulator discussed in the previous section.
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Figure 3.11. Electric potential across capacitive structures, including (a) silicon dioxide or (b) titanium dioxide, 

assuming an applied voltage of 1 V. (a) The voltage drop across the dielectric is approximately .7 V and the total 

voltage drop in the silicon is .3 V. (b) The voltage drop across the dielectric is approximately .2 V and the total voltage 

drop in the silicon is .8 V. 

 

 Titanium dioxide may be deposited through atomic layer deposition, and we have 

already demonstrated the deposition of highly conformal thin films, as shown in Fig. 

3.12. The electrical properties of thin dielectric films can be determined through a 

capacitance-voltage measurement on silicon. In these commonly employed 

measurements [11,12], metal-oxide-semiconductor (MOS) structures are created by 

fabricating metallic electrodes on the deposited dielectric films and measuring their 

frequency- and voltage-dependent capacitances. The low-frequency permittivity of the 

dielectric may be extracted from the capacitance in the accumulation regime as [13]: 

       
0

r

Cd

A



             (3.2) 
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where C is the measured capacitance, d is the dielectric film thickness, and A is the area 

of the metallic electrode. Similarly, the fixed charge present at the semiconductor-

dielectric interface may be calculated as [13]: 

              d
f ms FBQ V

d


             (3.3) 

where φms is the work function difference between the metal and the semiconductor, VFB 

is the measured voltage at which the semiconductor switches from accumulation to 

depletion (observed as an abrupt change in the capacitance), and εd is the dielectric’s 

permittivity, 0d r   . Past research efforts have shown through CV measurements that 

titanium dioxide may possess dielectric constants as high as 100 [14], and in the 

following section, we will see how this allows it to improve the performance of electro-

optic modulators based on capacitive free-carrier dispersion. 

 

Figure 3.12. (a) SEM micrograph of a 400 nm-thick titanium dioxide film deposition on silicon dioxide. (b) Diamond 

stylus profilometer-obtained roughness profile for the deposited titanium dioxide film. 

 

 Just as we did for the case of unclad slot-rib waveguides, we were able to 

theoretically model the electro-optic behavior of dielectric-clad slot-rib waveguides by 
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combining Silvaco simulations with Lumerical models. In Silvaco, we assumed the same 

waveguide geometry as that shown in Fig. 3.13, with the inclusion of a 50 nm-thick 

dielectric layer. The dielectric material was assumed to be either silicon nitride, with a k 

of 10, or titanium dioxide, with a k of 100, and the fixed charge at the semiconductor-

dielectric interface was assumed to be zero for simplicity. Fig. 3.13a summarizes the 

results of these electro-optic simulations, confirming that as the dielectric constant of the 

dielectric layer increases, the strength of the free-carrier effects in the silicon waveguide 

increases as well. Fig. 3.13b plots the band-bending in one of the silicon portions of the 

waveguide as a function of the dielectric constant, and by comparing this plot with Fig. 

3.12a it appears as if the electro-optic effect is roughly linearly proportional to this value. 

Considering the results shown in Fig. 3.13b, it is clear that the incorporation of a high-k 

dielectric layer into the slot-rib waveguide has the potential to reduce the switching 

voltage from ±1 to ±.5V, and to reduce the switching energy from 111f J to 28 J. 

Alternatively, the enhanced electro-optic effect may be used to reduce the insertion loss 

from 12 to 9 dB while holding the other metrics constant. 

 

Figure 3.13. (a) Change in the real part of the effective index of the TM-like mode in a slot-rib waveguide as a function 

of the applied voltage, for several different electrical permittivities of the cladding layer. (b) Band-bending within the 

right silicon pedestal, assuming an applied voltage of 10 V, as a function of the cladding layer's electrical permittivity. 
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dissertation author was the primary investigator of this work. 
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Chapter 4: 

Second-Harmonic Generation 

 As mentioned in Chapter 2, second-harmonic generation (SHG) is an important 

form of wavemixing, the general term for nonlinear phemonena which convert optical 

energy among different wavelengths. In SHG, light at a fundamental wavelength, called 

the pump, interacts with a medium to create a nonlinear polarization proportional to the 

square of the instantaneous pump electric field. As a result of this quadratic dependence, 

the nonlinear polarization contains a frequency component at twice that of the pump in 

addition to a DC component [1], and may therefore reemit electromagnetic radiation at 

the second-harmonic frequency. This process, which has been outlined in Chapter 2.2, is 

desirable for applications in which optically carried data need to be replicated at new 

carrier wavelengths. Furthermore, demonstrating this effect with a high conversion 

efficiency in a CMOS-compatible material platform allows more readily for integration 

with existing electronics technology. To this end, the following chapter demonstrates 

theoretical and experimental results for SHG in (1) waveguides composed purely of 

silicon nitride, and (2) hybrid waveguides consisting of both silicon nitride and silicon.
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4.1: Silicon Nitride Waveguides 

Silicon nitride is an interesting candidate for many integrated photonics 

applications. It has a moderately high index of refraction ranging from 1.9-2.2, allowing 

for good confinement of optical modes, and because it is a dielectric material rather than 

a semiconductor, such detrimental effects as electric field screening and free-carrier 

plasma dispersion do not occur in it [2-4]. Since the late 1970’s, research groups around 

the world have been exploring the potential benefits of using silicon nitride waveguides 

in place of silicon waveguides, and propagation losses well below 1 dB/cm have been 

demonstrated experimentally [5].  Perhaps the most appealing quality of silicon nitride is 

that its transparency window extends into the visible wavelength spectrum, allowing it to 

guide light at wavelengths as low as 250 nm [6]. Silicon nitride is however a 

polycrystalline, or ceramic material, and this has historically been thought to make it 

effectively centrosymmetric, disallowing electro-optic modulation based on the Pockels 

effect as well as second-order wavemixing. 

Recently, however, researchers have observed that silicon nitride may possess a 

small but appreciable second-order nonlinear susceptibility due to slight asymmetries and 

deviations away from the typical 3:4 Si:N stoichiometry [7]. The coefficients measured 

have, in general, been found to be highly dependent upon the exact conditions which are 

enforced during the material's deposition, and this work has revitalized the study of 

silicon nitride for nonlinear optical applications. To date, electro-optic modulation and 

effective second-harmonic generation based on a bulk χ
(2)

 have not been demonstrated, 
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likely due to a general lack of understanding of the exact origin of the second-order 

nonlinearity in silicon nitride waveguides. In an effort to contribute to the ongoing work 

surrounding this intriguing material, we have fabricated our own silicon nitride 

waveguides and characterized their second- and third- order nonlinearities through SHG 

both with and without the assistance of EFISH.
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4.1.1: Modeling 

To predict the second-harmonic conversion efficiency in a silicon nitride 

waveguide, we may modify Eq. 2.14 as: 

                
(2)

* 20 2 , , ,
4

x

ijk

SiN

E x y x y E x y dxdy 
 

          (4.1) 

where E
ω
 and E

2ω
 are the normalized electric fields of the pump and second-harmonic 

modes supported by the waveguide. Specifically, Eq. 4.1 assumes the existence of some 

nonzero χ
(2)

 tensor component which transfers energy among two optical modes. As 

mentioned in Chapter 2, efficient second-harmonic generation will only occur when the 

effective indices of these two modes are exactly equal to one another. It should also be 

mentioned that the combined electric fields of two separate pump modes may interact 

with one another, coupling shared power into a second-harmonic mode. In this case, the 

average effective index of the two pump modes should equal that of the second-harmonic 

mode in order to achieve phase-matching [1]. 

 For a 550 nm-tall silicon nitride waveguide with a sidewall slope of 83º (assumed 

for reasons which will become clear in the following section), Fig. 4.1a shows that phase-

matching can occur between (1) a TM-like pump mode and a TM-like second-harmonic, 

(2,3) combined TM- and TE-like pump modes and either a TM- or TE-like second-

harmonic, or (4) a TM-like pump mode and a TE-like second-harmonic. Because each of 

the involved modes is TM-polarized for case (1), we know that the process scales with 

the yyy-component of the χ
(2)

 tensor. Similarly, case (2) depends up the existence of the 
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xxy component, which may also be nonzero. Cases (3) and (4) may be neglected because 

they assume a nonzero value of χ
(2)

xyy, and symmetry considerations tell us that this value 

is identically required to equal zero [8]. 

 

Figure 4.1 (a) Effective indices of the pump (blue) and two second-harmonic modes (red, black) as a function of the 

waveguide width, as well as the average effective index of the TE- and TM-like pump modes. (b,c) Electric field 

profiles of the TM- and TE-like second-harmonic modes, respectively. 

 

Fig. 4.1b and Fig. 4.1c show, respectively, the profiles of the TM- and TE-like 

second-harmonic modes for this waveguide geometry. For case (1), assuming a phase-

matched base waveguide width of approximately 1045 nm and a χ
(2)

 of 1 pm/V, the 

expression for the spatial evolution of the TM-like second-harmonic mode may be 

written as: 
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 

   
 2 2

2 211.926
2

dA z A z
j m A z

dz

 

 
          (4.2) 

where the first term on the right-hand side represents second-harmonic generation, with 

the term in parentheses equaling the coupling coefficient, and the second term on the 

right-hand side represents linear loss. α2ω is the loss coefficient of the second-harmonic 

mode, and A
ω
 is the amplitude of the pump, defined in turn as: 

                           
 

0
2

A z
A z A



  
          (4.3) 

 In Eq. 4.3, A
ω
(0) is the amplitude of the pump at the waveguide’s input and αω is 

the loss coefficient of the pump mode. Fig. 4.2 plots the power in the second-harmonic as 

a function of waveguide length, assuming an input pump power of 25 mW, for several 

different loss values, and for simplicity we assume that these are the same for the pump 

and second-harmonic modes (α
ω
=α

2ω
). 

 

Figure 4.2 TM second-harmonic power as a function of propagation length, assuming phase-matching for several 

different loss coefficients and the waveguide cross-section and nonlinear coefficient specified in the text. 
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 As Fig. 4.2 shows, more than just the maximum generated power changes with 

the loss coefficient. Additionally, the optimal waveguide length, at which the highest 

conversion efficiency will be achieved, increases as the loss coefficient decreases. 

Fortunately, silicon nitride is highly transparent at a wavelength of 1.55 µm, and silicon 

nitride waveguides have previously been measured to have propagation loss coefficients 

on the order of 4 dB/cm [9], which is low enough to be neglected for the waveguides we 

intend to fabricate. Based on our numerically generated results, we may fabricate silicon 

nitride waveguides for second-harmonic generation with a reasonable level of 

confidence.
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4.1.2: Fabrication 

 To fabricate the silicon nitride waveguides for our second-harmonic generation 

experiment, we began as in Chapter 3 with silicon-on-insulator (SOI) wafers consisting 

of a 500 nm-thick device layer and a 3 µm-thick buried oxide layer. We removed the 

entire silicon device layer through submersion in a solution of dilute 

tetramethylammonium hydroxide (TMAH) heated to 80ºC, then deposited 550 nm of 

silicon nitride onto the samples using an Oxford Plasmalab Plasma-Enhanced Chemical 

Vapor Depositor (PECVD). We spin coated 330 nm of HSQ electron-beam resist, 

exposed the samples to patterns corresponding to waveguides, and removed the 

unexposed resist through development in a TMAH solution. Next, we etched through the 

unprotected silicon nitride layer through reactive ion etching using the gases C4F8 and 

SF6, and clad the resulting waveguide with silicon dioxide through an additional PECVD 

step. To create electrodes, we finally deposited a 100 nm-thick aluminum layer on the 

silicon dioxide cladding through electron-beam evaporation. This fabrication process is 

illustrated in Fig. 4.3 along with an SEM micrograph of the resulting waveguide cross-

section.
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Figure 4.3 Illustration of the fabrication process for silicon nitride waveguides. In the figure, dark blue represents 

silicon, light blue represents silicon dioxide, orange represents silicon nitride, green represents HSQ, and gray 

represents aluminum. The bottom-right image is SEM micrograph showing the cross-section of a silicon nitride 

waveguide, including the aluminum electrode above it. 

 

 During the deposition of the silicon nitride layer, the flow rates of SiH4, NH3, and 

N2 were maintained at 24, 276, and 600 sccm, respectively. These values were chosen to 

deposit films with low enough mechanical stress to avoid delamination [10,11]. The 

refractive index of the films was measured through interferometry using a Filmetrics Thin 

Film Measurement System, and was found to be approximately 1.96 at a wavelength of 

1.55 µm. 

 We designed our silicon nitride waveguides to have widths ranging from 700 nm 

to 1.1 µm in order to achieve phase-matching in at least one device. As mentioned in the 

previous section, although there was very good agreement between the target waveguide 
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width and the actual width at the base, the waveguide sidewalls were not completely 

vertical. Instead, the sidewalls slanted inward away from the base at a slope of 83º, 

leading to the width at the top of the waveguide being reduced by approximately 120 nm. 

This etch profile is shown in an SEM image of an unclad 1100 nm-wide waveguide, in 

Fig. 4.4. The image also shows the unetched HSQ layer above the waveguide, which 

creates a slight overhang. 

 

Figure 4.4 SEM micrograph of an unclad silicon nitride waveguide, showing the slope of the sidewalls and the 

remaining HSQ layer.
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4.1.3: Results and Discussion 

 Confident that the fabricated structures would guide light at a wavelength of 1.55 

µm with low propagation loss, we measured the transmission of our samples using the 

same experimental setup as that outlined in Chapter 2.3. Fig. 4.5 plots the transmission 

spectra of the fundamental TM-like mode for several different waveguide widths, for 

example. The silicon nitride exhibited significant absorption at wavelengths close to 1520 

nm, but this effect vanished as the wavelength was increased. At wavelengths below 

1500 nm, the mode supported by the 700 nm waveguide became partially deconfined, 

and its increased overlap with the waveguide's etched sidewalls resulted in an increase in 

loss. This effect was not however observed for the wider waveguides. 

 

Figure 4.5. Transmission spectra of the TM-like mode supported by several different waveguide widths.
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 Following these preliminary measurements, we connected a high-power erbium-

doped fiber amplifier (EDFA) to our tunable laser and injected approximately 1 W of 

optical power into each of the silicon nitride waveguides in turn. This modified 

experimental setup is shown schematically in Fig. 4.6. 

 

Figure 4.6. Schematic of the setup used to measure second-harmonic generation in silicon nitride waveguides, 

employing an erbium-doped fiber amplifier. 

 

 We optimized the coupling through our waveguides at a wavelength of 1550 nm, 

and following this optimization we positioned a free-space-to-fiber collimator in the 

transmitted beam's path, coupling the light through a CaF2 fiber and into an Ocean Optics 

spectrometer. We then observed the signal received by the spectrometer for voltages 

ranging from 0 V to 500 V. As predicted by the models shown in Fig. 4.1, phase 

matching occurred between waveguide widths of 1100 and 1000 nm. Fig. 4.7a shows the 

phase-matched TE-like SHG signal, which is voltage-dependent, for a 1010 nm-wide 

waveguide and a pump wavelength of 1559 nm. Figh. 4.7b shows the voltage dependence 

of the peak count in the spectrometer, and a numerical fit confirms that the power in the 

second-harmonic scales quadratically with the voltage as anticipated. 
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Figure 4.7. (a) The measured second-harmonic signal for a pump wavelength of 1559 nm, a waveguide width of 1010 

nm, and a measured pump power at the waveguide’s output of 30 mW. (b) Voltage dependence of the second-harmonic 

signal, as measured in (a), fit to a quadratic curve (R2=.97). 

 

 It is important to note that, although the second-harmonic signal reduced as the 

applied voltage decreased, it had a nonzero value at 0 V. One possible explanation for 

this is that the silicon nitride we deposited has its own intrinsic χ
(2)

 value, as has been 

observed in the literature [7]. Alternatively, the unbiased signal could be the result of 

surface charges which exist along the interfaces between silicon nitride and silicon 

dioxide and lead to the existence of a built-in electric field. This field could lead to the 

generation of a second-harmonic signal through EFISH [12], even without the application 

of a bias voltage. 

 To confirm that the measured signal was in fact due to second-harmonic 

generation within the waveguide, we reduced the pump power and checked for quadratic 

dependence in the signal. The normalized results, presented in Fig. 4.8, verify the 

existence of the expected trend, giving us confidence that the signal is in fact generated as 

the pump propagates through the silicon nitride waveguides. 
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Figure 4.8. The dependence of the second-harmonic signal on the pump power measured at the waveguide’s output. 

The quadratic fit, in red, shows good agreement with the measured data. 

 

After observing phase-matched second-harmonic generation in our waveguides, 

we placed a visible power meter in the path of the transmitted light and collected the 

power in the second-harmonic signal for a 1010 nm-wide waveguide. The measured 

power is plotted against the pump wavelength for several different pump powers in Fig. 

4.9, and in addition to again showing the quadratic dependence of the second-harmonic 

power on the pump power, these results reveal an interesting secondary effect. The 

measured second-harmonic signal appears to sit on a broad plateau which scales linearly 

with the pump power, which is the result of fluorescence due to impurities in the silicon 

nitride [13]. Nonetheless, the power contained at the second-harmonic wavelength may 

readily be distinguished from the plateau. Fig. 4.9b illustrates how the second-harmonic 

power scales quadratically whereas the fluorescence pedestal scales linearly with pump 

power. By inserting a second-harmonic power of 600 pW for 30 mW of pump power into 

Eq. 2.16 and Eq. 4.1, we were able to calculate the effective second-order nonlinear 
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coefficient our waveguides possessed, χ
(2)

eff,yyy, as approximately .15 pm/V. It should be 

noted, however, that this treatment neglects loss within the waveguide at both the pump 

and second-harmonic wavelengths. The loss coefficient at 1550 nm may safely be 

assumed to be negligibly low, using reported values for comparable fabrication processes 

[9], and if we assume an upper limit for loss coefficient at 775 nm of 100 dB/cm, the 

extracted value of χ
(2)

yyy only increases to .48 pm/V. We can therefore say with 

confidence that the actual value of χ
(2)

yyy lies somewhere between .12 and .48 pm/V. 

 

Figure 4.9. (a) The measured power at the output of a 1010 nm-wide waveguide, as a function of the pump wavelength, 

for several different pump powers. (b) Power dependence of the second-harmonic and fluorescence fit to quadratic and 

linear curves, respectively. 

 

In addition to these measurements, we can also explore the existence of χ
(2)

xxy. For 

case (2) of the four phase-matching intersections discussed in Chapter 4.1.1, the coupled 

mode equation for the second-harmonic mode may be written as: 

               
 

   
 2 2

2 21.705
2

dA z A z
j m A z

dz

 

 
          (4.4) 
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where the number .705 is the Comsol-derived value of the coupling coefficient, assuming 

a χ
(2)

xyy of 1 pm/V. Phase-matching into the TE-like second-harmonic was observed for 

waveguides with a base width of 1070 nm at a pump wavelength of 1541 nm, and the 

measured second-harmonic power is plotted as a function of the pump wavelength in Fig. 

4.10. Again, appreciable power is observed away from the phase-matched wavelength, 

and this is attributed once more to photoluminescence. Nonetheless, a phase-matched 

second-harmonic power of 110 pW may be extracted from the data. Applying a treatment 

identical to that used for χ
(2)

yyy, we determine that the value of χ
(2)

xxy for these waveguides 

is between .06 and .22 pm/V. 

 

Figure 4.10. The measured TE power at the output of a 1070 nm-wide waveguide, as a function of the pump 

wavelength, for TE- and TM-like pump powers of 15 mW. The measured second-harmonic power is 110 pW, whereas 

the broad fluorescence power value is 510 pW. 

 

Contrary to the commonly-held prediction that silicon nitride lacks a second-order 

nonlinear susceptibility, this work shows that silicon nitride waveguides may be made to 

possess effective second-order nonlinearities which approach in magnitude such 
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nonlinear optical materials as gallium nitride, aluminum nitride, and gallium phosphide 

[14-16]. Coupled with silicon nitride’s high transparency in the telecommunication 

wavelength regime and its dielectric nature, the results shown here make this material 

platform a strong candidate for the design of a wide range of integrated photonics 

devices. And perhaps most exciting, the tunability of the measured nonlinear coefficients 

suggests that new processes such as data-encoded second-harmonic generation may be 

possible in the future. 

Additionally, recent work has shown through free-space measurements that 

increasing the silicon concentration in silicon nitride may lead to the formation of 

crystalline silicon nanoparticles, leading to a third-order nonlinear susceptibility greater 

than that of bulk crystalline silicon [17]. The implications of these results promise that 

the conversion efficiencies attainable through EFISH in waveguides which include 

silicon nitride may be significantly increased relative to the values shown here. In the 

following section, we will explore a prospective waveguide geometry consisting of 

silicon-rich silicon nitride as well as crystalline silicon, which could allow for the one of 

the highest SHG conversion efficiencies reported in a silicon-based integrated platform to 

date.
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4.2: Hybrid Waveguides 

 The most significant result to take from our work with silicon nitride waveguides 

is that EFISH may serve as a practical tool for the realization of high conversion 

efficiency wavemixing. The results presented in Chapter 4.1 were limited, however, due 

to the large separation between the two electrodes used to induce the bias electric field.  

As in the case of electro-optic modulation, this limitation may be removed by moving to 

a slot-rib waveguide configuration in which the space between the two silicon ribs is 

filled with silicon nitride, as illustrated in Fig. 4.11. In such a waveguide, drastically 

larger electric fields could be applied for much smaller driving voltages, leading to larger 

effective second-order nonlinearities and consequent conversion efficiencies. Because 

silicon is however not transparent at wavelengths shorter than approximately 1.2 µm, the 

pump wavelength chosen for this prospective waveguide geometry would have to be 

greater than 2.4 µm. Nonetheless, the appeal of a hybridized slot-rib waveguide merits 

further consideration, and in this chapter we theoretically assess its aptitude for 

wavemixing based on EFISH. For the purposes of deriving an upper limit for the 

conversion efficiency, we will additionally assume that silicon-rich silicon nitride is used 

as the cladding material, corresponding to a significantly larger value of χ
(3)

.
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Figure 4.11. Schematic of the proposed hybridized slot-rib waveguide, in which an electric field may be applied across 

the silicon nitride between two silicon rib-like structures. 

 

 Just as in the case of the silicon nitride waveguides considered in Chapter 4.1, the 

evolution of the second-harmonic mode in a hybrid slot-rib waveguide may be calculated 

by determining the phase-matched dimensions and calculating the coupling coefficient. 

Assuming pump and second-harmonic wavelengths of 2.4 and 1.2 µm, respectively,  we 

can use Comsol to determine that phase-matching is achieved between two TE-like 

modes when the waveguide’s silicon ribs are 425 nm wide, the slot between them is 200 

nm wide, and the silicon pedestal extending away from them is 50 nm tall. Fig. 4.12a 

shows how, as the slot width is increased, the effective index of the second-order second-

harmonic mode first approaches and then surpasses that of the pump mode. Furthermore, 

Fig. 4.12b and Fig. 4.12c show the electric field profiles of these two modes, 

respectively. 
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Figure 4.12. (a) Dependence of the pump and second-harmonic modes’ effective indices on the width of the slot 

between the two silicon ribs. (b,c) Modle profiles of the (b) pump and (c) second-harmonic modes at the phase-matched 

waveguide dimensions. 

 

 As mentioned previously, the application of a bias voltage across the two silicon 

layers will generate a large electric field within the silicon nitride cladding. Using 

Silvaco, we are able to predict the magnitude of this field, and Fig. 4.13 shows the field 

for an applied voltage of 20 V. Assuming a third-order nonlinear susceptibility of 5.2(10
-

19
) m

2
/V

2
 for silicon-rich silicon nitride [17], the nitride’s effective second-order 

nonlinear susceptibility may be calculated through Eq. 2.17. 
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Figure 4.13. The bias electric field generated within a silicon nitride-clad slot-rib waveguide, assuming an applied 

voltage of 20 V. 

 

As in the case of the conventional silicon nitride waveguide, the coupling 

coefficient of the waveguide may then be calculated by taking the overlap of the two 

optical modes within the nonlinear material and multiplying it by the second-order 

nonlinear susceptibility. For the phase-matched slot-rib waveguide, our expression 

defining the spatial evolution of the second-harmonic mode may be written as: 

           
 

     
 2 2

2 2(3) 11 22.64 10
2

DC

dA z A z
j E Vm A z

dz

 

 
          (4.5) 

where χ
(3)

 is the third-order nonlinear susceptibility of the silicon-rich silicon nitride 

cladding layer and EDC is the applied bias field, equal in turn to:  

                                  65.5 10DC DCE V              (4.6) 

where VDC is the applied voltage. For an applied voltage of 20 V, the coupling coefficient 

is then equal to 15.11 m
-1

, which is roughly two orders of magnitude larger than the 

values obtained experimentally for the conventional silicon nitride waveguide. It should 
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be noted that the EFISH effect may also occur in silicon, but in the geometry under 

consideration here, the electric field applied to the dielectric cladding layer is 

approximately an order of magnitude larger than that applied to the semiconductor 

region. If we assume that the third-order nonlinear susceptibility of the silicon-rich 

silicon nitride is comparable to that of silicon, as has been reported in the literature, then 

any contribution to second-harmonic generation due to EFISH in silicon may be 

neglected 

Fig. 4.14a plots the theoretical second-harmonic power as a function of 

propagation length, assuming a pump power of 30 mW, for several different applied 

voltages, and Fig. 4.14b shows how the conversion efficiency through a 1 cm-long 

waveguide, in %W
-1

, scales as the voltage is increased. This is of course neglecting 

optical loss, and provides only an upper limit on the practically realizable figures of 

merit. Nonetheless, the reported breakdown field for silicon nitride, 2.12(10
8
) V/m [18], 

is achieved for a bias voltage of 38.5V, and at this upper maximum the conversion 

efficiency reaches a maximum possible value of 8.9%W
-1

. 

 

Fig. 4.14. (a) Theoretical plot of the second-harmonic power generated in a silicon-rich silicon nitride slot-rib 

waveguide, plotted as a function of length, for several different applied voltages. (b) Conversion efficiency for different 

applied voltages, assuming 1 cm of propagation. The red dashed line indicates the point of dielectric breakdown. 
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Based on these theoretical results, the hybrid slot-rib waveguide clad with silicon-rich 

silicon nitride is expected to outperform its more conventional predecessor, albeit for 

longer pump wavelengths in order to maintain optical transparency. As the suggested 

waveguide geometry does not rely on any fabrication steps which have not already been 

demonstrated directly, it stands to reason that an experimental validation of the behavior 

predicted here should be carried out in order to fully assess the potential for silicon-rich 

silicon nitride to act as a nonlinear material for second-order wavemixing applications. 

 This chapter contains material which has been submitted for publication in, 

"Observation of second-harmonic generation in silicon nitride waveguides through bulk 

nonlinearities,” Optics Letters. The dissertation author was the primary investigator and 

author of this paper. 

This chapter also contains material which is being prepared for submission. The 

dissertation author was the primary investigator of this work..  



107 
 

 
 

Bibliography 

1. T. Suhara, M. Fujimura, Waveguide Nonlinear Optic Devices, Springer (2003). 

 

2. D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, "New CMOS-compatible 

platforms based on silicon nitride and Hydex for nonlinear optics," Nature 

Photonics 7, 597-607 (2013). 

 

3. J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, 

"CMOS-compatible multiple-wavelength oscillator for on-chip optical 

interconnects," Nature Photonics 4, 37-40 (2010). 

 

4. S. Khan, J. Chile, J. Ma, and S. Fathpour, "Silicon-on-nitride waveguides for mid-

and near-infrared integrated photonics," Applied Physics Letters 102, 121104 

(2013). 

 

5. W. Stutius and W. Streifer, "Silicon nitride films on silicon for optical 

waveguides," Applied Optics 16, 3218-3222 (1977). 

 

6. N. Manavizadeh, A. Khodayari, and E. Asl-Soleimani, "An investigation of the 

properties of silicon nitride (SiNx) thin films prepared by RF sputtereing for 

application in solar cell technology," Proceedings of ISES World Congress 2007, 

1120-1122 (2007). 

 

7. T. Ning, H. Pietarinen, and O. Hyvarinen, "Strong second-harmonic generation in 

silicon nitride films," Applied Physics Letters 100, 161902 (2012). 

 

8. R. Sharipov, "Quick introduction to tensor analysis," arXiv.org (2004). 

 

9. K. Ikeda, R. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear 

properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Optics 

Express 17, 12987-12994 (2008). 

 

10. M. Hughey and R. Cook, "Massive stress changes in plasma-enhanced chemical 

vapor deposited silicon nitride films on thermal cycling," Thin Solid Films 460, 7-

16 (2004). 

 

11. A. Gondarenko, J. Levy, and M. Lipson, "High confinement micron-scale silicon 

nitride high Q ring resonator," Optics Express 17, 11366-11370 (2009). 

 

12. S. Kielich, "Optical second-harmonic generation by electrically polarized 

isotropic media," IEEE Journal of Quantum Electronics 5, 562-568 (2003). 

 



108 
 

 
 

13. Y. Wang, Y. Wang, L. Cao, Z. Cao, "High-efficiency visible photoluminescence 

from amorphous silicon nanoparticles embedded in silicon nitride," Applied 

Physics Letters 83, 3474 (2003). 

 

14. C. Sun, S. Chu, S. Tai, S. Keller, U. Mishra, and S. DenBaars, "Scanning second-

harmonic/third-harmonic generation microscopy of gallium nitride," Applied 

Physics Letters 77, 2331 (2000). 

 

15. W. Pernice, C. Xiong, C. Schuck, and H. Tang, "Second harmonic generation in 

phase matched aluminum nitride waveguides and micro-ring resonators," Applied 

Physics Letters 100, 223501 (2012). 

 

16. K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, "Second harmonic 

generation in gallium phosphide photonic crystal nanocavities with ultralow 

continuous wave pump power," Optics Express 17, 22609-22615 (2009). 

 

17. C. Torres-Torres, A. Lopez-Suarez, L. Tamayo-Rivera, R. Rangel-Rojo, A. 

Crespo-Sosa, J. Alonso, and A. Oliver, "Thermo-optic effect and optical third 

order nonlinearity in nc-Si embedded in a silicon-nitride film," Optics Express 16, 

18390-18396 (2008). 

 

18. S. Habermehl, R. Apodaca, and R. Kaplar, "On dielectric breakdown in silicon-

rich silicon nitride thin films," Applied Physics Letters 94, 012905 (2009).



 
 

109 

 

Chapter 5: 

Conclusion 

 The work presented in this dissertation provides evidence that such desirable 

functionalities as electro-optic modulation and second-harmonic generation may be 

improved upon, in comparison to the performance attainable by silicon nanowire and  rib 

waveguides, by instead utilizing hybrid silicon-dielectric waveguides with carefully 

chosen cross-sections. Specifically, the slot-rib waveguide considered here has been 

shown to exhibit drastically reduced driving voltages as compared to previously 

demonstrated electro-optic modulators based on capacitively-induced free-carrier effects. 

This results from the minimization of the distance between the two materials across 

which driving voltages are applied. Whereas previous modulator geometries apply these 

voltages across several microns, the slot-rib waveguide does so across approximately 100 

nm, leading to significantly stronger effects within the two halves of the semiconductor 

waveguide. 

 This dissertation has furthermore shown how the inclusion of high-k dielectrics in 

slot-rib modulator geometries forces applied voltages to drop within the semiconductor 

waveguide, rather than across the dielectric itself. This effect leads, as shown, to an 

additional enhancement to the measured electro-optic effects, yielding theoretical 

switching voltages as low as ±.5 V. This trend of improvement is predicted to continue as 

dielectric materials with even higher dielectric constants are explored.
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 It has additionally been experimentally demonstrated that silicon nitride, a 

material previously thought to be inadequate for second-order applications such as 

second-harmonic generation, possesses an appreciable, bulk second-order susceptibility 

which can be leveraged in an integrated platform. By combining silicon-rich silicon 

nitride with silicon slot-rib waveguides, it has been theoretically predicted that extremely 

high conversion efficiencies may be attainable via phase-matched second-harmonic 

generation, and future work is anticipated to demonstrate this experimentally. 

 The primary intent of this dissertation has been to persuade the reader to 

understand the unique benefits attainable by integrated waveguides which deviate in 

design from the conventional nanowire waveguides typically reported on. By including 

deeply subwavelength slots in the waveguide geometry, extremely high bias electric 

fields may be made to interact with propagating electromagnetic waves, and their 

interaction may be used in a number of ways in nonlinear optical devices. Either through 

such interesting processes as capacitive free-carrier modulation or electric field-induced 

second-order wavemixing, these waveguides show promise for the significant 

improvement of a wide range of device metrics. It is the author's hope that the work done 

here will encourage the design of a new wave of integrated photonics device components 

which drastically outperform their predecessors. 




