
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Solution accelerators for large scale 3D electromagnetic inverse 
problems

Permalink
https://escholarship.org/uc/item/9rd5729n

Authors
Newman, Gregory A.
Boggs, Paul T.

Publication Date
2004-04-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rd5729n
https://escholarship.org
http://www.cdlib.org/


SOLUTION ACCELERATORS 
FOR 

LARGE SCALE  
3D ELECTROMAGNETIC INVERSE PROBLEMS 

 
GREGORY A. NEWMAN1 

AND 
PAUL T. BOGGS2 

 
 
 

MAY 4, 2004 
 
 
 

SUBMITTED TO INVERSE PROBLEMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 
  Formally Geotechnology Department, Sandia National Laboratories 
 

2Computational Sciences and Mathematics Research Department, Sandia National  
  Laboratories, Livermore CA 



ABSTRACT 
 

We provide a framework for preconditioning nonlinear 3D electromagnetic 
inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited 
memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate 
adjoint method that allows for an economical approximation of the Hessian that is 
updated at each inversion iteration. Using this approximate Hessian as a preconditoner, 
we show that the preconditioned NLCG iteration converges significantly faster than the 
non-preconditioned iteration, as well as converging to a data misfit level below that 
observed for the non-preconditioned method. Similar conclusions are also observed for 
the LM iteration; preconditioned with the approximate Hessian, the LM iteration 
converges faster than the non-preconditioned version.  At this time, however, we see little 
difference between the convergence performance of the preconditioned LM scheme and 
the preconditioned NLCG scheme.  A possible reason for this outcome is the behavior of 
the line search within the LM iteration. It was anticipated that, near convergence, a step 
size of one would be approached, but what was observed, instead, were step lengths that 
were nowhere near one.  We provide some insights into the reasons for this behavior and 
suggest further research that may improve the performance of the LM methods. 

   
 

INTRODUCTION 
 

Three-dimensional (3D) electromagnetic (EM) inversion has shown significant 
potential in hydrological and hazardous waste site characterization, as well as in oil and 
gas exploration. It also has important applications in mineral and geothermal exploration 
and general geologic mapping. 3D inversion has been used successfully to map 
subsurface transport pathways for contaminants (cf., Alumabugh and Newman, 1997) to 
delineate buried metallic waste, to define the extent of waste pits, and to determine the 
safety of proposed long-term waste disposal sites (cf., Newman et al., 2002). In spite of 
these successes, 3D inversion of data continues to be a cumbersome process requiring 
significant time and computational resources, thus restricting its use.  

Because of the importance of the approach, we continue to investigate a variety of 
3D inversion schemes for improved efficiency, emphasizing gradient type techniques 
because they can effectively treat large data volumes that typically arise in a 3D EM 
imaging experiments (cf. Newman and Alumbaugh, 2000). Such schemes include 
steepest decent, nonlinear conjugate gradients and limited memory quasi-Newton 
methods.  To improve the efficiency of these methods, preconditioning can be applied 
with the goal of inducing these methods to perform more like Newton’s method, which is 
considered to be the most robust nonlinear optimization scheme for large-scale inverse 
problems. Efficiency is paramount, because in the nonlinear inverse problem, hundreds to 
thousands of 3D forward-modeling solutions are required to fine tune regularization 
parameters, quantify data noise, and access the unique properties of the solution through 
an appraisal process (cf. Alumbaugh and Newman, 2000).  

Two properties are required of a good preconditioner. The first is to reduce the 
number of inversion iterations required for convergence, and the second is to do so in 
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manner that the work required in the application of the preconditioner is small. A 
preconditioner that achieves the first goal, but is expensive to apply in terms of 
computational requirements, is neither effective nor desirable. Newman and Alumbaugh 
(2000) explored the use of a diagonal preconditioner for the magnetotelluics based on a 
quasi-Newton formula, known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update 
(cf. Dennis and Schnabel, 1996). The advantage of this preconditioner is that it can be 
developed directly from the nonlinear conjugate gradient iteration and is continually 
updated within the inversion process. Its disadvantage is its erratic performance. In the 
best case it offers a modest reduction in the number of inversion iterations compared to 
an inverse solution employing no preconditioning. 

For the 2D magnetotelluric problem, Rodi and Mackie (2001) introduced a 
preconditioner for the nonlinear conjugate gradient iteration that attempts to 
economically approximate the Hessian using the component of the Hessian that has been 
introduced to stabilize, or regularize, the inverse problem. In addition to this term, they 
add a scaled identity matrix, based on the size of the data component part of the Hessian, 
that is assumed to arise from a simplified homogeneous medium that is fixed during the 
inversion iteration. Because the approximate Hessian is highly sparse, it can be efficiently 
inverted to obtain a preconditioned decent/search direction using a linear conjugate 
gradient solver, hence its potential effectiveness as a preconditioner. Using this approach 
as a guide, we will seek to develop a more robust preconditioner using approximate data 
sensitivities based on the ideas of Farquharson and Oldenburg (1996). At each inversion 
iteration the idea is to more accurately estimate the data component of the Hessian so it 
can be applied as a preconditioner in both the nonlinear conjugate gradient (NLCG) and 
the limited memory (LM) quasi-Newton schemes, where efficiency is paramount for 3D 
inverse problems. These later schemes have the potential to perform even better than 
NLCG schemes. These methods can be seen as extensions of the conjugate gradient 
method, in which additional storage is used to accelerate convergence. Unfortunately in 
large-scale inverse problems, the Quasi-Newton methods are not that practical due to 
excessive storage requirements. This problem can be avoided by implementing a limited 
memory variant of the scheme first proposed by Perry (1977) and subsequently improved 
in the intervening years by Nocedal (1980) among others. (See Nocedal and Wright 
(1999) for a good introduction.) 
 To set the stage for developing the preconditioner, we first will review the inverse 
and forward problem formulations, and gradient type minimization methodologies. 
Following these reviews we show how the preconditioner is implemented and will then 
demonstrate its effectiveness on a 3D cross well EM imaging experiment for the two 
different inversion schemes discussed above.   
 

INVERSE PROBLEM FORMULATION 
 

Following Newman and Hoversten, (2000), we formulate the inverse problem by 
the minimization of the following cost functional, 
 
φ = ½ {D(dp - dobs)T*{D(dp - dobs)},                                               (1) 
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where T* denotes the transpose-conjugation operator. In the above expression, the 
predicted and observed data vectors are denoted by dp and  dobs, respectively, where each 
has n complex values. These vectors consist of electric or magnetic field values specified 
at the measurement points, where the predicted data are determined through solution of 
the forward modeling problem, discussed below. We have also introduced a diagonal 
weighting matrix, D, into the cost functional to compensate for noisy measurements; it is 
typically based on the inverse of the standard deviations of the measurements.  
 To stabilize the minimization of (1) we are required to add a regularization term. 
Many choices are available; in our past work we have focused on a class of conductivity 
models using Tikhonov regularization that exhibit smoothly varying properties. Thus we 
introduce a matrix W, based upon a finite-difference approximation to the Laplacian 
(∇2) operator applied in Cartesian coordinates, to reduce model curvature in three 
dimensions. Further let us divide the inversion domain into m cells and assign to each cell 
an unknown conductivity value. These quantities are real valued and collectively stored 
in the model vector m, which is piecewise constant. Hence (1) is augmented as 
 
φ(m) = ½ {D(dobs – dp)}T*{D(dobs – dp)} + ½ λ {Wm}T{Wm},                                (2) 
 
where the parameter λ attempts to balance data error and model smoothness, and T 
denotes the transpose operator. Note that d is now a function of m, since these parameters 
will enter into the forward modeling problem, and that there is a variety of strategies for 
selecting λ; (cf., Haber and Oldenburg, 1997).  
 

FORWARD PROBLEM FORMULATION 
 

The cost functional gradient,∇φ, and the predicted data are linked directly to the 
forward modeling problem that is described by the time harmonic Maxwell equations. 
Our solution method for the forward modeling problem is based upon the consideration 
that the number of model parameters required to simulate realistic 3D geology can 
typically exceed 107. Finite difference modeling schemes are ideally suited for this task 
and can be parallelized to handle large-scale problems that cannot be easily treated 
otherwise (Alumbaugh and Newman, 1996). After approximating the Maxwell equations 
on a staggered grid at a specific angular frequency, ω, using finite differencing and 
eliminating the magnetic field (see Newman and Alumbaugh (1995) for specific details), 
we obtain a linear system for the electric field, 
 
KE=S.                                 (3) 
  
where K is a sparse complex symmetric matrix, dimension N x N, with 13 non-zero 
entries per row and its diagonal entries depend explicitly on the electrical conductivity, σ, 
that we desire to estimate through the inversion process.  Since the electric field, E, also 
depends upon the conductivity, implicitly, this gives rise to the nonlinearity of the inverse 
problem. The fields are sourced with a grounded wire or loop embedded within the 
modeling domain, described by the vector S, and includes Dirichlet boundary conditions 
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imposed upon the problem. To avoid excessive meshing near the source, we favor a 
scattered-field formulation to the forward modeling problem. In this instance, E is 
replaced with Es in equation (3). The source term, for a given transmitter, will now 
depend upon the difference between the 3D conductivity model and a simple background 
model, weighted by the background electric field, Eb, where E=Eb+ Es. We favor simple 
background models, such as whole space or layered half-space models that can be easily 
and rapidly simulated. Equation (3) is solved to a predetermined error level using 
iterative Kyrlov subspace methods. With the solution of the electric field, the magnetic 
field can be easily determined from a numerical implementation of Faraday’s law, 
 
H=∇xE/-iωµο,                                                                                                       (4) 
 
where µο is the magnetic permeability of free space and i=√-1. 
 
 
GRADIENT TYPE MINIMAZATION METHODOLOGIES 

 
For large-scale nonlinear problems, as considered here, we shall minimize (2) 

using gradient based optimization techniques, including nonlinear conjugate gradient and 
LM quasi-Newton schemes, because of their minimal storage requirements. We 
characterize these methods as gradient based techniques because they employ only first 
derivative information of the cost functional in the minimization process. We first show 
how the gradients can be efficiently computed.  Then we briefly describe the NLCG 
method that we have been using.  Next, we discuss quasi-Newton methods and their 
implementation in this context.  Finally, we introduce an approximate Hessian matrix 
based on an approximate data sensitivity concept.  This will be used as a preconditioner 
for the NLCG method and will be incorporated into the quasi-Newton inversion iteration 
as well, with the goal of  improving the performance of both methods.  
 
 
Gradient Derivations 

Gradient derivations for our problem can be found in Newman and Hoversten 
(2000), where they are used to develop Newton/Gauss-Newton solution methodologies to 
the multi-dimensional electromagnetic inverse problem. Because we will investigate 
gradient type solution methodologies, we shall re-derive gradients to make our paper self-
contained.  

We formally express the gradient of the cost functional in equation (2) as  
 
∇φ=∇φd+λ∇φm,                                                                        (5) 
 
where ∇φ  is split into the data misfit and regularization terms appearing in equation (2). 
The model parameterization employed in the solution of the forward problem will also be 
used in the inverse solution. Hence the kth component of the gradient will be based upon 
the conductivity of the kth cell in the finite difference mesh. Evaluation of ∇φm is straight 
forward: 
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∇φm = WTWm.                                                                (6) 
 
Evaluation of ∇φd   is more complicated, but using the chain rule with some algebra it can 
be shown that  
 
∇φd = - ℜe({DJ}T{D(dobs – dp)}*),                                   (7) 

 

where * stands for complex conjugation, and ℜe specifies the real part of its argument 
and  J is the data sensitivity matrix. To specify J, consider a matrix Q, dimension n x N, 
that operates on the electric field, E, determined by the solution of equation (3).  The 
operator Q interpolates the predicted electric field from the mesh to the receiver 
locations. It also can compute the discrete curl of the electric field (equation (4)) and 
interpolate predicted magnetic field results to specified receiver locations. Thus the 
predicted data can be expressed as  
  
dp= Q E.                                                                           (8) 
 
With equation (8) the data sensitivity for the kth model parameter can be expressed as 
 
∂dp/∂mk= Q ∂E/∂mk,                                                           (9) 

 
or  
 
∂dp/∂mk= Q ∂Es/∂mk,                                                           (10) 
 
because the background electric field,  Eb, is fixed. Given a scattered field formulation of 
the forward modeling problem we use equation (3) to express, ∂Es/∂mk as 
 
∂Es/∂mk = K-1(∂S/∂mk – ∂K/∂mk Es),                                             (11) 
 
and the kth column of the data sensitivity matrix/Jacobian matrix is written as 
 
Jk = Q K-1(∂S/∂mk – ∂K/∂mk Es).                                              (12) 
 
Let us define an N x m matrix G, where 
 
G={(∂S/∂m1 – ∂K/∂m1 Es), (∂S/∂m2 – ∂K/∂m2 Es),..., (∂S/∂mm – ∂K/∂mm Es)}.    (13) 
  
Hence the Jacobian matrix is expressed using a triple matrix product, 
 
J= Q K-1 G.                                                                       (14) 
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Moreover, since K-T = K-1 (K is complex symmetric), we also have 
 
JT = GT K-1 QT.                                                                       (15) 
 
Substituting equation (15) into equation (7) and noting {DJ}T=JTDT, we express the 
data component of the gradient in terms of the forward modeling problem: 
 
∇φd = - ℜe(GT K-1 QT DT{D(dobs – Q E)}*).                   (16) 

 
We can now show that the number of forward modeling solutions needed to evaluate the 
gradient is two. The first is needed to specify the electric field, E, at the current model at 
a fixed frequency. The additional solution arises from the source distribution, 
 
v = QT DT {D(dobs – Q E)}*,                                                             (17) 
 
and is determined by solving the linear system 
 
Ku=v,                                                                                    (18)                          
 
to a predetermined error level. 
 To conclude this section we remark that specification of the gradient, ∇φd, for 
multiple sources is simply a sum of gradients (equation (16)) due to each source at a 
discrete frequency, as applied in equation (3). 
   
Nonlinear Conjugate Gradient Iteration                                         

Shown below is a pseudo code of the preconditioned NLCG algorithm that could 
be used in the minimization of equation (2).   
 
Algorithm  

(1) set i =1, choose initial model mi and compute ri= - ∇φ(mi) 
(2) set ui=Mi

-1ri 
(3) find αi that minimizes φ(mi + αiui) 
(4) set mi+1 = mi + αiui and compute ri+1= - ∇φ(mi+1) 
(5) stop when | ri+1 | < ε, otherwise go to step (6) 
(6) set βi+1 = (ri+1

 T Mi+1
-1ri+1  - ri

 T Mi
-1ri ) / ri

 T Mi
-1ri 

(7) set ui+1
 =Mi+1

-1ri+1 + βi+1 u) 
(8) set i=i+1 and go to step 3 

 
The matrix operator Mi

-1 in the algorithm is a preconditioner, which steers and scales the 
conjugate search direction ui such that it more closely approximates the Newton 
direction.  For now let us assume the preconditoner is simply the identity matrix. To use 
the NLCG algorithm sensibly requires efficient computation of gradient, which we have 
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already demonstrated. Most implementations of NLCG include a very accurate line 
search.  Indeed, when applied to quadratic minimizations, an exact line search is 
necessary to ensure conjugacy.  Since the evaluation of the function in our case is very 
expensive, we developed a procedure that gives acceptable decrease of the function with 
a minimal number of evaluations.  Newman and Alumbaugh (2000) discuss the issue and 
show it is possible to achieve acceptable decreases in the cost function using a line search 
based upon quadratic interpolation, safeguarded with back tracking. Usually an additional 
forward modeling application per source is all this is needed for the line search, thereby 
yielding three forward modeling applications per source per inversion iteration for the 
algorithm. 
  
Background on Limited Memory Quasi-Newton Methods 

It is well known that methods that only use first-order gradient information, for 
example, steepest descent, are often very slowly convergent in practice. To increase the 
speed of convergence, one would ideally like to use Newton's method, which is given by 
 
 mi+1 = mi   - αi (Hφi)-1∇φi                                                            (19) 
 
where Hφi is the (Hessian) matrix of second partial derivatives of φ with respect to m, αi 
is the steplength, and the subscript i means that the function is evaluated at the point mi.   
It is well known that Newton's method converges much faster than steepest descent. In 
fact, steepest descent is known to converge linearly with the constant of linearity close to 
one for ill-conditioned problems.  Our problems are, of course, very ill-conditioned.  The 
NLCG method discussed above also converges linearly, but its constant is often much 
smaller; hence reasonable performance has been achieved. 

Newton's method, on the other hand, converges quadratically, which means, 
roughly, that near the solution the number of significant digits doubles at each iteration.  
The problem with Newton's method, however, is that it is generally too expensive to 
compute and/or store the Hessian. Much research in optimization has been devoted to 
finding approximations to the Hessian that are inexpensive to compute, but effective in 
reducing the number of iterations required for solving the problem.  See Nocedal and 
Wright (2000) for a modern introduction to these concepts. 

Quasi-Newton methods seek to approximate the Hessian by using differences in 
the gradients and differences in the iterates. In particular, these methods can be 
considered as a generalization of the secant method.  Suppose we have an approximation, 
Hi, to the Hessian at the current iterate. We use that to compute the next iterate, 
 
mi+1 = mi   - αi Hi

-1∇φi.              (20) 
 
Then by defining 
 
si+1 =   mi+1 - mi                   (21) 

 
yi+1 =   ∇φi+1 - ∇φi                  (22) 
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quasi-Newton methods choose the next Hessian approximation to satisfy the so-called 
“secant equation,” i.e., 
 
Hi+1 si + 1 = yi + 1 .                 (23) 
 
There is wide latitude in choosing Hi+1 to satisfy this equation and much research has 
been devoted to this.  If the update is chosen appropriately, then one can achieve 
''superlinear'' convergence. The updating scheme that has emerged as the method of 
choice for many problems is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method 
given by  
      
Hi+1 = Hi + yi yi

T/ yi
Tsi - Hi si si

T Hi /si
T Hisi .             (24) 

 
Much experience over the past decades has shown that one often needs more iterations 
with a quasi-Newton method than with Newton’s method, but the overall work is 
typically less with the quasi-Newton method. See Dennis and Schnabel (1996)).  An 
important feature of the BFGS method (and other low-rank methods) is that one can 
update the inverse of the Hessian rather than the Hessian itself, and thus no linear systems 
have to be solved to obtain the next iterate.  Let Hi be the approximation to the inverse at 
iteration i. The formula for updating the inverse approximation is  
 
Hi+1 = (I - ρi yi si

T) Hi (I - ρi  yi
 si

T+ ρi si si
T)            (25) 

 
where ρi  =1/ si

T yi. 
 In the large-scale case, it is often too expensive to store the matrix Hi, since it 
will typically be dense, even if the underlying true Hessian is sparse. To overcome this, 
Perry (1977) suggested a “limited-memory” formulation of the quasi-Newton method. 
The idea is to store the pairs si and yi for the past M iterations, depending on how much 
memory one has. With appropriate update strategies it can be shown that the quasi-
Newton step can be computed without ever forming the matrix Hi. Taking this original 
idea of Perry, Nocedal extended the concept (see Nocedal and Wright (1999) for a good 
summary). Although there is no hope of achieving superlinear convergence using this 
idea, this strategy has been quite effective in practice. Indeed, the LM-BFGS method has 
become the method of choice for many large-scale problems and has been shown to be 
superior to both steepest descent and the NLCG methods in many applications.  
 As Nocedal and Wright (1999, section 9.1) show, the LM-BFGS method can be 
efficiently applied by using the above inverse update formula.  This formula requires that, 
at each iteration, we compute an initial approximation to the Hessian and be able to apply 
its inverse to a vector.  Typically, one uses a scaled identity matrix as the initial Hessian, 
but other possibilities exist.  We discuss one such possibility below. 
 
Line Search 

One of the keys to creating an effective implementation of a limited-memory 
method, or, in fact, any successful optimization algorithm, is the line search strategy, 
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needed to determine an acceptable step length in equation (19). In the LM-BFGS method, 
commonly it is assumed that step lengths should be near 1 near the solution. However, if 
the underlying approximation to the Hessian is too crude, than it is conceivable that such 
step lengths will never be realized. Much testing has revealed that this is the case for our 
problems. Hence we have adapted a line search strategy similar to that used in our NLCG 
scheme, with the exception that the scheme allows for a more aggressive step when 
following a direction of negative curvature.  We have to be careful, however, since we do 
not want to take a step that will get us into the domain of attraction of a minimizer in 
which we have no interest. When the function is locally convex, the line search is based 
upon quadratic interpolation, safeguarded with back tracking. In previous work, 
heuristics were developed to limit the step length in the context of the NLCG method and 
the same is done here. Basically, these procedures do not allow the change in any 
component of mi to be more than a specified percentage of the value of the largest 
component of mi.  This has the effect of not allowing model updates to move drastically 
away from a feasible modeling domain.  
 
 

USING AN APPROXIMATE HESSIAN 
 

Although our experience using the above procedures has been generally 
satisfactory, to solve the very large problems of interest requires us to obtain a higher 
level of efficiency.  Below we show how to compute an approximation to the Hessian 
that has some useful properties when used with our approach.  Specifically, a Hessian 
approximation can be used with the NLCG method as a preconditioner or with the LM-
BFGS method as the initial Hessian approximation for each inversion iterate.  We discuss 
each of these now. 

Recall that our description of the NLCG method included the use of a 
preconditioner and that two properties are required for a good preconditioner. The first is 
to reduce the number of inversion iterations, and the second is to do so economically. As 
noted above in the discussion of the LM-BFGS method, one normally uses a scaled 
identity matrix as the initial Hessian approximation.  But if we have a better 
approximation that incorporates more information about the Hessian, it seems appropriate 
to try this approximation for the initial Hessian matrix for each inversion iterate.  Here, as 
in the NLCG case, the initial approximation has to be inexpensive to compute and to 
apply for it to be effective. 

The starting point in designing our Hessian approximation is to consider the 
Gauss-Newton method for the case where the data are complex, but where the model 
parameters are strictly real. In this case (see Menke, 1984) the model update is given by   

 
mi+1 ={(DJ)T* (DJ) + λWTW}-1(DJ)T* {(di-dobs) - (DJ) mi}.                          (26) 

 
Here the quantity (DJ) describes the weighted data sensitivity or Jacobian matrix based 
upon the current model mi. Its efficient evaluation with respect to the forward problem 
for frequency domain applications has already been discussed.  Thus in the Gauss-
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Newton method, the inverse of the full Hessian (which includes second derivative terms) 
is approximated by  
 
M-1

i ≈ {(DJ)T*(DJ) + λWTW}-1,                                                          (27) 
 
where the approximation only becomes exact in the case of zero residuals as we approach 
a minimum of (2).  A good choice for preconditioning the NLCG iteration is to consider a 
further simplification to equation (27).  Specifically we could use  
 
M-1

i ≈ {diag[(DJ)T* (DJ)] + λWTW}-1 .                                                (28) 
 
Here the operator diag extracts the diagonal of the matrix [(DJ)T*(DJ)] . Equation (28) 
is now in a form that can be useful for preconditioning when approximate data 
sensitivities (cf. Farquharson and Oldenburg, 1996) are used in its evaluation; R. Mackie 
has also investigated this approach as a preconditioner for 3D magnetotelluric inverse 
problems (Mackie, pers. comm. 2004).  

These sensitivities can be obtained from the electric field integral equation, 
          

)'()'()';(')()( 11 rpp δσrErrrdrd G iv i-ii dr∫ −+= ,                                     (29) 

 
which determines the predicted data for the model update at iteration i for a given source 
(cf., Newman 1995). Here Gi-1 is a tensor Green function for either electric or magnetic 
field, which depends on whether the predicted data are electric or magnetic type. Now the 
electric field in equation (29) also depends upon the updated model; hence it is not 
known. However using the Born approximation, we can replace the electric field with the 
corresponding field from the previous update. That is, we assume = E . 
However an additional complication remains. Even though the tensor Green function 
depends upon the current model, which is known, its determination or specification 
requires the solution of the 3D Maxwell equations in tensor form for dyadic and 
impulsive sourcing. To avoid this complication, we now assume that the Green function 
can be approximated with a simple 1D layered half-space background model that can be 
easily determined, semi-analytically. It is conceivable that such a simple model would 
also be used to launch the inversion process. This approximation is also known as an 
iterative Born approximation (Chew, 1991) and allows us to further simplify equation 
(29), obtaining 

)'(1 rE -i )'(ri

 
 

d )')'()';(')()( 1D11 (rrErrrdr G δσ−− ∫+≈ ivii drpp

 .      
                                              (30) 

                            At this point we are now able to use equation (30) to specify the approximate data 
sensitivities per unit volume. Setting δ , we have )()()( 1 rdrdrd ppp

−−= iii
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δσ
δ p

i )'()';( 1D1 rErrG i-≈ .                                                                                            (31) 

 
In order to specify the approximate data sensitivity for the kth model parameter, mk, we 
integrate equation (31) over the cell assigned to mk  in the finite difference mesh. Thus   
 
∂dp/∂mk .                                                      (32)             

 )'()'(' 1D1 rErrG i-v
;dr

k
∫≈

 
For our purposes we approximate above integration as follows: 
 
∂dp/∂mk 

,                                  (33) kki-k vrEr;rG ∆≈ )()( 1D1

 
where corresponds to the position at the center of kkr th cell. Because there are far more 
image points than data, we can make equation (33) more efficient, computationally, by 
employing reciprocity. This avoids sourcing the 1D tensor Green function at each cell 
center within the imaging volume. Assuming that electric and magnetic field data are 
acquired using point dipole receivers we have 
 

)(D1 krr;G =                             (34) )(D1 r;rG k

 
for electric field data and  
 

)(D1 kr;rG =-iωµο G )(D1 r;rk                                                     (35) 
 
for magnetic field data. Equations (33), (34) and (35) provide for an economical 
approximation for entries of the Jacobian matrix J, and therefore, diag[(DJ)T*(DJ)], 
given that the electric field E  has already been determined at the current model in 
equation (16). We can also consider equations (33), (34) and (35) to be based upon an 
approximate adjoint method, because reciprocal or adjoint Green tensors have been 
conveniently utilized in the sensitivity approximation. 

1i-

To complete the preconditioning step in the NLCG iteration, we determine vi 
from 
 
ri = Mivi                                                                      (36) 
 
by using a linear conjugate gradient solver. A similar type of solve would also be 
required when we using LM-BFGS scheme. Recall that, at each LM-BFGS iteration, we 
compute an initial approximation to the Hessian and be able to apply its inverse to a 
vector.  
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DEMONSTRATION 
 
Over the last fifteen years a series of salt-water injection monitoring experiments 

has been conducted at the University of California’s Richmond Field Station. These 
experiments have been undertaken to simulate enhanced oil-recovery water flood and 
injection of contaminants/tracers into an aquifer. Alumbaugh and Newman (1997) 
discuss one such set of experiments using cross-well EM to image the salt-water 
injection. Well logs of the site show that the geology of the near surface consists of 
unconsolidated alluvium (mud and gravel) whose electrical conductivity ranges from 0.2 
to 0.02 S/m. Below 30 m depth, less conductive basement rock, consisting of sandstone 
and shale is encountered. Conductivity of the basement can range as low as 0.001 S/m. 
Cross-well electromagnetic measurements were taken by placing a vertical magnetic 
dipole antenna, operating at 18.5 kHz, in the center/injection well. Vertical field 
measurements were then taken in the surrounding wells at 5 m intervals from 5 to 60 m 
depth. A similar range of source depths was also employed in the experiment.  

In the process of analyzing the field data, Alumbaugh and Newman (1997) carried 
out an experiment design and resolution analysis of the experiment by considering 
probable models of the site. We have taken the data for one of these models and inverted 
it using the inversion schemes previously described. The electric properties of this model 
that we will attempt to recover consist of a 30 m thick conductive overburden, which 
includes a 4 m thick aquifer or sand channel, 20 m south-east of the injection well, near 
22 m depth. The plume corresponding to the injected salt water was modeled to be 
several meters thick, and placed near the injection well at 30 m depth. It was assigned a 
conductivity of 0.2 S/m, with lateral dimensions of about 5 m on a side. Below 30 m 
depth, electrical basement is included in the model. The basement is insulating, 
exhibiting low conductivities, less than 0.02 S/m and includes a vertical contact or fault, 
based upon well log data; a detailed graphic of the model is shown in Figure 1.  

The amount of data analyzed consists of 3696 data points, simulated in eight wells 
that surround the injection well.  The noise model assumed for the data is Gaussian and is 
based upon a standard deviation equal to 2 per cent of the magnetic field for amplitudes 
greater than 1x10-6 A/m, and a standard deviation equal to 2x10-8 when the field drops 
below this value. The data were weighted within the inversion processes with this noise 
distribution. The inversion of the 3D cross well data set was launched with a 0.0333 S/m 
half space and Figure 2 shows the image recovered at 30 m depth using a preconditioned 
NLCG scheme at the 46th iteration. The plume is clearly imaged, off the center of the 
injection well. Also shown are the eight receiver wells that surround the injection well. 
Cross-sections of the recovered model along the x and y directions are shown in Figure 3.  
These cross-sections indicate resistive electrical basement, but are not able to precisely 
recover all features of the basement, because of the limited resolving power of the data. 
Regarding this last point, we refer the interested reader to resolution analysis found in 
Alumbaugh and Newman (1997) for more details on this point. 

Convergence of the preconditioned NLCG inversion iteration is shown in Figure 
4. In this figure we have also plotted the data component of the cost functional as this 
measure can be used to indicate when we have fit the data to within the assumed data 
errors. Ideally we want to fit the data to a target level of one, but have only achieved a 
data fit, based upon the weighted squared error, that is 3.5 times above our target misfit. 
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To achieve the target misfit it is necessary to reduce the amount of regularization or 
model smoothing, added to stabilize the inverse problem; the tradeoff parameter λ 
appearing in equation (2) was fixed at ten. Nevertheless even in this example, where λ is 
set too large, we are still able to resolve the injected saltwater plume with accuracy 
comparable to that when we fit the data to the target misfit level of one (see Alumbaugh 
and Newman (1997)).            

While all the above mentioned details are important for this demonstration, our 
focus in on accelerating the inverse iteration and Figure 4 shows clearly that we have 
achieved this goal. The non-preconditioned NLCG iteration converges significantly 
slower than for the preconditioned one, eventually converging to misfit level above that 
observed for the preconditioned problem. Similar conclusions are also observed for the 
LM-BFGS iteration in Figure 5; the LM-BFGS memory size included the current and all 
previous inversion iterates. At this time we see little difference between using 
preconditioned LM-BFGS scheme and preconditioned NLCG; overall the performances 
of both preconditioned schemes appear to be similar.  Several improvements for the LM-
BFGS method are still possible, however, and we are continuing to pursue these.  For 
example, the general expectation for LM methods is that a step length of one will 
eventually be acceptable.  We have not observed this at all. In fact, in our tests the step 
lengths are almost never near one.  This suggests that a more careful line search at the 
first iteration would be helpful in establishing the approximate scale of the problem.  This 
step length could then be saved.  At subsequent iterations, we could use the saved step for 
evaluation and then try to adjust this, in a trust-region like strategy to adapt the step 
length as we progress.  Also, we could try to improve the preconditioner for its specific 
use in the quasi-Newton framework by adding another scaled diagonal term that would 
serve as the initial approximation for all of the omitted terms in the Hessian. On the other 
hand using only a few dozen inversions iterations in conjunction with a low rank method 
for updating the Hessian, it may be unrealistic to expect quadratic convergence. More 
research is needed in the application of limited memory quasi-Newton methods for such 
large-scale inverse problems. 

 
 

 
CONCLUSIONS 

 
We have provided a framework for preconditioning the inversion iteration for 

nonlinear conjugate gradient and limited memory quasi-Newton methods. Key to our 
approach is the use of approximate adjoint concept that allows for an economical 
approximation of the Hessian. We anticipate that better approximations to the Hessian, 
than the type employed here may lead to better preconditioners. Allowing for more fill in 
would be one possibility. Another would use the adjoint fields on a 3D background 
model that is also used to launch the inversion process. While it would be necessary to 
save or store all the adjoint fields within the imaging volume, for each of the different 
detectors/receivers that source these fields, the computation of these adjoint fields need to 
be done only once.  
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FIGURE CAPTIONS 
 
 
Figure 1. Test model used to test the preconditioned NLCG and LM-BFGS inversion 
schemes. The model is based on a resolution analysis of a cross-well EM imaging 
experiment at the Richmond Field Station. Two views of the same model are included 
such that horizontal conductivity slices can be shown at nine different depths, with back 
and left-side panels showing how the conductivity varies continuously with depth. The 
location of the eight observation wells is shown at the surface of the model. The injection 
well is indicated in red. The figure shows a 4 m thick channel deposit at 22 m depth, a     
4 m thick plume centered near 30 m depth, the contact between the conductive 
overburden and resistive basement and a vertical contact within the basement. 
 
 
Figure 2. Reconstructed image of the test model at 30 m depth. The injected plume is 
clearly indicated in the image. The eight observation wells and injection well are 
indicated in the figure. T denotes a transmitter position in the injection well and R a 
detector position in the observations wells. 
 
 
Figure 3. Cross-sections of the reconstructed test model. a) x-z cross section image and b) 
y-z cross section image. Cross sections indicate resistive electrical basement consistent 
with the test model. T and R denote transmitter and detector locations.   
 
 
Figure 4. Convergence of the NLCG iteration is shown for the test model problem of 
Figure 1. Preconditioned and non-preconditioned convergence is illustrated. We have 
also plotted the cost function with (dashed) and without the stabilization or regularization 
term (solid) for both types of iterations. Beyond the first iteration, the data component of 
the cost functional is always smaller than the total cost functional.    
 
 
Figure 5. Convergence of the LM-BFGS iteration is shown for the test model problem of 
Figure 1. Preconditioned and non-preconditioned convergence is illustrated. We have 
also plotted the cost function with and without the stabilization (regularization) term for 
both types of iterations.  
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