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Abstract 

A new Global Resource-constrained Percolation (GRiP) scheduling technique is presented 

for exploiting instruction level parallelism. Other techniques that have been proposed either 

have been prohibitively expensive in terms of computation or have limited parallelism. The 

GRiP technique has been implemented and simulation results are presented. 

Keywords: Instruction-level parallelism, Percolation Scheduling, Software Pipelining, Resource­

constraints, VLIW. 

1 Introduction 

In this paper we present an efficient resource constrained method for exploiting instruction level 

parallelism that is based on a new Global Resource-constrained Percolation (GRiP) scheduling tech­

nique. Though we present GRiP in the context of Percolation Scheduling and Perfect Pipelin­

ing, it could also be used for other instru~tion level parallelization techniques, such as Trace 

Scheduling[Fi81] and Enhanced Pipelined Percolation Scheduling[EbNa89]. GRiP scheduling is mo­

tivated by the belief that resource constraints should be an integral part of scheduling and should 

be based on global information about a program. 

Globally considering resource constraints ~uring the scheduling process is important for three 

reasons. First, in the realm of software pipelining, resource constraints can be used to determine 
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how many iterations to allow into the pipelined loop body. Without global resource constraints 
.. ; .·. . . .. 

information, the number of iterations ·m:ust "be· Hmited by: s<m~e arbitrary (and possibly narrow-

sighted) criteria. To understand the importaAc~'<;>f thi~, :.c'~risid~r·: pipelining a vectorizable loop with 

5 operations for a VLIW machine with 4 fq.nctidO:al units. 'lfi"esource constraints are separated from 
. . ' . . ' ' 

the pipelining process, there is no a priori limit on the parallelism exposed and thus no natural 

convergence of the software pipelining. In such situations, unconstrained pipelining techniques (e.g. 

[AiNi88c] and [Eb87]) typically limit the parallelism at the throughput level to the equivalent of one 

sequential iteration per pipelined iteration (i.e. one iteration per cycle). In this context the best 

possible schedule for our example would execute 5 operations every 2 instructions ( 4 operations in 

one instruction and the remaining operation in the other). If resource constraints are incorporated 

like in Modulo scheduling [GrLa86, RaG182], convergence_ is less arbitrary, but no guarantee of good 

utilization can be provided since the scheduler takes a local (1 or 2 iterations) view of the code. 

By allowing the resources to be filled as part of a global scheduling process, 4 iterations would be 

let into the final pipelined loop body, thus resulting in a schedule that would execute at the peak 

capacity of the machine of 4 operations per instruction. 

The second reason for incorporating resource constraints into the scheduling process is to allow 

for intelligent decisions about when to perform speculative scheduling. Speculatively scheduling 

an operation from a path that may or may not be chosen can vastly improve performance if the 

path is actually taken; however, in the presence of resource constraints, it may also prevent the 

scheduling of another more useful operation. Aggressive speculative motions of operations in the 

absence of resource information can yield significant slowdowns in some instances as possibly useless 

operations compete with useful operations for scarce resources. Having knowledge about what 

resources are available while scheduling allows for more sophisticated decisions about whether or not 

to speculatively schedule an operation. For instance, when a large number of resources are currently 

available, it would be worthwhile to allow the spec1llative scheduling of operations; on the other 

hand, with only a few resources, it might be better to prohibit it until all non-speculative operations 

have been scheduled. Of course the efficacy of the.se decisions could be improved with accurate 

knowledge of path execution probabilities. Currentiy, neither speculative scheduling heuristics nor 

branch prediction are incorporated into our new G RiP technique; however, both could be added in 

a straight forward manner since the heuristic part of our G RiP technique is completely abstracted 

away from the actual transformations in accordance with the hierarchical nature of Percolation 

Scheduling. Without speculative scheduling heuristics, GRiP always allows speculative scheduling. 

The third reason for integrating resource constraints into the scheduling process has to do with 

computational efficiency. Scheduling without resource constraints requires operations to move as 

far as data dependencies allow. Resource constraints usually limit the distance that operations will 

move since operations are frequently. prevented from moving due to a lack of available resources 

before they would have been stopped by data d~pendencies. 

The remainder of this paper is organized as follows. Section 2 provides a brief overview of 

Percolation Scheduling and Perfect Pipelining. Section 3 describes the GRiP technique. Section 4 
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Figure 1: VLIW Instruction 

presents simulation results. 

2 Percolation Scheduling and Perfect Pipelining 

This section provides an overview of Percolation Scheduling (PS) and Perfect Pipelining (PP) which 

. provide the parallelization tools upon which our implementation of GRiP is built. For a thorough 

discussion of Percolation Scheduling, refer to [AiNi88c, Ni85a]. For more complete coverage of 

Perfect Pipelining, see [AiNi88c]. 

Percolation Scheduling is a system for performing parallelizing transformations on the program 

graphs of the VLIW[Fi83] computation model. A program graph is a directed graph wherein each 

node is an instruction and edges represent control flow. An instruction is a set of "conventional" 

operations1 (possibly involving multiple conditionaljumps). The terms instruction and node are used 

synonymously throughout this paper. For simplicity of exposition, we assume that all operations 

are completed within a single cycle. An extension to PS that allows for multi-cycle operations is 

presented in [Po91]. The execution semantics of VLIW instructions are as follows: 

1. Operands for all operations are fetched. 

2. Results of all operations are computed but not ~tored. The "result" of a conditional is to select 

a branch in the tree. 

3. Values are stored in this step. There are two variants: Plain VLIW[Fi83] and IBM VLIW[Eb88]. 

Plain VLIW instructions store all results computed in the instruction, irrespective of the se­

lected path. IBM VLIW instructions store only those results that were computed along the 

path selected by the conditionals. Given these execution semantics, it is possible to graphi­

cally represent any single IBM VLIW instruction as a tree with operations associated with the 

various paths through the tree (see Figure 1 for an example). We use the IBM VLIW model, 

but the discussion presented herein is equally valid for the Plain VLIW model as well. 

4. Next instruction is chosen to be the instruction reached by following the selected branches 

through the conditional jumps in the current instruction. 

1 e.g. A= Bop C, load/store A ADDR, jump-cond C DEST, etc 
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Figure 2: move-op(From,To,Op,Path) 

Figure 3: move-cj(From,To,Op,Path) 

Core Transformations 

At the heart of PS is a pair of semantic preserving transformations called move-op and move-cj. 

These transformations move an operation or a conditional jump up one instruction in the program 

graph. By starting with a program wherein each instruction contains a single operation, move­

op and move-cj can be used to "percolate" operations as high as data dependencies allow, thus 

resulting in a maximally parallelized version of the original program, subject to data dependencies 

and incremental (adjacent instruction) transformations. The move-op and move-cj transformations 

are shown in Figures 2 and 3, respectively. 

Both move-op(From, To,Op,Path) and move-cj(Frpm, To,Op,Path) will fail if Op has a true data 

dependence on an operation in To that is on Path. An operation might also fail to move if there is 

a write-live conflict or a move-past-read conflict. A write-live conflict exists when trying to move an 

operation Op from a node From to a node To if Op writes to a register that is live at the entry to 

From, but that is not killed by Op. A move-past-read conflict exists if Op writes to a value that is 

read in From. Due to the execution semantics of VLIW instructions, it is legal for an operation to 

write to a register that is read in the same instruction;2 however, if the operation that does the write 

moves up it will destroy the value stored in that register. Write-live conflicts and Move-past-read 

conflicts can be removed via a process known as renaming. Assume that we are attempting to move 

an operation Op from the node From to the node To. If there is a free register, say R, available, 

then all existing move-past-read and write-live conflicts can be removed by replacing all syntactic 

copies of Op in From with the copy Def( Op) +-Rand by changing Def(Op) to R before attaching 

2 The reason this is allowed is that anti-dependencies only imply correct execution, not strict precedence. 
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function migrate(n,op) 

foreach s E successors( n) do 

migrate(s,op) 

end foreach 

foreach s E successors(n) do 

move-op-or-cj(s,n,op,continuation(s,n,op)) 

end foreach 

end function 

Figure 4: The migrate transformation 

Op to To. 3 Note that copy operations produced by renaming do not generate new values and do not 

prevent code motion. Assume that we are moving A ~Bop C to To and that in To along Path, 

there is a copy B ~ X. In order to allow the move, we simply change the use of B into a use of X: 

A~XopC. 

The next layer above the core transformations, the migrate function, is used for moving operations 

as high as possible on a specified subgraph of the program. Migrate(n,op) moves op as high as possible 

on the subgraph dominated by n and is defined in Figure 4. 

Perfect Pipelining 

Software pipelining is a technique for exploiting data parallelism by overlapping the execution of 

successive iterations of a loop. PS (and other techniques) can be used to overlap n iterations of a 

loop by simply unwinding the loop n times and moving operations as high as possible toward the 

loop entry. Consider a loop containing the operations A,B,C where each operation depends on the 

preceding one and A also has a loop-carried depend~ncy on itself. The table in Figure 5 shows how 

4 iterations could be overlapped for such a loop. Simple software pipelining is achieved by retaining 

the back edge from node 6 to node 1 and provides a speedup of 2 in the loop body. 

Perfect Pipelining can be used to improve pipelined schedules by changing the structure of 

a loop and, given enough resources, guarantees a speedup equal to that achievable after infinite 

(full) unwinding of the loop, without actual unwinding, subject only to the technique used for 

parallelization and true data dependencies. Imagine the loop in Figure 5 unwound an infinite number 

of times. The cha pattern in the middle continuously repeats after iteration 2. We can exploit this 

fact by making this repeated pattern the new loop body and everything before and after it, the 

pre-lo·op and post-loop code, respectively (see Figure 6). By doing this, we achieve a speedup of 3 

in the loop body. "Simple" pipelining on this example using any fixe~ unwinding of iterations yields 

3 Def(Op) stands for the register that Op defines. 
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Iteration 

Node 0 1 2 3 

1 a 

2 b a 

3 c b a 

4 c b a 

5 c b 

6 c 

Figure 5: Overlapping loop iterations 

Simple Pipelining 

Speedup= 2 

Perfect Pipelining 

Speedup= 3 

Figure 6: Pipelining Example 
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a speedup that is strictly less than 3. Perfect Pipelining achieves the effect of infinite unwinding on 

all paths through the loop, even in the presence of conditional jumps. 

Other techniques that have been proposed for performing software pipelining are presented in 

[RaGl82], [GrLa86], and [EbNa89]. 

3 GRiP Scheduling 

This section describes a new GRiP technique for exploiting instruction level parallelism that can be 

used in conjunction with Perfect Pipelining. GRiP was inspired by a technique based on schedul­

ing unifiable operations4 [EbNi89] that was also proposed for use with Perfect Pipelining[AiNi90]. 

Unifiable Operations (Unifiable-ops) scheduling ensures that operations can be scheduled as early 

as data dependencies and resource constraints allow; however, while very effective in principle, it is 

likely to be too expensive for practical applications. A discussion of the reasons for this is provided 

in section 3.1. GRiP Scheduling is a computationally efficient approximation of the Unifiable-ops 

method that in the worst case may artificially restrict code motion, but that in practice allows 

operations to be scheduled as early as data dependencies and resource constraints allow. 

In order to clarify the motivation for the GRiP technique, we begin this section with a brief 

description of the Unifiable-ops technique and a discussion of why it is so expensive, especially for 

Perfect Pipelining. Following this we describe the GRiP technique, how it avoids the problems of 

Unifiable-ops Scheduling, and the price paid for the added efficiency. 

3.1 Why the Unifiable-ops Technique is Expensive 

Unifiable-ops scheduling as presented in [EbNi89] consists of three steps. First, a heuristic is used 

to rank the importance of all operations in the program. 5 Second, data dependency info~mation is 

used to compute a set of Unifiable-ops for each node· in the program graph. The Unifiable-ops set 

at a node n consists of all the operations that can immediately be moved to n by some sequence 

of PS transformations. Stated differently, the Unifio,;ble Operations set at a node n is the set of all 

operations on the subgraph dominated by n that are not on the same data dependency chain as any 

operation currently inn. Implicit in this definition is that the Unifiable-ops sets need to be updated 

incrementally as operations move. 6 The third step consists of making a top down traversal of the 

program, filling the resources of each node with the best operations available in the Unifiable-ops 

set of that node. Figure 7 shows pseudocode for a Unifiable-ops scheduler and Figure 8 shows an 

example of scheduling with the Unifiable-ops technique. For simplicity we use examples without 

conditional jumps; however, both PS and PP in general, and Unifiable-ops scheduling and GRiP 

scheduling in particular, can deal with conditionals. 

4 Unifiable operations are occasionally referred to as Available operations in the literature. 
5 Actually, the operation ranking could be changed dynamically during the scheduling process, but for the purposes 

of this discussion, we can think of it as fixed. 
6 If global updating were required, the scheme would obviously be impractical. 
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procedure schedule( n ) 

while (resources remain) and (Unifiable-ops(n) :/; 0) do 

op ~ choose-op(Unifiable-ops(n)) 

migrate( n, op) 

end while 

end procedure 

Figure 7: Unifiable-ops Scheduler 
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Figure 8: Scheduling with the Unifiable-ops technique 
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Unifiable-ops Scheduling is expensive for three reasons. First, computing and maintaining the 

Unifiable-ops sets is expensive. Second, by scheduling operations in a top-down fashion, and since no 

compaction occurs below the node currently being scheduled, the number of nodes traversed by each 

operation is maximized. Furthermore, this inefficiency could not easily be removed since changing 

the order of compaction would make the incremental updating of Unifiable-ops sets impossible, and 

thus the Unifiable-ops method completely impractical. 

The third efficiency problem occurs only with Perfect Pipelining and occurs because Unifiable-ops 

scheduling always moves operations as far as data dependencies and resource constraints allow. In 

the presence of loop-carried dependencies (LCD's), this requires the use of a costly post-processing 

phase to "push" operations down into a convergent pattern. As shown in (AiNi88b], it is insufficient 

to limit code motion based solely on data dependencies and resource constraints in loops that have 

LCD's. The reason for this is that in the presence of LCD's it is possible for operations to migrate 

"too far". This fact is perhaps best illustrated by an example. Consider the data dependence graph 

shown in Figure 8. By scheduling operations based purely on data dependencies we get the schedule 

for 4 iterations shown in Figure 9. Notice the gaps formed between the operations in iteration 2 

and which increase further in iteration 3. As we increase the number of iterations, the size of these 

gaps steadily increases. A direct consequence of this is that no row will be repeated and therefore 

that Perfect Pipelining does not naturally converge. Obviously, in order to achieve convergence, the 

gaps need to be limited to a fixed size. It is shown in [AiNi88b] that the optimal size for gaps varies 

depending on the specific dependence characteristics of a loop, but that for most loops, a gap size 

of zero is optimal. 

In the context of Unifiable-ops scheduling, convergence of Perfect Pipelining would be ensured 

by a post-processing phase that would reverse all moves that had caused gaps. Handling gaps in 

this fashion would be prohibitively expensive since in order to undo the move of an operation x, 

we would have to undo any transformations that depended on x, including other code motions, 

dead-code elimination, renaming, node splitting, etc. 

It might seem possible for Unifiable-ops schedulin~ to handle gaps by preventing them from ever 

forming; however, gaps are an inherent part of Unifiable-ops scheduling. Before an iteration, i, is 

scheduled, all operations from iteration i succeed all operations from iteration i - 1 in the program 

graph. When the Unifiable-ops technique schedules an operation, op, from iteration i, op moves as 

high as data dependencies and resource constraints allow, thus producing a (possibly temporary) 

gap between the instruction containing op and the next instruction containing an operation from 

iteration i. This sort of gap would be created after most code motions and it would not be known 

until after the entire iteration had been scheduled whether or not any permanent gaps had formed 

(the last operation scheduled might have filled the last gap). 
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Iteration 

Node 0 1 2 3 

1 adf 

2 beg adf 

3 e bg adf 

4 c bg adf 

5 e bg 

6 c 

8 e 

9 c 

10 e 

Figure 9: Pipelined Schedule with Gaps 

3.2 Removing the Inefficiencies with GRiP Scheduling 

The GRiP method is based on the same principle as the Unifiable-ops method, namely, that when 

scheduling a node, resources should be filled by migrating a set of operations in an order determined 

by global information. The difference between the two is in which operations are contained within 

this set. Recall that in the Unifiable-ops method, only operations that will succeed in moving to a 

node n are allowed to move while scheduling n. When scheduling a node n using the GRiP method, 

all operations that are on the subgraph dominated by n and that can move subject to true data 

dependencies and resource constraints are allowed to. In other words, while scheduling n, compaction 

can occur on the entire subgraph dominated by n. Specifically, the G RiP method consists of three 

steps. First, a heuristic is used to rank the importance of all operations in the program. Second, 

a set of Moveable Operations (Moveable-ops) is computed for each node in the program. Initially, 

the Moveable-ops set at a node n contains all operations on the subgraph dominated by n. As 

scheduling progresses, operations become unmoveal)le and are removed from the Moveable-ops set. 

An operation becomes unmoveable if it has moved into or above the node currently being scheduled or 

if it is prevented from moving by a strict data dependency on an operation that is itself unmoveable. 

The third step consists of scheduling each node in a top-down traversal of the program. A node n is 

scheduled by attempting to migrate to n, in ranked order, all operations in the Moveable-ops set of 

n until no further operations can be moved ton. When GRiP is used for Perfect Pipelining, the loop 

body is unwound a fixed number of times before scheduling and the operation ordering heuristic 

requires that all operations from iteration i have higher priority than all operations from iteration 

j > i. 7 Figure 10 shows the pseudocode for a G RiP scheduler and Figure 11 shows an example of 

G RiP Scheduling. 

The only difference in terms of scheduling ability between the GRiP method and Unifiable-ops 

7 Actually, the unwinding can be done incrementally. 
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procedure schedule( n ) 

while (resources remain) and (Moveable-ops(n) -:/; 0) do 

op +- choose-op(Moveable-ops(n)) 

migrate(n, op) 

end while 

end procedure 

Figure 10: GRiP Scheduler 
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scheduling, and the reason that Unifiable-ops scheduling is able to guarantee that all operations 

travel as far as possible, is that resource barriers can form using GRiP scheduling, but can not form 

using the Unifiable-ops technique. 

Definition. Consider the program graph fragment A--+ B --+ C. If there is an operation op in C 

that is prevented from moving into B only because B is full and op would be moveable from B to 

A, and A is not full, then B is a resource barrier. 

Unifiable-ops scheduling ensures that operations travel as far as possible by moving only those 

operations that will succeed in migrating all the way to the node being scheduled. Scheduling in 

this fashion ensures that no node below the one currently being scheduled can become a resource 

barrier, thus ensuring that the current code motion does not interfere with any future code motions 

or scheduling decisions. On the other hand, the GRiP method does allow operations to move into 

and remain in nodes below the one currently being scheduled and therefore may suffer from resource 

barriers. 

At first glance it might seem that resource barriers are a serious problem since they limit code 

motion, and if they are only temporary, can potentially cause operations to be scheduled out of 

the order implied by the scheduling heuristic; however, in practice, with a reasonable scheduling 

heuristic (e.g. one based on list scheduling), resource barriers are not likely to be a problem. Section 

4 provides empirical evidence supporting this conjecture. A discussion of why resource barriers are 

not likely to be a problem is presented below. 

To see how temporary resource barriers can cause operations to be scheduled out of order, 

consider the case of a temporary resource barrier, B, that prevents op from moving above it. It 

might be the case that some operation, say x, either in B or in an instruction preceding B has a 

lower priority than op. Since op is stopped by B, x will eventually get a chance to move. If at some 

later time B ceases to be a resource barrier (i.e. some operation moves out of B), then op will again 

be allowed to move; however, if x, which has lower priority than op, succeeded in moving, then it 

might have used a resource that should have been u~ed by op. 

The only way that B can cease to be a resource barrier, is if some operation y in B moves 

up. This can only happen if either y or some operation z that y depends on has not yet been 

scheduled. In this case at least one of y or z has priority less than op, and therefore must have 

started out before op in the original code. For a reasonable scheduling heuristic this is unlikely to 

happen since important operations tend to occur textually before less important ones. In any case, 

temporary resource barriers can be prevented from ever forming by inserting empty instructions at 

the beginning of the program and allowing operations to move into them in ranked order. Scheduling 

in this manner would ensure that any resource barrier B would be permanent since all operations 

in or preceding B would have already been scheduled. While eliminating temporary gaps in this 

fashion is easily implementable, taking such a definite approach is probably not necessary. 

Permanent resource barriers are not as easily prevented as temporary ones, but nevertheless, are 

not likely to significantly degrade performance. Assume that B is a permanent resource barrier that 
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prevents op from moving above it and that temporary resource barriers do not form. 8 In this case, all 

of the operations in B have higher priority than op. If op is so important as to significantly degrade 

performance by not moving above B, then it can be argued that the scheduling heuristic more than 

the resource barrier itself is at fault. In any case, the kind of data dependence graph structures that 

might produce this sort of situation, are not likely to occur very often in real programs. 

By tolerating the possibility of the degraded performance that could, in principle, be caused by 

resource barriers, GRiP is able to overcome all three of the inefficiencies of the Unifiable-ops method. 

First, expensive Unifiable-ops sets are replaced by trivially maintainable Moveable-ops sets. Second, 

since scheduling a node n using Moveable-ops implicitly allows (at least partial) compaction of the 

entire subgraph dominated by n, travel distances are no longer maximized. Finally, and perhaps 

most importantly, when used for Perfect Pipelining, GRiP is able prevent the formation of permanent 

gaps. 

3.3 Gap Prevention 

To ensure convergence of Perfect Pipelining, the G RiP method incorporates a gap prediction and 

prevention facility that allows limited size, temporary, gaps to form during PS, but that guarantees 

that permanent gaps will not form. 9 Furthermore, the temporary gaps that G RiP does allow to 

form are not caused by LCD's, but rather are necessary to allow for code motion. Consider two 

operations x and y from the same iteration where y has a true data dependence on x and is located 

in an instruction immediately following the one that contains x. Assume that by moving x up one 

instruction that a gap would be formed that would be filled by moving y up one instruction. If we 

prohibit the formation of all, even temporary, gaps, we would incorrectly prohibit both x and y from 

moving. 

GRiP scheduling prevents permanent gaps from forming by ensuring that only temporary gaps 

of the type mentioned above are ever created during scheduling. GRiP accomplishes this by using 

a localized test to determine whether or not a permanent gap might be formed by moving an 

operation op up one node. If a permanent gap is :possible, GRiP suspends the movement of op 

until it can guarantee that moving it would not cause a permanent gap. Since all operations below 

the node currently being scheduled are allowed to move (subject to data dependencies and resource 

constraints), then, unless moving op actually would cause a permanent gap, other operations from 

the same iteration as op will eventually move up far enough for the localized test to determine that 

moving op will not cause a permanent gap. By ensuring that no operation that precedes a suspended 

operation moves and that no operation is allowed to pass a suspended operation, GRIP guarantees 

that operations are moved in their ranked order .10 

The following. Gapless-move test is used to determine whether or not a permanent gap could be 

8 This is a reasonable assumption since the formation of temporary resource barriers can be prevented. 
9 Since the optimal size of gaps for most loops is zero (and for the sake of simplicity) we deal with gaps by attempting 

to remove them entirely. The solution presented here could be parameterized to allow for gaps of varying size. 
10 Unless resource barriers cause operations to be scheduled out of order, as discussed earlier. 
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created by moving an operation up one node in the program graph. Notice that this test will allow 

the formation of temporary gaps of the type mentioned above. 

Gapless-move(From, To,Op)11 if one of the following is true: 

1. Op is the only operation scheduled at From. In this case, From will be deleted if Op moves 

out of it. 

2. More than one operation from the same iteration as Op is scheduled at From. In this case, if 

Op moves out of From, then From will still contain an operation from Op's iteration. 

3. Op is the last operation in Op's iteration. In this case, no operation from Op's iteration exists 

after From, so no gap can be formed by moving Op. 

4. From has a successor node S that contains an operation X from the same iteration as Op 

such that X would be moveable from S to From given that Op succeeded in moving to To 

and such that Gapless-move(S,From,X) is true. In this case, if Op moves out of From, then 

there is another operation from Op's iteration that is able to move into From without causing 

a permanent gap. This fact is proved below in theorem 1. 

Notice that conditions 1 through 3 imply that no gap would be created by moving Op from From 

to To. Condition 4 allows a temporary gap of size 1 to be created, but only if it can certainly be 

filled by some sequence of PS transformations. To satisfy condition 4, the Gapless-move test need 

only find a single operation from the current iteration that could fill the gap allowed by condition 

4. There is no guarantee that the gap will be filled with the operation found by the Gapless-move 

test; however, since all operations from the current iteration have higher priority than all operations 

from any succeeding iterations, the gap will definitely be filled by some operation from the current 

iteration. Typically, the Gapless-move test will be satisfied by conditions 1 through 3. Hence, any 

search required by condition 4 is likely to be very localized. 

Theorem 1. Gapless-move(From, To, Op) implies th.at a gap created at From by moving Op to To 

can be fi.lled by some sequence of PS transformations. 

Proof: Induction on length of path from From to last node containing an operation from the same 

iteration as Op. If a gap is formed by moving Op from From to To, then Gapless-move(From, To, Op) 

succeeded due to condition 4 which implies that for some S and X, Gapless-move(S,From,X) is true 

and Xis moveable from S to From. Basis: If Gapless-move(S,From,X) succeeded due to conditions 

1, 2, or 3, then the gap is closed by moving X from S to From. Step: If Gapless-move(S,From,X) 

succeeded due to condition 4, then the gap at From is replaced by a gap at S by moving X from S to 

From. By induction hypothesis, the gap at Scan be filled by some sequence of PS transformations.D 

The formation of permanent gaps is prevented using the Gapless-moves test in conjunction with 

the following scheduling rules: 

11 Read: a move of the operation Op from the node From to the node To will not cause a permanent gap 
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1. Allow an operation Op to move from a node From to a node To only if Gapless-move(From, To, Op) 

is true. If Op is not allowed to move, mark it as being suspended. Suspended operations will 

not be allowed to attempt another move until the possibility of satisfying the Gapless-moves 

test exists. 

2. After a successful move, check for suspended operations. If there are any, mark them as being 

not suspended and continue moving operations in their ranked order - now that these opera­

tions have been unsuspended, they may have higher precedence than the operation currently 

being migrated. 

3. Only operations below the lowest suspended operation are allowed to move. 

Theorem 1 ensures that rule 1 will prevent permanent gaps from forming. The following theorem 

states that even with gap prevention, operations are scheduled in ranked order. Theorem 2 is 

predicated on the assumption that resource barriers do not form. The reason for this is that, as 

discussed earlier and regardless of whether gap prevention is employed or not, resource barriers can 

cause operations to be scheduled out of order. 

Theorem 2. If resource barriers do not form, then by following the above rules, if an operation 

op is prevented from moving to a node n because n is full, then all operations that were previously 

moved ton have higher priority than op. 12 

Proof: Assume that op is prevented from moving to n because n is full but that op has a higher 

priority than some operation, say x, that moved into n (and did not move out). If resource barriers 

do not form and if there are no suspended operations, then all operations are scheduled in strictly 

decreasing order of priority, being stopped only by data dependencies and resource constraints. 

Therefore, x must have been moved ton while op was suspended. This implies that at some point 

in time when op was suspended, either (a) x was in the same node as op, (b) x was in a node that 

preceded the node that contained op, or ( c) x was in a node that succeeded the node that contained 

op. Rule 3 states that for cases (a) and (b), x would not have been allowed to move, which leaves 

case ( c). Rule 2 states that in the presence of suspended operations an operation may move at most 

one step, therefore, x can not move above op while op is suspended. This is a contradiction of the 

initial assumption.D 

Figure 12 shows the pseudocode used for implementing Gapless-moves in the GRiP method. 

Figure 13 shows the final gapless schedule for our running example (see Figure 9) produced by GRiP 

scheduling with Gapless-moves. Notice that convergence of Perfect Pipelining is achieved by making 

nodes 4 and 5 the new loop body. 

12 An operation that started inn, but that did not move out might have a lower priority than op. 
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procedure schedule( n) 

while (resources remain) and (Moveable-ops(n) 'I 0) do 

op +- choose-op(Moveable-ops(n)) follows gap prevention rules 

migrate( n, op) 

if (something moved) and (ops are suspended) then 

unsuspend all ops 

end if 

end while 

end procedure 

function migrate(n,op) 

foreach s E successors(n) do 

migrate( s,op) 

end foreach 

if something moved and ops are suspended then 

return 

end if 

foreach s E successors(n) do 

if Gapless-move(s,n,op) then 

move-op-or-cj(s,n,op,continuation(s,n,op )) 

else 

mark op as suspended 

end if 

end foreach 

end function 

Figure 12: GRiP Scheduler with Gap Prevention 
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Iteration 

Node 0 1 ·2 3 

1 adf 

2 beg adf 

3 e bg adf 

4 c b 

5 e g adf 

6 c b 

8 e g 

9 c 

10 e 

Figure 13: Final Gapless Schedule 

3.4 Scheduling Heuristics 

Any operation ordering heuristic may be used with G RiP scheduling. A reasonable heuristic would 

be based on list scheduling and would try to schedule the critical paths first, perhaps weighting 

priorities based on branch probabilities. The heuristic used for creating the schedules discussed in 

the next section is based on the following relation: 

Operation A has higher priority than operation B if one of the following are true: 

1. The longest data dependence chain rooted at A is longer than the longest data dependence 

chain rooted at B. 

2. The longest data dependence chains of A and B are equal, but A has more dependents in the 

data dependence graph than B. 

When used for Perfect Pipelining, we add the stipulation that all operations from iteration i have 

higher priority than all operations from iteration j > i. 

4 Results 

We have implemented the GRiP technique described in the preceding section and have integrated 

it into an ongoing UCI VLIW compiler project. This compiler also supports an "unconstrained" 

software pipelining technique called POST. POST works in two phases. First, GRiP scheduling is 

applied with infinite resources to obtain a pipelined loop. Second, POST applies resource constraints 

by breaking apart nodes that contain too many operations and allowing further percolation to fill 

any nodes that have become underutilized as a result of the breaking. This method of applying 

resource constraints as a post-processing phase of scheduling is described in [Po91]. 

Table 1 provides simulation results comparing the speedups obtained by the GRiP method and 

the POST method. In all cases G RiP performs no worse than POST and for many loops, performs 
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2 FU's 4 FU's 8 FU's 

Loop GRiP POST GRiP POST GRiP POST 

LLl 2.0 2.0 4.0 3.5 7.9 7.0 

LL2 2.0 1.9 3.8 3.6 7.3 6.9 

LL3 2.0 1.8 4.0 3.0 8.0 4.5 

LL4 2.0 2.0 4.3 3.9 8.4 5.9 

LL5 2.0 2.2 4.4 3.7 5.5 5.5 

LL6 2.0 1.8 3.6 2.8 3.6 3.3 

LL7 2.0 1.9 4.o 3.9 7.9 7.6 

LL8 2.0 1.9 3.4 3.1 4.3 4.0 

LL9 2.0 2.0 4.0 . 3.9 7.9 7.7 

LLlO 2.0 2.0 4.0 2.9 7.1 3.6 

LLll 2.3 2.3 4.5 4.5 8.9 8.9 

LL12 2.0 1.8 4.0 3.0 8.0 4.5 

LL13 2.1 1.9 3.0 2.7 3.0 3.0 

LL14 1.9 1.9 3.7 3.2 4.8 4.5 

Mean 2.0 2.0 3.9 3.4 6.6 5.5 

WHM 2.0 1.9 3.9 3.3 5.6 4.8 

Table 1: Observed Speed-up 

much better. Notice that for 2 and 4 functional units, GRiP results are essentially optimal. At 8 

functional units, GRiP fills resources as best as possil?le given the limits on parallelism imposed by 

the loops themselves. 

Since GRiP depends on heuristics to decide how resources should be filled, the speedups shown 

in Table 1 do not necessarily represent the maximum potential of GRiP, but rather are intended to 

convey a notion of how well GRiP can perform even with the simple operation ordering defined in 

section 3.4. 

At the source level, none of the Livermore Loops presented in Table 1 contain explicit conditional 

jumps; however, as a result of unwinding, multiple copies of the original loop control conditional 

become internal conditionals in each of these loops. Since GRiP does not currently utilize branch 

prediction or speculative scheduling heuristcs, only results for loops with this kind of conditional are 

presented. "Internalized" loop control conditionals are handled by giving priority to operations on 

paths internal to the loop being pipelined. G RiP is capable of compacting programs with explicit 

internal conditionals, but we feel that results for such loops would only be meaningful if presented 

in conjunction with speculative scheduling heuristics. Speculative scheduling heuristics and branch 

prediction could be added to G RiP as well as to techniques that do not incorporate resource con­

straints into the scheduling process; however, we anticipate that due to the sensitivity of speculative 

scheduling to resource constraints, GRiP would perform much better than any such "unconstrained" 
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techniques. [We have preliminary results that support this conjecture that we intend to provide in 

the final version of this paper.] 

Our compiler uses the GNU C compiler (GCC) as a front-end that produces an optimized (sequen­

tial) intermediate language as output. The GRiP scheduler converts this intermediate representation 

into a sequential VLIW program graph wherein each node contains a single intermediate language 

statement. GRiP then parallelizes this code using the technique described in the preceding section. 

As a result of compaction, some operations in the original code become redun.dant and are removed. 

This is the reason that some of the speed-ups in Table 1 are larger than the apparent maximum 

indicated by the number of functional units. Redundant operation removal is not a necessary part of 

PS; however, it is a useful optimization that is best performed incrementally as part of the scheduling 

process in order to ensure that unnecessary operations do not compete with useful operations for 

resources. 
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