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PREFACE

The main scope of my work throughout graduate school has focus on direct detection

of sub-GeV dark matter in crystals, which is detailed in chapters 3 and 4. Chapter 5 studies a

wildly different dark matter candidate, primordial black holes, which I have not worked on in

quite some time. Though quite separate from my current work, I’ve chosen to leave this chapter

in the text since it contributed to my growth as a graduate student. This chapter and various

related subsections within the text are not necessary to understand overall story of dark matter

direct detection in crystals. The reader may treat these sections as a sort of “bonus” to enjoy if

they would like to.
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In dark matter direct detection experiments, the free nuclear recoil description breaks

down as the de Broglie wavelength of dark matter approaches the typical atomic spacing of

the target material. In this work, we investigate the particular case of scattering off of crystal

targets, whose collective excitations are well understood as phonons. As experimental energy

thresholds decrease, it becomes increasingly important to understand the response of targets

to energy depositions below the nuclear recoil scale. For dark matter masses lighter than 1

MeV, the scattering rate is dominated by single phonons, while at masses larger than 100 MeV,

we expect the scattering to approach the free nuclear recoil result. Starting from the phonon

formalism in the harmonic crystal approximation, we perform the first calculations of scattering
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rates in the intermediate 1-100 MeV mass regime where multiphonon process dominate and

demonstrate how the multiphonon response smoothly approaches free nuclear recoil. We then

drop the harmonic approximation and calculate possible corrections to the scattering rates due to

crystal anharmonicity. We find these anharmonic corrections to be large at small dark matter

masses ∼MeV and large experimental thresholds ∼ 100 MeV, but approach the harmonic result

as the DM mass increases.
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Chapter 1

Introduction to Dark Matter

1.1 History and Evidence of Dark Matter

The matter that we see in our day to day lives is made up of mostly baryons and electrons,

whose interactions are well known within the Standard Model. Despite being all that we have

directly observed terrestrially, it is well-established that baryonic matter consists of only a

small fraction of the total matter in the universe. In order to explain various astrophysical and

cosmological phenomena, overwhelming evidence suggests that there must exist some other

form of matter at a roughly 5 to 1 ratio to ordinary matter. Everything that makes up this “other”

matter has thus far remained elusive to experiments and is appropriately dubbed dark matter.

Uncovering the exact nature of dark matter continues to be one of the most compelling challenges

in modern physics.

The strong evidence for the existence of dark matter began in the 1930s with Fritz

Zwicky’s observations of galaxy velocities within the Coma Cluster [1]. The velocity of individ-

ual galaxies within the cluster must be related to the total cluster mass via Newtonian gravity and

the virial theorem, which tells us that the average kinetic and potential energy of a gravitationally

bound system are related by

〈T 〉=−1
2
〈V 〉. (1.1)
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This can be recast in terms of root-mean-squared velocity, total cluster mass, and cluster radius

√
〈v2〉 ∼

√
GNM

R
, (1.2)

where GN is Newton’s gravitational constant. Zwicky measured the velocity dispersion of the

galaxies and estimated the cluster mass by observing the galactic luminosities and inferring the

number of stars. Upon making these measurements, Zwicky found a quite peculiar result, which

was that the root-mean-squared velocity predicted by the total luminous mass of the cluster was

around 20 times smaller than the measured value. Zwicky concluded that if these measurements

were correct, there must exist a large amount of unseen matter holding the cluster together. This

missing matter became known as dark matter, which is now the primary candidate for explaining

a large body of astrophysical and cosmological data.

The next historically important piece of evidence came in the form of velocity distribu-

tions of stars within galaxies. Newtonian gravity once again allows us to predict the velocity

of objects given some mass distribution. In the case of typical galaxies, the luminous matter

distribution is roughly constant outside of the galactic center, which corresponds to a galactic

rotation curve that scales as

v(r) ∝
1√
r
. (1.3)

This suggests that the velocity of stars inhabiting spiral arms distant from the galactic center

should obey this speed drop with radius relationship if luminous matter is the bulk of the total

matter distribution. However, measurements in the 1970s by Vera Rubin and company originally

on the Andromeda galaxy [2], but later on many different spiral galaxies [3], show that the large

radius tail of the stellar velocity distribution is actually constant. The original result by Rubin is

depicted in Fig. 1.1. Since then, the universality of flat velocity tail has only been confirmed with

greater precision and sample size. These measurements imply that the true matter distribution is

significantly different than what one would expect from only stellar matter. It was then postulated
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Figure 1.1. Rotation curves of 21 different galaxies reproduced from [3]. Objects far the from
the center of the galaxy maintain a flat velocity dispersion.

that there must be some missing matter, possibly connected to the missing galaxy cluster mass

conceived of by Zwicky. We now understand these galactic rotation curves as resulting from

galaxies being embedded in large dark matter halos that share the galactic center.

Some more modern astrophysical signals of dark matter include gravitational lensing [4]

and observations of the Bullet Cluster. Gravitational lensing is a phenomenon predicted by

Einstein’s general theory of relativity in which the path of light is deflected by massive objects.

This phenomenon has been most clearly observed in the case of strong lenses such as black

holes or galaxy clusters which can produce multiple images of a single background object.

Gravitational lensing serves as an important probe of matter distributions since the scale of

the visible distortions depend on the mass of the lens itself. One striking example of strong

gravitational lensing is that of galaxy cluster Abell 370 [5], which acts as a lens for extremely

distant galaxies. This lensing effect, pictured by the Hubble Space Telescope in Fig. 1.2, cannot

be explained by the luminous matter in the foreground. There now also exist weak lensing

surveys [6, 7] and galaxy-galaxy lensing studies [8, 9] that confirm the presence of invisible

matter in the universe and can even infer details about its distribution.

The Bullet Cluster is the aftermath of two colliding galaxy clusters, which creates a

particularly unique probe of dark matter. During the galactic collision, the hot gas that contains
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Figure 1.2. This is an image captured by the Hubble Space Telescope of galaxy cluster Abell 370
acting as a gravitational lens. A careful observer can make out visual distortions of background
galaxies such as arcing about the lens. Credits: NASA, ESA, Hubble SM4 ERO Team, and
ST-ECF

most of the baryonic matter slowed due to friction. However, gravitational lensing observations

of the cluster show that the majority of the matter is not in the same location as the gas [10] as

depicted in Fig. 1.3. In fact, we can see that while the gas component shows experiences drag

due to electromagnetic interactions, the majority of the matter content simply passed through

each other, creating a clear offset between the luminous and non-luminous matter.

In addition to the astrophysical realm, significant evidence of dark matter lives in the

field of cosmology. The cosmic microwave background (CMB), a cornerstone measurement in

cosmology, is the remnant radiation from when the universe first became transparent at around

4×105 years old. Measurements of the CMB angular distribution tell us much about the matter

content of the universe via its statistical properties. This relic radiation originated at the time when

the universe cooled to a temperature where photons were no longer being constantly scattered

off of baryonic matter and began free streaming. Both baryonic and dark matter introduce a
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Figure 1.3. A composite image from Magellan and the Hubble Space Telescope with an
overlayed projection of the matter distribution from lensing (blue) and hot gas distribution from
Chandra X-ray observations (pink). Credits: X-ray: NASA/CXC/CfA/M.Markevitch et al.;
Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO
WFI; Magellan/U.Arizona, [10].

gravitational potential that causes anisotropies in the CMB distribution, while radiation pressure

counteracts this effect and washes out anisotropies. Thus, precise measurements of the CMB

distribution allow us to infer the matter content of the universe, among other structural factors.

The CMB power spectrum depicted in Fig. 1.4 is a measurement of anisotropies in the CMB.

The exact strength of these anisotropies at different scales depends on the delicate balance of

gravity and radiation pressure and requires the aforementioned 5 to 1 ratio of dark matter to

baryonic matter to fit the data [11]. Other cosmological evidence include the matter spectrum of

galactic to cosmic scale structures [12, 13] and primordial abundances of light elements [14, 15].

A plethora of astrophysical and cosmological evidence has solidified our current cosmo-

logical paradigm known as ΛCDM (cold dark matter), which postulates that the universe mainly

consists of three components. The largest part by energy density is the cosmological constant Λ
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Figure 1.4. CMB power spectrum from Planck 2018 results, reproduced from [11]. The relative
amplitudes of the peaks of the spectrum at different multipole moments l depend precisely on
the ordinary and dark matter content of the universe.

responsible for the expansion of the universe, which is typically described by dark energy. The

smallest component of the universe by energy fraction and most familiar to us is ordinary matter,

which consists of baryons, electrons, etc.. Finally, we have cold dark matter, whose qualifier

“cold” will be expounded on in detail the next section.

1.2 Dark Matter Models

Dark matter is the primary component of matter in the universe, yet its identity at a

microscopic level is unknown. This chapter discusses the broad spectrum of dark matter models

generally, while pointing out classes of candidates that are of particular interest to this work and

investigated in the remaining chapters.

1.2.1 Particle Dark Matter

Before discussing particular theories, we first review the general constraints that dark

matter models should obey in order to be consistent with the modern cosmological paradigm

6



ΛCDM:

• Weakly interacting with Standard Model - This is the most obvious constraint on

dark matter originating from astrophysical, cosmological, and terrestrial observations. If

dark matter were to interact with the Standard Model more than very weakly, we would

simply be able to see the effects of these non-gravitational interactions via scatterings

with Standard Model particles in the sky or on Earth or in their effects on the large scale

structure of the universe.

• Non-relativistic - Dark matter must be non-relativistic by sufficiently early times in order

to generate the structure formation and matter power spectrum that we observe today. If

dark matter remains relativistic for too long, it the pressure it produces counteracts the

gravitational potential necessary to birth galaxies and other structures.

• Stable and weakly interacting with itself - Dark matter decay on timescales shorter than

the age of the universe lead to imprints on the CMB and matter power spectrum in the same

vein as the previous bullet point. Decays and self-interactions necessitate some additional

component to dark matter that prevents it from being pressureless at early enough times

and is thus strongly constrained.

• Produce the measured relic density- Dark matter models must of course generate the

correct amount of dark matter that exists today, i. e. 27% of the total energy density of the

universe (68% being dark energy and the remaining 5% ordinary matter).

Despite these restrictions, there still remains an enormous theory space of allowed dark matter

models depicted on its mass scale in Fig. 1.5.

The ∼ 10−22 eV to ∼ keV range consists of bosonic ultralight particles. Fermions below

the keV scale are generally disallowed from saturating all of the DM due to the Tremaine-

Gunn bound [17]. This bound arises from the Pauli exclusion principle in combination with

typical galactic sizes and gravitational considerations. Fermionic DM lighter than a keV quickly
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Figure 1.5. Cartoon of the theory space of DM candidates across mass scales, borrowed from
[16]

oversaturates the allowed phase space of galaxies that we observe. In other words, they would

lead to structures much too large. This leaves ultralight bosons as the remaining allowed

candidate in this mass range. A key difference between the sub-keV and greater than keV mass

regions is that sub-keV DM cannot be produced thermally, or it will remain relativistic for too

long. Axions or axion-like particles (ALPs) are a type of bosonic particle whose relic density can

be fixed non-thermally via the misalignment mechanism [18]. In this class of theories, the DM is

a scalar field whose value is fixed in the early universe. The equation of motion for the scalar

field causes the axion or ALP field to fluctuate at late times as the Hubble friction decreases,

leaving a fluctuating field at late times which acts as cold dark matter. One popular model in

this window is known as the QCD axion [19], which typically lives around 10−5 eV. The QCD

axion is a small extension of the Standard Model, whose presence simultaneously solves the

strong-CP problem, which would explain the anomalously small neutron electric dipole moment.

DM belonging to this class of theories currently do not have direct detection prospects within the

experimental setup that we focus on in the remainder of this work. Nonetheless, one can find

discussions of the theoretical motivations and experimental prospects for various axion/ALP

models in [20, 21, 22] and references therein.

In order of increasing mass, the next scale depicted in Fig. 1.5 is known as light DM,

which is the main focus of this work. Before discussing models in this window, we briefly

foray into a discussion of the next largest mass regime, the WIMP (Weakly Interacting Massive
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Particles) scale DM. WIMP dark matter is of particular interest to this work since most existing

direct laboratory probes target this regime. We will see that WIMPs are a nice baseline for a DM

candidate easily consistent with ΛCDM while enjoying tractable direct detection prospects.

WIMP dark matter is a candidate whose relic abundance is typically set by a mechanism

known as thermal freezeout [23]. Initially, WIMPs are produced in thermal equilibrium with

the rest of the Standard Model in the early universe and maintain this equilibrium via creation

and annihilation processes between the DM and SM. As the universe expands and cools, the

Hubble rate eventually exceeds the DM annihilation rate. At this time, called “freezeout”, the

DM density is “frozen” other than the dilution due to an expanding universe, as annihilations to

SM particles become inefficient and rare. Given the observed relic DM density today, we can

work backwards to determine the necessary annihilation cross-section necessary for generating

the correct amount of DM by freezeout. After freezeout, the ratio of dark matter number density

to entropy density of CMB photons remains constant, since both of these quantities decrease with

the scale factor cubed. In the literature, this ratio is known as the “abundance”. Measurements of

the CMB and DM density tell us that the abundance is roughly eV/mχ today, where mχ is the

DM mass.

Now, we estimate the abundance at the time of freezeout in terms of the annihilation cross

section. As discussed, freezeout occurs roughly when Hubble expansion exceeds the annihilation

rate Γ, which depends on the equilibrium number density of DM (neq
χ ) and the annihilation cross

section:

Γ = neq
χ 〈σv〉= H, (1.4)

where 〈σv〉 is the thermally averaged cross section times velocity. Early universe thermodynam-

ics [24] gives the entropy density of photons at freezeout in terms of temperature T and entropy

degrees of freedom g?,S(T )

s f o =
2π2

45
g?,S(T )T 3, (1.5)
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while the number density of a non-relativistic spin-1/2 Dirac fermion species is

neq
χ ≈ 4

(mχT
2π

)3/2
e−mχ/T . (1.6)

Combining results from equilibrium thermodynamics of the early universe soup (1.5) and (1.6)

with the freezeout time condition (1.4) and today’s measurement of eV/mχ abundance gives the

following benchmark for the annihilation cross section

〈σv〉 ≈ 2×10−26cm3/s (1.7)

[25]. If the thermally averaged cross section times velocity is anything below this condition,

freezeout will occur too early to dilute the relic DM density to the correct abundance.

We are now quickly approaching the rationale for the name “Weakly” in Weakly Inter-

acting Massive Particles. In the case of spin-1/2 Dirac fermions coupled to Standard Model

fermions by a vector mediator, the annihilation cross section to SM fermions schematically is

approximately given by

〈σv〉 ∼ αχα f

m2
χ

×





m4
χ/m4

V mχ < mV

1 mχ > mV

(1.8)

where αχ and α f are coupling strengths between the DM fermions and mediator and SM fermions

and mediator, respectively, and mV is the mediator mass. By either coincidence or fate, one may

notice that the required annihilation cross section for freezeout (1.7) closely matches (1.8) if we

take the coupling strengths αχ and α f to be on the scale of SU(2)L weak interactions αw ≈ 0.03

and the DM mass to be on the weak scale:

〈σv〉 ≈ α2
w

1 TeV2 . (1.9)
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This apparent match between the freezeout annihilation cross section and weak-scale cross

sections is known as the “WIMP miracle”. The implication here is that minimal extensions to

the SM at the weak scale, such as supersymmetry [26], are excellent thermal candidates that

easily produce today’s relic abundance of DM. Several other concrete examples are elucidated

in [23, 27, 28].

Given an annihilation cross section of the form (1.8), one finds that WIMP candidates

generally belong in roughly the 1 GeV − 100 TeV mass range in order to produce the correct

annihilation rate while satisfying the perturbative unitarity bound. For dark matter masses

below 1 GeV, the weak coupling strengths with a weak scale mediator will not produce enough

annihilations, while DM masses near 100 TeV require coupling strengths αχ, f that exceed 1.

There now exist many ongoing search avenues for WIMP dark matter including direct detection,

which will be discussed in the next chapter. Unfortunately, search avenues in this mass regime

have not yet borne fruit. Current experimental exclusion bands in this mass range are shown in

Fig. 2.2. The continual narrowing of allowed WIMP parameter space motivates us to broaden

our scope towards the sub-GeV range, known as “light dark matter” (LDM).

1.2.2 Light Dark Matter

Finally we arrive at the target parameter space for the bulk of this Dissertation, the

keV−GeV dark matter mass range. Like WIMPS, light dark matter can also be produced

thermally in the early universe and decay to the required relic density through thermal freezeout.

The main difference between LDM and WIMP freezeout is that light dark matter typically

requires new mediators away from the weak scale to achieve the necessary annihilation cross

section (1.7). This means that dark matter populating this theory space may belong to some

entirely new dark sector which interacts very weakly with the SM. The necessity of these new

dark mediators allows for a rich tapestry of models [29, 28, 30, 31, 32, 33], so long as they

preserve the successes of the current cosmological paradigm.

In this work, we aim to explore LDM direct detection in the most broad way possible
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with respect to the allowed theory space. Therefore, we will usually work with effective DM-

nucleon couplings instead of restricting to particular models. This is a sensible approach since

fundamental interactions can typically be recast in terms of higher order effective couplings.

As an example, let’s introduce a dark sector copy of the electromagnetic (EM) part of the SM

with some nonzero new mediator mass mV . The EM component of the SM and new dark sector

extension give the following Lagrangian

L ⊃−1
4

FµνFµν − 1
4

VµνV µν +
κ

2
FµνV µν +

1
2

m2
VVµV µ + eAµJµ

EM +gχVµJµ

D , (1.10)

This dark sector can be connected to the SM via the kinetic mixing term κ

2 FµνVµν . This mixing

between the photon and new dark mediator allows for effective ēeχχ̄ and p̄pχ̄χ interactions,

where e are electrons, p are protons, and χ is a new dark fermion. Since this model includes a

dark copy of EM, the mediator V is known as a dark photon. This particular case is explored

further in Sec. 3.4.3. This kinetic mixing portal is one of many possible ways to generate

effective interactions between SM and DM fermions through a new DM mediator. A dark sector

extension with a scalar mediator φ can connect to the SM through a Higgs portal through terms

φH†H and φ 2H†H. Then, the φ χ̄χ term along with effective couplings to SM fermions φ f̄ f

result in DM-SM fermion scatterings. In order to remain agnostic to the specific model, the

results presented in Chapters 3 and 4 are generalized to massless and massive scalar mediators

between DM and nucleons, with the addition of the dark photon in Ch. 3. An exploration of the

astrophysical, terrestrial, and cosmological constraints on these simplified models can be found

in [34].

1.2.3 Primordial Black Holes

Primordial black holes (PBHs) are a particularly exotic dark matter candidate that form

from rare overdensities in the early universe. PBHs with masses greater than ∼ 1015 g or

∼ 10−18M� (solar masses) are able to survive Hawking evaporation until today and can therefore
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make up a component of DM today. Constraints on the allowed PBH parameter space near

this evaporation threshold comes from γ-ray observations, as PBHs near this mass range would

emit an appreciable amount of Hawking radiation. For larger PBHs (& 1023 g or 10−11M�),

gravitational lensing searches have excluded PBHs from making more than ∼ 10% of today’s

DM density. Existing constraints are expounded on further in Sec. 5.3.4 and references therein.

In Chapter 5, we calculate projected reaches for next generation gravitational wave experiments

on the PBH parameter space and show that they may be competitive with current exclusion

bounds for a wide range of PBH masses.
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Chapter 2

Dark Matter Detection

2.1 Direct Detection

Direct detection is one of the primary search avenues for DM and refers to the attempted

detection of DM via its scatterings with ordinary matter. Since DM must only interact very weakly

with SM particles, constructing low background, low energy threshold laboratory experiments

is a necessity. This challenge is technological frontier that continues to be an active field of

research in experimental physics. Chapters 3 and 4 of this work aim to predict the response

rates of theoretical future solid state experiments to the DM wind. We begin by reviewing the

kinematics and responses of existing laboratory direct detection probes of dark matter.

2.1.1 Nuclear and Electronic Recoils

Existing dark matter direct detection experiments generally operate via the following

schema. Some large volume of inert material sits within a heavily shielded tank waiting for

the rare instance of a dark matter interaction. This interaction excites a nucleon or electron,

whose energy is then carried away to the edge of material and then captured by some low

energy-threshold apparatus. For a recent overview and specific details of the numerous ongoing

experiments, see Ref. [35] and references therein. An example diagram for a crystal-based

apparatus is shown in Fig. 2.1. The precise form in which the energy propagates and is measured

depends on the details of the experiment, but we can still understand the kinematics of the nuclear
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Figure 2.1. reproduced from [35].

and electronic recoils in a fairly general way as follows.

We will begin with a simple treatment of DM-nucleus scattering in the case where the

DM-nucleon interactions are coherent across the nucleus. First, the incident momentum and

energy of some incident DM particle χ are given by

p = mχ , Ei =
p2

2mχ

. (2.1)

If the DM particle imparts momentum q upon scattering with a nucleus, the final dark matter

energy is

E f =
(p−q)2

2mχ

+
q2

2mN
. (2.2)

The key energy scale for the purpose of experimental detection is the amount of energy deposited

into the system, or the final recoil energy of the nucleus. Applying energy and momentum

conservation to the incident and final energy, one finds that when p and q are collinear, the dark

matter imparts the maximum momentum and recoil energy onto the nucleus

|q|max = 2µχNv, ENR =
|q|2
2mN

=
2µ2

χNv2

mN
, (2.3)

where v the incident DM speed and µχN is the DM-nucleus reduced mass. From simple

kinematics, we see that the nuclear recoil energy scales with the square of the reduced mass.

Thus, the recoil energy goes roughly as 2mNv2 as long as the DM mass exceeds the nuclear
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Figure 2.2. 90% confidence exclusion bounds for spin-independent DM-nucleon scatterings
for various direct detection experiments, reproduced from [36]. The dashed line labeled ν-floor
refers to the irreducible background from neutrino scattering.

mass. Taking a typical DM velocity of v∼ 10−3, we find that recoils in this mχ > mN limit are

of order O(10-100) keV. Modern experiments have energy detection thresholds below this scale

and thus are able to probe DM masses as low as 1 GeV. However, as the dark matter mass drops

further below the nuclear mass, the imparted energy decreases with m2
χ , rendering detection

difficult via free nuclear recoils. In order to calculate the particular scattering rate and event

energy spectrum, one would of course need to include the particular DM-nucleon interaction

and possibly a nuclear structure factor if the dark matter de Broglie wavelength is smaller than

the nuclear scale. For spin-independent nucleon couplings, Fig. 2.2 depicts many experimental

bounds on the DM-nucleon cross section. As we can see, many direct detection experiments

have already explored and excluded much of the WIMP parameter space.

In addition to nuclear recoils, modern experiments generally include some mode sensitive

to DM-electron scatterings. The kinematics of electronic recoils differ from nuclear recoils

due to the fact that electrons are much lighter than nucleons and have large average velocities

compared to the DM. Following the similar analysis as for the nucleons, we calculate the electron
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recoil energy, which gives

EeR =
p ·q
mχ

− q2

2mχ

(2.4)

by kinematics. This recoil energy can be deposited if it corresponds to a difference between

electron energy eigenvalues. This can be made precise upon careful study of the electronic

structure of the material, but for the sake of a simple intuitive understanding, we treat the initial

and final states as free momentum eigenstates with characteristic velocity of order of the fine

structure constant α . In this case, the initial and final electron energies are given by

Ei =
k2

2me
, E f =

(k+q)2

2me
(2.5)

via momentum conservation, where k is the initial electron momentum. Combining this with the

energy conservation condition gives

p ·q
mχ

=
k ·q
me
− q2

2µχe
, (2.6)

which is approximately
q2

2µχe
=

k ·q
me

(2.7)

since the characteristic electron velocity ∼ k
me
∼ α = 1

137 is much greater than the typical DM

velocity ∼ p
mχ
∼ 10−3. Thus, the typical momentum transfer scales for electronic recoils are

|q| ∼ µχeα (2.8)

For DM mass above the MeV scale, this corresponds energy depositions of order m2
eα2 ∼ eV,

which are accessible by modern experiments. Several experimental bounds on the DM-electron

are illustrated in Fig. 2.3. Below the electron mass (∼ 0.5 MeV), the phase space of allowed

scatterings is heavily restricted since the electron mass becomes larger than the DM mass while

having a much larger speed and thus would typically impart energy on the DM if they are both
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Figure 2.3. 90% confidence exclusion bounds for DM-electron scatterings mediated by a massive
dark photon for various direct detection experiments, reproduced from [35].

free particles. In reality, the dark matter is can to impart its full kinetic energy 1
2mχv2, but

depositions are kinematically suppressed.

In this analytic discussion along with the experimental results in Figs. 2.2 and 2.3, we

have found that DM-nucleon direct detection is only sensitive down to ∼ 1 GeV DM mass while

DM-electron sensitivity continues a few orders of magnitude further. This is primarily due to

the fact that energy thresholds for nuclear and electronic recoils are quite different in existing

experiments. We are able to detect electronic excitations down to the few eV scale, which allows

for DM searches down to near the electron mass scale. However, nuclear recoils results at present

are restricted to & 1 keV thresholds. In the coming years, we expect the energy thresholds for

DM-nucleon interactions to decrease significantly with new technologies. The next subsection

discusses a promising experimental apparatus that may be able to probe DM-nucleon interactions

below the GeV scale.
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Figure 2.4. Illustrative diagram of the proposed “SPICE” experiment from the TESSERACT
collaboration Snowmass 2021 Letter of Interest [37]. The left side depicts the mode that probes
DM-nucleon interactions via phonons through frontier TES technology. The right side depicts
the mode that exploits scintillation of the target crystal to probe DM-electron scatterings.

2.1.2 Solid State Detectors

In recent years, advancements in solid state physics have led to new prospects for

experimental direct searches of dark matter through ultra-low energy threshold technology. One

group leveraging these technological advancements is the TESSERACT collaboration, who is in

their research and design phase for a liquid helium experiment called “HeRALD” and a polar

crystal based experiment dubbed “SPICE” [37]. Here we review the SPICE experiment, which

is a potential future apparatus for the scatterings discussed in Chapters 3 and 4.

The SPICE experiment will consist of a large number of gram-sized (or cm3-sized by

volume) crystal targets of sapphire and gallium arsenide totalling ∼ 0.1−1 kg of each material.

For each replica, there will be a low threshold athermal phonon detector on the surface. These

surface detectors consist of superconducting Al fins and Transition Edge Sensors (TES) that

work in conjunction to act as an athermal phonon calorimeter. The arrangement of Al fins and

TESs on the surface are depicted in Fig. 2.4. The majority of area on the detector is composed
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of the superconducting fins with small TESs at at the intersections of the fins. As particles

scatter with nucleons in the crystal, phonons carry the imparted energy until they reach the

superconducting fins. This energy is then converted into quasi-particles in the superconducting

fins via broken Cooper pairs. These quasi-particles propagate within the fins until they are picked

up by a TES, which are able to measure energy depositions by a simple mechanism. The TES

is made of a metal with a narrow superconducting transition, which means that its resistance

is highly temperature dependent. These sensors are operated near the transition temperature,

thus small energy depositions may be detectable via sharp changes in the current through the

TESs. Constructing real apparatuses using this concept is a topic of much ongoing research, one

investigation of such a detector is detailed in Ref. [38]. The current frontier TESs [39] have been

demonstrated to be able to reach thresholds as low as a few hundred meV. Chapters 3 and 4 of

this Dissertation detail the theory of DM-nucleon/phonon scatterings and provide concrete tools

for calculating experimental observation rates for meV to eV range, with particular emphasis on

the intermediate regime around 100−200 meV.

2.1.3 Phonons

As experimental energy thresholds decrease, we will begin to probe energy and momen-

tum depositions on a scale that produce collective excitations in a crystal rather than single

nuclear recoils. In crystal lattices, the pseudo-particle quantizing these collective excitations is

the phonon [40], depicted for a simple chain in Fig. 2.5. We shall now review the kinematics

of single phonon excitations, which typically carry energies of < 100 meV. This will serve as

motivation for the rest of this work, which details the response of multiphonons.

In order to understand the basic physics of phonons, let’s study the simple solvable

model of a 1D harmonic chain of equal masses with only nearest neighbor interactions. The

Hamiltonian of this theory is given by

H = ∑
i

( p2
i

2m
+

1
2

mω
2
0 (xi− xi+1)

2
)
, (2.9)
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Figure 2.5. Cartoon of phonons moving along a 1D chain. At the top, the atoms are in equilibrium.
The middle illustration shows optical phonons, which consist of neighboring atoms displaced in
opposite directions. The bottom depicts acoustic phonons made of neighboring atoms displaced
in the same direction. In both scenarios the phonons are longitudinal, since the direction of
motion of individual atoms is parallel to the direction of motion of the phonon. In the 3D case,
there will also be transverse acoustic and optical phonons whose atoms move orthogonally to the
phonon propagation (which would be up and down in this diagram). Illustration Credit: Brews
Ohare, Wikimedia Commons

where m is the mass, xi, pi are the displacement and momentum of mass i, and ω0 is an energy

scale that sets the strength of the nearest-neighbor interaction. We also constrain the system

to have periodic boundary conditions, which makes it symmetric under translations of the

equilibrium lattice spacing. This is simply a mathematical trick that provides the model with an

exact symmetry. The boundary conditions are immaterial in the limit of a very large number of

atoms. Since the Hamiltonian is invariant under translations of the equilibrium lattice spacing, it

is diagonalizable in discrete Fourier modes

Xk =
1√
N ∑

l
eikalxl, Pk =

1√
N ∑

l
e−ikal pl, (2.10)

where N is the number of atoms and a is the lattice spacing. Straightforwardly inserting (2.10)

into (2.9) gives the Hamiltonian in Fourier space

H =
1

2m ∑
k

(
PkP−k +m2

ω
2
k XkX−k

)
, (2.11)
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where the sum is over all kn =
2πn
Na such that n ∈ Z and |n| ≤ N

2 and ωk is given by

ωk = 2ω

∣∣∣∣sin
ka
2

∣∣∣∣. (2.12)

Now we fully diagonalize (2.11) by defining phonon creation and annihilation operators

as satisfying Xk =
√

1
2mωk

(a†
k +a−k) and Pk = i

√
mωk

2 (a†
k−a−k):

H = ∑
k

ωk(a
†
kak +

1
2
). (2.13)

We see that the proper commutation relations for creation and annihilation operators [ak,a
†
k′] =

δk,′k′ and [ak,ak′] = [a†
k ,a

†
k′] = 0 follow from [xi, p j] = iδi j and definitions of Xi, Pi. Finally,

we find that single phonon eigenstates of the Hamiltonian (a†
k |0〉) are eigenstates of the total

momentum operator and have energies that must satisfy the dispersion relation (2.12).

Given this dispersion relation, we can see that the kinematically accessible regime for

single phonon production differs significantly from the free nuclear recoil response discussed

around (2.3). The single phonon energies in our toy model scale linearly with the momentum at

small momenta

ωk = 2ω

∣∣∣∣sin
ka
2

∣∣∣∣∼ ωak ∝ k, (2.14)

which remains a feature of acoustic phonons in the full 3D crystal theory since acoustic phonons

are the Goldstone bosons of broken translational symmetries. The proportionality constants

between the energy and momenta in a realistic crystal are given by the sound speeds, which are

typically O(few)−O(10) km/s. Thus, single acoustic phonon responses are possible for energy

depositions in the < O(few×10) meV range as depicted in Fig. 2.7.

We would be remiss to neglect that this toy model does not capture the optical phonon

modes present in real crystals. When neighboring atoms are non-identical as in crystals with

multiple atoms per unit cell, there are modes where neighboring atoms move in opposite

directions simultaneously, resulting in near-flat dispersions with finite energies at zero momentum.
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Figure 2.6. Dispersion relations for GaAs reproduced from [41]. The symbols X and W
represent specific points along the edge of the Brillouin zone in reciprocal space while Γ is the
zero momentum point. There are three acoustic (two transverse, one longitudinal) and three
optical modes as expected for a two atom per unit cell crystal in 3D.

Fig. 2.6 illustrates a full set of dispersion relations for GaAs with optical phonon energies of

31−33 meV. A complete numerical Density Functional Theory (DFT) calculation of scattering

rates in the single phonon regime is performed in [41], while our full analytic prescription with

both acoustic and optical modes is given in Sec. 3.3.1.

Prior to the work in this Dissertation, only the single phonon [41], diphonon [42], and

free nuclear recoil responses to the dark matter wind had been formalized and calculated. In

Chapters 3 and 4, we perform first calculations in the multiphonon regime, depicted as the wide

yellow region in Fig. 2.7, and demonstrate its consistency with the single phonon and nuclear

recoil limits. These results are the main goal and accomplishment of Chapters 3 and 4 of this

thesis. As we can see from the figure, this is a necessity as we attempt to probe light dark matter

with masses less than 100 MeV with experimental energy thresholds below 1 eV.
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Figure 2.7. Schematic of the various DM-nucleon scattering regimes in crystals, reproduced
from [43]. The purple and green shaded regions illustrate regions of momentum and energy
transfers that can excite single phonons while the thin yellow shaded region above Ed refers
to scatterings where the nucleus can be treated as free. The blue lines correspond to the
kinematically accessible momentum and energy transfers for DM with velocity v = 10−3. We
see that DM masses below . 1 MeV typically excite single phonons, while DM masses & 1
GeV effectively scatter off of single free nuclei. Understanding and calculating scatterings in the
intermediate regime labeled “multiphonon regime” is one of the main accomplishments of this
Dissertation.
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2.2 Gravitational Waves

Einstein’s general relativity predicts the formation of propagating ripples in spacetime in

certain extreme circumstances. These ripples, known as gravitational waves, were first experi-

mentally observed in 2015 by LIGO (Laser Interferometer Gravitational-Wave Observatory) [44]

and were determined to be sourced by a merger of two black holes. Since then, many more

observations have been made of gravitational waves originating from various combinations of

neutron star and black hole mergers [45, 46]. While originally designed to find smoking-gun

confirmation of Einstein’s general relativity through merger measurements, gravitational wave

detection may present a new probe into the existence of primordial black holes.

In theory, primordial black holes form due to large curvature perturbations in the early

universe that cause rare overdensities. The mass and total energy density of PBHs are thus

related to the cosmological metric at early times. While observations of gravitational waves

today originate from large perturbations to the local spacetime metric near massive objects,

GWs are also necessarily produced by large perturbations to the cosmological metric in the

early universe. If such events occurred, the remnant GWs will have propagated and redshifted

along with the rest of the universe and formed a GW stochastic background, similar to the

CMB but with gravitational radiation instead of electromagnetic radiation. Data from existing

GW interferometers LIGO and Virgo has been used to place constraints on the primordial

curvature spectrum [47]. However, these results are not competitive with existing cosmological

bounds on the primordial black hole parameter space. In Chapter 5, we carefully relate the

population of PBHs to the strength and scales of primordial curvature perturbations. We

investigate gravitational waves produced from PBH potentials, the cosmological metric, and

various other sources and discuss the potential observational prospects of next generation

gravitational wave experiments on these stochastic GW backgrounds.
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Chapter 3

Dark matter direct detection from the
single phonon to the nuclear recoil regime

3.1 Introduction

The effort to directly detect dark matter (DM) is entering the sub-GeV mass regime,

thanks to experimental innovations which allow for ever lower energy thresholds. For kinematic

reasons, this regime is especially challenging for DM which primarily couples to hadronic matter.

For a DM mass (mχ ) below 1 GeV, the energy that the DM can deposit in an elastic collision

with a nucleus of mass mN is bounded by

EN ≤
2v2m2

χ

mN
. (3.1)

For mχ � mN this is only a small fraction of the total available DM kinetic energy, which can

make it very difficult to detect. This problem can be mitigated to some extent by choosing

light element targets such as H [48], He [49, 50, 51], or diamond [52] and by pushing for

lower thresholds. Alternatively, one may leverage inelastic processes such as the Migdal effect

[53, 54, 55] or bremsstrahlung [56]. Inelastic processes occur at substantially lower rate, but

are not subject to the constraint in (3.1) and can also yield signals that are more easily detected

than a nuclear recoil, such as electronic excitations, ionizations or X-rays. Which approach is

preferable depends on the characteristics of the detector.
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At sufficiently low energy and momentum scales, DM-nucleus scattering is also not

subject to (3.1) because atom-atom interactions become important. In particular, the relevant

excitations in a crystal target are phonons instead of elastic nuclear recoils. For mχ . MeV,

the momentum transfer from DM scattering corresponds to wavelengths comparable or larger

than the interatomic spacing of a typical target. In this regime, the dominant process will

be coherent scattering off multiple atoms, with creation of a single phonon. For crystalline

targets with phonon energies as high as ∼100 meV, the energy deposited from DM can be well

above the naive estimate in (3.1). Single phonon excitation has been studied extensively for

sub-MeV dark matter, where numerical and analytic calculations by different groups are in

good agreement [57, 41, 58, 59, 60, 61, 62, 63]. These calculations have also been extended to

diphonon production from sub-MeV dark matter1 [42] as well as to single phonon production

from MeV-GeV dark matter by including Umklapp processes [58, 60]. However, so far there

has not been a complete description of DM scattering for intermediate energy and momentum

transfers, where multiphonon processes are expected to dominate.

In this work, we develop an analytic treatment of DM scattering that interpolates between

the single phonon and nuclear recoil regimes. The relevant approximations are set primarily

by the momentum transfer q. For single phonon excitations and q < 2π/a, where a is typical

atomic lattice spacing, we use a long-wavelength approximation used earlier in the literature

[57, 41, 59, 42]. For q > 2π/a, we employ the incoherent approximation, which neglects

interference effects between the response of neighboring atoms. This allows us to organize

the calculation as a systematic expansion in the number of final state phonons, where each

additional phonon comes with a factor of q/
√

2mdω̄d . Here, md and ω̄d are the mass and average

oscillation frequency of the atom in the position indexed by d. For q <
√

2mdω̄d it is numerically

practical to compute the rate order-by-order in terms of the phonon density of states of the

material. For q�√2mdω̄d , scattering into many phonons dominates and the perturbation series

1Analogous calculations were performed for superfluid He [64, 65, 66, 67, 68, 69, 70], for which diphonon
production is the leading observable process for mχ . 1 MeV.
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Figure 3.1. Cross sections needed for 3 events/kg-year for various target materials and threshold
energies. A massive hadrophilic mediator is assumed.

requires increasingly large orders in q/
√

2mdω̄d to converge. It can however be resummed by

making use of the impulse approximation, which in turn smoothly matches onto the free nuclear

recoil regime. A similar expansion in number of modes has been performed previously for the

integrable toy model that is the harmonic oscillator [71]. Here we have generalized the approach

to a harmonic crystal, analogous to the procedure followed in [72] and [73], in calculations of the

Migdal effect and X-ray backgrounds, respectively. Fig. 3.1 illustrates our results from applying

these approximations. All of our calculations are implemented as part of the DarkELF public

code [74].2

The remainder of this paper is organized as follows: In Sec. 3.2 we introduce the dynamic

structure factor, which captures the material-dependence of the DM scattering cross section,

2https://github.com/tongylin/DarkELF
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and motivate the incoherent approximation for the structure factor. In Sec. 3.3, we describe our

analytic approximations in detail across the different regimes in energy and momentum transfer.

We perform checks on our use of the incoherent approximation by comparing with previous

calculations for single-phonon production and analytic calculations for diphonon production. Our

results for GaAs are discussed in detail in Sec. 3.4 and we conclude in Sec. 3.5. Appendix 3.A

contains the formulas for diphonon production and Appendix 3.B provides details on the impulse

approximation. The implementation in DarkELF is documented in Appendix 3.C. We further

provide numerical results for Ge, Si and diamond in Appendix 3.D.

3.2 Dynamic structure factor

Our starting point will be a general potential for spin-independent DM-nucleus interac-

tions, although the formalism below could also be applied to spin-dependent interactions. For

a DM particle of mass mχ incident on a crystal with N unit cells and n ions per unit cell, the

potential in Fourier space is given by

Ṽ (q) =
2πbp

µχ

F̃(q)
N

∑
`

n

∑
d=1

f`deiq·r`d . (3.2)

Here, we sum over the N unit cells, labeled by lattice vectors `, and atoms within the unit

cell, labeled with the index d, such that all atoms in the crystal with positions r`d are summed

over. The DM-proton scattering length bp is defined by the DM-proton scattering cross section

σp ≡ 4πb2
p at some reference momentum, and µχ is the DM-proton reduced mass. We first

consider a general coupling strength f`d of the nucleus labeled by `,d relative to that of a single

proton. f`d is specified for various interactions in Section 3.4, such as nucleon number for scalar

mediators and the effective electric charge for scattering via a dark photon mediator. In the latter

case f`d is q dependent when accounting for screening effects.

We consider two form factors in (3.2) representing limiting cases of interactions: scat-

tering via a heavy mediator, where F̃(q) = 1; and scattering via a massless mediator, where
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F̃(q) = q2
0/q2 with a model-dependent reference momentum q0.

Collecting the overall factor 2πbpF̃(q)/µχ , we define the differential cross section as

dσ

d3qdω
=

b2
p

µ2
χ

1
v

Ωc

2π
|F̃(q)|2S(q,ω)δ (ω−ωq) (3.3)

where v is the initial velocity of the dark matter (incident on a target at rest), Ωc =V/N is the

volume of the unit cell in the crystal, and ωq = q ·v− q2/2mχ is the kinematic constraint on

the momentum and energy transfers to the crystal q and ω . We have in turn also defined the

dynamic structure factor

S(q,ω)≡ 2π

V ∑
f

∣∣∣∣∣
N

∑
`

n

∑
d=1

〈
Φ f
∣∣ f`deiq·r`d ∣∣0

〉
∣∣∣∣∣

2

δ
(
E f −ω

)
. (3.4)

Note that the convention for S(q,ω) varies across the literature; here we use the convention

that gives a similar S(q,ω) definition for both phonon interactions and DM-electron interac-

tions [58, 43]. We also assume the system is initially in its ground state |0〉 prior to the collision,

corresponding to a zero temperature system. We sum over final states with energies E f , such that

each term represents the probability to excite the final state
∣∣Φ f
〉
.

3.2.1 Coherent and incoherent structure factors

For a given crystal there are many possible configurations of interaction strengths f`d

which may vary even for different samples of the same material, e.g. the exact distribution of

spins or isotopes in the material for spin-dependent3 or mass-dependent interactions, respectively.

This can be accounted for by averaging over a large collection of target samples. With a large

number of nuclei in the crystal, we expect the exact distribution of interaction strengths in a

given sample to be inconsequential relative to the result averaged over many samples. We can

keep track of fluctuations away from the average configuration by splitting the scattering rate

3For spin-dependent interactions, f`d is an operator rather than a parameter, but otherwise the analysis proceeds
analogously.
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into a coherent and incoherent contribution, as explained below.

We follow the procedure of Refs. [75, 76] and first re-express (3.4) by expanding the

square and Fourier transforming the δ -function, giving

S(q,ω) =
N

∑
`,`′

n

∑
d,d′

f`d f ∗`′d′C`′d′`d (3.5)

where C`′d′`d is the time-dependent two-point function:

C`′d′`d ≡
1
V

∞∫

−∞

dt ∑
f

〈
0
∣∣e−iq·r`′d′(0)

∣∣Φ f
〉

×
〈
Φ f
∣∣eiq·r`d(t)∣∣0

〉
e−iωt

≡ 1
V

∞∫

−∞

dt 〈e−iq·r`′d′(0)eiq·r`d(t)〉e−iωt . (3.6)

In the second line we used the completeness of the basis of states. It will also be advantageous to

define a shorthand notation for the auto-correlation function for an atom with itself as

C`d ≡ C`d`d

≡ 1
V

∞∫

−∞

dt 〈e−iq·r`d(0)eiq·r`d(t)〉e−iωt . (3.7)

We assume that the f`d are random throughout the crystal. Under this assumption, the

average of f`d f ∗
`′d′ over target configurations, fd f ∗d′ , must be independent of the lattice sites `,`′.

Making this replacement in (3.5) gives

S(q,ω) =
N

∑
`,`′

n

∑
d,d′

fd f ∗d′C`′d′`d (3.8)
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where the averages may be written as

d 6= d′ : fd f ∗d′ = fd f ∗d′,

d = d′ : fd f ∗d′ = f 2
d .

For the d 6= d′ case we assumed that the expectation values of the fd for different atoms in the

unit cell are uncorrelated. This allows one to split the structure factor into two contributions:

S(q,ω) =
N

∑
6̀=`′

n

∑
d 6=d′

fd f ∗d′C`′d′`d +
N

∑
`

n

∑
d

f 2
d C`d (3.9)

=
N

∑
`,`′

n

∑
d,d′

fd f ∗d′C`′d′`d +
N

∑
`

n

∑
d

(
f 2
d − ( fd)

2
)

C`d (3.10)

≡S(coh)(q,ω)+S(inc)(q,ω) (3.11)

where the second line is obtained by adding and subtracting the term proportional to ( fd)
2 and

regrouping. The first and second term in (3.11) are usually referred to as the coherent and

incoherent structure factors in the neutron scattering literature.

The coherent structure factor relays the scattering rate if the interaction strengths of all

atoms in equivalent lattice sites are equal to a common value fd . For example, one can consider

low energy, spin-independent neutron scattering in a very pure crystal with only a single isotope

per atom type. This implies fd = f`d = Ad , with Ad the atomic mass number, such that the

incoherent contribution in (3.11) vanishes exactly. The sum in (3.10) then crucially includes

position correlators between differing nuclei, which capture the interference between different

lattice sites. In practice, this interference leads to a coherence condition, which demands that

the momentum in the scattering process must be conserved up to a reciprocal lattice vector. In

particular, the 0th order term in a low q expansion of (3.6) corresponds to Bragg diffraction.

The incoherent structure factor on the other hand accounts for the statistical variations in

interaction strengths between different scattering centers in the lattice. The second sum in (3.10)
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contains no cross terms and thus does not include interference between different lattice sites.

There is therefore no corresponding coherence condition and the incoherent structure factor does

not enforce momentum conservation.4

For most earlier DM direct detection calculations the focus has been on spin-independent

scattering in high purity crystals with little isotopic variation. In this scenario, we take the single

isotope approximation f 2
d − ( fd)

2 = 0, implying that only the coherent scattering contributes.

For spin-dependent dark matter scattering, the average will be the quantum expectation value of

the spin operator, resulting in f 2
d 6= ( fd)

2. We therefore expect the incoherent piece in (3.11) to

be important in this case. In this paper we focus exclusively on spin-independent scattering in

the single isotope limit and the corresponding coherent structure factors. The coherent structure

factors are however more difficult to evaluate, due to the conservation of crystal momentum that

is built into (3.6). This results in increasingly complicated phase space integrals for multiphonon

processes [42]. For our purposes, the utility of studying the incoherent structure factor will

be that the auto-correlation function can be used to obtain a reasonable and more manageable

approximation of the coherent structure factor at sufficiently high momenta. Our results can also

be extended to the case of spin-dependent scattering, but we leave this for future work.

Before venturing further into this approximation and its validity, we must first develop

the structure factors into a form which lends itself to a direct calculation. In order to evaluate

the structure factors in (3.4)–(3.8), the position vector of each atom may be decomposed in

terms of the equilibrium lattice positions and displacement vectors, r`d = `+ r0
d +u`d . Here

r0
d is the equilibrium location of atom d relative to the origin of the primitive cell and u`d is

the displacement relative to that equilibrium. Following this decomposition, we quantize the

4An alternative but equivalent point of view is that for coherent scattering, translation symmetry is broken up
to a shift symmetry, since all unit cells are identical. For incoherent scattering the scattering centers are treated
as independent and translation invariance is therefore fully broken, resulting in the complete loss of momentum
conservation.
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displacement vector in the harmonic approximation with a phonon mode expansion

u`d(t) =
3n

∑
ν

∑
k

1√
2Nmdων ,k

(
eν ,d,kâν ,keik·(`+r0

d)−iων ,kt

+ e∗ν ,d,kâ†
ν ,ke−ik·(`+r0

d)+iων ,kt
)

(3.12)

The index ν denotes the phonon branches, of which there are 3n, and k labels the phonon

momentum in the first Brillouin Zone (BZ). The â†
ν ,k and âν ,k are the creation and annihilation

operators for the phonons, ων ,k is the energy of the phonon, eν ,d,k is the phonon eigenvector for

atom d normalized within a unit cell, ∑d e∗
ν ,d,k · eµ,d,k′ = δµνδk,k′ , and md is the mass of atom d.

The structure factor in (3.8) can then be explicitly evaluated by applying (3.12) to (3.6).

For a pure single isotopic crystal with f 2
d = ( fd)

2, this is given by [42]

S(coh)(q,ω) =
2π

V ∑
f

∣∣∣∣∣
N

∑
`

n

∑
d

fd e−Wd(q)M`d

∣∣∣∣∣

2

δ
(
E f −ω

)
(3.13)

where

M`d ≡ eiq·(`+r0
d)
〈
Φ f
∣∣exp

[
i∑

k,ν

q · e∗
ν ,k,d√

2Nmdων ,k
â†

ν ,ke−ik·(`+r0
d)

]
|0〉 (3.14)

is the matrix element for scattering into the final state of the crystal denoted by f . The Debye-

Waller factor e−Wd(q) is given in terms of the function Wd(q)≡ 1
2〈(q ·u`d(0))

2〉. We may Taylor

expand the inner exponential in powers of q where the nth term can excite a final state consisting

of n phonons. The phonon eigenvectors and energies may be obtained numerically using Density

Functional Theory (DFT) (see e.g. [77]); using these, the leading single phonon structure factor

has been calculated [41, 60, 63]. These DFT-based calculations quickly become cumbersome,

however, and have not yet been performed for generic n-phonon terms. Analytic calculations may

be performed more easily, and have been carried out for the single- and two-phonon terms [42],

but are only tractable when assuming an isotropic crystal and that |q| is small relative to the size

of the first Brillouin zone. Such analytic calculations likewise lack scalability for higher order
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phonon terms.

In summary, since the direct evaluation of (3.13) is very tedious and not always possible,

we will rely instead on an approximate form of S(coh)(q,ω), bypassing the need to deal with

(3.13). This is described in the next section.

3.2.2 Incoherent approximation

The incoherent approximation amounts to dropping the cross terms in (` 6= `′ or d 6= d′)

from the sum in (3.10), thus neglecting the interference between non-identical atoms. In other

words, one approximates the coherent structure factor by

S(coh)(q,ω)≈
N

∑
`

n

∑
d
( fd)

2C`d. (3.15)

The incoherent structure factor remains unchanged, and the total structure factor is then given

by S(tot)(q,ω) ≈ ∑
N
` ∑

n
d f 2

d C`d . In this work we will focus only on pure crystals with a single

isotope for each type of atom, so that the total structure factor can be computed with (3.15). The

incoherent approximation is expected to be a good approximation when the momentum transfer

is larger than 2π/a with a the inter-particle spacing. Then the phase factors associated with the

interference terms are expected to add up to a small correction compared to the `= `′,d = d′

terms in the sum. For an argument justifying (3.15) we refer to [75, 78].

For momentum transfers within the first Brillouin zone, single phonon scattering always

dominates the inclusive scattering rate. It is however possible that the detector threshold is such

that single phonon processes cannot be accessed but the double or multiphonon processes can.

In this case the incoherent approximation cannot a priori be taken for granted. We nevertheless

use it, but verify the results against our earlier two-phonon calculations [42] whenever possible

(Sec. 3.3.2), finding satisfactory agreement. The accuracy of the calculations in this part of phase

space is however less well understood and further work is needed.

To evaluate the auto-correlation function, we first replace the atomic positions r`d in
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(3.11) with their displacement operator decomposition, noting that the `+ r0
d constant cancels,

amounting to a simple substitution of r`d → u`d:

C`d =
1
V

∞∫

−∞

dt 〈e−iq·u`d(0)eiq·u`d(t)〉e−iωt (3.16)

The expectation value may be rewritten with an application of the Baker–Campbell–Hausdorff

formula, Bloch’s identity 〈eÂ〉= e
1
2〈Â2〉, and some matrix algebra [41] giving:

C`d =
1
V

∞∫

−∞

dt e−2Wd(q)e〈q·u`d(0)q·u`d(t)〉e−iωt . (3.17)

When we deployed Bloch’s identity, we implicitly used the harmonic approximation, by only

considering displacement operators of the form in (3.12).

The correlator 〈q ·u`d(0)q ·u`d(t)〉 may be evaluated with the form of the displacement

operator in (3.12), wherein the ` dependence cancels. This gives

〈q ·ud(0)q ·ud(t)〉= ∑
ν

∑
k

∣∣q · eν ,k,d
∣∣2

2Nmdων ,k
eiων ,kt (3.18)

which can be simplified further by averaging over the direction of momentum vector q

〈q ·ud(0)q ·ud(t)〉 ≈
q2

3 ∑
ν

∑
k

|eν ,k,d|2
2Nmdων ,k

eiων ,kt (3.19)

=
q2

2md

+∞∫

−∞

dω
′Dd(ω

′)
ω ′

eiω ′t (3.20)

where we defined the partial density of states for each atom in the primitive cell as

Dd(ω)≡ 1
3N ∑

ν

∑
k
|eν ,k,d|2δ (ω−ων ,k). (3.21)

The partial density of states was normalized to satisfy
∫+∞

−∞
dωDd(ω) = 1. This can be shown by
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using the eigenvector completeness condition, which imposes ∑ν e∗
ν ,k,d,ieν ,k,d, j = δi j for fixed

k,d, where i, j are spatial indices. In addition, the total density of states of the material is defined

by

D(ω)≡∑
d

Dd(ω) =
1

3N ∑
ν

∑
k

δ (ω−ων ,k), (3.22)

which satisfies
∫+∞

−∞
dωD(ω) = n with n the number of atoms in the unit cell.5 In materials such

as Ge, Si, or GaAs all atoms in the primitive cell have the same or similar mass and as such

contribute roughly equally to the density of states, see Fig. 3.2. One could therefore approximate

Dd(ω)≈ D(ω)/n in (3.20) for these materials. We however choose to keep track of the partial

density of states, to keep the calculations as general as possible.

For mono-atomic lattices, the density of states can be extracted directly from neutron

scattering data through the incoherent structure factor. This is not always possible for multi-

atomic lattices, since the scattering is only sensitive to the combination ∑d | fd|2Dd(ω)/md . To

infer the individual Dd(ω) as well as D(ω), one therefore needs a set of scattering techniques

which allows one to effectively vary the fd . This is not available for all materials, and it is

therefore often most convenient to extract the Dd(ω) from DFT calculations. A comprehensive

library of results has been made available by the materials project [79].

Returning now to the calculation of the autocorrelation function, we can expand the

exponential term in (3.17) using the form of the correlator in (3.20). This yields an explicit

representation of C`d as an expansion in number of phonons n being excited:

C`d =
2π

V
e−2Wd(q)∑

n

1
n!

(
q2

2md

)n

×
(

n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

j
ω j−ω

)
(3.23)

where the delta function arises from the time integral 1
2π

∫
dt ei(∑ωi)te−iωt and ensures energy

5In the literature, the density of states is also sometimes normalized to 3na, where na is the atomic density.
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Figure 3.2. Partial and total density of states for GaAs [79]. Labels indicate the regions in which
a particular phonon branch dominates.

conservation. Here, by using (3.20), the Debye-Waller function takes the form of

Wd(q) =
q2

4md

∫
dω
′Dd(ω

′)
ω ′

. (3.24)

Thus, in comparison to the difficulties discussed surrounding (3.13), inputting this form of the

correlator into (3.15) gives an analytic approximation for all phonon terms in the appropriate

regime of validity.

In this paper, we utilize the incoherent approximation to calculate the contributions from

higher-order phonon terms to an arbitrary degree in a simple and fast manner. This allow us to

make rate predictions for the entire relevant mass range, going from the low-mass (mχ & keV)

single phonon regime to the high-mass (mχ & 50 MeV) nuclear recoil regime.
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3.3 Processes

Using the autocorrelation function, (3.23), we can estimate the scale at which a generic

n-phonon term starts becoming a relevant contribution to scattering. To organize the multiphonon

expansion, it is useful to define an average phonon energy

ω̄d ≡
∫

dω
′
ω
′Dd(ω

′). (3.25)

While ω̄d technically depends on the atom d, this just gives an O(1) dependence in the phonon

scale. Since n! ∝ nn at large n, we see that the nth term of the series (3.23) will roughly begin

giving an O(1) contribution when

q2

2mdω̄d
∼ n. (3.26)

This means that for a given q (or consequently, mχ ) one can determine the dominant scattering

processes. When q2

2mdω̄d
. 1, single phonon excitations will be the primary channel; for md ∼ 30

GeV and ω̄d ∼ 30 meV, this corresponds to q . 30 keV. Conversely, when q2

2mdω̄d
� 1, phonons

are no longer a suitable description and the scattering is instead well modeled by the recoil of a

single nucleus. This transition occurs roughly at q & 2
√

2mdω̄d . In between these two extremes,

we have n∼ few, indicating multiphonon excitations as the primary process. The precise nature

of the dominant process for a given mχ will vary based on the mediator mass and experimental

threshold.

In this section, we describe analytic approaches for characterizing the structure factor in

crystal targets, broken into subsections corresponding to the previously mentioned processes.

Secs. 3.3.1 and 3.3.2 deal with single phonon and two phonon excitations. Here we can also

compare calculations of the full structure factor with the incoherent approximation. Sec. 3.3.3

deals with many phonon excitations, and Sec. 3.3.4 describes the impulse approximation, which

gives a good approximation to the structure factor for momenta approaching the nuclear recoil
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limit. For all numerical results in this section, we will assume a coupling to nucleons (replacing

the generic average interaction strength fd with the nucleon number Ad) for both massive and

massless mediators, and take a GaAs target as a typical example of a simple cubic crystal of

interest.

3.3.1 Single phonon production

If the unit cell contains at least two atoms, there are two types of phonons that can be

produced: acoustic and optical phonons. As discussed in Sec. 3.2, DFT-based calculations

for both single acoustic and single optical phonon excitations have been performed across a

large dark matter mass range (∼keV to GeV) [41, 60, 63]. Meanwhile analytic calculations

so far have been limited q . 1 keV, which corresponds to mχ . MeV [57, 42]. Although the

DFT-based calculations span the entire mass range of interest and can provide information

such as directional dependence, the numerics are more intensive; the phonon band structure,

eigenvectors and structure factors must be calculated from first principles for each material.

For high q, the sum over the reciprocal lattice must also be accounted for [58, 62]. Here we

extend the analytic calculations to the high q regime by using the incoherent approximation.

The comparison with the DFT results of [41] will also serve as a validation of the incoherent

approximation.

To organize the calculations, it is useful to define a momentum scale (qBZ) which

approximately reflects the size of the first Brillouin zone. We take qBZ = 2π

a ≈ 2 keV, where a is

the lattice constant. We first review the single phonon response for q < qBZ. In this regime, we

compute the structure factors in the isotropic approximation and in the limit q� qBZ. For this

purpose we assume linear dispersions ω = csq for the longitudinal acoustic (LA) and transverse

accoustic (TA) modes, with cs replaced by cLA and cTA for the longitudinal and transverse sound

speeds, respectively. The optical modes are assumed to have flat (constant) dispersions for the

longitudinal optical (LO) and transverse optical (TO) phonon energies ωLO and ωTO. The sound

speeds and optical phonon energies are taken to be their long-wavelength values (q = 0). We
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will refer to this set of assumptions as the long-wavelength approximation.

The matrix element is given by the leading non-trivial term in the small q expansion of

(3.14). The only relevant contributions for q� qBZ are those of the single LA and LO phonons.

We approximate the long-wavelength acoustic eigenvectors as

eLA,k,d ≈
√

Ad√
∑d′ Ad′

k̂; (3.27)

note that this form is valid for generic crystal targets and not limited to GaAs. For the LO phonon,

we use the following eigenvectors, which are only valid for diatomic lattices [42]

eLO,k,1 ≈
√

A2√
A1 +A2

k̂, (3.28)

eLO,k,2 ≈−
√

A1√
A1 +A2

e−ik·r0
2 k̂ (3.29)

where the first atom is taken to be at the origin of the primitive cell, and the second atom is

taken to be at the coordinate r0
2 = (a/4, a/4, a/4) for GaAs. The acoustic and optical transverse

eigenvectors are orthogonal to these, but do not contribute to the scattering into a single phonon.

With these approximations and taking fd = Ad , the analytic expressions for the single phonon

contributions to the structure factor are [42]

Sn=1,LA(q,ω)≈ 2π

Ωc

(∑d′ Ad′)q2

2mpωLA,q
δ (ω−ωLA,q)Θ(ωLO−ω) (3.30)

Sn=1,LO(q,ω)≈ 2π

Ωc

q4a2

32ωLO

A1A2

mp(A1 +A2)
δ (ω−ωLO) (3.31)

S(q<qBZ)
n=1 (q,ω) = Sn=1,LA(q,ω)+Sn=1,LO(q,ω) (3.32)

with Ωc the volume of the primitive cell. Here we have introduced a cut-off of ω = ωLO to

the longitudinal acoustic branch to avoid overestimating the scattering rate with the LA mode

near the edge of the Brillouin zone. The q4 scaling and appearance of the lattice constant a
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in the optical structure factor comes from averaging over angles with the eigenvectors, giving

(q · r0
2)

2 ≈ q2a2/16 [59].

For dark matter with a standard velocity dispersion v ∼ 10−3, the typical momentum

transfer begins to fall outside the first Brillouin zone for mχ & 1 MeV. Physically, this corresponds

to the wavelength becoming smaller than the interatomic spacing, and the long-wave length

formulas from (3.27) to (3.31) are no longer valid. We can however utilize the incoherent

approximation in (3.15) and (3.23), which yields

S(q>qBZ)
n=1 (q,ω)≈ 2π

Ωc

n

∑
d

e−2Wd(q)( fd)
2 q2

2md

Dd(ω)

ω
. (3.33)

The forms of the structure factor are qualitatively quite different in the two q regimes. In

the coherent regime q < qBZ, summing over the response of multiple atoms with constructive

interference leads to a resonant response in (3.32). The impact of the interference is greatly

reduced for q > qBZ, such that the incoherent approximation becomes a viable description.

While the sharp transition in the structure factor is an artifact of our approximations,

(3.32)-(3.33) can accurately describe the integrated structure factor above or below qBZ. Fig. 3.3

compares our combined analytic single phonon description with numerical DFT calculations.

For the DFT result we follow [41], computing the dynamical matrix and phonon dispersions

with respectively VASP [80] and phonopy [77] (see also [60]), and take the angular average of

S(q,ω) over all q directions for comparison with the isotropic approximation. The top panels

show the structure factors in (3.32) as a function of q, integrated over ω . The top left panel shows

S(q,ω) integrated over ω ∈ [1meV,27meV] to select the acoustic phonon branches only and

the top right panel shows the integral over ω ∈ [27meV,40meV] for optical phonon branches.

The analytic approximations are in good agreement with the DFT result in their respective

regimes of validity. For q < qBZ, integrating (3.32) leads to respectively ∼ q and ∼ q4 scaling,

while the incoherent approximation in (3.33) always scales as ∼ q2. As discussed above, the

ω-dependence of the analytic structure factors is quite different in the two regimes, with the
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Figure 3.3. Single phonon production.
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coherent structure factor giving a resonant response around the single-phonon dispersion while

the incoherent approximation is continuous in ω . However, the integrated result matches the full

DFT calculation of the coherent structure factor well, indicating that the analytic approach will

be useful in calculating integrated quantities such as rates. Furthermore, the analytic approach

provides physical insight into the change in the q-scaling of the structure factor in Fig. 3.3a.

The plots in Fig. 3.3b show single phonon integrated rates for both massive and massless

scalar mediators. For the massless mediator, scattering into the acoustic phonon specifically

favors small q due to the ∝ q−4 contribution of the mediator form factor. The analytic result

of (3.30) therefore applies across the entire DM mass range, as the large q contributions are

negligible. For all other cases the structure factor scales with a positive power of q so that large q

contributions are the most important. We therefore see a change in slope of the σp reach around

mχ ∼MeV, when q & qBZ becomes kinematically accessible. These features are captured by the

q > qBZ analytic description from the incoherent approximation, and again agree with the DFT

results.

3.3.2 Two-phonon production (q < qBZ)

We next turn to the use and accuracy of the incoherent approximation for two-phonon

production, in particular for q < qBZ. Single phonon production always dominates in this regime

if above threshold [42]. It is however expected that there will be a phase in the experimental

program for which the energy threshold will still be too high to access single optical and accoustic

phonons, such that the formally subleading double phonon production can be relevant.

While the incoherent approximation is expected to be the least accurate for q < qBZ, it

is still useful to compare it with existing analytical results for the structure factor. The analytic

results are obtained in the long-wavelength approximation, as defined in Sec. 3.3.1. In this limit,

the Wilson coefficients of the self-interaction operators for the acoustic modes can be extracted

from the measured or calculated elasticity parameters. With these assumptions, one can explicitly

evaluate (3.13) to second order in q/
√

mdω [42].
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In this work, we will extend the long-wavelength calculations to all final states (see

Appendix 3.A) and compare them with the incoherent approximation. For this purpose we

extrapolate the results of Ref. [42] to higher q values and make a number of additional assump-

tions to model the self-interactions of the optical modes, thus giving the complete structure

factor. For these reasons the calculations in this section should however be considered only a

toy model of a GaAs-like crystal. We will show below that for this toy model and in the limit of

small momentum transfer, the incoherent and long-wavelength approximations give qualitatively

similar DM scattering rates.

From Ref. [42], the two-phonon structure factor can be written as

S(q,ω) = S(harm)(q,ω)+S(anh)(q,ω) (3.34)

in the long-wavelength limit. The first term is the structure factor in the harmonic limit (also

referred to as the contact piece in [42]), where anharmonic corrections to the atomic potentials

are neglected. It can be obtained by expanding (3.14) to second order, and evaluated analytically

in the long-wavelength limit. The second term contains contributions to the structure factor from

anharmonic interactions. In order to evaluate this, one needs to include a phonon self-interaction

Hamiltonian in computing (3.14), as described in detail in [42]. The interactions of acoustic

phonons are based on an effective three-phonon Hamiltonian valid in the long-wavelength limit,

but to obtain a more complete picture we include a highly approximate three-phonon Hamiltonian

for interactions involving optical phonons. These calculations are summarized in Appendix 3.A.

To perform the most meaningful comparison between the incoherent and long-wavelength

approximations, we assume the following Debye model for the partial density of states for a

diatomic crystal

45



0 10 20 30 40 50 60 70 80

ω [meV]

0

1

2

3

4

5

S
(q
,ω

)
[k

eV
2
]

GaAs 2-phonon, q = 0.5 keV

Incoherent Approximation,
Toy Model

Incoherent Approximation,
True Density of States

Coherent Calculation,
Toy Model (Harmonic Only)

Coherent Calculation,
Toy Model (With Anharmonic Interaction)

102 103

mχ [keV]

10−40

10−38

10−36

10−34

10−32

10−30

σ
p

[c
m

2
]

3 events/kg-yr

Massive Scalar Mediator

102 103

mχ [keV]

3 events/kg-yr

Massless Scalar Mediator

GaAs 2-phonon, (ω > 40 meV)

Figure 3.4. Two phonon production. Top: Comparison of the two-phonon structure factor
calculated with various approximations, where the toy model assumes the long-wavelength
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D1,2(ω) =
1

q3
BZ

1
A1 +A2(

A1,2
ω2

c3
LA

Θ(cLAqBZ−ω)Θ(ω)

+A1,2
2ω2

c3
TA

Θ(cTAqBZ−ω)Θ(ω)

+A2,1
q3

BZ
3

δ (ω−ωLO)

+A2,1
2q3

BZ
3

δ (ω−ωTO)

)
. (3.35)

which is derived from the long-wavelength approximation as described in Sec. 3.3.1.6 The

explicit structure factor from using this toy density of states in (3.23) is given in Appendix 3.A,

which for simplicity we evaluate with A1 = A2 for GaAs.

The top panel of Fig. 3.4 compares the calculations of the two-phonon structure factor

in the incoherent and long-wavelength approximations. For the incoherent approximation, we

show the result with the toy density of states in (3.35) as well as with the true density of states

from Fig. 3.2. The dashed line shows the harmonic limit, meaning that S(anh) is neglected. This

is the case that is most directly comparable to the incoherent approximation, which assumes the

harmonic mode expansion in (3.12). For the dotted line, the leading phonon self-interactions

were included.

In the harmonic limit, all modes scale as∼ q4 except for optical-acoustic final state, which

scales as ∼ q6. The incoherent approximation naturally misses these more subtle destructive

interference effects, but still captures the correct q4 scaling for most of the modes. We see

in Fig. 3.4 that the incoherent approximation is within a factor of ∼ 5 of the long-wavelength

6Here the maximum momentum of the modes is determined by requiring that the sum over all modes is equal
to the total number of degrees of freedom. For GaAs and in the isotropic approximation, the exact momentum
cutoff is about 2% different from qBZ = 2π/a. This error is negligible compared to the uncertainties on the other
assumptions made in this section.
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approximation for all ω > ωLO, for both the toy model and true density of states. The difference

at smaller ω is not experimentally relevant, as the single phonon rate will completely dominate

in this region. There are also delta-function terms from the optical-optical branches which do

not appear in the plot; their contributions to the overall scattering rate are comparable for the

incoherent and long-wavelength approximations as well. See Appendix 3.A for details. These

terms dominate the scattering rate at higher energies, and overall we see in Fig. 3.4 that the

incoherent approximation reproduces the structure factor in the harmonic limit to within a factor

of few.

When anharmonic interactions are included, the difference becomes larger and the

incoherent approximation may under-predict the rate by up to an order of magnitude in our

estimate. However, as discussed above, the anharmonic Hamiltonian used is itself also only valid

at the order of magnitude level, particularly for optical modes. We expect that our approach can

model the rate in this regime at the order-of-magnitude level, but a proper DFT calculation is

needed for it to be rigorously validated.

Finally, we show in the bottom panel of Fig. 3.4 a comparison of the cross sections

corresponding to a rate of 3 events/kg year, with the different approximations for the two-phonon

structure factor. We assume ω > 40 meV, since for lower thresholds the rate is dominated

by single-phonon production [42]. We emphasize that here we are only illustrating that the

incoherent approximation is within a factor of few of the full structure factor, as long as the

same assumptions are made for the phonon dispersion relations. Therefore, we restrict our

comparison to mχ < MeV such that we can restrict to q < qBZ. The incoherent approximation

underestimates the rate by a factor of few in the harmonic limit, and up to an order of magnitude

when anharmonic interactions are included. Using the true density of states slightly improves

the agreement. Though this comparison only applies to a limited q range, our result suggests

that the incoherent approximation should give a reasonable, order-of-magnitude estimate for

multiphonon production even at low q. We expect this uncertainty to decrease for larger q where

the incoherent approximation is most justified, and in particular we will see that the incoherent
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approximation reproduces the expected rate in the free nuclear recoil limit, as discussed in the

next sections.

3.3.3 Multiphonon production

In the previous section, where we dealt with q < qBZ, the incoherent approximation

should be viewed as an order-of-magnitude estimate only. For q > qBZ, it is however on firm

ground [75, 78] and is used routinely to measure the density of states from neutron scattering

data [75]. Moreover, in the q� qBZ regime multiphonon processes become important. This

follows from the form of the structure factor, obtained by inserting (3.23) into the incoherent

approximation (3.15):

S(q,ω)≈ 2π

Ωc

n

∑
d
( fd)

2e−2Wd(q)∑
n

(
q2

2md

)n

× 1
n!

(
n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

j
ω j−ω

)
. (3.36)

From the discussion around (3.26), the typical number of phonons is n∼ q2

2mdω̄d
. With

ω̄d & 30 meV and md & 30 GeV for most crystals, the self-consistency condition for the inco-

herent approximation (q & qBZ) is therefore always satisfied for n > 2 processes. The evolution

of (3.36) for increasingly large q is shown in Fig. 3.5a.

We can obtain an approximate scaling for (3.36) by separating each term in the sum over

n into q-dependent and ω-dependent parts. The ω-dependent part is given by the second line of

the equation, which is only non-zero at ω . nωLO in order to satisfy the delta function. This part

of the structure factor can be estimated to have at most the value of 1/(n! ω̄
n+1
d ); this is illustrated

in Fig. 3.11 of Appendix 3.C, where we plot the numerical result. For q .
√

2mdω̄d (left and

center panels of Fig. 3.5a), the Debye-Waller factor can be neglected and the structure factor then

scales as S(q,ω) ∝ ∑n
1
n!

(
q2

2mdω̄d

)n
. For q2/(2mdω̄d). 1, the structure factor therefore scales as

S(q,ω)∼ q2m, with m the lowest number of phonons that is kinematically allowed. This scaling
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will be useful in Sec. 3.4, where we use it to extract the approximate scaling behavior of the

DM cross section curves. It no longer holds for q &
√

2mdω̄d (right-hand panel of Fig. 3.5a),

where many modes contribute equally. This regime however can be understood in the impulse

approximation, which is the subject of the next section.

3.3.4 The impulse approximation (q� qBZ)

For q� qBZ the sum of the multiphonon terms asymptotes to an approximately Gaussian

envelope, as can be seen most clearly from the rightmost panel in Fig. 3.5a. This asymptotic

form can be derived directly with a steepest descent approximation, also known as the impulse

approximation. It is valid whenever the interaction with the probe particle happens on a time

scale short compared to that of the phonon modes.

To derive this, it is most insightful to take a step back from (3.36) and return to using

(3.20) in (3.17). The auto-correlation function is then

C`d =
1
V

e−2Wd(q)
∞∫

−∞

dt e
q2

2md

∫
dω ′ Dd (ω

′)
ω ′ eiω ′t

e−iωt . (3.37)

When q�√2mdω̄d , the exponent involving the density of states integral will be highly oscil-

latory in t, and the integral may be approximated by expanding about t = 0 through a steepest

descent method. (See Appendix 3.B). Doing so gives

C`d ≈
1
V

√
2π

∆2
d

exp


−

(
ω− q2

2md

)2

2∆2
d


 (3.38)

where ∆2
d ≡

q2ω̄d
2md

. This approximation is referred to as the impulse approximation since the

saddle-point around t = 0 dominates the rate. The true peak is shifted slightly from the result

(3.38), which can be corrected by including higher orders in the expansion [81]. Including these

additional terms has negligible impact on later results.
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Figure 3.5. Multiphonon transition into the nuclear recoil regime.
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From (3.38), we see that the structure factor in the impulse approximation is

SIA(q,ω) =
n

∑
d

( fd)
2

Ωc

√
2π

∆2
d

exp


−

(
ω− q2

2md

)2

2∆2
d


 (3.39)

which is a sum of Gaussians peaked around q =
√

2mdω , one for each atom in the unit cell.

In Fig. 3.5a we see that (3.39) is a reasonable approximation for q≈√2mdω̄d and converges

rapidly to the full result in (3.36) for q & 2
√

2mdω̄d . As expected, it does not capture the features

in the structure factor for q .
√

2mdω̄d . In our final results, we use (3.39) for q > 2
√

2mdω̄d , as

it is numerically much faster than (3.36). For crystals composed of multiple atoms, we define

the boundary as maxd
[
2
√

2mdω̄d
]
. At this scale, the average number of phonons is about four,

and it is sufficient to truncate the sum at n = 10 for all smaller q.

As we consider larger DM masses which access larger q and ω , the Gaussian becomes

more sharply peaked. This can be seen by comparing the width ∆d to the peak value ω = q2/2md .

In the large-q limit, we have

lim
q→∞

∆d

ω
≈
√

ω̄d

ω
(3.40)

so the Gaussian becomes narrow for ω well above the typical phonon energy. Then the narrow

width limit exactly reproduces the expected free nuclear recoil delta function response:

lim
q,ω→∞

C`d =
2π

V
δ

(
ω− q2

2md

)
(3.41)

SFR(q,ω) = ∑
d

2π

Ωc
( fd)

2
δ

(
ω− q2

2md

)
. (3.42)

We therefore recover the familiar free nuclear recoil response for each individual atom in the

unit cell.

In Fig. 3.5b we show cross section curves with a GaAs target, for both massive and

massless scalar mediators. We compare the reach obtained with the full structure factor (in the

incoherent approximation), the impulse approximation, and the free nuclear recoil limit. For
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mχ . 20−40 MeV, the full structure factor must be used to capture the rate, depending on the

mediator mass and threshold. For mχ & 20−40 MeV, the q values compatible with the impulse

approximation start to dominate, and we see that it reproduces the full result very closely. At

even higher masses, the free nuclear recoil response becomes an excellent approximation, as

expected.

A particular feature to notice from Fig. 3.5b is that the free nuclear recoil rate agrees with

the impulse approximation result even in regions of the q, ω phase space where the Gaussian is

not narrow. For example, for the massive mediator and mχ = 50 MeV, the rate will be dominated

by momentum transfers q∼ 2mχv∼ 100 keV, corresponding most closely to the rightmost panel

of Fig. 3.5a. From (3.40) this gives ∆d/ω ≈ 0.5 which is not particularly small. The nuclear

recoil approximation nevertheless works remarkably well. The reason is that phase space integral

in (3.3) has a trivial ω dependence aside from the S(q,ω) factor, since the delta function in ω

just determines the region of phase space that is integrated over. Therefore, as long as the energy

threshold is small compared to the peak in ω , the phase space integral over (3.39) and (3.42)

yields similar answers.

3.3.5 Summary

Fig. 3.6 schematically illustrates the various approximations for the structure factor

discussed in this section. The boundaries reflect only our choice of approximation and not a

sharp transition in the behavior of the structure factor. The dotted gray parabola represents the

phase space boundary for a given mχ and v (see Sec. 3.4). This parabola extends upwards and

rightwards as mχ is increased, such that multiple different regimes are sampled for high enough

mχ .

For the single phonon excitations (n = 1) described in Sec. 3.3.1, we use the long-

wavelength and incoherent approximations for q < qBZ and q > qBZ, respectively. This combina-

tion gives good agreement with a full DFT calculation of the scattering rate, at least for a cubic

crystal such as GaAs.
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For multiphonon excitations (n≥ 2), we use the incoherent approximation for the struc-

ture factor for all q below maxd[2
√

2mdω̄d]. This is motivated by Sec. 3.3.2, where we argued

that the incoherent approximation can serve as an order-of-magnitude estimate even for q� qBZ.

Given the limitations of the long-wavelength approximation, a dedicated DFT calculation is

needed in this regime. For multiphonon excitations, we sum terms in (3.36) until we achieve

convergence, as explained in Sec. 3.3.3. Finally, for q≥maxd[2
√

2mdω̄d] we make use of the

impulse approximation, which ultimately transitions into the well-known free nuclear recoil

regime. This was explained in Sec. 3.3.4.

Fig. 3.7 shows our full calculation of the structure factor for GaAs, overlaid with the

phase space boundaries for a few representative DM masses. In the low q, single phonon

regime, the response is given by a set of δ -functions on the LO and LA phonon dispersions,

represented by the orange curves. At intermediate and high q, the structure function is modeled

by a continuous function, where the layered structure for ω . 50 meV reflects the various single

and multiphonon contributions. At higher q and ω the individual resonances cease to be visible

and one transitions into the smooth S(q,ω) predicted by the impulse approximation. At very

high ω the structure function converges towards its free nuclear recoil form, which is represented

by the black dashed line.

3.4 Results

In this section we convert our newly-gained understanding of the structure factor into

concrete predictions for the DM scattering rate in a crystal target. The event rate per unit of

target mass is

R =
1

∑d md

ρχ

mχ

∫
d3vv f (v)

∫
d3qdω

dσ

dqdω
(3.43)
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Figure 3.8. Cross section plots corresponding to a rate of 3 events/kg-yr for massive and massless
scalar mediators in GaAs for various thresholds. The structure factors used are the analytic
results demarcated in Fig. 3.6 for each corresponding regime in the (q,ω) phase space. For the
massive mediator, we see the dominance of the single acoustic phonon at low masses and low
thresholds, and of the optical phonon for intermediate thresholds. Eventually, for sufficiently
high masses the process becomes dominated by the free nuclear recoil response. For the massless
mediator, the q−4 form factor favors small momenta, and the rate is dominated by the lowest
accessible mode for a given threshold.

where the experimental energy threshold is implicit in the boundary of the ω integral. f (v) is the

DM velocity distribution, which we take to be

f (v) =
1

N0
exp

[
−(v+ve)

2

v2
0

]
Θ(vesc−|v+ve|) ,

N0 = π
3/2v3

0

[
erf
(

vesc

v0

)
−2

vesc

v0
exp
(
−v2

esc

v2
0

)]
, (3.44)

with v0 = 220 km/s, the Earth’s average velocity ve = 240 km/s, and vesc = 500 km/s the

approximate local escape velocity of the Milky Way. The scattering rate can be further simplified

in the isotropic limit; using (3.3),

R =
1

4πρT

ρχ

mχ

σp

µ2
χ

∫
d3v

f (v)
v

q+∫

q−

dq

ω+∫

ωth

dω q |F̃(q)|2S(q,ω) (3.45)
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where ωth is the energy threshold of the experiment, and the other integration limits7 are

q± ≡ mχv

(
1±
√

1− 2ωth

mχv2

)
(3.46)

ω+ ≡ qv− q2

2mχ

. (3.47)

Note (4.75) defines the phase space boundary shown in Fig. 3.6 for a given mχ and v. Finally, ρT

is the mass density of the target material and we have recast the rate in terms of the DM-proton

scattering cross section σp ≡ 4πb2
p.

3.4.1 Massive hadrophilic mediator

In the case of a massive mediator coupling to baryon number, we calculate the scattering

rate by taking fd = Ad and F̃(q) = 1. The cross sections corresponding to a rate of 3 events/kg-

year exposure are shown in the left panel of Fig. 3.8, assuming a GaAs target and for different

energy thresholds. The same figures for Si, Ge and diamond can be found in Appendix 3.D.

We can understand the numerical results in Fig. 3.8 analytically using the scaling of the

structure factor discussed in Secs. 3.3.1–3.3.4. First, from (4.73), the mχ dependence of the rate

is contained in

R ∝
σp

mχ µ2
χ

q+∫

q−
dq

ω+∫

ωth

dω qS(q,ω). (3.48)

The structure factor only contains positive powers of q across the entire phase space, so for a

massive mediator, the integral (3.48) will be dominated by the largest kinematically accessible

momentum transfers.

For mχ � 30 MeV, the kinematically allowed phase space is extended to q and ω where

the free nuclear recoil approximation can be used. The rate therefore approximately scales as

R∼ 1/mχ for mp & mχ � 30 MeV. For low enough thresholds, this scaling holds even as the

7In numerical implementations of (4.73), as done in DarkELF, it is beneficial to change the order of integration
by first integrating over v, then q, and finally over ω .
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dark matter mass comes within O(few) of 30 MeV, where the structure factor is relatively broad

in ω . The reason is that the kinematically allowed phase space is wide enough in ω that the

integral over the Gaussian in the impulse approximation gives within a factor of few of the

integral over the delta function in (3.42), as discussed earlier in Sec. 3.3.4.

For dark matter masses of 1 to 30 MeV, the allowed phase space is restricted to values of

q <
√

2mdω̄ . Here the structure factor can be expanded in powers of q/
√

2mdω̄ and favors small

ω . As noted in Sec. 3.3.3 the structure factor scales as ∼ q2m, with m the smallest number of

phonons whose total energy is above the energy threshold. We see there is significant threshold

dependence: the single phonon final state strongly dominates the rate if it is above the energy

threshold, while for higher thresholds only multiphonons contribute. The rate integral now scales

as

R ∝
σp

m3
χ

2mχ v∫
dqq2m+1

∫

ωth

dω ∝ σp m2m−1
χ , (3.49)

where q was evaluated at its maximum q∼ 2mχv. The ω integral does not contribute to the mχ

scaling of the rate, since the integrand is peaked in ω somewhere near the energy threshold ωth.

This expression then gives the approximate scaling R ∝ m2m−1
χ . Since m is dependent on the

energy threshold, this explains why different thresholds in Fig. 3.8 result in a different scaling as

a function of mχ .

At even lower dark matter masses (mχ < 1 MeV), the phase space is restricted to q values

within the first Brillouin zone, which is dominated by single phonon production in the long

wavelength regime. If the threshold is low enough to access a single phonon, the scaling further

depends on whether the threshold captures an appreciable part of the LA branch. If so, the

leading contribution comes from the acoustic mode (3.30), which gives

R ∝
σp

m3
χ

2mχ v∫
dqq2

∫
dω δ (ω− cLAq) ∝ σp, (3.50)

approximately independent of mχ . This behavior is clearly reproduced in Fig. 3.8 for the 1 meV
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threshold, for which the acoustic branch is always accessible. If the threshold is too high to

access the acoustic branch, but can detect the optical branch, the structure factor has an extra q3

scaling and we find R ∝ m3
χ . This case occurs for mχ . 0.3 MeV on the 20 meV curve in Fig. 3.8.

For mχ & 0.3 MeV the DM can excite the acoustic branch, resulting in a sharp enhancement of

the rate.

3.4.2 Massless hadrophilic mediator

If we instead have a massless mediator that couples to baryon number, then by convention,

the mediator form factor is taken to be |F̃(q)|2 =
(mχ v0

q

)4 with v0 = 220 km/s. The cross section

curves for this scenario are given in the right panel of Fig. 3.8 again for different thresholds.

As in Sec. 3.4.1, we can analytically explain the scaling of the different curves across

the DM mass range. The main difference with the massive mediator case is that for a massless

mediator, there is a 1/q4 scaling in the form factor, which leads to a scattering rate that generally

favors low q and ω . The main contribution to the rate will therefore be much more threshold

dependent across all DM masses.

If the threshold is small enough to access single acoustic phonon excitations, then this

will be the dominant contribution to the rate at all masses. Again from (4.73) and using the

analytic acoustic structure factor, the rate for thresholds that are sensitive to a single acoustic

phonon scales as

R ∝ σp mχ

∫

ωth/cLA

dq
1
q2

∫
dω δ (ω− cLAq). (3.51)

The integrand is largest at the smallest q, so we estimate the q integral by evaluating the integrand

at q≈ ωth/cLA in (4.74). The integrand therefore has no mχ dependence and gives the scaling

R ∝ mχ for the ω > 1 meV curve in Fig. 3.8. Note however that this scaling behavior is sensitive

to our convention for the reference momentum in F̃(q). For example, in models with both

electron and nucleon couplings one often chooses to normalize the form factor with the reference

momentum q0 = αme, which would yield R ∝ m−3
χ .
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If the LA branch is not accessible but the LO branch is, the production of a single LO

mode will generally dominate. This introduces a different mχ dependence, which can be seen

in Fig. 3.8 by comparing the 1 meV and 20 meV curves in the region with mχ . 30 MeV. If

mχ < 1 MeV, using the expression in (3.31) gives

R ∝ σpmχ

2mχ v∫
dqq

∫
dω δ (ω−ωLO). (3.52)

Unlike for the acoustic phonon, the structure factor favors high q so that the largest contribution

is near q∼ 2mχv, giving R ∝ m3
χ . If mχ > 1 MeV, the rate integrand is dominated by momentum

transfers q ∼ qBZ. This is because when q > qBZ and ω ≤ ωLO we are using the incoherent

approximation for single phonon production, where the q integrand drops as q−1. Thus, we

estimate the rate by integrating up to qBZ only:

R ∝ σpmχ

qBZ∫
dqq

∫
dω δ (ω−ωLO), (3.53)

and find that R ∝ mχ . This is the reason why the 20 meV curve in Fig. 3.8 changes slope around

mχ ∼ 1 MeV.

We next turn to the intermediate mass range (1−30 MeV) with ωth > ωLO, such that

n≥ 2 phonons. In Fig. 3.8 this corresponds to the curves with thresholds of 40 meV and above.

As in Sec. 3.4.1, we again notice that the leading contribution to the structure factor will be given

by the smallest number of phonons, m, that can exceed the threshold energy. In this regime,

the integrand ∝ S(q,ω)/q3 scales with positive powers of q for m ≥ 2 phonons, since (3.23)

grows faster than q3. The analysis for multiphonons then follows exactly the same logic as the

discussion in the previous section and we find that R ∝ m2m−1
χ .

For large dark matter masses (� 30 MeV), again if the threshold is well above the single

phonon energy, we can apply the free nuclear recoil approximation to obtain the scaling. Using
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the free nuclear structure factor gives

R ∝
σp

m3
χ

∫

√
2mdωth

dqq
(mχv0

q

)4 ∫
dω δ

(
ω− q2

2md

)
. (3.54)

The q-integral is dominated by low-momentum transfers along the free nuclear recoil dispersion,

so we evaluate the integral at the intersection of ω = ωth and ω = q2

2md
, or q =

√
2mdωth. Then,

the approximate scaling in this regime is R ∝ mχ/ωth, which we verify numerically in Fig. 3.8.

3.4.3 Dark photon mediators

The defining feature of a dark photon mediator is that it couples to the electric charge of

the SM particles. In the regime where phonons are the relevant degrees of freedom, the charge

of the nucleus is (partially) screened by the electrons. This means that we need a notion of an

effective charge, as seen by the DM, which is momentum dependent. For individual atoms, this

effective charge interpolates between zero in the low momentum, fully screened regime and the

nuclear charge in the high momentum regime. We use the calculations from Brown et. al. [82] of

the effective charge for individual atoms, as shown in Fig. 3.9. We expect this approximation to

hold only for q & qBZ, since additional many-body effects should be relevant for q < qBZ. This

is particularly true for a polar material such as GaAs, where the Born effective charge of the

Ga and As atoms is non-zero in the q→ 0 limit. In this regime a full DFT calculation of the

momentum dependence of the effective charge is needed, which we do not attempt here.

In this work, we will therefore focus on the momentum regime q & qBZ, which corre-

sponds to mχ & MeV. In this case we can use the incoherent approximation and take fd = Zd(q),

with Zd(q) the atomic effective charges in Fig. 3.9. This allows us to compute scattering rates

with dark photon mediators for the production of two or more phonons, which is dominated by

the highest kinematically accessible momentum transfers.

The regime q < qBZ is relevant primarily for massless dark photon mediators. (For

massive dark photon mediators, there are strong BBN constraints that severely limit the scattering
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Figure 3.9. Momentum dependence of the effective ion charge for atomic elements, as computed
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rate for sub-MeV dark matter, see e.g. [34].) In this regime, there are substantial deviations

from the atomic effective charges due to the delocalized nature of the valence electrons. For

instance, a polar material such as GaAs, SiC and sapphire can have a residual dipole moment

associated with atomic displacements even for q→ 0. The effective couplings f̄d in this limit

are given by Z∗d/ε∞, where Z∗d is the Born effective charge and ε∞ is a screening due to valence

electrons; the Born effective charges can be calculated with DFT methods [41, 60, 62]. This

was treated in previous studies of single-phonon production through a massless dark photon

mediator [57, 41, 58, 59, 60, 61, 62, 63]. For non-polar materials such as Si, Ge and diamond, the

Born effective charges vanish and instead multiphonon production is expected to dominate. This

can be estimated with the energy loss function [74], at least for sub-MeV dark matter. Since this

q < qBZ regime is already included in DarkELF [74], we restrict our results here to multiphonon

processes with q > qBZ and ω > ωLO.

Our results are shown in Fig. 3.10 for GaAs; the results for Ge, Si and diamond are

deferred to Appendix 3.D. As is conventional for dark photon mediators, we choose the reference

momentum for the massless mediator to be q0 = αme and present the results in terms of the

effective DM-electron cross section σ̄e [84], with

σ̄e =
µ2

χe

µ2
χ

σp (3.55)

and µχe the DM-electron reduced mass. In our calculations using the atomic effective charges,

we impose q > qBZ to ensure we are not sampling the area of phase space for which these

charges are clearly invalid. This means that our rate calculations for mχ . 10 MeV are a slight

underestimate of the true result.

3.5 Conclusions and outlook

It is well-known that DM scattering in crystals can lead to one or more phonons being

produced if DM has MeV-scale mass, as well as a recoiling nucleus if DM has GeV or higher
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mass. These processes are two sides of the same coin, depending on whether the momentum

transfer is comparable to the inverse of the interparticle spacing and whether the energy deposition

is comparable to the typical phonon energy ∼ ω̄ . When both momentum and energy scales are

small, single phonon production dominates, and when both are large, nuclear recoils dominate.

Here we studied the intermediate regime which is dominated by many phonons, which allows us

to smoothly interpolate between single phonon production and nuclear recoils (see Fig. 3.8).

To make the multiphonon calculation tractable, we relied on the isotropic, incoherent,

and harmonic crystal approximations. This allowed us to obtain analytic results for the scattering

rate in terms of the phonon density of states in the crystal. These approximations are expected to

be very good for q� qBZ (mχ � 1 MeV), as they explicitly reproduce the nuclear recoil limit

when q�√2mNω̄ . For q . qBZ (mχ . 1 MeV) the experimental threshold determines which

theoretical treatment is most appropriate: for single phonon production, one can obtain analytic

formulas by instead using a long wavelength, isotropic approximation. These results are currently

only valid for cubic crystals such GaAs, Si, Ge and diamond. For strongly anisotropic materials

such as sapphire, one must find a way to generalize them further or rely on DFT calculations. For

multiphonon production and q . qBZ, the situation is more complicated: in this case it cannot

be taken for granted that anharmonic corrections to the various multiphonon channels can be

neglected. The anharmonic multiphonon contributions involving optical modes are particularly

difficult to model analytically, and at the moment we perform a simple estimate in a toy model to

justify extrapolating the incoherent and harmonic approximations to q . qBZ. A dedicated DFT

calculation is needed to improve their accuracy.

Our approach provides a smooth description of sub-GeV dark matter scattering down

to keV masses for hadrophilic mediators. For dark photon mediators, a DFT calculation of the

momentum-dependent couplings in the q∼ qBZ regime is needed to complete the interpolation.

For both mediators, we have provided results for multiple direct detection materials of interest,

and also included our calculation as part of the DarkELF public code package. These will be

essential to interpret direct detection results as experimental thresholds for calorimetric detectors
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reach the eV scale and lower.
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Appendix

3.A Two phonon analytic structure factors

In Sec. 3.3.2 we compared the long-wavelength and incoherent approximations for the

two-phonon final states, for q within the first BZ. In this appendix we provide the analytic

expressions for both approximations.

3.A.1 Long-wavelength approximation

Here we discuss how we extend the analytic calculations from [42] for the coherent two-

phonon structure factor to additional combinations of final state phonon pairs. As in Sec. 3.3.2,

we assume a hadrophilic mediator with fd = Ad throughout this appendix. It was shown in [42]

that the structure factor separates into harmonic and anharmonic contributions

S(q,ω) = S(harm)(q,ω)+S(anh)(q,ω) (3.56)

which do not interfere at leading order in the long wavelength limit. The first term involves

expanding (3.13) to second order; note that it was referred to as the contact term in [42]. The

anharmonic term is computed using an anharmonic phonon interaction Hamiltonian to first order.

The specific matrix elements to be used are given in equations (12) and (13) of [42]. We take the

long-wavelength approximation for the phonon modes, as described in Sec. 3.3.1. For a crystal
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with two atoms in the unit cell, the longitudinal eigenvectors can be approximated by

eLA,k,1 ≈
√

A1√
A1 +A2

k̂, (3.57)

eLA,k,2 ≈
√

A2√
A1 +A2

e−ik·r0
2k̂ (3.58)

eLO,k,1 ≈
√

A2√
A1 +A2

k̂, (3.59)

eLO,k,2 ≈−
√

A1√
A1 +A2

e−ik·r0
2k̂. (3.60)

with k̂ the unit vector along the phonon propagation direction. Note that the r0
2 dependence was

neglected in the LA eigenvector in (3.27) and in [42]; here we have kept this additional phase

so that the acoustic and optical eigenvectors are explicitly orthogonal across a unit cell. This

additional phase factor will only be relevant in cases where there is a destructive interference in

the leading coupling to acoustic phonons, which occurs for some final states [59]. The transverse

eigenvectors lay in the plane perpendicular to k̂ and have analogous normalizations.

Analytic expressions for the harmonic structure factor were provided in Ref. [42] for

acoustic-acoustic final states only. We require expressions for the optical-optical and optical-

acoustic final states as well to perform the comparison with the incoherent approximation. A

straightforward application of (16) in [42] to the lowest order in q gives

S(harm)
LOLO =

2π

Ωc

π q4

120m2
pω2

LO
δ (ω−2ωLO)

S(harm)
LOTO =

2π

Ωc

π q4

90m2
pωLOωTO

δ (ω− (ωLO +ωTO))

S(harm)
TOTO =

2π

Ωc

π q4

45m2
pω2

TO
δ (ω−2ωTO) (3.61)

for the optical-optical modes.

For the optical-acoustic modes, the harmonic structure factors are of the form
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S(harm)
LOLA =

2π

Ωc

a5

2304π2c2
LAm2

pωLO

A1A2

(A1 +A2)2

(
ω−ωLO

cLA

)7

×g(harm)
LOLA (x)Θ(cLAqBZ− (ω−ωLO)), (3.62)

where x ≡ cLAq
ω−ωLO

. The other structure factors for optical-acoustic final states are given by

relabelings LO→ TO, LA→ TA, where the expressions g expanded at small q are

g(harm)
LOLA (x� 1)≈ 3

10
x6− 1

7
x8 +

1
15

x10

g(harm)
LOTA (x� 1)≈ 1

5
x6 +

12
35

x8− 4
105

x10

g(harm)
TOLA (x� 1)≈ 1

5
x6 +

1
7

x8− 1
15

x10

g(harm)
TOTA (x� 1)≈ 4

5
x6− 12

35
x8 +

4
105

x10. (3.63)

We see that at leading order in small q, the optical-acoustic structure factors are all suppressed

by an additional factor of q2 relative to the optical-optical modes, which is due to destructive

interference. Since we will be comparing with the incoherent approximation at small q, we can

effectively neglect these final states.

We would also like to compute the anharmonic contributions to the 2-phonon structure

factor, which we do with the inclusion of an anharmonic interaction Hamiltonian. For acoustic

phonons in the long-wavelength limit, we have an effective Hamiltonian for acoustic phonons

where the interactions are given in terms of macroscopic properties of the crystal through the

Lamé parameters, as described in [42]. For the interactions of optical phonons, however, it is

more difficult to write down a reliable analytic Hamiltonian. In this case we use (45) of Ref. [42],

which comes from [85]. This Hamiltonian should be taken only at the order-of-magnitude level.

We restrict the use of both effective Hamiltonians to the first BZ. The analytic expressions for

the acoustic-acoustic and acoustic-optical final states are given already, so we complete this by
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calculating the optical-optical terms. At leading order in q, this gives

S(anh)
LOLO =

2π

Ωc

π

6m2
p

c2
LA
c2

ω2
LOq4

((2ωLO)2− (cLAq)2)2

×δ (ω−2ωLO)

S(anh)
LOTO =

2π

Ωc

2π

3m2
p

c2
LA
c2

ωLOωTOq4

((ωLO +ωTO)2− (cLAq)2)2

×δ (ω−ωLO−ωTO)

S(anh)
TOTO =

2π

Ωc

2π

3m2
p

c2
LA
c2

ω2
TOq4

((2ωTO)2− (cLAq)2)2

×δ (ω−2ωTO), (3.64)

where c≡ (cLA + cTA)/2. We have also assumed that the Grüneisen constant γG ≈ 1.

3.A.2 Incoherent approximation

The second result needed for the comparison in Sec. 3.3.2 is the two-phonon structure

factor for GaAs in the incoherent approximation. To calculate this, we use the simplified density

of states in (3.35) corresponding to the long-wavelength limit. Performing the n = 2 integral in

(3.23) gives

Sn=2(q,ω) = SLALA +SLATA + . . . (3.65)

where each S is a contribution to the n = 2 structure factor from the part of the density of states

associated with the subscripted modes, and the ellipsis indicates we sum over all combinations
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of modes. The first term of the sum in (3.65) is

SLALA =
2π

Ωc

q4

96c6
LAq6

BZm2
p

(
ω

3
Θ(cLAqBZ−ω)

−
(
4c3

LAq3
BZ−6c2

LAq2
BZω +ω

3)

×Θ(ω− cLAqBZ)Θ(2cLAqBZ−ω)

)
, (3.66)

and STATA is given by SLALA with the replacement LA→ TA and an additional overal factor of

4. The same procedure gives the LATA term as

SLATA =
2π

Ωc

q4

24c3
LAq6

BZm2
p

(
ω3

c3
TA

Θ(cTAqBZ−ω)

+
−2cTAq3

BZ +3ωq2
BZ

cTA
Θ(ω− cTAqBZ)Θ(cLAqBZ−ω)

+
−2(c3

LA + c3
TA)q

3
BZ +3(c2

LA + c2
TA)q

2
BZω−ω3

c3
TA

×Θ(ω− cLAqBZ)Θ((cLA + cTA)qBZ−ω)

)
. (3.67)

as well as the LOLA term,

SLOLA =
2π

Ωc

a5 (q2
BZq4)

768π5c3
LAm2

pωLO
(ω−ωLO)

×Θ(ω−ωLO)Θ((cLAqBZ +ωLO)−ω). (3.68)

Again we may find SLOTA, STOLA, and STOTA by relabelings and inserting relevant factors of

two for polarizations. Note that, since the incoherent approximation does not recover the q6

scaling resulting from interference, we have written the structure factor here using qBZ = 2π/a

to make the comparison more explicit. At lowest order in x and for A1 ≈ A2, such a comparison

of (3.62) and (3.68) shows a relative factor of 40/π3 ≈ 1 for the LOLA channel. Lastly, for the

71



remaining optical-optical channels we find

SLOLO =
2π

Ωc

q4

144m2
pω2

LO
δ (ω−2ωLO)

SLOTO =
2π

Ωc

q4

36m2
pωLOωTO

δ (ω− (ωLO +ωTO))

STOTO =
2π

Ωc

q4

36m2
pω2

TO
δ (ω−2ωTO). (3.69)

A comparison now of (3.61) and (3.69) shows the incoherent approximation gives a

smaller structure factor by factors of 2π/5 – 6π/5≈ 2 – 4.

3.B Impulse approximation

In this section we discuss how to obtain the impulse approximation form of the structure

factor, (3.39) in Sec. 3.3.4. To achieve this we must approximate the t integral in (3.37) for large

q. The expression in (3.37) can be written as

C`d =
1
V

e−2Wd(q)
∞∫

−∞

dt e f (t). (3.70)

with

Re[ f (t)]≡ q2

2md

∫
dω
′Dd(ω

′)
ω ′

cos
(
ω
′t
)

Im[ f (t)]≡ q2

2md

∫
dω
′Dd(ω

′)
ω ′

sin
(
ω
′t
)
−ωt. (3.71)

From this, we see there is a global maximum in the real part and a global minimum in the

modulus of the imaginary part at t = 0. This allows us to perform a steepest-descent expansion

about t = 0, giving

C`d ≈
1
V

∞∫

−∞

dt eit( q2
2md
−ω)− t2

2
q2ω̄d
2md , (3.72)
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where again ω̄d =
∫

dω ′ω ′Dd(ω
′). Note that the leading term in the expansion about t = 0

cancelled the Debye Waller factor, assuming the form given in (3.24). Evaluating the above gives

C`d ≈
1
V

√
2π

∆2
d

e
−

(
ω− q2

2md

)2

2∆2
d , (3.73)

which is the impulse approximation result.

In obtaining this form, we have assumed that any other local maxima in t gives a

subdominant contribution to the t = 0 maximum. In particular, aside from the t = 0 point, which

is a global maximum in Re[ f (t)], there are local maxima in the real part which will generally be

near integer multiples of 2π/ω̄d . The leading order contribution from each additional maxima

tmax is given by evaluating the real part in the exponential at the location of the maxima.

This must necessarily be smaller than the t = 0 contribution since the following inequality

is always satisfied
∫

dω
′Dd(ω

′)
ω ′

cos
(
ω
′tmax

)
<
∫

dω
′Dd(ω

′)
ω ′

. (3.74)

Since tmax ∼ 2π/ω̄d , the left hand side will be suppressed by an O(1) amount due to presence of

the cos(ω ′tmax). Then, the contribution from the local maxima will be exponentially suppressed:

e
q2

2md

∫
dω ′ Dd (ω

′)
ω ′ cos(ω ′tmax)� e

q2
2md

∫
dω ′ Dd (ω

′)
ω ′ (3.75)

as long as the following condition is satisfied

q2

2md
� 1
∫

dω ′Dd(ω ′)
ω ′
∼ ω̄d. (3.76)

Here we have taken
∫

dω ′Dd(ω
′)

ω ′ ∼ 1/ω̄d as a typical scale for this integral, although it will

differ by an O(1) factor. Therefore, as long as the free nuclear recoil energy ω = q2/(2md) is

well above the typical phonon energy ω̄d for a scattering off of atom d, the t = 0 maximum is
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dominant and the impulse approximation should be accurate.

In the regime where q2/2md is comparable to ω̄d , the contributions from the additional

maxima in t can become important. Nevertheless, the impulse approximation is still accurate at

large ω even in this case because of cancellations from the rapidly changing phase in Im[ f (t)].

When ω � ω̄d , then Im[ f (t)]≈−ωt for t around tmax ∼ 2π/ω̄d . This implies large oscillations

of f (t) around tmax, which suppresses the contribution from these local maxima. On the other

hand, if ω . ω̄d , there may be large corrections to the impulse approximation due to these

additional maxima.

These effects were shown in Fig. 3.5a when comparing the multiphonon expansion result

to the impulse approximation. The middle panel showed the result if q =
√

2mdω̄d , in the

mGa ≈mAs approximation. For ω & ω̄d the structure factor falls smoothly and can be reasonably

captured by the impulse approximation, while for ω . ω̄d ≈ 22 meV or at the optical phonon

energies 31 and 33 meV there are sharp peaks in the multiphonon response that are not captured

by the impulse approximation. For q = 2
√

2mdω̄d the many multiphonon peaks merge and add

up to a shape similar to the impulse approximation over the whole ω range. Practically, for our

calculations, we use the impulse approximation for the structure factor at q > 2
√

2mdω̄d . Though

the approximation has small differences with the exact result when q∼ 2
√

2mdω̄d , integrating

over the allowed phase space for the rate largely washes out these differences.

3.C Implementation in DarkELF

In the main text, we presented the formulas in the manner which is most clear from the

point of view of the various approximations and their regimes of validity. These formulas were

not always suitable however for an efficient numerical implementation, which we address in this

section. We also provide details on their implementation in the DarkELF package [74].

In the main text we gave the rate in the isotropic limit, (4.73). In order to calculate the

rate for any mediator and to obtain the differential rate dR/dω , it is convenient to perform the
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v-integral first and rewrite the rate as:

R =
1

4πρT

ρχ

mχ

σp

µ2
χ

ω+∫

ωth

dω

q+∫

q−

dqq |F̃(q)|2S(q,ω)η(vmin(q,ω)) (3.77)

where now the integration limits are given by

q± = mχ

(
vmax±

√
v2

max−
2ω

mχ

)
(3.78)

ω+ =
1
2

mχv2
max (3.79)

with vmax = vesc + ve the maximum DM speed in the lab frame. The η function is given by

η(vmin) =
∫

d3v
f (v)

v
Θ(v− vmin) (3.80)

with vmin(q,ω) = q
2mχ

+ ω

q .

To evaluate the rate using incoherent approximation, we provide look-up tables for the

structure factor. At each n for the sum in (3.36), the q and ω parts of the integral are separable,

so we can capture the ω-dependent part with the family of functions

Fn,d(ω)≡ 1
n!

(
n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

i
ωi−ω

)
, (3.81)

and calculate the rate in terms of functions Fn,d . These functions are simple to calculate

numerically up to n≤ 10, which we have tabulated and provided in DarkELF as look-up tables

to speed up the calculation. The combination ω̄nFn(ω) is shown in Fig. 3.11 for GaAs in the

mGa ≈ mAs approximation. For increasingly high n, the Fn,d become increasingly smooth.

We have added several additional functions to DarkELF for the differential and integrated

rate calculations from the single phonon to the nuclear recoil regime. Tab. 3.1 describes some of

the new relevant functions. These functions currently work for materials with up to two atoms
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Figure 3.11. Here we have plotted ω̄nFn(ω), where Fn(ω) is the ω-dependent part of the
structure factor in the incoherent approximation and given explicitly in (3.81). At fixed q, the
structure factor decreases quickly with increasing ω .

per unit cell. We have included the necessary data files for the multiphonon calculation for GaN,

Al, ZnS, GaAs, Si, and Ge from a combination of DFT and experimental sources. We also

allow the user to input their own calculations or extractions of the (partial) density of states, as

well as momentum-dependent dark matter-nucleon couplings. Before calculating multiphonon

scattering rates in DarkELF, it is necessary to tabulate the auxiliary function (3.81) for each atom.

This is done using the DarkELF function create Fn omega. This step is the most time consuming

part of the calculation, so we provide these pre-tabulated for the aforementioned materials. For

calculations with a user-supplied (partial) density of states, these tables must first be updated by

running create Fn omega. DarkELF will save these new look-up tables for future computations,

such that this step only need to be performed once. Next we describe the functions that return
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important results. All of the following straightforwardly apply equations (3.77-3.80).

R single phonon: This function takes the energy threshold and DM-nucleon cross sec-

tions and outputs the rate in the long-wavelength single phonon regime using the analytic

functions (3.30-3.31).

R multiphonons no single: This function takes the energy threshold and DM-nucleon

cross section as inputs and calculates the total integrated rate, excluding the single phonon

processes at long wavelengths q < qBZ. In other words, this calculation includes only the purple

(multiphonon expansion) and red (impulse approximation) phase space regions in Fig. 3.6.

sigma multiphonons: This takes the energy threshold as input and returns the necessary

DM-nucleon cross section to produce three events per kg-year for any number of phonons. In

order to return this cross section, this function first calculates the total rate by summing the

outputs of R single phonon and R multiphonons no single, so it includes the entire calculation

scheme depicted in Fig. 3.6.

dR domega multiphonons no single: This function takes the energy transfer ω and

DM-nucleon cross section and returns the differential rate dR
dω

at that energy excluding single

phonons in the long wavelength regime. This comes from equation (3.77) without evaluating the

ω integral. We exclude the single coherent phonon here since the long-wavelength approximation

has delta functions in energy in the differential rate.

3.D Additional results

Here, we provide additional results for Ge, Si, and diamond. Concretely, Fig. 3.12

shows the density of states for these three materials, as extracted from [79]. Fig. 3.13 shows the

differential scattering rate via a massive scalar mediator for two example DM masses in GaAs,

Ge and Si targets. Finally, Figs. 3.14, 3.15, and 3.16 are the cross section plots corresponding to

an integrated rate of 3 events/kg-year for Ge, Si, and diamond, respectively. The electron recoil

cross sections shown (dashed black lines) are based on calculations in [83] for Ge, Si and in [86]
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for diamond.
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Figure 3.12. Densities of states for germanium, silicon, and diamond [79].
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Figure 3.15. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds
in Si.
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Figure 3.16. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds
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Chapter 4

Dark matter-crystal scattering, anhar-
monic effects on multiphonon production

4.1 Introduction

Over the past few decades, a significant theoretical and experimental effort has been

dedicated to detect dark matter (DM), but the particle nature of DM still remains a mystery.

Direct detection experiments look for the direct signatures left by halo DM depositing energy

inside the detectors. Traditionally, such experiments have looked for elastic nuclear recoils

induced by DM particles in detectors [87]. This strategy has had tremendous sensitivity for DM

particles with masses higher than the GeV-scale that interact with nuclei [88, 89, 90]. However,

in recent years it has also been recognized that sub-GeV dark matter models are also compelling

and motivated dark matter candidates [91, 92, 93, 28, 94, 95, 96]. These DM particles would

leave much lower energy nuclear recoils, motivating experimental efforts to lower the detector

thresholds for nuclear recoils. Inelastic processes like the Migdal effect [97, 55, 98, 72, 99] or

bremsstrahlung [56] provide alternative channels to detect nuclear scattering in the sub-GeV DM

regime.

The majority of experiments achieving lower thresholds in nuclear recoils (down to ∼

10 eV) are doing so with crystal targets [100, 101, 102, 103], although there is also progress in

using liquid helium [104]. Future experiments like SPICE [37] will reach even lower thresholds

by measuring athermal phonons produced in crystals like GaAs and Sapphire (i.e. Al2O3). In
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crystal targets, DM-nucleus scattering can deviate substantially from the picture of a free nucleus

undergoing elastic recoils. Nuclei (or atoms) are subject to forces from the rest of the lattice,

which play a role at the lower energies relevant for sub-GeV DM. For recoil energies below the

typical binding energy of the atom to the lattice (O(10 eV)), the atoms are instead treated as

being bound in a potential well. At even lower energies, the relevant degrees of freedom are the

collective excitations of the lattice, known as phonons. In this regime, single phonon excitations

with typical energies . 0.1 eV are possible.

In the DM scattering rate, crystal scattering effects are all encoded within a quantity

known as the dynamic structure factor, S(q,ω). The differential cross section for a DM particle

of velocity v and mass mχ to scatter with energy deposition ω and momentum transfer q can be

written in terms of S(q,ω) as:

dσ

d3qdω
=

b2
p

µ2
χ

1
v

Ωc

2π
|F̃(q)|2S(q,ω)δ (ω−ωq), (4.1)

Here bp is the scattering length of the DM with a proton, µχ is the reduced DM-proton mass,

Ωc ≡ V/N is the volume of the unit cell in the crystal with total volume V and N unit cells,

and ωq = q · v− q2/2mχ is equal to the energy ω lost by the DM particle when it transfers

momentum q to the lattice. The q-dependence of the DM-nucleus interaction is encapsulated in

the DM form factor F̃(q). S(q,ω) can thus be viewed as a form factor for the crystal response.

For a recent review, see Ref. [43].

Understanding S(q,ω) in crystals is critical to direct detection of sub-GeV dark matter.

Thus far, the limiting behavior of S(q,ω) is well understood [105]. In the limit of large ω

and q (ω & eV and q ∼ √2mNω for nucleus of mass mN), the structure factor behaves as

S(q,ω) ∝ δ
(
q2/(2mN)−ω

)
, reproducing the cross section for free elastic recoils. At low ω

comparable to the typical phonon energy ω0 and q comparable to the inverse lattice spacing,

S(q,ω) instead is dominated by single phonon production. The intermediate regime, particularly

q∼√2mNω0, is dominated by multiphonon production. For a large number of phonons being
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Figure 4.1. (Left) Due to the computational challenges of obtaining the multiphonon scattering
rate in crystals, analytic approximations are valuable. Here we show a classification of regimes
in which a multiphonon calculation has been performed, as well as approximations made in each
case. In this work, we show that anharmonic corrections can be significant for q .

√
2mNω0

(Sec. 4.3.2) but are negligible when q�√2mNω0 (Sec. 4.3.3). We obtain results for all q using
numerical calculations (Sec. 4.4.1). (Right) To estimate anharmonic effects, we take a toy model
of dark matter scattering off an atom in a 1D anharmonic potential. We obtain the anharmonicity
by fitting to empirical models of interatomic potentials.

produced, this should merge into the free nuclear recoil limit.

For DM masses below ∼MeV, the momentum-transfers are smaller than the typical

inverse lattice spacing of crystals, q < 2π/a ∼ O(keV), where a is the lattice spacing. The

dominant process is the production of a single phonon. In recent years, the single phonon

contribution to S(q,ω) has been computed extensively in a variety of materials, often using

first-principles approaches for the phonons [57, 41, 58, 59, 60, 106, 61, 62, 63, 74, 107]. In most

of the crystals, single phonons have a maximum energy of O(100 meV), however, requiring

extremely low experimental thresholds to detect them.

Production of multiphonons is an enticing channel to look for sub-GeV DM with detectors

having thresholds higher than O(100 meV). They are also important to understand in the

near term as experiments lower their thresholds. However, multiphonon production has been

more challenging to compute. The numerical first-principles approach taken for single phonon
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production does not scale well with number of phonons being produced, where even the two-

phonon rate becomes very complicated. Alternate analytic methods are thus valuable. In Fig. 4.1,

we show a classification of the different regimes in which a multiphonon calculation has been

performed, including this work. We discuss the details of these regimes and calculations below.

One analytic approach was taken in Ref. [42], which calculated the two-phonon rate in the

long-wavelength limit, but this study was limited to the regime q < 2π/a and focused on acoustic

phonons only. For q > 2π/a, a different approximation is possible, the incoherent approximation,

which drops interference terms between different atoms of the crystal in calculating S(q,ω).

Then scattering is dominated by recoiling off of individual atoms. This approach was taken

in [105], which found a general n-phonon production rate scaling as (q2/(2mNω0))
n. This

result also showed how the free nuclear recoil cross section was reproduced in the multiphonon

structure factor as q�√2mNω0.

However, one limitation of the multiphonon production rate in Ref. [105] was that it

worked in the harmonic approximation, where higher order phonon interactions like the three-

phonon interaction are neglected. Typical crystals have some anharmonicity which introduces

phonon self-interactions, leading to various observable effects like phonon decays, thermal

expansion, and thermal conductivity of crystals [108, 109, 110]. Using a simplified model of

anharmonic phonon interactions, Ref. [105] estimated that anharmonic three-phonon interactions

may give the dominant contribution to the two-phonon rate q < 2π/a, and are larger than the

harmonic piece by almost an order of magnitude in the regime. On the other hand, we do not

expect anharmonic effects to be important in the opposite limit of large q (q�√2mNω0), where

the nucleus can be treated as a free particle. It is thus necessary to bridge these two extremes and

estimate the anharmonic effects in the intermediate regime where multi-phonons dominate the

scattering.

In this work, we estimate the anharmonic effects on the rate of multiphonon production by

working in the incoherent approximation and q > 2π/a. In this limit, the multiphonon scattering

rate looks similar to that of an atom in a potential [71], although the spectrum of states is smeared
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out due to interactions between neighboring atoms. Given this similarity, we will take a toy

model of an atom in a 1D potential. This gives a simple approach to including anharmonic

effects, which is also illustrated in the right panel of Fig. 4.1. The anharmonic corrections to the

atomic potential only capture a part of the contributions to anharmonic phonon interactions, but

they have a similar size (in the appropriate dimensionless units) and should give a reasonable

estimate of the size of the effect. We can therefore use this approach to estimate theoretical

uncertainties and gain analytic understanding for the multiphonon production rate. However, the

result should not be taken as a definitive calculation of the anharmonic corrections. Fortunately,

we will find that anharmonic corrections are large only in certain parts of the phase space which

are more challenging to observe, and that the multiphonon rate quickly converges to the harmonic

result for DM masses above a few MeV.

The outline of this paper is as follows: In Sec. 4.2, we discuss the formalism of DM

scattering in a crystal and the dynamic structure factor, which encodes the information about

the crystal response. We consider the calculation of the structure factor under the incoherent

approximation, and motivate the anharmonic 1D toy potentials we use in this paper. In Sec. 4.3,

we study the behavior of the dynamic structure factor analytically for the anharmonic 1D

potentials. Using perturbation theory, we show that anharmonic corrections can dominate for

q�√2mNω0 and become more important for higher phonon number. In the opposite limit

q� √2mNω0, we use the impulse approximation to show that anharmonic corrections are

negligible and that the structure factor indeed approaches that of an elastic recoil. In Sec. 4.4,

we present numerical results for the structure factor in anharmonic 1D potentials obtained from

realistic atomic potentials in various crystals. In Sec. 4.4.1, we calculate the impacts of including

anharmonic effects on DM scattering rates. We conclude in Sec. 4.5.

Appendix 4.A gives the details of the modeling of the interatomic forces on the lattice,

used to extract 1D single atom potentials. Appendix 4.B gives additional details of the analytic

perturbation theory estimates of the anharmonic structure factor. Appendix 4.C includes addi-

tional details relevant to the impulse approximation calculation. Appendix 4.D summarizes the
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exactly solveable Morse potential model, which further validates the results in the main text.

4.2 Dark matter scattering in a crystal

Consider DM that interacts with nuclei in the crystal. We will parameterize the interaction

with the lattice by a coupling strength f`d relative to that of a single proton, where ` denotes the

lattice vector of a unit cell and d denotes the atoms in the unit cell. In the DM scattering cross

section, (4.1), the material properties of the crystal are encoded in the structure factor S(q,ω)

which is defined as,

S(q,ω)≡ 2π

V ∑
f

∣∣∣∑
`

∑
d

f`d〈Φ f |eiq·r`d |0〉
∣∣∣
2

×δ (E f −E0−ω), (4.2)

where |Φ f 〉 is the final excited state of the crystal with energy E f and r`d denotes the position

of the scattered nucleus. The crystal is considered to be in the ground state |0〉 initially. Note

for simplicity we assume a pure crystal where each atom has a unique coupling strength; the

scattering is modified if there is a statistical distribution for the interaction strengths at each

lattice site, for instance if different isotopes are present [105].

The states |Φ f 〉 are the phonon eigenstates of the lattice Hamiltonian,

Hlattice = ∑
`d

p2
`d

2m`d
+Vlattice +E0, (4.3)

where the first term is the kinetic energy of the atoms in the lattice and the lattice potential Vlattice
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in general is given by,

Vlattice =
1
2 ∑
`,d,`′,d′

∑
α,β

k(2)
αβ

(`d, `′d′) uα(`d) uβ (`
′d′)

+
1
3! ∑

`,d,`′,d′,`′′,d′′
∑

α,β ,γ

k(3)
αβγ

(`d, `′d′, `′′d′′)

×uα(`d) uβ (`
′d′) uγ(`

′′d′′)

+ ... (4.4)

where the uα(`d) is the displacement from the equilibrium position in the Cartesian direction

α for the atom at the position d in the unit cell located at `, and k(2)
αβ

, k(3)
αβγ

are the second-, and

third-order force constants respectively. Note that as the displacements are considered around

equilibrium, we do not have a term in the potential which is linear in the displacements.

A number of approximations are useful in evaluating S(q,ω). The first is the harmonic

approximation, which amounts to keeping the terms up to second-order force constants and

neglecting the higher order terms (k(3)
αβγ

= 0). This vastly simplifies the Hamiltonian into a

harmonic oscillator system, and has been used in most previous calculations of DM scattering in

crystals. While this is generally an excellent approximation in crystals, including higher order

terms in the Hamiltonian (anharmonicity) is necessary to explain a number of observable effects,

as we will discuss further below.

The second approximation is the incoherent approximation, used for scattering with

momentum transfers much bigger than the inverse lattice spacing of the crystal, q� 2π/a. In

this limit, we drop the interference terms between different atoms in the crystal in (4.2). This

amounts to summing over the squared matrix elements of individual atoms in the structure factor
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in (4.2),

S(q,ω)≈ 2π

V ∑
f

∑
`

∑
d
| f`d|2

∣∣∣〈Φ f |eiq·r`d |0〉
∣∣∣
2

×δ (E f −E0−ω). (4.5)

The calculation of the structure factor then simplifies to computing matrix elements
∣∣∣〈Φ f |eiq·r`d |0〉

∣∣∣
2

which are identical for the atoms in all unit cells `.

Below, we will first discuss this calculation under the approximation of a harmonic

crystal, before going on to setting up a model that accounts for anharmonicity in crystals.

4.2.1 Harmonic approximation

In the harmonic approximation, the lattice Hamiltonian can be written as a sum of

harmonic oscillators in Fourier space [75],

HHarmonic
lattice =

3n

∑
ν

∑
q

ωq,ν(â†
q,ν âq,ν +

1
2
), (4.6)

where the phonon eigenmodes of the lattice are labelled by the momentum q and the 3n branches

ν with n being the number of atoms in the unit cell. The â†
q,ν (âq,ν ) are the creation (annihilation)

operators, and ωq,ν are the energies of the phonons. The lattice eigenstates that appear in (4.2)

can then be written as,

|Φn〉= â†
q1,ν1

â†
q2,ν2

...â†
qn,νn
|0〉, (4.7)
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where |Φn〉 is an n-phonon state. The displacement operators in this harmonic approximation are

given by,

u(`d) =
3n

∑
ν

∑
q

√
1

2Nmdωq,ν

(
eq,ν(d) âq,ν eiq.r0

`d−iωq,ν t

+ h.c.
)
, (4.8)

where the eq,ν(d) indicates the eigenvector of the displacement of atom d for that phonon.

The equilibrium position of the atom is denoted by r0
`d . Using r`d = r0

`d +u(`d) inside (4.2),

the dynamic structure factor can be calculated in the harmonic approximation. This approach

has been applied to calculate single-phonon excitations using numerical results for phonon

energies and eigenvectors [41, 58, 59, 60, 61, 62, 63], but becomes computationally much more

burdensome for multi-phonons in the final state.

Under both the incoherent and harmonic approximations, it is possible to compute the

multiphonon structure factor in (4.5). This was given in Ref. [105] as an expansion in the number

of phonons produced n,

S(q,ω)≈ 2π ∑
d

nd | fd|2e−Wd(q)∑
n

1
n!

( q2

2md

)n

×
(

n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
n

∑
j=1

ω j−ω

)
, (4.9)

where Dd(ω) is the partial density of states in the crystal, normalized to
∫

dωDd(ω) = 1. Wd(q)

is the Debye-Waller factor defined as,

Wd(q) =
q2

4md

∫
dω
′ Dd(ω

′)
ω ′

. (4.10)

(4.9) shows that with higher momentum q, there is an increased rate of multiphonons; the typical

phonon number is n∼ q2

2mω̄
with ω̄ a typical phonon energy. In the limit of n� 1, this reproduces
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the nuclear recoil limit.

In the incoherent approximation above, we still assumed the final states |Φ f 〉 are the

phonon eigenstates of the harmonic lattice Hamiltonian in (4.6). Let us now make a further

approximation that the final states are isolated atomic states, where each atom is bound in a

potential. Assuming an isotropic potential, and a single frequency ω0 for the oscillators, a toy

atomic Hamiltonian for atom d in the lattice can be written as,

H toy
d =

p2
d

2md
+

1
2

mdω
2
0 r2

d, (4.11)

where rd is the displacement of the atom d from its equilibrium position. Following (4.5), the

dynamic structure factor can be written as,

Stoy(q,ω) = 2π ∑
d

nd| fd|2 ∑
n

∣∣∣〈~n|eiq·rd |0〉
∣∣∣
2

×δ (En−E0−ω), (4.12)

where |~n〉 are the energy eigenstates of the toy harmonic Hamiltonian considered for atom d,

with ~n = {nx,ny,nz}. The energies with respect to the ground state equilibrium are given by

En−E0 = nω0 with n = nx +ny +nz. We have also absorbed the sum over the lattice vector `

and the volume V into the density nd of atom d in the lattice. As shown in [71], this structure

factor is given by,

Stoy(q,ω)≈ 2π ∑
d

nd| fd|2e−2W toy
d (q)

×∑
n

1
n!

(
q2

2mdω0

)n

δ (nω0−ω) , (4.13)

where the Debye-Waller factor in the toy model is given by, W toy
d (q) = q2/4mdω0.

This picture can be simplified even further by considering a toy one-dimensional harmonic

94



100 101 102

mχ [MeV]

10−44

10−42

10−40

10−38

10−36

10−34

10−32

10−30

σ
n

[c
m

2
]

3 events/kg-yr

Si, Massive Mediator

Crystal ωth = 40 meV

Crystal ωth = 80 meV

Crystal ωth = 200 meV

1D, ωth = 40 meV

1D, ωth = 80 meV

1D, ωth = 200 meV

100 101 102

mχ [MeV]

10−44

10−42

10−40

10−38

10−36

10−34

10−32

10−30

σ
n

[c
m

2
]

3 events/kg-yr

Si, Massless Mediator

Crystal ωth = 40 meV

Crystal ωth = 80 meV

Crystal ωth = 200 meV

1D, ωth = 40 meV

1D, ωth = 80 meV

1D, ωth = 200 meV

Scattering in Harmonic Crystal and 1D Oscillator

Figure 4.2. Comparison of scattering in a harmonic crystal to 1D harmonic oscillator.
The dotted lines show the DM cross section reach computed using the multiphonon structure
factor in a harmonic crystal, (4.9), and assuming the incoherent approximation [105]. Using the
structure factor of the toy 1D harmonic oscillator in (4.13) combined with the energy smearing
prescription in (4.16) gives a very similar result (solid lines). There are some small deviations at
low momentum since we place a hard cut on the allowed momentum transfer q > 2π/a≈ 2 keV
for the 1D oscillator.

potential for the atom d given by

Vd(x) =
1
2

mdω
2
0 x2. (4.14)

Note that in general ω0 will depend on the atom d within the unit cell, but we suppress this

dependence for simplicity. The structure factor in this 1D case is exactly the same expression as

the toy three-dimensional case in (4.13), as expected given the isotropic 3D potential assumed.

A derivation of the 1D result is given in Sec. 4.3.1.

The toy model of DM scattering off a 1D harmonic potential gives a simple intuitive

picture for the result in (4.9). We see a very similar form of the structure factor in (4.13), but

with a discrete spectrum of states for the isolated oscillator of the toy model. By assuming that

the final states are isolated atomic states, we have effectively neglected the interactions between

atoms, and the excited states of all the atoms are discrete and degenerate. In a real material,
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the interaction with neighboring atoms will lead to a splitting of the degenerate levels, and give

a broad spectrum of allowed energy levels (the phonon spectrum). The interpretation for the

structure factor is therefore also somewhat different in the two cases, as it gives a probability

for exciting the nth excited state in an isolated oscillator. But we will still continue to refer the

nth excited state as the n-phonon state to make the connection with the full incoherent structure

factor in (4.9).

The similarity in the structure factor gives a route forward to including anharmonic

effects, which is much easier to understand in the toy model. We can proceed by including

anharmonic corrections to the 1D potential in (4.14), and in some cases obtain analytic results

that illustrate their importance. In order to quantitatively estimate the impact on dark matter

scattering rates, a few remaining ingredients are needed. In practice, the toy model can give very

different results in certain parts of parameter space due to the discrete spectrum assumed and

depending on the choice of ω0. We therefore need a prescription to identify the appropriate ω0

for the isolated oscillator, and to smear it out appropriately to mimic a real material.

Comparing Eqs. 4.9 and 4.13, we see that the complete structure factor can be attained

by making a replacement

δ (nω0−ω)

ωn
0

→
(

n

∏
i=1

∫
dωi

D(ωi)

ωi

)
δ

(
n

∑
j=1

ω j−ω

)
. (4.15)

In this expression, we can identify D(ω)/(ωω−1) as a normalized probability distribution for

ω , where ω−1 =
∫

dω ′D(ω ′)/ω ′. This distribution yields a mean value for ω of (ω−1)−1. The

right hand side of (4.15) is proportional to the joint probability distribution for total energy ω ,

and we can simplify it when n� 1 by applying the Central Limit Theorem. This allows us to

replace the right hand side with a Gaussian, which simplifies computations:

δ (nω0−ω)

ωn
0

→
(
ω−1

)n

√
2πnσ2

e−

(
ω−nω−1−1

)2

2nσ2 Θ(ωmax−ω). (4.16)
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Note we have included a cutoff at multiples of the maximum allowed energy in the density of

states, ωmax = n× (min(ω)|D(ω) = 0) so that we do not include the region where D(ωi) = 0

on the right hand side of (4.15). The width of the Gaussian for n = 1 is given by

σ =

√
ω

ω−1
− 1
(
ω−1

)2 (4.17)

and ω =
∫

dω ′D(ω ′)ω ′. This discussion therefore makes it clear that we should identify the

frequency of the 1D toy model as ω0 = 1/ω−1, which can be calculated numerically given the

phonon density of states. This approach is validated in Fig. 4.2, where we compare our previous

result using the full density of states [105] to the prescription described above. Note that small

deviations at low mass arise from the lack of a cutoff at the Brillouin zone momentum in the

previous density of states result. We reiterate that in this work, we shall include this Brillouin

zone cutoff across all rate calculations since the incoherent approximation and subsequent

approximations are only valid in this regime.

We will utilize this prescription to extend the multiphonon calculations for an anharmonic

potential. To set up toy 1D anharmonic potentials, we first need to understand the anharmonic

properties of typical crystals to extract the behavior of the potentials. We do this in the following

subsection.

4.2.2 Anharmonic crystal properties

In general, a crystal lattice will exhibit some anharmonicity. Anharmonicity technically

refers to the presence of non-zero force constants which are higher than second-order in the

lattice potential in (4.4). For example, cubic anharmonicity in the crystal is parameterized by the

third-order force constants k(3)
αβγ

(`d, `′d′, `′′d′′) in (4.4). Such force constants can be computed

with DFT methods, similar to the harmonic case [111]. In the presence of such terms, the phonon

eigenstates are no longer the harmonic phonon eigenstates of the crystal, and higher order

phonon interactions, such as a three-phonon interaction, will be present. Calculating the full
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dynamic structure factor in (4.5) for a crystal with such anharmonicity would require accounting

for these higher order force tensors in both the matrix elements and in the final states, which

quickly becomes a very challenging numerical problem. The rough size of the anharmonic force

constants can be inferred from measurable crystal properties, however. We will briefly discuss

some of the anharmonic effects below, and use them to justify our estimate of anharmonic effects.

An important effect of keeping cubic or higher order terms in (4.4) is to introduce

interactions between the phonon modes which are the eigenstates of the harmonic Hamiltonian.

For example, from (4.8), we can see that a cubic term in the displacements u(`d) will introduce

three-phonon interactions like â†
q,ν âq′,ν ′ âq′′,ν ′′ (i.e. annihilation of two phonons to create a single

phonon) or â†
q,ν â†

q′,ν ′ âq′′,ν ′′ (i.e. decay of a single phonon into two phonons) in the Hamiltonian

at the first order in the anharmonic force constant k(3). Phonon lifetimes in crystals are thus

directly related to the anharmonic force constants, and can be measured to estimate the size of

the anharmonicity [112, 110, 113].

Anharmonicity is also necessary to explain thermal expansion and conductivity in crystals.

In particular, the linear volume expansion coefficient of crystals can be directly written in terms of

the mode Gruneisen constants γqν which is defined for phonon modes labelled by the momentum

q and branch index ν as [114],

γqν =− V
ωqν

∂ωqν

∂V
. (4.18)

Note that the change in volume in the equation above is at a fixed temperature. In a purely

harmonic crystal, the phonon frequencies are determined by the second-order force constants

which do not get modified with changes in volume, thus leading to zero Gruneisen constant.

However, in the presence of cubic anharmonicity, the phonon frequencies are determined by

the effective second-order force constants, which receive corrections depending on both the

third-order force constants k(3) and the changes in volume, thus giving a non-zero Gruneisen

constant [115]. An increase in volume leads to larger displacements of atoms, which typically
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makes the effective second order constants and the phonon frequencies smaller, providing a

positive Gruneisen constant. In the case of a non-zero Gruneisen constant, the free energy of

the crystal, which has a harmonic contribution ∝ ∆V 2, receives a volume-dependent correction

∝−∆V γqν Ēqν , where Ēqν is the mean energy in the phonon mode qν at a particular tempera-

ture [108]. As the temperature increases, the mean energy Ēqν goes up, and thus this leads to a

new equilibrium volume which minimizes the free energy. For a positive Gruneisen constant,

this leads to thermal volume expansion.

The Gruneisen constants are thus directly related to the cubic force constants of the

material, and have also been used to extract them [115]. Concretely, the relationship between the

mode Gruneisen constants and the anharmonic force constants for weak anharmonicity can be

shown to be [116],

γqν =− 1
6ω2

q,ν
∑

d,`′d′,`′′d′′
∑

αβδ

k(3)
αβδ

(0d, `′d′, `′′d′′)

×
eβ

q,ν(d′)∗eδ
q,ν(d

′′)
√

md′md′′
r0,α

0d eiq·(`′′−`′), (4.19)

where the eβ

q,ν(d) indicates the displacement of atom d in the Cartesian direction β for the

phonon qν , and r0,α
0d is the equilibrium position of atom d in the Cartesian direction α for the

unit cell at the origin. To get a rough estimate of the maximum anharmonicity strength in the

crystal, the relation in (4.19) can be inverted and written in terms of the maximal mode Gruneisen

constant γmax found in a crystal,

k(3) ∼ 6mdω2
0 γmax

l
, (4.20)

where ω0 is the typical phonon energy of the lattice and l is the nearest neighbor distance. Now

consider a typical displacements ∼ (
√

2mdω0)
−1 of an atom in the crystal; the change in the
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potential energy δVanh due to anharmonic force constant estimated above is given by,

δVanh

ω0
∼ 1

ω0

1
3!

k(3)(
√

2mdω0)
−3

∼ 0.02
( md

28 GeV

)−0.5 ( ω0

30 meV

)−0.5

×
(

γmax

1.5

) ( l
2.35 Å

)−1
, (4.21)

where in the second line we use parameters for Si. We use an estimate for the maximal value of

the mode Gruneisen constant in Si from [108] at 0K. In Ge, the maximal Gruneisen constant is

similar to that in Si, while in GaAs, it could be as high as 3.5 for certain phonon modes [108].

The Gruneisen constant thus provides a rough estimate of the overall anharmonicity in the crystal,

including the cubic terms which depend on displacements of multiple atoms.

In this paper, we will work with a toy model of anharmonic interactions similar to the

1D oscillator model in Sec. 4.2.1. In particular, we consider excitations for an isolated atom

in a 1D anharmonic potential. The anharmonicity is controlled by force constant terms like

k(3)
αβγ

(`d, `′d′, `′′d′′) with `d = `′d′ = `′′d′′ which characterize the modification to the potential

of a single atom in a lattice. Since the Gruneisen constants involve a sum over many cubic force

terms, we instead directly obtain the single-atom anharmonic force constants with an empirical

model of the lattice.

We model the lattice assuming empirical interatomic potentials, which have been shown

to accurately reproduce phonon dispersions and transport properties [117]. Concretely, we

assume the Tersoff-Buckingham-Coulomb interatomic potential with the parameter set given in

Ref. [117] (see Appendix 4.A for details). We then fix all atoms at their equilibrium positions

except for one atom denoted by `d, which is displaced by a small distance in different directions.

The single atom potential calculated from this procedure is shown in Fig. 4.3 for Si, with

deviations from the harmonic potential that depend on the direction of displacement. The

maximum anharmonicity is along the direction of the nearest neighbor atom. Along this direction,
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we find that the typical change in the potential energy for an atom displaced by r∼ (
√

2mdω0)
−1

is,

δVanh

ω0
∼ 0.01. (4.22)

Comparing this estimate with (4.21), we see that the anharmonicity strength inferred from the

potential of a single atom is roughly of the same size as the overall anharmonicity strength of

the lattice inferred from the Gruneisen constant. Thus, even though we do not perform a full

calculation of the structure factor for an anharmonic crystal including the modification of the

phonon spectrum and the lattice states, the comparison above suggests that the effects in a full

calculation are expected to be similar in magnitude to the effects we estimate in this work using

single atom potentials.

4.2.3 Toy anharmonic potential

As shown in Sec. 4.2.1 for the harmonic crystal, the features of the dynamic structure fac-

tor under the incoherent approximation can be well-approximated with just a 1D toy potential for

an individual atom. This gives a much simpler path to calculating DM scattering in anharmonic

crystals for q� 2π/a, where many phonons may be produced. In contrast, prior work including

anharmonicity focused on the limit q� 2π/a, restricted to two phonons [42], and does not scale

well to large number of phonons. We can then stitch together the two approaches to gain a more

complete understanding of anharmonic effects.

In this work, we take a 1D anharmonic potential and calculate the 1D structure factor,

in order to simplify the problem as much as possible. Taking the 1D approximation is more

subtle in the presence of anharmonicity since a generic potential in 3D is not separable, unlike

the harmonic case. Denoting the small displacement around equilibrium by r, and the polar and

azimuthal directions by θ and φ respectively, the potential energy for atom d in the lattice can be
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Figure 4.3. Single atomic potential: Potential of a single atom displaced along various
directions with all other atoms at their equilibrium positions. In zincblende Si, the largest
anharmonicity is in the direction of the nearest-neighbor atom, while the smallest anharmonicity
is in the direction of the next-nearest-neighbor. We have also included a third direction orthogonal
to the other two, with intermediate anharmonicity strength.

expanded in powers of r as,

Vd(r,θ ,φ) =
1
2

mdω
2
0 r2

+ ∑
k≥3

λkω0 fk(θ ,φ)(r
√

2mdω0)
k, (4.23)

where λk are dimensionless constants parameterizing the degree of anharmonicity at kth order,

and fk(θ ,φ) are functions which specify the angular dependence and whose range is [−1,1].
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Solving the full 3D problem would require numerically finding the eigenstates of this general

potential, while in the 1D case we can make much more progress analytically. We will therefore

select directions of maximum anharmonicity and use this for our simplified 1D problem. Our

expectation is that this gives a conservative estimate of the importance of anharmonic couplings,

in that the full 3D calculation would give somewhat reduced effects.

As discussed in Sec. 4.2.2, we can extract realistic single atom potentials by modeling

the interatomic potentials on the lattice and displacing a single atom (see Appendix 4.A for

details). We typically find that, for small displacements around equilibrium, the anharmonicity is

dominated by the cubic and quartic terms parametrized by λ3 and λ4, respectively. Motivated by

these observations, we consider the following forms of toy potentials in our study:

• Single cubic or quartic perturbations: We first consider a harmonic potential with a

single perturbation,

Vd(x) =
1
2

mdω
2
0 x2 +λkω0(

√
2mdω0x)k, (4.24)

where k = 3 or 4. This case is amenable to perturbation theory, and in Sec. 4.3.2, we apply

it to discuss the power counting of anharmonic corrections.

• Morse potential: It is possible to obtain exact (non-perturbative) analytic results for the

Morse potential defined by,

VMorse(x) = B
(

e−2ax−2e−ax
)
, (4.25)

where a is a parameter controlling the width of the potential and B is the normalization.

We fit these two parameters to the cubic anharmonicity estimated from the single atom

potentials discussed earlier, and calculate the dynamic structure factor for this potential in

App. 4.D.
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• Fit to realistic atomic potentials: We numerically calculate the structure factor in a

potential with both cubic and quartic terms, where the dimensionless anharmonic couplings

are obtained by fitting to the actual single atom potential. The potential in this case is

given by

Vd(x) =
1
2

mdω
2
0 x2 +λ3ω0(

√
2mdω0x)3

+λ4ω0(
√

2mdω0x)4. (4.26)

We find that typically, λ3 ∼ 0.01, and λ4 ∼ 10−4.

For the 1D toy potentials discussed above, we compute the 1D dynamic structure factor

in the incoherent approximation (q� 2π/a):

Stoy(q,ω) = 2π ∑
d

nd | fd|2 ∑
f

∣∣〈Φ f
∣∣eiqx∣∣Φ0

〉∣∣2

×δ (E f −E0−ω). (4.27)

Again, we have summed over all atoms of type d in the lattice and defined the number density of

atom d by nd . The wavefunctions |Φ〉 are the eigenfunctions of the Hamiltonian,

Htoy =
p2

2md
+Vd(x). (4.28)

The computation of the dynamic structure factor then boils down to computing the ground state

|0〉 and the excited eigenstates |Φ f 〉 for this Hamiltonian, and calculating the structure factor

under the incoherent approximation as in Eq. (4.27).

As discussed in Sec. 4.2.1, for a 1D toy model the phonon levels are discrete and in a

real crystal there is a broad spectrum of energy levels. Similar to the harmonic case, we need

a prescription to account for this smearing of energies. In the case with anharmonicity, the

spectrum is shifted. The 1D toy model will instead give a modified energy-conserving delta
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function:

δ ( f (n)ω0−ω), (4.29)

where f (n)ω0 is the energy difference between the nth excited state and the ground state. f (n)

will depend on the exact form of the potential. Guided by the harmonic result, we again shall fix

ω0 = 1/ω−1 and introduce a width to the delta function in a similar fashion:

δ ( f (n)ω0−ω)→ 1√
2π f (n)σ2

e
− (ω− f (n)ω0)

2

2 f (n)σ2 . (4.30)

This is in the 1D approximation, and that including the full 3D anharmonic potential would

be expected to have an additional effect on the spectrum of states. However, in practice the

anharmonicity is sufficiently small that the shift of the spectrum is subdominant to the other

anharmonic effects in the structure factor.

This forms the basis of the toy model we consider in this paper. Focusing on the high

q regime where the incoherent approximation applies, we consider independent lattice sites

and calculate scattering in them with 1D toy anharmonic potentials. We now describe different

approaches to understand the dynamic structure factor in this setting.

4.3 Analytic results for structure factor

In this section, we study the features of the structure factor for a 1D anharmonic potential

with analytic methods. This will allow us illustrate the general behavior for the limits q�
√

2mdω0 and q�√2mdω0.

First, we review the derivation of the structure factor for a 1D harmonic potential. For

n-phonon production in the harmonic limit, the structure factor in the regime q�√2mdω0 is

∝ q2n/(2mdω0)
n. Treating the anharmonic 1D potential as a perturbation, we then show that the

q dependence of the n-phonon term can be substantially modified in the regime q�√2mdω0,

leading to large anharmonic corrections. In particular, we obtain the power counting of the
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structure factor in powers of q and the anharmonicity parameter λk, which allows us to roughly

identify the regime of q where we expect the anharmonic effects to be dominant. As we will see

later, this proves useful to explain the numerical results for realistic potentials.

Finally, we will also use the impulse approximation to perform an analytic estimate of the

structure factor in the regime q >
√

2mdω0. We show that the nuclear recoil limit is reproduced,

with the structure factor approximated by a Gaussian envelope similar to the harmonic case.

Anharmonic terms give rise to slightly modified shape of the Gaussian, which have negligible

impact on scattering rates.

4.3.1 Harmonic oscillator

First, we briefly review the calculation of the dynamic structure factor in the harmonic

approximation. In this case the potential Vd(x) is given by

Vd(x) =
1
2

mdω
2
0 x2. (4.31)

The energy En of the n-th excited state |n〉 of this simple harmonic oscillator is given by,

En =
(

n+
1
2

)
ω0. (4.32)

The structure factor in Eq. (4.27) thus becomes,

Stoy(q,ω) = 2π ∑
d

nd | fd|2 ∑
n

∣∣〈n|eiqx|0〉
∣∣2 δ (nω0−ω). (4.33)
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The matrix element can be evaluated in the following way,

〈n|eiqx|0〉= 1√
n!
〈0|aneiqx|0〉

=
1√
n!
〈0|eiqx

(
a+

iq√
2mdω0

)n
|0〉

=
1√
n!

( iq√
2mdω0

)n
〈0|eiqx|0〉

=
1√
n!

( iq√
2mdω0

)n
e−

q2
4mdω0 , (4.34)

where we use e−iqxaeiqx = a+ iq√
2mdω0

in the second equality. Plugging the above matrix element

to the structure factor in (4.33) becomes,

Stoy(q,ω) = 2π ∑
d

nd | fd|2e−2W toy
d (q)

×∑
n

1
n!

(
q2

2mdω0

)n

δ (nω0−ω) , (4.35)

where W toy
d (q) = q2/(4mdω0) is the Debye-Waller factor in the toy model. The structure factor

follows a Poisson distribution with mean number of phonons µ = q2/(2mdω0), as also shown in

the case of the 3-dimensional harmonic oscillator in [71].

4.3.2 Perturbation theory for anharmonic oscillator: q�√2mω0

We now turn to more general case where small anharmonic terms are included in the 1D

toy potential. An exact solution is no longer possible. But as we will see, in the kinematic regime

q�√2mdω0, we can use perturbation theory to obtain the behavior of the structure factor and

illustrate the importance of the anharmonic corrections as a function of momentum and energy

deposition. Our goal in this section then is to obtain the power counting of the anharmonic

contributions to the structure factor.
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The toy Hamiltonian we consider is given by,

Htoy =
p2

2md
+

1
2

mdω
2
0 x2 +λkω0(

√
2mdω0x)k. (4.36)

We will concretely consider k equal to 3 and 4, corresponding to a leading cubic and quar-

tic anharmonicity, respectively. Treating the dimensionless anharmonicity parameter λk as a

perturbation, the eigenstates |Φn〉 are given by

|Φn〉= |n〉+λk |ψ(1)
n 〉+λ

2
k |ψ

(2)
n 〉+ ..., (4.37)

and E ′n are the perturbed energies,

E ′n =
(

n+
1
2

)
ω0 +λk c(1)n +λ

2
k c(2)n + ... (4.38)

With time-independent perturbation theory, the dynamic structure factor can be explicitly

computed at different orders in λk using (4.27). We defer the details of the explicit calculation

to Appendix 4.B. Instead, from the structure of the expansion we can already learn about the

relevant corrections. In general, we can express the dynamic structure factor as an expansion

in both λk and q2/(2mdω0). At zeroth order in λk, we see from (4.35) that the n-phonon term

appears with a q-scaling of q2n/(2mdω0)
n. As we will show below, anharmonicity introduces

departures from this q-scaling at higher orders of λk. In the kinematic regime under consideration

(q�√2mdω0), powers of q2/(2mdω0) smaller than n can lead to large anharmonic corrections

to the n-phonon term in the structure factor.1 The aim of this section is thus to illustrate the

behavior of the q-scaling at different orders of λk.

The general expression for the dynamic structure factor in the toy model can be written

1Perturbation theory in λk is still valid. For instance, the expansion in (4.37) still holds. But the harmonic
contribution in the structure function could be suppressed by small q for multi-phonon states.
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as,

Stoy(q,ω) = 2π ∑
d

nd | fd|2e−2W toy
d (q)× (4.39)

∑
n

δ (E ′n−E ′0−ω)

[
1
n!

( q2

2mdω0

)n

+∑
i≥1

( q2

2mdω0

)i(
an,i λ

ν(n,i)
k +O

(
λ

ν(n,i)+1
k

))]

For each n, the harmonic contribution appears at O((q2/(2mdω0))
n) as seen in (4.13); note that

we do not include the Debye-Waller factor in this power counting discussion since it always

appears as an overall factor. The anharmonic corrections are included here as an expansion in

powers of q2/(2mdω0) which are denoted by i. From the orthogonality of the states |Φn〉 with

the ground states, we see that the dynamic structure factor should vanish for q→ 0, which in turn

implies that i≥ 1. Each power i of q2/(2mdω0) appears with non-zero powers of λk, denoted by

ν(n, i). Here the power ν(n, i) is the smallest allowed power of λk for a given phonon number

n and the power i of q2/(2mdω0). However, numerical cancellations can sometimes force this

leading behavior to vanish. Typically, the bigger the difference in i and n, the larger the power of

λk that is required. We will explicitly see the behavior of the powers ν(n, i) for k equal to 3 and

4 below, but we first discuss the implications of this form.

For the single phonon structure factor (i.e. for n = 1), the anharmonic terms are al-

ways suppressed compared to the harmonic term because of the additional powers of λk and

q2/(2mdω0). But for phonon numbers n > 1, it is possible for anharmonic contributions to

dominate for q�√2mdω0. As a simple example, in the 3-phonon state, the harmonic contribu-

tion to the structure factor is proportional to q6/(2mdω0)
3, while the aharmonic result contains

λ 2
3 q4/(2mdω0)

2. So when q�√2mdω0, the anharmonic effect can lead to a large correction to

the dynamic structure factor.

In a generic n-phonon state, the harmonic piece scales as (q2/(2mdω0))
n. Comparing this
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with the anharmonic term ∝ λ
ν(n,i)
k q2i/(2mdω0)

i, we note that the anharmonic term dominates

the harmonic term for q�√2mdω0λ
ν(n,i)/(2(n−i))
k . For small enough q, the behavior is governed

by the anharmonic effects. Of course, at even smaller q∼ qBZ one would expect the incoherent

approximation to break down. For the values of λ in realistic materials, we find that the

dominance of the anharmonic terms can happen for q above qBZ, particularly for larger n. These

corrections become larger with n since the harmonic piece is progressively more suppressed in

q2/(2mdω0).

We now illustrate the origin of the λk powers ν(n, i) with an example in the case of k = 3.

In this case, the perturbation x3 ∼ (a+a†)3 implies the leading correction to the state can change

the oscillator number by ±1 or ±3. Then the perturbed eigenstates have the schematic form:

|Φn〉 ∼ |n〉+λ3 (|n−3〉+ |n−1〉+ |n+1〉+ |n+3〉)

+O(λ 2
3 ). (4.40)

We neglect the numerical prefactor in front of each state. Note that the terms are only present

if the integer labelling the state is non-negative, for example for the ground state |Φ0〉 ∼

|0〉+ λ3 (|1〉+ |3〉)+O(λ 2
3 ). The matrix element appearing in the n-phonon structure factor

can be expressed as,

〈Φn|eiqx|Φ0〉 ∼ b0 +λ3b1 +λ
2
3 b2 +O(λ 3

3 ), (4.41)

where the coefficients are schematically given by,

b0 ∼ 〈n|eiqx|0〉 (4.42)

b1 ∼ 〈n−3|eiqx|0〉 +

〈n−1|eiqx|0〉+ 〈n+1|eiqx|0〉 +

〈n+3|eiqx|0〉+ 〈n|eiqx|1〉+ 〈n|eiqx|3〉 (4.43)
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In order for given term in the coefficient to be nonzero, a minimum number of powers of iqx are

required in the series expansion for eiqx. This therefore links the powers of q with powers of λ3.

Taking n = 3 as an example, then b0 ∝ (iq)3 at leading order in the q expansion. Mean-

while, b1 ∝ (iq)2 + (iq)4 + .... Note that the matrix elements 〈0|eiqx|0〉 and 〈3|eiqx|3〉 in b1

contain terms proportional to (iq)0, but they cancel each other, consistent with a matrix element

that always vanishes as q→ 0. Also note that the coefficients b0,b1 always alternate in even

or odd powers of (iqx) and therefore alternate in being purely real or imaginary. The resulting

matrix element squared thus goes as

|〈Φ3|eiqx|Φ0〉|2 ∼ |b0 +λ
2
3 b2 +O(λ 4

3 )|2 + |λ3b1 +O(λ 3
3 )|2,

∼ q6 +λ
2
3 (q

4 +O(q6))+O(λ 4
3 ). (4.44)

For the cubic interaction, only even powers of λ3 appear in the matrix element squared due to

the alternating even and odd powers of (iqx) in the b coefficients. In this example, in order to

achieve the minimum q scaling of q2, higher powers of λ3 are required, which will introduce

more terms in the expansion. Here we see a correction to the matrix element squared at O(q2λ 4
3 ).

The explicit derivation of ν(n, i) is given in Appendix 4.B. The minimum power of λ3

required to get the leading behavior ∝ q2/(2mdω0) in the anharmonic terms is given by,

ν(n,1) =





max
(

4×
⌈
(n−1)

6

⌉
, 2
)

for odd n

4×
⌈
(n+2)

6

⌉
−2 for even n

(4.45)

The minimum power of λ3 as a function of the phonon number n and the power i of q2/(2mdω0)

for i > 1 is given by,

ν(n, i) = max
(

2×
⌈ |n− i|

3

⌉
, 2
)
, i > 1. (4.46)
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We show the expansion of the structure factor in the powers of λ3 and q2/(2mdω0) schematically

in Fig. 4.4, where we drop the numerical coefficients for all the terms and only illustrate the

behavior of the powers of λ3 and q2/(2mdω0). In the right part of the schematic, we show the

behavior of the n-phonon term for n > 3, and in the left part of the schematic, we show the

expansion for n = 1, 2, and 3.

The relationship between the powers in λ3 and the powers of q2/(2mdω0) in (4.46) can

also be understood in the following way. The powers of q2/(2mdω0) that appear at O(λ ν
3 ) can

range from n−3ν/2 to n+3ν/2, with the minimum power allowed being 1, and ν being an

even positive integer. Contributions from powers larger than n are suppressed in the kinematic

regime q�√2mdω0. But powers smaller than n can lead to significant corrections in the same

regime.

For example, the anharmonic contribution to the 2-phonon structure factor has a lead-

ing behavior ∝ λ 2
3 q2/(2mdω0), which is expected to dominate the harmonic behavior

∝ q4/(2mdω0)
2 for small enough q (explicitly for q .

√
2mdω0λ3). Assuming md ∼ 28 GeV,

ω0 ∼ 40 meV, and a typical value of λ3 ∼ 0.01, we expect the anharmonic contribution to start

to dominate for q . 0.5 keV. This kinematic regime does not strictly satisfy the conditions for

the incoherent approximation which are assumed in this calculation. However, it is interesting

to note here that the size of this anharmonic correction roughly matches onto the result for the

2-phonon structure factor in the long-wavelength limit (q� 1/a) [42, 105], where it was found

that anharmonic interactions give up to an order of magnitude correction to the structure factor.

At the edge of the Brillouin Zone q ∼ 2π/a ∼ O(keV), with the typical values used above,

we find in the toy model an O(∼ 25%) correction at the boundary of the valid region for the

incoherent approximation.

For k equal to 4, which corresponds to a quartic perturbation to the harmonic potential, the

calculation proceeds similarly to the cubic case discussed above, except for some key differences.

All the coefficients bi are either real or imaginary based on whether n is even or odd respectively,

and hence the anharmonic corrections appear in all orders of λ4. We thus have corrections at
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Figure 4.4. Expansion of the structure factor in phonon number n, powers of q2/(2mdω0),
and powers of λ3 for a cubic perturbation (k = 3 in (4.36)). The right part shows the general
behavior of the n-phonon term for n > 3, while the left part shows the expansion for n =1, 2,
and 3. Shaded terms show the dominant contributions when q�√2mdω0, which comes from
the anharmonic terms for n ≥ 2. Here we just illustrate the power counting; individual terms
might not be present if there is a numerical cancellation in the coefficients.
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Figure 4.5. Expansion of the structure factor in phonon number n, q2/(2mdω0), and λ4 for a
quartic perturbation (k = 4 in (4.36)). The right part shows the general behavior of the n-phonon
term for n > 3, while the left part shows the expansion for n =1, 2, and 3. Shaded terms show the
dominant contributions when q�√2mdω0, which comes from the anharmonic terms for n > 2.
Similar to the above, individual terms might not be present if there is a numerical cancellation in
the coefficients.

O(λ4). For even n, coefficients bi only have even powers of q, and thus cannot generate terms

∝ q2 in the squared matrix element. The leading behavior for even n is thus ∝ q4. For odd n

however, the leading behavior is ∝ q2, and the minimum power of λ4 is given by,

ν(n,1) = max
(

2×
⌈
(n−1)

4

⌉
, 1
)
. (4.47)

For powers i greater than 1, the minimum power of λ4 for any phonon number n is given by,

ν(n, i > 1) = max
(⌈ |n− i|

2

⌉
, 1
)
. (4.48)

We show the expansion of the structure factor in the powers of λ4 and q2/(2mdω0) schematically

in Fig. 4.5, where we drop the numerical coefficients for all the terms and only illustrate the

behavior of the powers of λ4 and q2/(2mdω0). Similar to Fig. 4.4, we are only illustrating the
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Figure 4.6. Perturbativity bound on λ 2
3 and λ4 as a function of phonon number n. The bound is

based on the criteria of (4.49) that the leading correction to the energy En is at most 10%. The
dashed line shows the typical coupling sizes in Si and Ge crystals.

minimum allowed powers of λk in perturbation theory for n > 3. Due to numerical cancellations,

the leading λk power can vanish in some cases.

Limitations of perturbation theory

Our analysis has focused on the regime q�√2mdω0 because this corresponds to a

low mean phonon number. For large enough n, perturbation theory will start to break down.

Equivalently, for a given n, perturbation theory will only be valid for λk sufficiently small.

For a particular phonon number n, if the energy correction in (4.38) is of the same order

as the unperturbed energy eigenvalue (n+ 1
2)ω0, the perturbation can no longer be treated as
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small. Based on this, we set an upper bound on |λk| by requiring that

|E ′n−
(

n+
1
2

)
ω0| ∼ 0.1×

(
n+

1
2

)
ω0. (4.49)

At leading order, the correction for k equal to 3 (i.e. a cubic perturbation) is given by

E ′n−
(

n+
1
2

)
ω0 = λ

2
3 ω0 (9n3 +9(n+1)3

+(n+3)(n+2)(n+1)

+n(n−1)(n−2))+O(λ 4
3 ). (4.50)

The equivalent result for k = 4 reads,

E ′n−
(

n+
1
2

)
ω0 = λ4 ω0 ((n+1)(n+2)+(n+1)2

+2(n+1)(n+2)+n2

+n(n−1))+O(λ 2
4 ). (4.51)

Using the equations above, we get the critical value of λ 2
3 and λ4 compatible with the perturbation

theory expansion. These are shown in Fig. 4.6. With the analytic structures of the energy

corrections shown above, we see that the perturbativity bound on λ 2
3 (λ4) has a scaling ∝

1/n2(∝ 1/n), where n is the phonon number. For typical values of λ3 ∼ 0.01, we see that the

perturbation theory is valid only up to n∼ 6−7. Furthermore, perturbation theory is impractical

for calculating corrections at small q and very high phonon number n, since these corrections

will be a very high order in the anharmonicity parameter.

To deal with these limitations, we consider two different approaches in this paper. Since

high n is associated with high ω and q, in the next section we will use the impulse approximation

to account for anharmonic effects at high q. In Appendix 4.D, we also study a special anharmonic

potential, the Morse potential, where it is possible to obtain exact results. We use this as a case
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study to validate the perturbation theory and impulse approximation results.

4.3.3 Impulse Approximation for q�√2mω0

As we have shown, perturbation theory quickly goes out of control beyond the first few

number of phonons. Resumming the anharmonic interaction is usually needed for the structure

factor when q or ω is large. Consider the following phase space

Impulse regime: q�
√

2mω0, (4.52)

ω ∼ q2

2m
+O(

√
ωω0),

It has previously been shown [105, 118] in the harmonic case, that one can calculate the structure

factor by using a saddle point approximation in the time-integral representation of the structure

factor. This is called the “impulse approximation” since the steepest-descent contour is dominated

by small times, which can be interpreted physically as an impulse.

We begin with the structure factor in Eq. (4.27), which can be decomposed as con-

tributions from each atom d, Stoy(q,ω) = ∑d nd| fd|2Stoy,d(q,ω). Then we rewrite the energy

conservation delta function as a time integral

Stoy,d(q,ω)

≡∑
f

∫
dt ei(E f−E0−ω)t ∣∣〈Φ f

∣∣eiqx∣∣Φ0
〉∣∣2

=
∫

dt e−iωt
∑

f

〈
Φ0
∣∣e−iqx∣∣Φ f

〉 〈
Φ f
∣∣eiHteiqxe−iHt∣∣Φ0

〉

=
∫

dt e−iωt 〈Φ0|e−iqxeiqx(t)|Φ0〉 , (4.53)

where in the second equality we use the fact that |Φ0〉 and |Φ f 〉 are eigenfunctions of H, and

in the third equality we use the completeness relation and the time-dependent position operator
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x(t) = eiHtxe−iHt . The final expression is the well-known structure factor in the time domain.

Using the above representation of the structure factor,

Stoy,d(q,ω) =
∫

∞

−∞

dt 〈e−iqxeiqx(t)〉 e−iωt

=
∫

∞

−∞

dt 〈e−iqxeiHteiqx〉 e−i(E0+ω)t , (4.54)

We can further simplify this using the fact that eiqx acts as a translation operator on momentum

p, e−iqx peiqx = p+q. Applying the translation on the full Hamiltonian yields

e−iqxH(x, p)eiqx = H(x, p+q). (4.55)

Here we generalize the impulse approximation to any 1D Hamiltonian, H(x, p) = p2

2m +

V (x), which satisfies

H(x, p+q) = H(x, p)+
q2

2m
+

q
m

p. (4.56)

One can also generalize impulse approximation to a generic potential V (x, p) as long as the

above holds in the limit of large q.2 In other words, we require that the Hamiltonian in the large

momentum limit is dominated by the kinetic energy p2

2m , not the potential. We can then obtain

reliable theoretical predictions in the impulse regime even with large number of phonons.

Applying the above to Eq. (4.54), the structure function now reads

Stoy,d(q,ω) =
∫

∞

−∞

dt
〈

eiH(x,p+q)t
〉

e−i(E0+ω)t

≈
∫

∞

−∞

dt
〈

ei(H+ qp
m )t
〉

e
−i
(

E0+ω− q2
2m

)
t
, (4.57)

where we translate the momentum in the first line and use Eq. (4.56) in the second line. Note

2In this case, the impluse regime in Eq. (4.52) needs to be replaced as ω ∼ q2

2m + q
m 〈p〉 and we impose Eq. (4.56)

holds up to O
(
ω2

0/q
)

correction.
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that H = H(x, p) throughout and we drop the argument for brevity. The last line is exact for

potentials that depend only on x.

Now we can apply the saddle point approximation to evaluate the time integral. Defining

H ′ ≡ H + pq
m , we can write

Stoy,d(q,ω) =
∫

∞

−∞

dt e f (t), (4.58)

where

f (t)≡ ln〈eiH ′t〉− it
(

E0 +ω− q2

2m

)
. (4.59)

In order to calculate this object, we can expand ln〈eiH ′t〉 in small t. The first few terms in

this expansion are given by

f (0) = 0

f ′(0) = i
( q2

2m
−ω

)

f ′′(0) = i2
(
〈H ′2〉−〈H ′〉2

)

=− q2

m2

(
〈p2〉−〈p〉2

)

f (3)(0) = i3
(
〈H ′3〉−3〈H ′〉〈H ′2〉+2〈H ′〉3

)

=−i
( q2

m2 〈p[H, p]〉+ q3

m3 〈p
3〉
)

f (4)(0) = i4
(
−6〈H ′〉4 +12〈H ′〉2〈H ′2〉2

−3〈H ′2〉2−4〈H ′〉〈H ′3〉+ 〈H ′4〉
)

=− q2

m2 〈[p,H]2〉+ q3

m3 〈[[p,H], p2]〉

+
q4

m4

(
〈p4〉−3〈p2〉2

)
(4.60)

. . .
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In the harmonic approximation, only the terms proportional to q2 are nonzero. As a result, only

the first few expansion terms are needed as long as t� 1
ω0

since f (n+1)/ f (n) is of order ω0. Then

one can solve for the saddle point tI by solving f ′(tI)≈ f ′(0)+ f ′′(0)tI = 0, which gives

itI =
m2(ω− q2

2m)

q2σ2
p

, (4.61)

where

σ
2
p ≡ 〈p2〉−〈p〉2 = 〈p2〉. (4.62)

In the last equality we use the fact that 〈p〉 = 0 for a V (x) potential since 〈p〉 ∝ 〈[x,H]〉 = 0.

Although tI is formally imaginary, its magnitude is small and close to the origin in the impulse

regime. Since there is no pole around this saddle point, we can approximate the time integral by

the saddle point and find

Stoy,d(q,ω)≈
√

2π

− f ′′(tI)
e f (tI)

=

√
2πm

qσp
exp

(
−m2(ω− q2

2m)
2

2q2σ2
p

)
. (4.63)

For large energy depositions the Gaussian becomes narrowly peaked around ω = q2/2m, and

this reproduces the nuclear recoil limit [105].

In the presence of anharmonic interactions, other powers of q will be present in the

expansion of (4.60). In general, the f (n) term will have a qn term with coefficient of O(λ ). In

this case, f (n+1)/ f (n) ∼ q
√

ω0/m. Higher orders will then be important in the expansion of

f (t) for sufficiently large q or t. For a given q, the higher order corrections become relevant

for |t|&
√

m/ω0/q∼ 1/
√

ωω0 in the impulse regime. Including these corrections is difficult

in general, but we can continue to use the second order expansion giving (4.63) as long as

|t| . 1/
√

ωω0. According to (4.61), this corresponds to a condition on how close ω is to
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q2/(2m). Since q2 ∼ 2mω and σ2
p ∼ mω0, this implies that

|tI| ∼
|ω− q2

2m |
ωω0

→ |ω− q2

2m
|.√ωω0. (4.64)

We see that the distance of ω from q2

2m sets the size of tI, which in turn tells us the regime for the

validity for the approximation (4.63). The condition (4.64) is approximately the same condition

that ω is within the Gaussian width in (4.63), and keeping terms in f (t) only up to f ′′(0) is

self-consistent near ω = q2

2m .

Therefore, in the presence of anharmonic interactions, the above structure factor result

(4.63) remains valid in the impulse regime (4.52). The only modification is in σ2
p . Considering

perturbations in V (x) up to x4 and recalling that the expectation value is with respect to the full

ground state, we find that

σ
2
p = 〈p2〉= mω0

2

(
1−44λ

2
3 +12λ4 + · · ·

)
(4.65)

at leading order in λ3,λ4. The nuclear recoil limit is again reproduced, with a small modification

to the width of the Gaussian envelope due to anharmonic couplings. Note that in order to

calculate the structure factor far from ω = q2

2m , we must include additional orders in f (t) and tI .

We do not perform these higher order calculations for the final results in this paper since they

have a negligible effect on the integrated rates, but we provide the procedure for completeness in

App. 4.C.

Finally, we approximate the effect that introducing the full crystal lattice has on this

single atom result. Up until the evaluation of various moments of H ′, the impulse approximation

is fully model-independent. We just have to make an adjustment to the final evaluation of 〈p2〉.

The states in the full crystal theory are smeared by the phonon density of states, so we calculate
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〈p2〉 via the following prescription

〈p2〉= mω0

2

(
1+g(λ )

)

crystal−−−→
∫

dω
′D(ω ′)

mω ′

2

(
1+g(λ )

)
, (4.66)

where g(λ ) is the anharmonic correction calculated in the single-atom potential. Essentially, we

have used the average single phonon energy to calculate 〈p2〉. In the harmonic limit, (4.63) then

exactly matches the impulse result from [105].

In summary, in this section we have demonstrated the general behavior of anharmonic

effects with q and ω . We have shown that they are indeed negligible at high q and ω ∼ q2/2md ,

consistent with the intuition that scattering can be described by elastic recoils of a free nucleus.

The effects grow for q�√2mdω0 and at low q they may dominate the structure factor. This

roughly matches onto the results of Refs. [42, 105], which found that for q < 2π/a anharmonic

effects can have a large impact on the two-phonon rate .

4.4 Numerical results for 1D anharmonic oscillator

Having demonstrated the analytic behavior of the dynamic structure factor in the previous

section, we now turn to obtaining numerical results using realistic potentials. We will perform

concrete calculations for Si and Ge as representative materials while briefly commenting on

others. As discussed in Sec. 4.2.2, we adopt an empirical model of interatomic interactions that

encodes the anharmonicity in the potential. We use this empirical model to calculate a single

atom potential, which we then use to evaluate the structure factor numerically.

As stated in Sec. 4.2.3, we start by fitting the single atom potential in a particular direction
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onto a 1D potential of the form,

Vd(x) =
1
2

mdω
2
0 x2 +λ3ω0(

√
2mdω0x)3

+λ4ω0(
√

2mdω0x)4. (4.67)

In the fit, ω0,λ3,λ4 are free parameters but in order to reproduce the harmonic limit, we then

make the replacement ω0 = 1/ω−1, which is calculated from the phonon density of states and

gives a slightly different numerical value. This is motivated by the harmonic case discussed

in Sec. 4.2.1. We do not consider anharmonic terms ∝ xk for k ≥ 5 as we observe that the

anharmonic potential along any direction is dominated by the cubic and the quartic terms.

We find that the maximum anharmonicity is typically along the nearest neighbor direction

(x,y,z) = (1,1,1). For computing results, we will consider the potential along this direction,

which represents maximum anharmonicity, as well as the potential in an orthogonal direction

(x,y,z) = (1,−2,1), which represents an intermediate value for the anharmonicity. Using the

aforementioned interatomic models, we find anharmonicity strengths ranging from λ3∼ 6×10−3

to 10−2 and λ4 ∼ (2−3)×10−4. For Si and Ge, the results are same for either atom in the unit

cell.

Given the 1D potential in (4.67), we find exact solutions of the 1D eigenvalue and

eigenvector problem using a simple finite difference method. We take a first order discretization

of the Laplace operator and solve the discretized time-independent Schrödinger equation in a

box. The box grid interval size must be small enough to resolve the maximum momentum scales

of interest, which in this case depends on the highest excited state needed in the calculation.

Also, the minimum box size required depends on the spatial extent of the highest excited state

used. As seen in Sec. 4.3.3, the impulse approximation suffices for q > O(few)×√2mdω0.

Beyond this momentum, we no longer need to calculate excited states since the structure factor

in the impulse limit is independent of the details of the highly excited states. The nth excited

state is most relevant at momenta q∼√n
√

2mω0. Therefore, to complete our calculation below
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Figure 4.7. q-dependence of structure factor: We compare the structure factor in the harmonic
and anharmonic cases, where in the latter case the structure factor is calculated numerically with
the maximal anharmonicity. The lines from top to bottom show the structure factor at different
ω , corresponding to an increasing minimum phonon number n. There are large corrections for
q�√2mdω0 when anharmonic interactions are included (dashed), and the corrections become
more significant as the threshold is increased. For q�√2mdω0, both cases converge to the
same result. For Si, we have

√
2mdω0 ≈ 40 keV while for Ge,

√
2mdω0 ≈ 50 keV. For other

materials, this quantity is listed in Table 4.1. The incoherent approximation momentum cutoff is
qBZ < 2π/a∼ 2.2 keV for both crystals.
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Figure 4.8. ω-dependence of structure factor: For different q values, we show the decom-
position of the structure factor into individual n phonon terms, where the energy-conserving
delta function has been smeared as in (4.68). Note that the maximum anharmonicity has been
included in the numerical calculation, but the result is nearly identical to the harmonic result for
these q values, as shown in Fig. 4.7. The dotted line shows the impulse approximation, which
starts to become a good approximation as q increases above

√
2mdω0.

the impulse limit, we include the first 10 excited states. The results for these eigenstates are

converged above a box size of ∼ 10/
√

2mω0 and grid size of ∼ 0.1/
√

2mω0.

We now use these numerical eigenstates and energies to calculate the structure factor in

Eq. (4.27). We apply a prescription for the energy-conserving delta function similar to that used

in the harmonic 1D oscillator, Eq. (4.15). The final result at momenta below the impulse regime

(q < 2
√

2mω0) is,

S(q,ω) = 2π ∑
d

nd | fd|2 ∑
f

∣∣〈Φ f
∣∣eiqx∣∣Φ0

〉∣∣2

× 1√
2π f (n)σ2

e
− (ω− f (n)ω0)

2

2 f (n)σ2 ×Θ(ωmax−ω), (4.68)
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where

ω0 =
(∫

dωω
−1D(ω)

)−1
, (4.69)

σ =

√∫
dωωD(ω)

ω0
− 1

ω2
0
, (4.70)

ωmax = f (n)× (min(ω)|D(ω) = 0) (4.71)

and f (n), |Φ0〉, |Φ f 〉 are given by the numerically solved eigenenergies and eigenstates, respec-

tively. D(ω) is the single phonon density of states calculated with DFT [79]. In this work we

assume equal couplings of DM with all nucleons so that fd = Ad , where Ad is the atomic mass

number. In the equations above, we have included a sum over all atoms in the unit cell d with

density nd , and in general the atomic potentials and density states can also depend on d, although

for Si and Ge we do not include this.

In the impulse regime (q > 2
√

2mω0), we have shown in Sec. 4.3.3 that the structure

factor for any position-dependent potential is approximated by a Gaussian envelope,

S(q,ω)≈∑
d

nd| fd|2
√

2π

q2

m2 〈p2〉
e
−
(

ω− q2
2m

)2

2 q2

m2 〈p2〉
, (4.72)

where the the expectation values are all computed in the ground state and adjusted to the

average single phonon energy via (4.66). Now we simply use the numerical ground state of the

anharmonic potential (4.67) to calculate 〈p2〉 and therefore obtain the structure factor. Note that

the anharmonic contribution is essentially negligible in the impulse limit, since corrections to

〈p2〉 are ∝ λ 2
3 ,λ4.

Fig. 4.7-4.8 shows numerical results on the structure factor for Si and Ge, taking the

maximum anharmonicity in either case. In Fig. 4.7, the structure factor as a function of q is shown.

As ω (and therefore minimum phonon number n) is increased, there is a larger anharmonic

correction at small q. This can be understood by looking at the q scalings discussed in Sec. 4.3.2
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and illustrated in Fig. 4.4 and Fig. 4.5. At low q and thus DM mass, the contributions from the

anharmonic structure factor can give smaller powers of q2

2mdω0
compared to the leading harmonic

term
(

q2

2mdω0

)n
, so the enhancement grows with n. At high q, results converge to the harmonic

result, consistent with our discussion of the impulse regime in Sec. 4.3.3. We see this also in

Fig. 4.8, which shows the structure factor at different q. The impulse approximation becomes

better as q�√2mdω0, and is indistinguishable from the harmonic case.

4.4.1 Impact on DM scattering rates

We now use the numerical results for the structure factor to compute the DM scattering

rates for a range of DM masses and experimental thresholds. Our results are summarized in

Figs. 4.9-4.10. We consider DM masses in the range ∼ 1−10 MeV. The lower end of the mass

range is chosen such that the momentum transfers are large enough to satisfy the condition for

the incoherent approximation (i.e. q > 2π/a), while at the upper end of masses it is expected

that scattering is described by the impulse approximation [105]. It is precisely this mass range

where details of multiphonon production are important. We will also consider the two cases of

scattering through heavy and light mediators. The goal will be to identify the region of parameter

space where the anharmonic effects on the dynamic structure factor affect the scattering rates the

most.

In the isotropic limit, the observed DM event rate per unit mass is given by [105]

R =
1

4πρT

ρχ

mχ

σp

µ2
χ

∫
d3v

f (v)
v

q+∫

q−

dq

ω+∫

ωth

dω q |F̃(q)|2S(q,ω), (4.73)

where ρχ is the DM energy density, ρT is the mass density of the target material, mχ is the

DM mass, µχ is the DM-nucleon reduced mass, σp is the DM-nucleon cross section, and f (v)

is the DM velocity distribution. The structure factor S(q,ω) is given by our numerical results

(4.68)-(4.72) and the integration bounds are determined by the kinematically allowed phase
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space

q± ≡ mχv

(
1±
√

1− 2ωth

mχv2

)
, (4.74)

ω+ ≡ qv− q2

2mχ

, (4.75)

where the energy threshold of the experiment is denoted by ωth. The q-dependence of the DM-

nucleus interaction can be encapsulated in the DM form factor F̃(q), where F̃(q) = 1 indicates

an interaction through a heavy mediator, and F̃(q) = q2
0/q2 indicates an interaction through a

light mediator for a reference momentum transfer of q0.

Note that in general, the strength of the anharmonicity varies with the direction of the

recoil of the nucleus, and the structure factor will depend on the direction of the momentum

transfer. For simplicity, we are assuming that the anharmonicity strength is uniform in all

directions. Our estimate with the maximum anharmonicity thus provides an upper bound on the

anharmonic effects on DM scattering.

The DM mass sets the typical momentum-transfer scale q of the scattering, and the

experimental energy threshold ωth sets the phonon number n. Hence, to identify the DM masses

and experimental thresholds where anharmonic effects start to become important, we first need

to understand the q-values where the anharmonic corrections are large for a particular phonon

number n. We can estimate this using the perturbation theory results in Sec. 4.3.2. Note that in

our numerical calculation, we find that λ3 generally provides the larger anharmonic contribution,

so we will focus on a purely cubic perturbation in this discussion.

For the analysis of a cubic perturbation discussed in Sec. 4.3.2, we showed that an-

harmonic effects introduced additional terms to the n-phonon structure factor of the form ∝

λ
ν(n,i)
3

(
q2

2mdω0

)i
, see (4.39). Therefore when q is lower than the scale

q .
√

2mdω0λ
ν(n,i)/(2(n−i))
3 , (4.76)
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terms in the anharmonic structure factor can be of comparable size to the harmonic structure

factor. In order to find the largest q-scale where the anharmonic contribution starts to become

relevant, we can evaluate (4.76) for all positive i < n, and find the minimum possible exponent

of λ3. For n = 2 or 3, the minimum exponent is achieved for i = 1, for which ν(n,1) = 2.

This gives a q-scaling of q ∼ √2mdω0λ
1/(n−i)
3 . This tells us that for the 2-phonon case, the

anharmonic contribution should begin to become important at q ∼ √2mdω0λ3, while for the

3-phonon case, the anharmonic contribution becomes important at q ∼ √2mdω0λ
1/2
3 . For a

larger number of phonons, this scaling is approximately q ∼ √2mdω0λ
1/3
3 . So we see that

higher energy excitations have more significant anharmonic contributions at larger momentum

transfers. Below the q-scale identified above, the anharmonic contributions are expected to

increase substantially with decreasing q, as terms ∝ q2i for i < n dominate the harmonic scaling

∝ q2n.

We now recast our analysis concretely in terms of DM mass and experimental energy

thresholds as follows. For both massive and massless mediators, the event rate for n≥ 2 phonons

is always dominated by the large q portion of phase space and energy depositions near the

threshold. Therefore the enhancement in the rate due to the anharmonicity roughly corresponds

to the enhancement in structure factor evaluated at S(q = 2mχv,ω = ωth), where v is the DM

velocity. Inserting q = 2mχv into the condition in (4.76) gives a condition on the DM mass:

mχ .





√
2mdω0λ3
2×10−3 n = 2
√

2mdω0λ
1/2
3

2×10−3 n = 3
√

2mdω0λ
1/3
3

2×10−3 n > 3,

(4.77)

where 10−3 is the typical DM velocity. In order to determine the appropriate phonon number

n for a given ωth we must take into account the subtlety that each excitation energy is smeared

across a width, as discussed in Sec. 4.2.3 and also given in (4.70). To solve for the smallest n
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Table 4.1. Single phonon properties for various crystals. Using these energy scales, for a
given experimental threshold we can estimate the DM masses where anharmonic effects become
large, (4.76)-(4.79). For crystals with non-identical atoms in a unit cell, we show the quantities
averaged across atoms. The relative importance of anharmonic effects in the different materials
will mainly be governed by the different phonon energies ω0.

Materials
ω0 [meV] σ [meV]

√
2mdω0 [keV]

GaAs 16.9 9.5 48.8
Ge 18.2 10.6 49.6
Si 30.8 17.6 40.3

Diamond 109.6 35.8 49.7
Al2O3 51.6 20.4 51.1

that contributes appreciably above ωth, we solve the following equation:

ωth = nω0 +
√

nσ , (4.78)

where σ is the single-phonon width as defined in (4.70) and we have for simplicity taken

f (n) = n.

Applying (4.77)-(4.78) to Si with ω0 = 31 meV, σ = 18 meV, and md = 26 GeV, we find

the following results

mχ .





0.2 MeV λ3
10−2 ωth = 80 meV

2.0 MeV
(

λ3
10−2

)1/2
ωth = 120 meV

4.5 MeV
(

λ3
10−2

)1/3
ωth ≥ 160 meV

(4.79)

Below these masses, anharmonic corrections become large. The last line applies for thresholds

above 160 meV which corresponds to n ≥ 4, and these n-phonon terms all give the same

condition on DM mass. Note that this is only a heuristic, which does not include for example the

combinatorial pre-factors or cancellations in the perturbation theory calculation. Nonetheless, we

do see the same qualitative features in the complete numerical result which is given in Fig. 4.9.
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Figure 4.9. Ratio of anharmonic to harmonic rate. For each material (Ge and Si) we
consider two representative values of the anharmonic couplings. The larger set corresponds to a
direction of maximal anharmonicity while the other set corresponds to an orthogonal direction
of intermediate anharmonicity. Anharmonic effects become more important for DM masses near
the MeV scale and for larger energy thresholds.

In order to generalize (4.79) to other materials, we give the necessary energy scales in

Tab. 4.1. Despite large differences in ω0, the momentum scale
√

2mdω0 ends up being about the

same in all crystals. Then the typical DM mass scale for anharmonic effects to become important

is also about the same for a fixed phonon number n. However, the differences in ω0 mean that

the threshold corresponding to a given n can vary significantly. For a given threshold, GaAs

and Ge have the largest phonon number. Since anharmonic corrections become more important

with larger n, GaAs and Ge will therefore have larger anharmonic contributions compared to

Diamond at the same threshold.

In Fig. 4.9, we present the ratio of scattering rates in the anharmonic case to the harmonic
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Figure 4.10. Cross section uncertainty. Comparison of the cross section corresponding to 3
events/kg-yr in the harmonic (solid) and anharmonic (dot-dashed) cases. The anharmonic result
is shown for maximal anharmonicity, and so the shaded band represents our estimate of the
theoretical uncertainty due to anharmonic effects. The effects are primarily important for high
thresholds and low DM masses, corresponding to large σn, which is generally in tension with
existing astrophysical or terrestrial constraints.
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case in Si and Ge, taking two representative cases for the couplings. We also present the cross-

sections corresponding to an observed rate of 3 events per kg-yr in Fig. 4.10. The bands depict

the possible uncertainty that anharmonicity introduces to an experimental reach, with the solid

line giving the harmonic result and the dot-dashed the result for maximal anharmonicity. We do

not show the effects above the cross sections of σn & 10−28 cm2 as for these large interaction

strengths, the DM is expected to lose a significant energy in 1 km of Earth’s crust through

scattering, thus rendering DM with such cross sections unobservable in underground direct

detection experiments [119].

For mχ > 10 MeV, the typical q becomes similar or larger than
√

2mdω0, where there

is negligible difference in the anharmonic and harmonic structure factors. The rates will also

start to be dominated by the impulse regime q�√2mdω0. In this case, the structure factor

calculated with an anharmonic potential is nearly identical to that calculated in the harmonic

case, as discussed in Sec. 4.3.3. We have also seen this behavior with numerical computations in

Fig. 4.8. The anharmonic and harmonic scattering rates are also essentially identical for DM

masses mχ > 10 MeV.

For DM masses mχ < 10 MeV (i.e. q <
√

2mdω0), the ratio of the anharmonic to

harmonic rate begins to grow with decreasing DM mass. As the typical q decreases with

decreasing DM mass, the leading anharmonic term ∝
q2

2mdω0
grows faster compared to the

harmonic term ∝

(
q2

2mdω0

)n
for n≥ 2. The effect is more pronounced for higher thresholds or

equivalently higher n, since the harmonic term is even more suppressed. Therefore at larger

thresholds, the anharmonic effects start becoming important already at larger masses and also

grows much more quickly as the DM mass is decreased. For a given DM mass, this also implies

that the spectrum of events will have larger anharmonic corrections on the high energy tail of

events. However, the rates are also highly suppressed in this tail, and only observable for high

scattering cross sections.

At DM masses mχ < 1 MeV, the slope of the ratio of the anharmonic rate to the harmonic

rate starts to decrease slightly, which is an artifact of the Brillouin zone momentum cutoff that
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we apply across all rate calculations. The incoherent and subsequent approximations are not

guaranteed to be justified in this regime, so this effect should not be treated as physical. For

sub-MeV DM masses, the phonons again should be treated as collective excitations, similar to

the calculation of Ref. [42].

Lastly, we note an interesting feature that the anharmonic scattering rate is strictly greater

than the harmonic rate in the entire parameter space that we probe. This is a consequence of the

sign of the leading q-scaling term q2

2mdω0
. For the production of an excited state |Φ f 〉 in the crystal,

the term in the dynamic structure factor ∝ q2 can only come from the term |〈Φ f |iqx|Φ0〉|2, as the

mixing term ∝ 〈Φ f |I|Φ0〉〈Φ f | (iqx)2

2 |Φ0〉∗ and its conjugate are zero from orthogonality. Thus,

the sign of the term ∝ q2 in the anharmonic structure factor is strictly positive for producing

an excited state, whereas there is no corresponding term ∝ q2 in the harmonic case for n ≥ 2

phonons. Since we are probing the q�√2mdω0 regime, this leading term quickly dominates

the structure factor. Thus, the anharmonic scattering rate exceeds the harmonic rate in this regime.

A consequence of this is that we expect the harmonic crystal result gives a lower bound on the

scattering.

4.5 Conclusions

Scattering of DM with nuclei in crystals necessarily goes through production of one or

many phonons for DM masses smaller than∼ 100 MeV. Previous work has focused on calculating

the multiphonon scattering rates in a harmonic crystal under the incoherent approximation (i.e.

q > qBZ or DM mass & MeV). In this work, we have studied the effects of anharmonicities in

the crystal on the scattering rates, while still working within the incoherent approximation.

In order to obtain a tractable calculation of anharmonic effects, we have simplified the

problem into a toy model of a single atom in a 1D anharmonic potential. In this toy model,

scattering into multiphonons can still be well-approximated by applying a smearing on the

spectrum of quantized states to account for the phonon spectrum of a lattice. We extract
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anharmonic couplings by modeling the interatomic potentials of Si and Ge, which give rise to

realistic single atom potentials. This approach allows us to obtain an analytic understanding and

first estimate of the impact of anharmonicity, although the numerical results should not be taken

as a definitive rate calculation.

We find that the harmonic crystal results of Ref. [105] can be safely assumed for DM

masses down to ∼ 10 MeV. Below ∼ 10 MeV, this assumption cannot be taken for granted. In

this regime, we find that anharmonic effects on the scattering rates increase with decreasing

DM mass and increasing experimental thresholds. Anharmonic corrections up to two orders

of magnitude are possible for DM masses ∼ a few MeV and for experimental thresholds ∼ a

few times the typical single phonon energy of the crystal. These findings are consistent with

Refs. [42, 105], which studied two-phonon production from sub-MeV DM and found up to an

order of magnitude larger rate from anharmonic couplings.

The size of the corrections is dependent on the material through the anharmonicity

strength of that crystal and also, non-trivially, through the typical single phonon energies of

the material. For a particular energy threshold, crystals with lower single phonon energies

exhibit larger corrections since they require larger phonon numbers to be produced. For example,

anharmonic effects in Ge can be larger by almost an order of magnitude than those in Si for

similar DM parameter space and thresholds, even though the anharmonic couplings in the

two crystals are similar. This is a consequence of the difference in q scaling of the harmonic

and anharmonic contributions, which become more pronounced with larger phonon number.

Materials with low single-phonon energies, such as GaAs and Ge, therefore have the largest

anharmonic effects. The effects will be reduced in Diamond and Al2O3, which have even higher

single phonon energies than Si.

The relevance of anharmonic effects to direct detection experiments depends on the DM

cross section. The effects are largest for low DM masses and high thresholds, in other words

on the tails of the recoil spectrum where the rates are small. For a typical benchmark exposure

of 1 kg-yr, the anharmonic corrections become sizeable for DM-nucleon cross sections above
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∼ 10−34 cm2. Being agnostic about any terrestrial or astrophysical constraints on the DM model

and only requiring the DM to be observable in underground direct detection experiments, the

upper bound on the DM cross section is σn . 10−28 cm2 [119]. This comes from considering

an overburden of ∼ km. On the other hand, these very high DM-nucleon cross sections are

typically excluded by terrestrial and astrophysical constraints for the simplest sub-GeV dark

matter models [34, 120]. DM-nucleon cross sections σn & 10−41 cm2 (σn & 10−31 cm2) are

constrained for typical models with a heavy mediator (light dark photon mediator) for a DM

mass ∼MeV. With these constraints, we see from Fig. 4.10 that the anharmonic effects can only

impart corrections of at most an order of magnitude for experiments with kg-yr exposure.

Experiments with exposures above kg-yr could see larger anharmonic effects, since they

would be more sensitive to the events at high phonon number for MeV-scale DM. However, for

solid-state direct detection experiments, achieving exposures significantly bigger than a kg-yr is

challenging. Thus, for near-future crystal target experiments, we conclude that the anharmonic

effects are only important up to O(1) factors at masses of ∼ a few MeV for the simplest DM

models.
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Appendix

4.A Interatomic potentials

In order to produce results for a real crystal, we adopt atomic potentials based on

Ref. [117]. The interatomic potentials used here are a combination of various commonly used

empirical potentials. We choose to use the Tersoff-Buckingham-Coulomb interatomic potential

defined in Ref. [117] using the parameters in the set labeled “TBC-1”, though other interatomic

potentials may be chosen and give similar estimates for the anharmonicity strengths.

This potential includes a three-body Tersoff potential, originally defined in [121], which

we restate here for reference.

E =
1
2 ∑

i
∑
i6= j

Vi j

Vi j = fC(ri j)
(

fR(ri j)+bi j fA(ri j)
)
, (4.80)

where the sum is over nearest-neighbor, and ri j is the distance between neighbors i, j. The

function fC is a cutoff function that keeps the interaction short ranged, fR and fA are repulsive

and attractive interactions, and bi j is a three-body term that is a function of the bonding angle of
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the third body with the atoms i, j. Explicitly, these functions are defined as

fC(r) =





1 r < R−D

1
2 − 1

2 sin
(

π

2
r−R

D

)
R−D < r < R+D

0 r > R+D

(4.81)

fR(r) = Aexp(−λ1r) (4.82)

fA(r) =−Bexp(−λ2r) (4.83)

bi j =
(
1+β

n
ζi j

n)− 1
2n (4.84)

ζi j = ∑
k 6=i, j

fC (rik)g
[
θi jk
(
ri j,rik

)]

× exp
[
λ3

m (ri j− rik
)m] (4.85)

g(θ) = 1+
c2

d2 −
c2

[
d2 +(cosθ − cosθ0)

2
] , (4.86)

where θi jk is the angle between the displacement vectors ri j and rik. R,D,A,B,β ,n,c,d,θ0,

λ1,λ2,λ3 are constants that can be found in Ref. [117]. Note that the notation in this section

matches that of Ref. [117] and is standalone from the main text. Specifically, the parameters

λ1,λ2,λ3 are not to be confused with the anharmonicity strengths defined in the main text. In

practice, anharmonicity arises from the asymmetry between the repulsive and attractive terms.

The directional dependence of the anharmonicity strength is a result of the crystal’s zincblende

structure and bond angle-dependent potential.

The other components of this interatomic model include a long-range two-body Bucking-

ham term

V (r) =Ce−r/ρ − E
r6 , (4.87)
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and a screened Coulombic interaction defined by

V (r) = q2
[erfc(αr)

r
− erfc(αrc)

rc

+
(erfc(αrc)

r2
c

+
2α√

π

e−α2r2
c

rc

)
(r− rc)

]
(4.88)

×Θ(rc− r) (4.89)

Here q is the effective atomic charge, α is a damping parameter, and rc is a cutoff. As discussed in

Ref. [117], the full interatomic potential model is a sum of the three aforementioned interactions.

All of the free parameters are fit onto the actual second, third, and fourth order forces calculated

from DFT. This gives an analytic interatomic potential that produces the correct single-phonon

dispersions and also captures the anharmonicity in the potential by fitting onto the higher order

interatomic forces from DFT.

4.B Power counting in perturbation theory

In this appendix, we work out the explicit relation between the powers of q2 and λk in

the perturbation theory calculation for the anharmonic Hamiltonian in (4.36).

The primary object we focus on in the dynamic structure factor is the squared matrix

element |〈Φn|eiqx|Φ0〉|2, where |Φn〉 are the eigenstates of the anharmonic Hamiltonian. With

perturbation theory, the eigenstates can be expanded in powers of λk as in (4.37). The corrections

to the nth final state up to second order in λk are given by,

|ψ(1)
n 〉= ∑

k 6=n

Vkn

(n− k)
|k〉, (4.90)

|ψ(2)
n 〉= ∑

k 6=n
∑
l 6=n

VklVln

(n− k)(n− l)
|k〉− 1

2
|n〉∑

k 6=n

|Vkn|2
(n− k)2 ,

where Vi j ≡ 〈i|(
√

2mdω0x)k| j〉. In terms of the standard ladder operators of the harmonic
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oscillator, Vi j are given by,

Vi j = 〈i|(a+a†)k| j〉 . (4.91)

This tells us that Vi j can only be non-zero when i− j is one of the following: −k, −k+ 2,...,

k−2, k.

With these selection rules, the corrections in Eqs. 4.90 can be schematically written as,

|ψ(1)
n 〉 ∼ |n− k〉+ |n− k+2〉+ ...

+ |n+ k−2〉+ |n+ k〉 (4.92)

|ψ(2)
n 〉 ∼ |n−2k〉+ |n−2k+2〉+ ...

+ |n+2k−2〉+ |n+2k〉 (4.93)

This pattern continues for higher orders in λk such that at O(λ
j

k ), we have,

|ψ( j)
n 〉 ∼ |n− ( j× k)〉+ |n− ( j× k)+2〉+ ...

+ |n+( j× k)−2〉+ |n+( j× k)〉. (4.94)

Note that the sum should only include terms for which the integer labelling the state is non-

negative. With the knowledge of the unperturbed states appearing in |Φn〉, the matrix element

〈Φn|eiqx|Φ0〉 can also be expanded in λk,

〈Φn|eiqx|Φ0〉 ∼ b0 +λkb1 +λ
2
k b2 + ..., (4.95)
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where the coefficients b j are given by,

b0 ∼ 〈n|eiqx|0〉

b1 ∼ 〈ψ(1)
n |eiqx|0〉+ 〈n|eiqx|ψ(1)

0 〉 (4.96)

b2 ∼ 〈ψ(2)
n |eiqx|0〉+ 〈ψ(1)

n |eiqx|ψ(1)
0 〉+ 〈n|eiqx|ψ(2)

0 〉

In general, the coefficient b j is schematically given by,

b j ∼ 〈ψ( j)
n |eiqx|0〉+ 〈ψ( j−1)

n |eiqx|ψ(1)
0 〉+ ...

+ 〈ψ(1)
n |eiqx|ψ( j−1)

0 〉+ 〈n|eiqx|ψ( j)
0 〉. (4.97)

To study the powers of q appearing in b j, we first need to understand the structure of the

matrix element 〈n1|eiqx|n2〉 for general eigenstates |n1〉 and |n2〉 of the unperturbed harmonic

oscillator. This matrix element is given by the following,

〈n1|eiqx|n2〉=
n1

∑
l= n1−n2+|n1−n2|

2

√
n1!n2!

l!(n1− l)!(n2−n1 + l)!
×

( iq√
2mdω0

)n2−n1+2l
e−

q2
4mdω0 . (4.98)

We learn that the matrix element 〈n1|eiqx|n2〉 contains powers of iq/(
√

2mdω0) ranging from

|n1− n2| to n1 + n2. Note again that the Debye-Waller factor e−
q2

4mdω0 is not included in this

power counting since e−
q2

4mdω0 ≈ 1 in the regime of interest.

Combining this information with the structure of b j in (4.97) and the structure of |ψ( j)
n 〉

in (4.94), the powers of q in b j can be identified:

b j ∼ e−
q2

4mdω0

{( iq√
2mdω0

)n− jk
+
( iq√

2mdω0

)n− jk+2

+ ...+
( iq√

2mdω0

)n+ jk}
. (4.99)
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Note that only those terms with powers of q larger or equal to 1 are present. Terms ∝ q0 have to

cancel as they otherwise lead to q0 terms in the squared matrix element |〈Φn|eiqx|Φ0〉|2, which is

forbidden due to orthogonality of eigenstates.

As the kinematic regime under consideration is of q�√2mdω0, we will focus on powers

of q less than n, which corresponds to the harmonic case. We see from the equation above that

the lowest powers of q decrease with increasing values of j. Thus, higher order corrections in λk

appear with lower powers in q. Eventually, at a sufficiently high power of λk, we get a coefficient

b j with the minimum power of q equal to 1. The squared matrix element can then be written in

general as,

|〈Φn|eiqx|Φ0〉|2 = e−
q2

2mdω0 ×
[

1
n!

( q2

2mdω0

)n

+∑
i≥1

( q2

2mdω0

)i(
an,i λ

ν(n,i)
k +O

(
λ

ν(n,i)+1
k

))]
, (4.100)

where the first term on the right hand side ∝ q2n is the harmonic term, and the anharmonic

corrections are expanded in powers of q2 which are denoted by i, with i ≥ 1. Every power i

appears with a minimum allowed power ν(n, i) of λk.

To study the behavior of ν(n, i), we first note that, for even k, the matrix element

〈Φn|eiqx|Φ0〉 is purely real or purely imaginary, depending on whether n is even or odd respec-

tively. For instance, if n is even, then b0 is purely real. Higher orders in λk lead to insertions of

(a+a†)k and therefore matrix elements where the difference in the harmonic oscillator states is

also even, so that all coefficients b j are real in this case. But for odd k, the b j coefficients will

alternate in being real and imaginary. This changes the structure of the squared matrix element

depending on k, as we will see below.

Odd k: We will first consider odd k. In this case, the squared matrix element can be
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written as,

|〈Φn|eiqx|Φ0〉|2 ∼ |b0 +λ
2
k b2 +λ

4
k b4 + ...|2

+ |λkb1 +λ
3
k b3 + ...|2 (4.101)

∼ |b0|2 +λ
2
k (|b1|2 +(b0b∗2 +b∗0b2))

+λ
4
k (|b2|2 +(b0b∗4 +b∗0b4)+(b1b∗3 +b∗1b3))

+O(λ 6
k ) (4.102)

∼ e−
q2

2mdω0

[ 1
n!

( q2

2mdω0

)n

+λ
2
k

{( q2

2mdω0

)n−k
+
( q2

2mdω0

)n−k+1

+ ...+
( q2

2mdω0

)n+k}

+λ
4
k

{( q2

2mdω0

)n−2k
+
( q2

2mdω0

)n−2k+1

+ ...+
( q2

2mdω0

)n+2k}
+O(λ 6

k )
]
. (4.103)

Thus we see that we get corrections at even orders in λk, with the lowest non-zero power being

λ 2
k . In general, at O(λ

j
k ) for an even j = 2 j′, the lowest power of q2 is n− ( j′× k), and the

highest power is n+( j′× k). Note that only terms with positive powers of q2 are present. The

term ∝ q2 can also subtly cancel in some cases as there is no term ∝ q0 in coefficients b j. We

will deal with this case later below. But to get a power i > 1 of q2, the lowest non-zero j′ is

d |n−i|
k e, with the lowest j given by 2×d |n−i|

k e. Thus, in the squared matrix element, the lowest

non-zero power ν(n, i) required is given by,

ν(n, i) = max
(

2×d|n− i|
k
e , 2

)
. (4.104)

To get the lowest power i = 1 of q2 i.e. the term ∝ q2, the only possible way is to get

the term ∝ q1 in the coefficient b j as there is no term ∝ q0. For odd n, the term ∝ q1 in b j can
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only be generated at an even j, since that is the only way to satisfy n− jk = 1. For every even

j = 2 j′, the powers of q in b j range from n− (2k)× j′ to n+(2k)× j′. The lowest j′ to get a

term ∝ q1 is then given by d |n−1|
2k e, with j given by 2×d |n−1|

2k e. For an even n, the term ∝ q1 in

b j can only be generated for an odd j. For every odd j = 2 j′−1, the lowest power of q in b j is

n+ k− (2k)× j′. The lowest j′ to get a term ∝ q1 is then given by d |n+k−1|
2k e, with j given by

2×d |n+k−1|
2k e−1. In the squared matrix element, the lowest non-zero power ν(n,1) required is

given by,

ν(n,1) =





max
(

4×d |n−1|
2k e , 2

)
for odd n

4×d |n+k−1|
2k e−2 for even n

(4.105)

Even k: Now we consider even k. In this case, the squared matrix element is,

|〈Φn|eiqx|Φ0〉|2 ∼ |b0 +λkb1 +λ
2
k b2 + ...|2 (4.106)

∼ |b0|2 +λk((b0b∗1 +b∗0b1))

+λ
2
k (|b1|2 +(b0b∗2 +b∗0b2)+O(λ 3

k ) (4.107)

∼ e−
q2

2mdω0

[ 1
n!

( q2

2mdω0

)n

+λk

{( q2

2mdω0

)n−k/2
+
( q2

2mdω0

)n−k/2+1

+ ...+
( q2

2mdω0

)n+k/2}

+λ
2
k

{( q2

2mdω0

)n−k
+
( q2

2mdω0

)n−k+1

+ ...+
( q2

2mdω0

)n+k}
+O(λ 3

k )
]
. (4.108)

Thus we see that we get corrections at all orders in λk, with the lowest non-zero power being

λk. In general, at O(λ
j

k ), the lowest power of q2 is n− ( j× k)/2, and the highest power is

n+( j× k)/2. Following similar arguments to the case of odd k discussed earlier, ν(n, i) for
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i > 1 is given by,

ν(n, i) = max
(
d|n− i|

k/2
e , 1

)
. (4.109)

Another difference between the case of even k considered here and that of odd k is that

we do not get an i = 1 term for even n, as all terms in the coefficients b j contain even powers of

q. This means that the leading term will always go as q4, with a λk power determined by (4.109)

for i = 2. For odd n, the lowest power of q in b j is n−k× j. Thus, in the squared matrix element,

the lowest non-zero power ν(n,1) required is given by,

ν(n,1) = max
(

2×d|n−1|
k
e , 1

)
. (4.110)

The calculations in this appendix up to this point consider the overall scaling behavior

of the powers of q2 and λk in the squared matrix element. We have neglected combinatorial

factors at several steps in the calculations that enter into the numerical coefficients an,i in (4.100).

Sometimes, the numerical coefficients can also cancel with each other, and the naive leading

behavior estimated in this section can vanish. In order to give concrete examples of the numerical

coefficients, we perform explicit calculations of the squared matrix element using perturbation

theory with k = 3 (i.e. a cubic perturbation), and phonon numbers n = 1, 2, 3, and 4. We

perform this explicit calculation only up to O(λ 2
3 ). The results of various numerical coefficients

are presented below.

For a single-phonon production (i.e. n = 1), the coefficients an,i are given by,

a1,1 = 44 (4.111)

a1,2 =−82 (4.112)

a1,3 = 5. (4.113)
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For a two-phonon production (i.e. n = 2), the coefficients are given by,

a2,1 = 8 (4.114)

a2,2 = 59 (4.115)

a2,3 =−56 (4.116)

a2,4 = 2.5. (4.117)

For a three-phonon production (i.e. n = 3), the coefficients are,

a3,2 = 18 (4.118)

a3,3 = 37 (4.119)

a3,4 =−23.04 (4.120)

a3,5 = 0.77. (4.121)

Note that we do not show the coefficient a3,1 as it appears at O(λ 4
3 ). Finally, for a four-phonon

production (i.e. n = 4), the coefficients are evaluated to be,

a4,1 = 0 (4.122)

a4,2 = 0 (4.123)

a4,3 = 0.097 (4.124)

a4,4 = 0.05 (4.125)

a4,5 =−0.012 (4.126)

a4,6 = 1.81×10−4. (4.127)

Note that the coefficients a4,1 and a4,2 amount to zero because of a numerical cancellation

between the two terms in the b1 coefficient in Eq. 4.96. The leading behavior of the terms
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proportional to q2 and q4 in the structure factor is instead q2λ 6
3 and q4λ 4

3 , respectively.

As these numerical coefficients appear through combinations and interferences of several

combinatorial factors at various steps of the calculation, it is hard to provide a general expression

for them. By looking at the examples above however, we can make some general observations.

Typically, we see that the coefficients follow a pyramid structure, with an,i being the largest for i

near n, and decreasing with i away from n. We also find that the coefficients can vary by orders of

magnitude from each other. The terms with i near n receive contributions from several individual

matrix elements, and in general seem to be larger. We expect to see this pattern continue for

higher phonon numbers as well. The exact values of these coefficients play a role in determining

where the anharmonic corrections dominate, and so our power counting approach only gives an

O(1) estimate.

4.C Impulse approximation

In Sec. 4.3.3, we calculated the structure factor via the saddle point approximation in

the regime defined by (4.52). This regime corresponded to values of ω near q2

2m and within the

Gaussian width of (4.63). As discussed in the main text, in order to calculate the tail of the

structure factor far from ω = q2

2m , more expansion terms are needed in f . Here we discuss this

extension of the impulse approximation.

First, in the special case of a harmonic potential, we can start from the full result in

Eq. (4.35). After rewriting the energy conservation delta function as a time integral, we find that

f (t) =−iωt +
q2

2mdω0
(eiω0t−1) (4.128)

Solving f ′(t) = 0 gives the exact result

tI =
i

ω0
ln
(

q2

2mdω

)
. (4.129)
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Using the saddle point approximation for ω � ω0, we find

Stoy,d(q,ω)∼ 1√
ωω0

e−2Wtoy(q)
(

q2

2mω

) ω

ω0
e

ω

ω0 . (4.130)

The same result can also be derived by approximating the sum over phonon states as an integral in

Eq. (4.35). The saddle point approximation for the harmonic oscillator holds as long as ω � ω0,

and we no longer have a condition on how close ω is to q2

2m . In the impulse regime, ω ∼ q2

2m , one

can check that it reduces to the previous result in Eq. (4.63). We see in this exact result that the

tail at large ω is Poissonian instead of Gaussian.

For general potentials, this exact analytic result is no longer possible, but we can still

calculate corrections to the tail. First, we start by giving the exact saddle point equation:

0 = f ′(tI) =−i
(

E0 +ω− q2

2m

)
+ i

〈
H ′eiH ′tI

〉

〈
eiH ′tI

〉 (4.131)

which is valid at all orders. We begin by noticing that saddle point equation (4.131) is satisfied

exactly at ω = q2

2m by tI = 0. Then, ω-derivatives of tI at ω = q2

2m can be found by taking ω-

derivatives of (4.131) and solving for t(n)I [ω = q2

2m ]. This allows us to calculate tI[ω = q2

2m ] in an
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iterative fashion. The first few terms are

tI[
q2

2m
] = 0

t ′I[
q2

2m
] =

i
〈H ′〉2−〈H ′2〉

t ′′I [
q2

2m
] = i
−2〈H ′〉3 +3〈H ′〉〈H ′2〉−〈H ′3〉

(
〈H ′〉2−〈H ′2〉

)3

t(3)I [
q2

2m
] =

i
(
〈H ′〉2−〈H ′2〉

)5×
(

6〈H ′〉6−18〈H ′〉4〈H ′2〉+3〈H ′2〉3

+8〈H ′〉3〈H ′3〉−14〈H ′〉〈H ′2〉〈H ′3〉 (4.132)

+3〈H ′3〉2−〈H ′2〉〈H ′4〉

+ 〈H ′2〉
(
12〈H ′2〉2 + 〈H ′4〉

))

where t(n)I denotes the nth ω-derivative of tI . In the harmonic case, this series resums to (4.129).

For general potentials, one can then use the expansions (4.60) and (4.132) to calculate

Stoy,d(q,ω)≈
√

2π

− f ′′(tI)
e f (tI) (4.133)

to a desired order.

4.D Exact results for Morse potential

The Morse potential is a special case of an anharmonic potential where the structure

factor is analytically solvable. We will use this case to illustrate the behavior of the structure

factor discussed in Sec. 4.3.2. We also use it to validate the numerical calculations used in our

final results and check the validity of the impulse approximation in the regime where there are

n > 10 phonons.
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Figure 4.11. Comparison of analytic structure factor in the Morse potential and the numerical
calculation for Si as described in Sec. 4.4. We find that the two methods give almost the same
result due to the fact that the Morse potential well approximates the single-atom potential along
the nearest-neighbor direction.
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Figure 4.12. ω-dependence of structure factor for the Morse potential: Comparison of the
Morse (dashed rainbow) and harmonic (solid rainbow) structure factor contributions from each
individual excited state. The solid black line is the sum of contributions from the Morse potential,
and dotted is the impulse envelope. Even though the energies of each individual Morse excited
state are perturbed, the total structure factor remains essentially unchanged from the harmonic
result. The small shift of order ω0 between the exact result and impulse approximation results
from dropping higher order terms in the impulse approximation as discussed in Sec. 4.3.3 and
App. 4.C.

The Morse potential is defined as

VMorse = B
(

e−2ax−2e−ax
)
, (4.134)

where a is a parameter controlling the width of the potential and B is the normalization. Expand-

ing this potential in powers of x gives

VMorse =−B+Ba2x2−Ba3x3 +
7

12
Ba4x4 + ... (4.135)

Matching the quadratic and the cubic terms with (4.26), we find that

a =−4λ3
√

2mω0 (4.136)

B =
ω0

64λ 2
3
. (4.137)
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Note that the Morse potential has fewer free parameters than the anharmonic potential up

to fourth order in the displacements, so we cannot simultaneously fit λ4. Nonetheless, the

realistic potential as obtained App. 4.A are well approximated by this Morse potential due to the

dominance and Morse-like behavior of the fR and fA terms in the Tersoff part of the potential.

The Morse potential approximation of our anharmonic potential is then given by

VMorse =
ω0

64λ 2
M

(
e8λM

√
2mω0−2e4λM

√
2mω0x

)
, (4.138)

where we take λM = λ3 in order to fit up to third order anharmonicities. In this potential, the

structure factor (4.68) is exactly calculable since the Morse eigenstates and eigenenergies are

known analytically. These results [122] give squared matrix elements between the ground state

and nth excited state of

|〈Φn|eiqx|Φ0〉|2 =
(2K−2n−1)(2K−1)

n!Γ(2K)Γ(2K−n)

×

∣∣∣∣∣∣
Γ(n+ i(q/

√
2mω0)

4λM
)Γ(2K + i(q/

√
2mω0)

4λM
−n−1)

Γ( iq/
√

2mω0
4λM

)

∣∣∣∣∣∣

2

, (4.139)

with energy gaps

En−E0 =
(
n− n(1+n)

2K

)
ω0, (4.140)

where K = 1
32λ 2

M
.

Note that these formulae are only valid for n < K− 1
2 since above this excited state,

the eigenstates are unbound and have a different analytic form. For λM ∼ 0.01, this condition

requires n . 312, which corresponds to an energy gap of O(eV). Recoil energies at this scale

are comparable to the size of a typical lattice potential well and thus the free nuclear recoil

approximation holds. Then, for typical anharmonicity strengths, the discrete states of the Morse

potential that we have used in this analysis are sufficient to estimate the anharmonic effect in the

multiphonon scattering regime.
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Putting together expressions (4.139)-(4.146), (4.68), and (4.72) we can calculate the

structure factor in the Morse potential in both the large and small q regime. We show these

results for λM = λ3 in Figs. 4.11 and 4.12. Fig. 4.11 provides a check for our numerical results

in Sec. 4.4. Here we see that the numerical calculations and corresponding analytic Morse

results are almost identical. There is a modified q scaling of the structure factor compared

to the harmonic case, as was already illustrated in Fig. 4.7. We can also obtain this behavior

analytically with the Morse potential. Expanding the expression (4.139) to leading order in q

and subsequently in λM, we get explicitly,

|〈2|eiqx|0〉|2 = 8λ
2
Mq2 + . . . (4.141)

|〈3|eiqx|0〉|2 = 512
3

λ
4
Mq2 + . . . (4.142)

|〈4|eiqx|0〉|2 = 6144λ
6
Mq2 + . . . , (4.143)

|〈5|eiqx|0〉|2 = 1572864
5

λ
8
Mq2 + . . . , (4.144)

|〈6|eiqx|0〉|2 = 20971520λ
10
M q2 + . . . , (4.145)

where the ellipses include higher orders in both q and λM. The leading λM scalings are consistent

with those illustrated in Fig. 4.4 for n = 2 and 3. For n = 4, the leading λM scaling differs from

the power counting in Fig. 4.4, but matches with the explicit results obtained using perturbation

theory as presented in Appendix 4.B. An exact numerical cancellation modifies the leading

behavior to λ 6
Mq2. We see that the leading behavior in q,λM for n > 4 also differs from the

x3-theory power counting, suggesting a generic presence of cancellations at lower orders of λ3

for the q2 dependence.

In Fig. 4.12, we demonstrate that the impulse approximation remains robust for q�
√

2mdω0 and n > 10 excited states. Note that we can also calculate corrections to 〈p2〉 in the

Morse ground state exactly:

〈p2〉= mω0

2
(1−16λ

2
M), (4.146)
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which is used in the impulse regime result (4.63). The impulse result is almost identical between

the Morse and harmonic cases, since the Gaussian width is only corrected at order λ 2
M, which is

∼ 10−4. This is also borne out in the full calculation of the structure factor shown in Fig. 4.12.
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Chapter 5

Signals of primordial black holes at gravi-
tational wave interferometers

5.1 Abstract

Primordial black holes (PBHs) can form as a result of primordial scalar perturbations at

small scales. This PBH formation scenario has associated gravitational wave (GW) signatures

from second-order GWs induced by the primordial curvature perturbation, and from GWs

produced during an early PBH dominated era. We investigate the ability of next generation GW

experiments, including BBO, LISA, and CE, to probe this PBH formation scenario in a wide

mass range. Measuring the stochastic GW background with GW observatories can constrain

the allowed parameter space of PBHs for masses 109 - 1027 g. We also discuss possible GW

sources from an unconstrained region where light PBHs (< 109g) temporarily dominate the

energy density of the universe before evaporating. We show how PBH formation impacts the

reach of GW observatories to the primordial power spectrum and provide constraints implied by

existing PBH bounds.

5.2 Introduction

Primordial black holes (PBHs) may play an interesting role in astrophysics and cos-

mology [123, 124]. Much attention has been paid recently to the possibility of PBHs as dark
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matter (DM) and as an explanation of recent LIGO/VIRGO [46] gravitational wave (GW)

observations [125]. Such PBHs would need to be heavy enough to avoid Hawking evapo-

ration on timescales comparable to the age of the Universe. Alternatively, there may have

existed a significant population of light PBHs, which would have Hawking evaporated at

early times. Though not corresponding to an observable PBH population today, light evap-

orating PBHs can be tied to other interesting phenomena, such as an early period of PBH

domination [126, 127], baryogenesis [128, 129, 130, 131, 132], the production of dark radia-

tion [127, 128, 129, 133, 134, 135, 131, 132], and perhaps the production of the observed DM

density, either as a product of Hawking radiation [127, 128, 129, 133, 134, 135] or if evap-

oration ends in a stable relic [136, 137, 138, 139]. Such scenarios are challenging to probe.

However, gravitational wave observations at interferometers can provide important insight into

the formation and abundance of both evaporating and long-lived PBHs produced in the early

Universe.

In this work, we will study the prospects for future GW interferometers to detect a gravi-

tational wave background associated with PBH formation and, possibly, black hole domination,

across a wide range of mass scales. The most well-studied PBH production mechanism is the

collapse of primordial density perturbations from inflation. In this context, a sizable density

perturbation associated with the formation of PBHs can source a stochastic GW background

at second order in cosmological perturbation theory [140, 141, 142, 143, 144, 145, 146, 147].

Additionally, if the density perturbations are large enough to generate a substantial population

of PBHs, a period of PBH domination can ensue, which provides additional mechanisms for

producing primordial GWs. Such mechanisms have been the study of recent works including

[148, 149, 150, 151]. We will elucidate on the combined impact of these sources in what follows.

There is a large corpus of existing literature dealing with GWs associated with PBH

formation. Our study complements this past work in several ways. For one, we incorporate a

treatment of the effects of a possible PBH-dominated era, which provides several additional

mechanisms for generating GWs and affects the observational prospects. Secondly, we study
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a larger range of PBH masses than is often considered, including very light PBHs which are

sometimes neglected due to their evaporation at early times. Thirdly, we incorporate a state-of-

the-art treatment relating the underlying inflationary perturbations to the resulting PBH mass

spectrum and subsequent evolution. Finally, we present our results in a unified way alongside

other observational constraints and prospects, facilitating a clear comparison of the corresponding

GW interferometer reach to that of other observations sensitive to evaporating or long-lived

PBHs.

Our study focuses on PBHs for which the underlying inflationary perturbations, or the

effects of PBH domination, give rise to signals at GW interferometers. This occurs for sub-

solar mass PBHs (assuming that the mass spectrum is approximately monochromatic), and

so we will show results for masses below ∼ 1030 g. It is important to note, however, that

heavier PBHs with masses above ∼ 1030 g can also induce an observable GW signal through

various mechanisms. There is a vast corresponding literature covering this regime as well,

especially in the context of the observed LIGO/VIRGO mergers (see e.g. [46, 152, 153]) and

recent NANOGrav results [154, 155, 156, 157]. Such scenarios can also induce GW signals at

interferometers if the mass function is sufficiently extended or the corresponding inflationary

perturbations approximately scale-invariant [158], but we will not consider this possibility further,

focusing instead on PBH populations with a nearly monochromatic mass function peaked well

below the solar-mass regime.

Our study is organized as follows. Section 5.3 discusses various aspects of primordial

black hole cosmology, and introduces the relevant parameter space. Section 5.4 details the

relationship between the assumed underlying inflationary perturbations and the resulting black

hole mass spectrum. Section 5.5 describes the various stochastic GW sources relevant at

interferometer scales, including GWs from the formation and evaporation of PBHs, while the

resulting observational prospects are discussed alongside other astrophysical and cosmological

probes in Section 5.6. We conclude in Section 5.7. Our final results are summarized in Figs. 5.6-

5.7.
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5.3 Primordial Black Hole Cosmology

Primordial black holes could have meaningfully impacted our cosmic history in several

ways. Depending on their mass and initial abundance, they may have led to an early period

of black hole domination (BHD), injected entropy (including a possible dark radiation com-

ponent [127]) as they evaporated, or survived long enough to constitute some fraction of the

observed dark matter density. In this section, we discuss these various possibilities in the context

of the PBH parameter space, compared with current constraints on PBHs.

We will describe the PBH parameter space in terms of characteristic mass mBH and an

initial fraction of the total energy density at time t?, with

β =
ρBH,?

ρr,?
. (5.1)

Here ρr,? is the energy density in radiation at that time, and we will assume throughout that PBHs

are formed in the early radiation-dominated FRW universe.

There are several mechanisms that could in principle give rise to an abundance of PBHs,

but the most well-studied is the collapse of density fluctuations from inflation, whereby PBHs

are formed when a large scalar perturbation enters the horizon. We will assume this mechanism

throughout, taking a primordial curvature perturbation power spectrum that is peaked at a

characteristic comoving wavenumber k?. We take t? to be the time when the mode k? enters the

horizon, which is defined by the condition k? ≡ a?H?, with a?, H? the FRW scale factor and

Hubble parameter at horizon entry. The PBH mass is proportional to the horizon mass at this

time:

mBH =
4πγeff

3
ρr,?H−3

? , (5.2)

where γeff is an O(1) prefactor inferred from numerical simulations and dependent on the

spectrum of the primordial curvature perturbation. For a review on PBH formation and discussion

of this γ parameter, see Refs. [160, 161, 124, 162], and references therein. It is important to note
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Figure 5.1. Range of PBH mass and β ′ considered in this work. β ′ is proportional to β , the initial
fractional energy density in PBHs; see (5.3). The shaded region shows observational constraints
for a monochromatic mass function, see text. The solid lines delineate different regimes of PBH
cosmology, while the dashed line is where PBHs comprise all of the observed DM. The dotted
lines are where Hawking radiation of the PBHs into particle DM produces ΩDMh2 ' 0.1; the
two lines shown are for DM mass of 109 GeV and 1013 GeV [127]. The dash-dotted line is where
Planck-scale relics from BHs make up all of the DM [159].
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that our γeff differs from the value of γ ∼ 0.2 which appears sometimes in the literature. The

difference arises from the fact that we define the PBH initial conditions at horizon entry of the

mode k?, but more realistically, PBH formation happens over an extended period of time. In

addition, the PBHs form with a distribution of masses, and here mBH is defined by fitting to a

lognormal mass distribution, given in (5.21). Examples of the PBH mass function and details

about the time-dependent formation rate will be provided in Sec. 5.4. For now, we emphasize that

the value of γeff depends on the amplitude and shape of the primordial curvature perturbation.

Both γeff and g?, the number of relativistic degrees of freedom at PBH formation, will

enter into a number of quantities, making it useful to define the parameter

β
′ ≡√γeff

( g?
106.75

)−1/4
(

h
0.68

)−2

β , (5.3)

where h is the dimensionless Hubble constant. Throughout this paper, we will generally suppress

h dependence of quantities and use h = 0.68. In particular, the definition above is useful is

because the relic density of long-lived PBHs is proportional to β ′. We thus follow the convention

of plotting observational constraints in terms of β ′ vs. mBH, and can thereby directly use the

constraints of Ref. [160].

Assuming radiation domination, the temperature associated with t? is

T? = 3×108 GeV
√

γeff

(
1015g
mBH

)1/2(106.75
g?

)1/4

. (5.4)

Depending on the primordial power spectrum, the actual times associated with PBH formation

will be slightly different from t?. As discussed above, this leads to different characteristic PBH

masses, but these effects can be captured by the γeff parameter. Requiring T? to be below a reheat

scale TRH ∼
√

HIMpl with the scale of inflation HI . 1014 GeV implies that mBH & 1 g, while

requiring T? to be well above BBN temperatures implies mBH . 1034 g.

The relationship between mBH and k? can be derived by redshifting back from the present
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day. If β ′ is sufficiently small such that the PBHs never dominate the energy density, then

k? '
5.4×1015

Mpc
√

γeff

(
1015g
mBH

)1/2

, β
′ < β

′
min, (5.5)

where we have neglected the (mild) dependence on g? in this equation. βmin defines the condition

for black hole domination, which we will give below in (5.9).

Throughout this study, we will approximate the PBH mass distribution as approximately

monochromatic. The formation scenarios we consider have sufficiently small width in the PBH

mass function, such that observational constraints and cosmological evolution are expected to be

modified only at the O(1) level by including a full mass function. We will also neglect the effect

of mergers and accretion, so that once formed, the PBHs maintain an approximately fixed mass

until they begin to evaporate. Given these assumptions, the subsequent cosmological evolution

of the PBH population is governed by the parameters mBH and β ′. We can therefore map the

mBH−β ′ plane into different cosmological scenarios, as shown in Fig. 5.1. In this paper, we

will further map the gravitational wave reach from interferometers onto this plane.

Fig. 5.1 shows three qualitatively different scenarios: in the bottom right of the mBH−β ′

plane, PBHs are long-lived enough to exist today. The region to the left of the blue vertical line

features PBHs that would have evaporated by today, while the upper left corner supports an

early black hole-dominated epoch. The gray shaded parameter space is excluded by existing

constraints. Note that for the parameter space shown, there is (or was) at least one PBH formed

in our observable universe. We discuss each of these regions in turn below.

5.3.1 Long-lived PBHs

In the bottom right portion of the parameter space in Fig. 5.1, the PBHs are heavy and the

initial abundance relatively small. Hawking radiation inevitably depletes the energy density of

PBHs. However, the evaporation rate dmBH/dt ∝ 1/m2
BH, so that heavy PBHs evaporate slowly.

Sufficiently heavy PBHs can have lifetimes longer than the age of the Universe and exist as a
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(meta-)stable relic today, making up a fraction (or all) of the observed dark matter density. The

evaporation time tevap for sufficiently heavy black holes is given approximately by [127]

tevap ' 4×10−4s×
(

mBH

108 g

)3

(5.6)

assuming only photons and neutrinos are emitted (the other SM degrees of freedom are too heavy

to be thermally produced via Hawking evaporation of long-lived heavy PBHs, since the Hawking

radiation temperature is inversely proportional to mBH). From this, we see that PBHs will have

lifetimes longer than the age of the Universe provided mBH & 4×1014g. This region lies to the

right of the blue vertical line in Fig. 5.1.

The long-lived population of PBHs can serve as a viable dark matter candidate. Since

the effects of evaporation are negligible in this mass range, the energy density of PBHs simply

redshifts as matter, ρBH ∝ a−3 with a the FRW scale factor. Using entropy conservation, the

PBH relic density today is given by

ΩBH ≈ 1.4×1017
β
′
(

1015g
mBH

)1/2

. (5.7)

The parameter values where PBHs are long-lived and satisfy ΩBHh2 ' 0.12 with h = 0.68 is

indicated by the black dashed line in Fig. 5.1, and provides a particularly compelling target for

GW interferometers and other astrophysical probes, as is well known (see e.g. [163, 164, 165]).

Above the DM line in Fig. 5.1, the relic abundance of PBHs is too large and leads to overclosure.

This is the strongest bound on the large-β region for mBH ∼ 1017−1023 g.

5.3.2 Evaporating PBHs

To the left of the blue vertical line in Fig. 5.1, mBH < 4× 1014g and PBHs are light

enough to evaporate on timescales smaller than the age of the Universe. In this regime, PBHs

themselves are no longer a viable DM candidate, but can have other interesting effects. For
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example, in Refs. [133, 127], it was shown that evaporating PBHs could source a significant

amount of dark radiation. The same work also pointed out that PBH evaporation can also provide

a non-thermal production mechanism for heavy DM candidates, potentially giving rise to the

observed DM density. The dotted lines indicate the parameters which produce ΩDMh2 ' 0.1

for particle DM mass of 109 GeV (lower line) and 1013 GeV (upper line). Furthermore, it has

been suggested that quantum gravity effects may halt PBH evaporation near the Planck scale,

leaving behind a cold ∼Planck mass relic which is a possible DM candidate [166, 167]. The

dash-dotted line in Fig. 5.1 indicates the parameters required for the Planck-scale remnants to

produce ΩDMh2 ' 0.1.

5.3.3 Early black hole domination

Even if the PBHs evaporate away, if the primordial curvature perturbation is large enough,

there will be a period of early black hole domination (BHD). Whether or not BHD occurs depends

on if the energy density in black holes grows enough before they evaporate, so the minimum

value of β for BHD is given by the ratio TRH/T?, where the reheating temperature TRH is the

temperature at the time of black hole evaporation (5.6). Assuming matter domination, we find

TRH = 2.8×104 GeV
(

mBH

104g

)−3/2

, (5.8)

so our condition on the energy density for a BHD era is

β
′
min ' 3×10−10

(
104g
mBH

)
. (5.9)

For simplicity, we have suppressed the dependence on degrees of freedom and on h.

For β ′ > β ′min, there is an additional BHD era where the scale factor evolves as in a

matter-dominated era. This changes the relationship between the scale k? and black hole mass
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mBH, which now has β ′ dependence:

k? =
2.4×1020

Mpc
√

γeff

(
10−7

β ′

)1/3(104 g
mBH

)5/6

, β
′ > β

′
min (5.10)

since β ′ determines the time of the onset of a BHD era. In this region of parameter space, any

gravitational waves generated at the time of PBH formation will be diluted by an additional

redshifting factor given by

aRH

aBHD
= 2.4×103

(
β ′

10−7

)4/3(mBH

104 g

)4/3

. (5.11)

This has a significant impact on experimental reach from gravitational wave interferometers if

mBH < 109 g and β ′ > β ′min.

5.3.4 Constraints

Aside from the overclosure constraint, we show combined observational constraints

on PBHs from Ref. [160]. These bounds are for a monochromatic mass function, and the

observational constraints can change significantly for PBHs with extended mass functions and

large enough widths [168]. In this work, we will restrict to formation scenarios where the width

of the PBH mass function is not too large, such that constraints are not drastically different. We

will discuss the width of the PBH mass function further in the following section.

We now briefly summarize where the constraints come from. If 109 g<mBH < 4×1014 g,

then PBHs will evaporate during or after Big Bang Nucleosynthesis (BBN), but before today.

This leads to injection of high energy particles that can impact BBN or the cosmic microwave

background (CMB). These effects are the source of the strong constraints on β in the parameter

space for evaporating BHs. The bounds are again taken from Ref. [160], although note that the

BBN bounds have been updated in more recent work [169]. Bounds from observations of CMB

anisotropies are strongest in the mass range of 3×1013 g to 2×1014 g, see for example Ref. [170].
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For long-lived PBHs with mass 1014 g . mBH . 1017 g, the bounds come from various galactic

and extragalactic probes of cosmic rays or gamma rays produced in the Hawking radiation. More

recent work has obtained stronger constraints with data from the INTEGRAL satellite [171].

At higher masses, there are constraints from lensing by PBHs. For 1023 g . mBH . 1028 g,

shown here are recently updated bounds [172] based on Subaru/HSC observations [173]. For

1028 g . mBH . 1030 g, OGLE bounds [174] are shown.

5.4 Primordial black holes from Curvature Perturbations

In this work, we assume PBHs formed due to primordial curvature perturbations with

Gaussian statistics. In cases with non-Gaussianity, the same curvature perturbation amplitude

gives a larger energy density in PBHs [175]. We will consider a monochromatic curvature

perturbation

P(k) = Aδ (log(k/k?)) , (5.12)

as well as a more realistic initial Gaussian perturbation

P(k) =
A√

2πσ2
exp
(
− log2(k/k?)

2σ2

)
. (5.13)

It has been shown in [176] that the maximum primordial curvature perturbation slope is ∝ k4 for

single-field inflation, so only a Gaussian with σ & 1 can result in this case. Multi-field inflation

[177, 178, 179, 180] is required for growths steeper than k4, which corresponds to a lognormal

curvature perturbation of σ < 1. We will restrict to σ ≤ 2 so that we can treat the black holes

as forming at approximately the same time and so that we can compare with observational

constraints on PBHs with nearly monochromatic mass functions.

In the section, we relate the primordial perturbations to the abundance and mass spectrum

of the black holes, which can then be translated into parameters β and γeff defined in Sec. 5.3.
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Because PBHs are forming from rare overdensities over the vast majority of the parameter

space, the relationship between the primordial curvature perturbation and the PBH mass function

depends sensitively on the treatment for the collapse of density fluctuations. There is an enormous

literature dedicated to this topic, with varying results. Here we consider the Press-Schechter

formalism with the parameters given in [162]. As shown in [162, 181], this gives a relationship

between BH mass spectra and curvature perturbation that is consistent with other treatments of

PBH formation, namely peaks theory and variations thereof.

In the Press-Schechter formalism, PBHs are formed whenever the density contrast

exceeds a certain threshold. Therefore the initial energy density can be simply related to the

probability distribution for density contrasts. Consider black holes formed at a particular time

corresponding to a horizon size R. The initial fraction of the energy density in those black holes

is given by

βR = 2
∫

∞

Cc

dC
m

MH(R)
p(C), (5.14)

where MH(R) is the horizon mass and C is a smoothed density contrast, defined below. p(C)

is the probability distribution for C, and the lower limit Cc is related to the density contrast

threshold required for PBH formation. The black hole mass is related to the density contrast and

horizon mass at formation by the critical collapse scaling relation:

m = MH(R)K(C−Cc)
γ , (5.15)

where K and γ are constants determined via numerical simulation. Here we use K = 10,Cc = 2.5,

and γ = 0.36. The critical collapse relationship allows us to recast the integrand of (5.14) as

a function of black hole mass m, which gives us the mass function of black holes formed at a

certain horizon size, dβR/dm.

To relate the curvature power spectrum in Fourier space to density contrasts in real space,

we must smooth the power spectrum on horizon scales R with window function W (k,R). The
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variance of density contrasts on a scale R is given by

σ
2
0 =

∫
∞

0

dk
k

16
81

(kR)4W 2(k,R)P(k). (5.16)

In Press-Schechter, the probability density for density contrasts is given in terms of this variance:

p(C) =
1√

2πσ0
e
− C2

2σ2
0 . (5.17)

Note that the probability density p(C) depends on the horizon size, which appears in the

calculation of σ0 through the smoothing of the primordial power spectrum. It has been noted

that different choices of window functions can give rise to quite different required amplitudes

for PBH formation [182], but [162] resolves these issues and shows that these differences are

< 10% if one uses consistent quantities for smoothing and threshold density contrasts. In these

calculations, we use the Gaussian window function.

The total effective energy density fraction in black holes is obtained by integrating (5.14)

over PBHs formed at all horizon sizes, multiplied by a redshifting factor to account for the fact

the black holes are forming in a radiation dominated era

β (t) =
∫

∞

0

dR
R

R(t)
R

βR, (5.18)

where R is the horizon size. Note that this is slightly different from the true energy density at t,

since integrating over all horizon sizes includes black holes forming at times greater than t. This

is a negligible difference when evaluated at t?, since most black holes form before t?. Recall that

the β parameter introduced in (5.1) is the effective PBH energy density evaluated at the horizon

entry for the mode k?, and thus corresponds to β (t?)≡ β?. Evaluating β? from (5.18), we find
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that the relationship to A is well-described by the following fitting function:

β? = aAbErfc
[

c√
A

]
, (5.19)

where the fit parameters a,b,c will vary with the curvature perturbation width. Concretely,

a = 5.47,b = 0.51,c = 0.28 for the monochromatic case; a = 14.3,b = 0.66,c = 0.47 for a

Gaussian perturbation with σ = 1; and a = 36.0,b = 0.91,c = 0.64 for a Gaussian perturbation

with σ = 2.
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The PBH mass function is given by

1
β (t)

dβ (t)
dm

. (5.20)

and can be obtained by writing βR as an integral over dβR/dm in (5.18). Examples of the

resulting mass functions are shown in Fig. 5.2. In order to compare to existing observational

bounds on PBHs with extended mass functions, we fit this mass distribution to a log-normal

mass function given by
1√

2πσmm
exp
(
− log2(m/mBH)

2σ2
m

)
. (5.21)

The fit value mBH is the characteristic black hole mass. mBH can be written as some pre-factor

γeff(σ ,A) times M? where M? = 4πρr,?H−3
? /3, the horizon mass corresponding to the entry of

the mode k?.

Fig. 5.3 shows that γeff is an O(few) number that decreases with increasing curvature

perturbation width and has a mild dependence on A. The width of the mass function, σm, also

grows with the curvature perturbation width and A. For example, in Fig. 5.3, σm ranges from 0.4

to 1.1 going from a monochromatic to σ = 2 primordial spectrum for typical β values of interest

for PBH observational constraints. Studies of PBH constraints with log-normal mass functions

have shown that for σm . 0.2, observational bounds on the PBHs are nearly identical to that of a

monochromatic mass function [168]. However, the shape of the constraints starts to deviate from

the monochromatic case for σm ∼ 1 and will be substantially different as σm is increased beyond

1. For this reason, we restrict to σ < 2 in the primordial power spectrum. Given the typical σm

values for these primordial perturbations, the observational bounds on monochromatic black

hole mass functions that we show from [168] are not exactly correct. In addition, some of the

formulae in Sec. 5.3, such as the early black hole domination condition, are also not exact in

the presence of an extended mass function. We neglect these model-dependent O(1) differences

given that we are working with many orders of magnitude in the total parameter space.
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Figure 5.3. PBH mass function parameters as a function of the amplitude A and width of the
primordial curvature spectrum. The peak BH mass is γeffM? and the width of the log-normal
distribution is σm. The dots indicate the A values to produce β? values of 10−7 and 10−14.
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5.5 Stochastic Gravitational Wave Spectrum

There are potentially multiple sources of stochastic gravitational waves associated with

these PBHs. Assuming PBHs form due to a large primordial scalar perturbation, then gravitational

waves can be generated at second-order in perturbation theory. These gravitational waves are

dominantly produced around the time of PBH formation, and will determine the sensitivity in the

absence of a BHD era. For sufficiently large density of PBHs such that there is a BHD era, then

there are several additional effects. First, there can again be large scalar perturbations during the

matter dominated-era due to the Poissonian distribution of PBHs, leading again to second-order

gravitational waves. There may also be contributions from PBH clustering and evaporation at

the end of a BHD era. These sources from the BHD era do not depend on the origin of the PBHs

being from scalar perturbations, but they do in principle depend on the resulting mass function

of the PBHs.

In this section, we detail each of these possible GW sources in turn. Note that aside

from what is discussed here, there could also be GWs from Hawking radiation and PBH

mergers [183, 184, 185, 186, 148, 187, 188], but these are generally at higher frequency and

cannot be detected by GW interferometers for most of the PBH mass range we focus on. The

GWs from mergers start to become detectable for some experiments at large masses near the

very edge of our plots, but this contribution is more relevant for studies on solar mass PBHs.

5.5.1 Second-order gravitational waves from primordial scalar perturba-
tions

Primordial scalar perturbations provide a source for the tensor modes at second order

in perturbation theory, as first noted in [189]. In this section, we review the result following

Ref. [190], and also account for differences in the parameter space where there is a black

hole dominated era. Again, we assume the primordial perturbations obey Gaussian statistics

throughout. For discussion of GWs resulting from non-Gaussian primordial perturbations, see
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Refs. [175, 163].

As derived in detail in, e.g., Refs. [146, 190, 191, 192, 193, 194], the equation of motion

for each tensor mode polarization is given by

h′′k(η)+2H h′k(η)+ k2hk(η) = 4Sk(η) (5.22)

where η is the conformal time, H = aH is conformal Hubble parameter, and Sk(η) is a source

term which depends quadratically on the first order scalar perturbations Φ. The tensor power

spectrum and primordial power are related to the tensors and scalars by

PGW(η ,k)δ 3(k+k′) =
k3

2π2 〈hk(η)hk′(η)〉, (5.23)

P(η ,k)δ 3(k+k′) =
k3

2π2 〈Φk(η)Φk′(η)〉. (5.24)

The measurable quantity is the GW energy density fraction per logarithmic wavelength, which is

given by

ΩGW =
1

24

(
k

a(η)H(η)

)2

PGW(η ,k) (5.25)

where we have summed over both polarization modes.

We begin by considering a long-lasting radiation dominated (RD) era after horizon entry

of the primordial perturbation. During radiation domination, the source term drops as 1/aγ with

γ ≈ 3 [146] while for a freely propagating tensor mode h ∝ 1/a. As a result, the power in the

tensor modes will mainly be generated at horizon entry of the primordial perturbation, and well

afterwards, they will behave as freely propagating gravitational waves. In this calculation, we

will focus on those modes that enter the horizon during radiation domination and first study

their evolution through RD. We will separately consider modes that enter the horizon during the

PBH-dominated era below.

The GW dimensionless power spectrum in pure radiation-dominated (RD) is given

172



by [190, 191, 194]

PGW(η ,k) = 2
∫

∞

0
dt
∫ 1

−1
dsP(kv)P(ku) I2(s, t,x)

×
[

t(2+ t)(s2−1)
(1− s+ t)(1+ s+ t)

]2

(5.26)

where P is the initial perturbation, u and v are defined as u = t+s+1
2 and v = t−s+1

2 , and x = ηk.

The I2 term arises from second order perturbation theory as an integral over some combination

of the Green’s function for tensors and the transfer functions for the scalar modes. To consider k

modes within the horizon such that the gravitational wave energy density is well-defined, we take

the limit x→ ∞ (or ηk� 1). In this limit and in a radiation-dominated era, I2 can be explicitly

written as

I2(s, t,x) =
288
x2

(s2 + t(2+ t)−5)4

(s2− (t +1)2)6

[
π2

4
Θ(t− (

√
3−1))

+

(
s2− (t +1)2

s2 + t(2+ t)−5
+

1
2

log
∣∣∣∣
−2+ t(2+ t)

3− s2

∣∣∣∣
)2
]
. (5.27)

From this result, we see that the power spectrum PGW scales as ∝
1

η2 in the ηk� 1 limit. Since

a(η)H(η) = 1
η

, we find that the GW energy density fraction in this limit is constant during RD:

Ω
RD
GW =

1
24

(kη)2PGW(η ,k)|x→∞ (5.28)

corresponding to freely-propagating modes. Note that all dependence on the degrees of freedom

is suppressed in the above equations and restored in the final expression below.

The GW spectrum in (5.28) applies during the early radiation dominated era. If there is

a BHD era before standard MRE, we must include an additional factor of a(ηBHD)/a(ηRH) to

account for the different scaling of the energy density in matter-dominated era. This factor is

just the ratio of scale factors between the beginning of black hole domination and the period of
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reheating at the end of black hole domination.

Redshifting the energy density to today, we obtain the final result for the second-order

GWs associated with the primordial perturbation:

ΩGW = 1.4Ωγ,0

(
10.75

g?

)1/3 1
24

(kη)2PGW(η ,k)|x→∞

×





1 β ′ < β ′min

a(ηBHD)
a(ηRH)

β ′ ≥ β ′min

. (5.29)

g? is degrees of freedom at the horizon entry of the k? mode, and Ωγ,0 is the abundance of

photons today. We emphasize again that this applies for modes which have entered the horizon

before PBH domination and therefore satisfy kηBHD & 1, or equivalently k & βk?. For the GWs

produced at PBH formation, the experimental reach is primarily from tensor modes that are near

the peak mode k? or a few orders of magnitude below, so this result will suffice for our purposes.

Dependence on primordial perturbation

For sufficiently narrow primordial spectra, the BH mass function will not depend much

on the details of the shape or width of the spectrum. The situation is quite different for the GW

spectrum discussed in this section, however, where the infrared tail is quite sensitive to the width

of the primordial spectrum.

Fig. 5.4 shows the GW spectrum for a monochromatic perturbation as well as Gaussians

with a range of widths. For the monochromatic case, the spectrum goes as k2 for k � k?.

However, for a Gaussian primordial perturbation with width σ , the slope of the GW spectrum

goes as k2 for σk? . k . k?, and goes as k3 for k . σk? as also shown in [195]. The k3 tail

is a generic feature of gravitational waves produced at second order in a radiation dominated

universe, as long as we have perturbations satisfying the conditions given in Ref. [196]. The

important conditions here are that the source has finite width and that the k must be less than

all characteristic scales associated with the source. The monochromatic case of course never
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Figure 5.4. Gravitational wave spectrum induced at second order from the primordial scalar
perturbations. ΩGW is the energy density per logarithmic wavelength today. The different lines
show the dependence on the width of primordial curvature power spectrum, σ . For reference, we
take A = 0.003, k? = 1018 Mpc−1. The black and green lines are power law integrated sensitivity
curves for BBO and CE; for more details see Sec. 5.6.
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satisfies these conditions, so it does not show this k3 infrared scaling. In the finite width case,

the condition that k is less than the characteristic scales associated with the source is satisfied

for k < σk?. This can be seen in the change in k scaling at k ∼ σk? for the case σ = 0.001 in

Fig. 5.4. For the other O(1) values of σ , the possible region with k2 scaling is not visible and

instead the dominant behavior of the tail is the k3 scaling. The width-dependence of the GW

spectrum can thus have large impacts on GW detectability, even when the BH mass functions are

similar.

In the monochromatic case, we can see the behavior for k� k? by simply evaluating the

integral (5.26) at the peak, where s = 0, t = 2k/k?−1. Defining k̃ = k/k?, then for k̃� 1, we

have

Ω
RD
GW = A2 3

4
k̃2
[

log2
(

4
3k̃2

)
−4log

(
4

3k̃2

)
+π

2 +4
]
.

In the Gaussian case, we can analytically approximate the result via the Laplace method. Ex-

panding the integrand about the peak s = 0, t = 2k?
k e−2σ2−1 and evaluating gives the following

simple expression for the power spectrum for k̃ < σ :

Ω
RD
GW = A2

3k̃3e2σ2
log3

(
4e−4σ2

3k̃2

)

8
√

2σ
× (5.30)

[
log2

(
4e−4σ2

3k̃2

)
+2σ

2 log

(
4e−4σ2

3k̃2

)
+4σ

2

]−1/2

which indeed goes as k̃3.

5.5.2 Gravitational waves from PBH-dominated era

In addition to GWs produced at PBH formation, which dominates near the formation

scale k?, there are also GWs generated during matter domination [197] that contribute at k below

k?. We first consider GWs that arise from second order perturbation theory sourced by the scalar

perturbations, with the difference in this case that the scalar perturbations are produced by the
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gravitational potential of the PBHs themselves.

We will adapt our estimate from [197], including here an additional correction factor to

restrict to the linear regime in perturbation theory. We first review Ref. [197], which directly

computes the curvature power spectrum assuming a Poissonian distributed gas of PBHs. At

formation, the density contrast in black holes can be treated as an isocurvature perturbation, which

later evolves into a curvature perturbation. From [197], we have the following approximation for

the perturbation at the onset of BHD:

PΦ(k) =
2

3π

(
k

kUV

)3(
5+

4
9

k2

H 2
d

)−2

(5.31)

where Hd is comoving Hubble at the onset of BHD and kUV is the mean comoving BH separation

scale,

kUV =

(
β

γeff

)1/3

k?. (5.32)

Upon PBH formation, the black hole energy fraction grows, and the comoving Hubble when the

black hole dominated era begins is Hd = βk?.

In order to calculate the contribution to the tensor power spectrum, we make the replace-

ments P→PΦ and I→ IMD in (5.26). Recall I arose in second order perturbation theory as an

integral over a combination of the Green’s function in RD and quadratic terms in the transfer

function, so we must replace these with the solutions for the PBH era. This is the same as an

matter-dominated (MD) era for our GW calculation, since BHs can be treated as a pressure-less

non-relativistic fluid for modes < kUV� k?. The most important difference to note between

the RD and MD eras is that the transfer function decays in RD but is constant in MD, so in the

limit x→ ∞, I2
RD ∝

1
x2 as in (5.27), while I2

MD = const. The source is constant and amplifies the

resulting GWs from the BHD era.

For the BHD era, the energy density is ΩGW = (k/aH)2PGW(k)/48, which has a factor

of 2 difference from the corresponding relationship for GWs generated in the RD era, (5.25).
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While in the RD era there is an equal contribution from kinetic and gradient terms, in the MD era

the kinetic terms are negligible when there is a constant source term. This is because the constant

source forces the tensor modes to constant values at late times in the MD era. An approximate

form for the GW spectrum today is then given by [197]

ΩGW =4.4×1019
Ωγ,0×

( gBHD

106.75

)−1/3( gRH

10.75

)−1/3

×
(

mBH

109 g

)4/3

(β ′)16/3

×





k
Hd

k < 8Hd

8 8Hd < k < kUV

0 k > kUV

. (5.33)

Here we have assumed that the gravitational waves redshift as radiation after the transition from

the PBH-dominated era to the radiation era. In general, there can be additional dampening or

growth in the GW spectrum result depending on the details of the transition between the PBH

and radiation dominated eras [198, 149]. For example, if there is a sufficiently narrow BH mass

function, there is a rapid evaporation and a sudden change in the equation of state at the end of the

MD era, leading to a significant enhancement in the spectrum relative to (5.33) [149, 150, 151].

This is the case if the BH mass function has σm . 0.01 [148], while we have log-normal mass

functions with typical σm ∼ 0.4−1.2.

However, it is not clear whether (5.33) applies for an extended MD era, because at some

point during the MD era, density perturbations can become nonlinear. The density perturbation

at black hole formation is given by

δ (tBHD)∼
√

2
3π

(
k

kUV

)3/2

(5.34)

and starts growing with the scale factor at Max[aBHD,ak], where ak is the scale factor at horizon
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entry for that mode, since the density perturbation is frozen while outside of the horizon and

can only grow in the BHD era. Once perturbations become nonlinear, the perturbation theory

solution of the scalar modes with a constant source term is no longer valid. There may be GWs

produced instead by collapse of nonlinear perturbations or mergers, as estimated in [199], but

these require further numerical simulations to treat properly.

A lower bound on the possible GW spectrum can be obtained by restricting the source

function to regions in k and time for which δk(t)< 1. Setting the cutoff at δk = 1 gives the cutoff

scale factor acut(k):

acut

aRH
=

aBHD

aRH
×





√
3π

2

(
Hd
k

)2(kUV
k

)3/2
k < Hd

√
3π

2

(
kUV

k

)3/2
k > Hd

. (5.35)

Compared to the results of [197], cutting off the source function when density perturbations

become nonlinear introduces an additional factor in (5.33) given by

R≈
(

Min

[
aBHD

aRH
×





√
3π

2

(
kUV

6kBHD

)3/2
k < 6Hd

√
3π

2

(
kUV

k

)3/2
k > 6Hd

,1

])2

, (5.36)

see Appendix 5.A for details. Here we have connected the results at k�Hd and k�Hd as the

details in the intermediate regime are unimportant. With this approach, the source function is

cut off well before the transition to radiation domination, leading to a strong dampening of the

spectrum. Then the spectrum is far beneath the threshold required for experimental observability,

such the details of how the source is cut off and the transition from the PBH to the RD era are

not relevant for our calculation. We note that our estimate may be overly conservative, however.

In addition, other sources of GWs will be present and can be many orders of magnitude larger

when the perturbations are nonlinear [199]. We estimate one possible source of GWs generated

at the end of the BHD era in the following subsection.
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5.5.3 Gravitational waves from reheating

There can further be contributions to GWs from reheating of the universe due to PBH

evaporation. One possibility is that GWs are produced when the nonlinear structures of the BHD

era all evaporate into radiation. The idea is that the black holes slowly evaporate a fraction of

their mass into radiation through the bulk of the BHD era. Then, at the end of the BHD era, the

remaining mass contained within the halos evaporates and collides against the radiation fluid.

This could produce a turbulent fluid with eddies that cascade down to smaller scales, which can

induce GWs. In this section, we perform an order of magnitude estimate for this potential source.

Detailed numerical simulations are required to determine if evaporation of the clustered PBHs

indeed acts as an efficient source of turbulence.

The topic of GWs from turbulent events in the early universe has been studied in

Refs. [200, 201]. Here we discuss the assumptions and calculations in these works and ar-

gue that the results can be used in estimating the GWs sourced by the PBHs at the end of

their lifetime. In these studies, the picture is that during the early universe, a fraction of the

available energy density is transformed into kinetic energy of the cosmological fluid. This kinetic

energy is stirred on a length scale LS over a time scale τstir. These quantities correspond to the

characteristic length and duration of the turbulent source. The turbulent kinetic energy then

cascades down to some damping scale determined by the fluid characteristics of the plasma.

In these works, the turbulent source is left generic and the only assumption is that the

spectrum of the turbulence is Kolmogorov. We note that the Kolmogorov energy spectrum is

a result from classical hydrodynamics and that relativistic turbulence is much less explored;

nonetheless, we follow other works in assuming that classical theory provides an approximation

for turbulence in a relativistic fluid. To summarize, the calculations of these studies depend on

the scale and duration of turbulence, cosmological parameters and characteristics of the plasma

during energy injection, and the model of the turbulence. The gravitational wave spectrum from

turbulence is then calculated by solving the usual wave equation for tensor modes sourced by
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the transverse traceless piece of the stress-energy tensor. Refs. [200] and [201] perform this

analysis in Fourier and real space, respectively, arriving at approximately the same results with

slight differences arising from different treatments in the time dependence of the turbulence. In

particular, no assumption is made on the particle physics origin of the turbulence. For example,

while Refs. [200, 201] discussed phase transitions as one possible source of GWs, the results

have been applied to other scenarios such as decay of a scalar field reheating the universe [199].

We may apply these results to calculate GWs from Hawking evaporation in the BHD era,

given the following physical picture. For the bulk of the BHD era, the universe will look like

clusters of black holes with sparse radiation fluid freely streaming outwards. However, by the

end of the BHD era, all of the mass in the black hole clusters then gets deposited into radiation,

which is a possible source of turbulence. Since we expect the typical black hole mass function

to have a fairly significant width as in Fig. 5.2, we approximate the turbulent source to last for

around τstir ≈ tevap. In addition, we take the length scale of the turbulence source LS to be defined

by the smallest comoving wavenumber that becomes non-linear by black hole evaporation, kNL.

That is, kNL is the comoving wavenumber that satisfies acut = aRH in (5.35), which gives

kNL =





3.2×1014

Mpc

(mBH
104g

)− 17
14 β ′ > β ′NL

1×1016

Mpc

(mBH
104g

)− 31
18
(

β ′

10−7

)− 8
9 β ′ < β ′NL

(5.37)

where

β
′
NL = 5×10−6

(
mBH

104g

)− 4
7

(5.38)

is the minimum β ′ such that the largest non-linear mode enters the horizon after the BHD era

starts.

As argued in [200], the relevant time-scale for production of gravitational waves from

turbulence is given by the maximum of the turbulence duration τstir and the dissipation time of

the largest eddies τS. In the PBH evaporation scenario, the black hole mass function is wide
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enough that the larger time-scale is on the order of the black hole evaporation time tevap. Then,

the energy dissipation rate is given by

ε ∼ κρ

wtevap
, (5.39)

where ρ is the energy density, κ is the efficiency factor of conversion to turbulent kinetic energy,

and w is the enthalpy density of the radiation fluid. Note that this is highly approximate, as we’ve

effectively treated the turbulence as uniformly injected over the time tevap rather than modeling

the exact time-dependence of the Hawking radiation, so the result should be treated as a very

rough estimate. Another important quantity for the turbulence calculation is the Mach number

defined in Ref. [201], which goes as

M ∝

(
ε

kNL

)1/3
∝ κ

1/3
(kRH

kNL

)1/3
. (5.40)

Typical Mach numbers for these early evaporating black holes are M ∼ 0.1−0.5. The comoving

wavenumber of the horizon at the end of evaporation kRH can be calculated from (5.6) and is

given by

kRH =
4.9×1011

Mpc

(mBH

104

)− 3
2
. (5.41)

With these physical quantities in hand, we may apply the final result of Ref. [201] to our

scenario. For clarity, we rewrite the original expression here and make explicit the replacements

in our variables. The turbulence-sourced GW spectrum today is [201]

hc ∝

(100GeV
T∗

)(100
g∗

)1/3
×

(H∗
k0

)3/2
(H∗τstir)

1/2
(

k3
0ωHi ji j(ω,ω)

)1/2
, (5.42)

where T∗, g∗ are the temperature and degrees of freedom at the end of the turbulence, k0 is the

inverse length scale of the turbulent source, τstir is the turbulence duration, ω is the angular

182



frequency of the gravitational waves at tevap, and the function Hi ji j is approximated by

7M3k−4
0

16π3/2

∫ 1

0
dxx11/4exp

[
−
(

ω

k0M

)2
x
]
Erfc

[
− ω

k0M
√

x
]
.

Then, taking T∗ = TRH, g∗ = gRH, τstir = tevap, and rewriting in terms of comoving quantities

H∗ = kRH/aRH, k0 = kNL/aRH, ω = kNL/aRH, and using the usual ΩGW = 2π2

3H2
)

f 2h2
c , we have

ΩGW,turb =4×10−22
(100GeV

TRH

)2(100
gRH

)2/3
×

( k
1Mpc−1

)2(kRH

kNL

)4( k
kNL
×F(k)

)
(5.43)

where F(k) is given by

7M3

16π3/2

∫ 1

0
dxx11/4exp

[
−
( k

kNLM

)2
x
]
Erfc

[
− k

kNLM
√

x
]
.

The function F(k) is approximately constant below kNLM and decays as k−15/2 above kNLM,

so the GW spectrum from turbulence peaks at kNLM. When the initial PBH abundance is well

above the BHD line, the spectrum has no β ′ dependence. This is because at large β ′, the black

hole dominated era starts early enough that kNL is only dependent on the PBH mass. This can be

seen from (5.37), which is β ′ independent above β ′NL. Within 3-4 orders of magnitude in β ′ of

the BHD line, there is a large suppression in this spectrum since the BHD era is much shorter

and the halo sizes are smaller.

The spectrum in (5.43) should be regarded only as a rough estimate of the GWs from

turbulence. For example, a large uncertainty arises from the dependence on the efficiency factor

κ . There should also be an additional suppression from the expansion of the universe since the

turbulence occurs over a Hubble time. Regardless, even with an optimistic efficiency factor

κ = 1, our turbulence estimate in (5.43) is not strong enough to be detected even by BBO and

does not appear in our reach plots.

183



1012 1015 1018 1021

k [Mpc−1]

10−21

10−18

10−15

10−12

10−9

10−6
Ω
G
W

BBO

C
E

σ = 1, mBH = 1× 105 g

β = 10−28

β = 10−18

β = 10−13

β = 10−8

β = 10−5

β = 10−4

Figure 5.5. Total gravitational wave spectrum today from a Gaussian perturbation with σ = 1,
for mBH = 1×105g and different values of β . The solid lines are for small β with no BHD era.
The dashed lines indicate the total resulting GWs when there is a BHD era. We see that when β

increases, the dominant contribution shifts to the GWs from turbulence as discussed in Sec. 5.5.3.
For this contribution, we assume an optimal efficiency of κ = 1, which gives a Mach number of
M ≈ 0.2. For β much larger than the minimum required for black hole domination, the turbulent
contribution is identical.

5.5.4 Combined spectrum

In Fig. 5.5, we show the combined GW spectrum for a reference PBH mass of mBH =

1×105g and assuming a primordial perturbation with lognormal width σ = 1. For small enough

β , there is no BHD era, and the only GWs are those induced from the primordial perturbation,

discussed in Sec. 5.5.1. The dashed lines show the GW spectrum where there is a BHD era.

The BHD era leads to an overall redshifting of the GW spectrum associated with BH formation.
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For this signal, it also leads to a peak frequency k? which depends on β according to (5.10),

leading to a peak at lower frequencies as β is increased. In addition, our rough estimate of

the GW spectrum generated by turbulence at PBH evaporation is visible, giving a contribution

that peaks at lower frequencies. The contribution from gravitational waves generated during

the BHD era discussed in Sec. 5.5.2 peaks in a similar frequency range as the turbulent source,

but has negligible amplitude when we implement a cutoff on nonlinear density perturbations.

We emphasize again that our estimate of this latter contribution is likely too conservative and

that a numerical study is required to calculate the GW spectrum from the black hole dominated

non-linear regime.

5.6 Observational Bounds and Reach

In this section we discuss the experimental reach for various GW experiments on the

stochastic GW background associated with PBHs. We show the sensitivity in terms of the

parameter space for the primordial scalar perturbation, (k?,A), as well as in the black hole mass

and mass fraction parameter space, (mBH,β
′). We also translate existing PBH bounds into the

(k?,A) plane.

5.6.1 Calculation of Observational Bounds

We calculate the expected observational bounds and observational reach from various

current and proposed experiments following Refs. [202, 203]. We consider Big Bang Ob-

server (BBO) [204, 205, 206, 207], Einstein Telescope (ET) [208, 209], Cosmic Explorer (CE)

[210, 211], and the Laser Interferometer Space Antenna (LISA) [212, 213]. Other proposed

interferometers that operate in a similar frequency range to LISA include TianQin [214, 215] and

Taiji [216], while experiments that cover a similar range as BBO include DECIGO [217, 218],

AION [219, 220], and AEDGE [219, 221]. We also note that current LIGO/VIRGO data has been

used to search for a stochastic GW background [47], but the results do not add any constraints to

the parameter space that we show.
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Figure 5.6. For monochromatic perturbations, the observational reach for experiments BBO,
LISA, CE, ET are shown in the (k?,A) plane for the primordial scalar perturbation (left) and in
the (β ′,mBH) plane of PBH parameters (right). We assume an observational time of 1 year and
a signal-to-noise ratio of 1 for each of the experiments. In both panels, the gray shaded regions
are the existing PBH bounds that were shown in Fig. 5.1 and discussed in Sec. 5.3.4. The DM
line (black, dashed) shows the parameters that would result in the saturation of current observed
dark matter density today. The BHD line (black, solid) is the minimum β ′ at a given mBH that
would result in a period of black hole domination. Above the BHD line, none of the GW sources
we have estimated are observable. For mBH > 109 g, the experimental reach comes from the
second-order GWs induced by the primordial scalar perturbation. Note that pulsar timing arrays
(PTA) have some observational reach near at k? ∼ 108 Mpc−1 or mBH ∼ 1030 g, but we choose
not to show this here as these reaches are most relevant for near solar mass PBHs.

An overview of the method to obtain the bounds can be found in [202]. We follow

Appendix A of [203], which calculates the strain sensitivity curves for these experiments

explicitly using the methods in [202]. The strain sensitivity curves and overlap reduction

functions are used to calculate an effective GW background Ωeff. The signal-to-noise (SNR)

ratio for an expected stochastic GW spectrum ΩGW is then given by

ρ =
√

nT

[∫ fmax

fmin

d f
(

ΩGW

Ωeff

)2
]1/2

(5.44)

where T is the observational time and we take the integral over the entire bandwidth of the

experiment. n is 1 or 2 for auto-correlation (LISA, CE) and cross-correlation detections (BBO,

ET), respectively. The spectrum ΩGW is function of initial perturbation amplitude A, scale k?,
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and Gaussian width σ , so for some choice of σ , we can solve for the parameters that give a

desired SNR. In this paper, we present results with ρ = 1 and T = 1yr for each experiment and

assume a perfect subtraction of foreground GWs from active sources. For a given σ , we can then

use the one-to-one correspondence between (k?,A) and PBH parameters from Sec. 5.4 to show

the same bounds in (mBH,β
′) space.

5.6.2 Results

Our main results are shown in Fig. 5.6 for a monochromatic perturbation and Fig. 5.7 for

a finite width Gaussian perturbation. The left panels show the existing bounds and experimental

reach in the parameter space of primordial curvature perturbations, similar to Ref. [222], while

the right panels are in the parameter space for PBHs. In both panels, the gray shaded region are

existing bounds on PBHs, as previously shown in Fig. 5.1. Similar to Fig. 5.1, we again indicate

where PBHs comprise all of the DM (dashed line) and the lower boundary to the region where

we have a black-hole dominated (BHD) era (solid line). These features appear roughly inverted

in the left and right panel due to the relationship between mBH and k?. We note again that the

correspondence between k? and mBH is different if BHD occurs. If BHD never occurs, we have

k? ∼ m−1/2
BH , while if BHD does occur we instead have k? ∼ m−5/6

BH β−1/3. This is why the PBH

bounds depend on both A and k? in the BHD era.

For black holes that evaporate after BBN (mBH > 109 g), gravitational wave interferome-

ters are sensitive to the stochastic GW spectrum induced at second order from the primordial

curvature perturbation. In this mass range, we see the broadest level of sensitivity for the largest

curvature perturbation width (σ = 2), with the reach extending from 109−1028 g when all ex-

periments are included. This is because the GW spectrum extends over a much wider frequency

range, as seen in Fig. 5.4. The reach curves thus shrink with smaller σ in Fig. 5.7. However,

once σ decreases below σ ∼ 0.01, the reach actually improves again at small PBH mass, which

can be seen in the sensitivities for the monochromatic perturbation in Fig. 5.6. This is because

the k2 infrared tail grows as σ decreases below σ ∼ 0.01, as discussed in Sec 5.5.1.
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Figure 5.7. Similar to Fig. 5.6, but assuming a Gaussian perturbation as in Eq. 5.13. The
different rows are for different curvature perturbation widths σ .
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In the region of parameter space where the black holes are short-lived, the spectrum of

stochastic GWs produced during or at the end of the BHD era is highly uncertain since density

perturbations become nonlinear. At present, we do not find a detectable signal from any of

the sources discussed in Secs. 5.5.2-5.5.3. However, more numerical work should be done to

investigate what happens in a BHD era as density perturbations become non-linear and whether

there are observable GW sources from the transition of the BHD to radiation era.

5.7 Conclusions

In this paper, we have investigated how generation GW interferometers can probe the

parameter space of primordial black holes in the mass range of 10 g – 1028 g. Assuming that the

black holes form from some generic primordial curvature perturbation at small scales generated

by inflation, there are several possible stochastic GW signals, which we calculate as a function

of the initial abundance and mean black hole mass. Second order gravitational waves from the

primordial curvature perturbation can be used to probe primordial black hole masses in the range

109−1028 g down to very small β ′, depending on the experiment and curvature perturbation

width. For black hole masses below 109 g, there are additional possible sources of GWs if β ′ is

sufficiently large enough, such that there is an early black hole dominated era. We considered

second order GWs generated from the black hole fluid curvature perturbation itself, as well as

GWs produced from the turbulent fluid at the end of the BHD era. Based on our estimates, we did

not find these to give rise to observable GWs. In addition, there may be GWs produced during

the nonlinear evolution of the BHD era, from Hawking evaporation itself, mergers, or from a

sharp transition from black hole dominated to radiation eras. Treating the BHD era properly and

including all of these sources requires a numerical treatment.

Finally, we also presented results in terms of the curvature perturbation parameters and

see that second order GWs allow us to probe perturbations at quite small scales. The stochastic

GW spectrum is thus a promising way to probe inflationary scenarios giving rise to both short-
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lived black holes, as well as long-lived black holes comprising some fraction of the dark matter

today.
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Appendix

5.A GWs in BHD era

In this appendix, we briefly describe how we obtained (5.36), which we use to obtain a

rough lower bound on second-order GWs sourced by scalar perturbations during the BHD era.

To obtain (5.36), we imposed k-dependent time cutoff on density perturbations. To apply

this cutoff, we must re-calculate the quantity I, which now becomes

I(u,v,x) =
∫ x

xd

dx̄
a(x̄)
a(x)

kGk(x, x̄)Fk(u,v, x̄) (5.45)

×Θ(xcut(vk)− x̄)Θ(xcut(uk)− x̄).

where Gk and Fk are Green’s functions defined in [197], x = kηRH, and xcut = kηcut is given by

xcut(vk) =

x

√√√√√√√Min

[
aBHD

aRH
×





√
3π

2

(
Hd
vk

)2(kUV
vk

)3/2
vk < Hd

√
3π

2

(
kUV
vk

)3/2
vk > Hd

,1

]
. (5.46)

This comes from applying (5.35) to the density perturbation vk. Evaluating I2 as in Appendix B

of [197] gives the leading term

I2 ∼ 100
9

(xcut(vk))4

x4 , (5.47)

which is similar to the result in [197], but with an additional suppression from the cutoff on non-
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Figure 5.8. Comparison of GW spectra today from the BHD era and turbulence for mBH =
103g,σ = 1 and two values of β . The blue line is the pure BHD era result (5.33) without
any modification to account for the fact that the density perturbations become non-linear. The
magenta line is our conservative lower bound of the spectrum, which includes a cut-off when the
density perturbations become non-linear. This introduces an additional suppression factor (5.36)
to (5.33).

linear perturbations. Since (5.45) has two step functions we should have Min[xcut(vk),xcut(uk)],

but the integrand always peaks near u∼ v so we take both step functions to be the same.

We now evaluate the tensor spectrum with our modification to I2. Here we provide simple

estimates in the large and small k limits, similar to [197]. Since the integrand (aside from the

I2 factor) is peaked in u,v, we will treat I2 as constant about the peak. Then the effect of the

nonlinear cutoff is just to introduce a factor of (xcut(vk)/x)4, evaluated at the peak value of v. For

k� kBHD, the integrand is peaked at u = v = 1, so we can approximate xcut(vk)≈ xcut(k). For

k� kBHD, the integral is peaked at u ∼ v ∼ 6kBHD
k which gives xcut(vk) ∼ xcut(6kBHD). Using

(5.46) in these limits then gives (5.36), where we glued the solutions in the two limits together to

obtain a continuous function. We have checked numerically that including the u,v dependence

only leads to O(few) deviations from our analytic estimates.

Fig. 5.8 shows a comparison of the GW spectrum without the nonlinear cutoff, (5.33),

and with the cutoff. With the nonlinear cutoff, our estimate of this GW signal is not detectable.
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Chapter 6

Conclusions and Outlook

In the coming decades, advancements in solid state technologies may lead to new avenues

of dark matter direct detection in the sub-GeV mass range. The primary result of this Dissertation

is the calculation of experimental response rates in this light dark matter regime to the DM

wind. In Chapter 3, we work in the harmonic crystal approximation and provide a complete

prescription for calculating the crystal response across the entire energy-momentum phase space.

In particular, we have shown how to calculate scattering rates in the multiphonon regime and that

the response in this regime smoothly approaches the well-known nuclear recoil limit. The results

of this work are neatly packaged in the multiphonon addition to the code DarkELF, which

is gaining popularity with our colleagues in the experimental world. In Chapter 4, we allow

for anharmonicities in the crystal potential and identify the DM mass regimes in which these

anharmonicities are experimentally relevant. We have generalized methods from the harmonic

case to demonstrate that the anharmonic corrections are negligible at DM masses ∼ 10 MeV,

but can introduce small O(1) enhancements at ∼ few MeV for near-future experiments. This

work provides a fairly comprehensive theoretical understanding and a practical methodology for

calculating LDM-crystal scattering rates, which will become increasingly important for probing

LDM as experimental energy thresholds decrease.
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F. Kéfélian, M. S. Kehl, D. Keitel, D. B. Kelley, W. Kells, R. Kennedy, D. G. Keppel, J. S.
Key, A. Khalaidovski, F. Y. Khalili, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, N. Kijbun-
choo, C. Kim, J. Kim, K. Kim, N.-G. Kim, N. Kim, Y.-M. Kim, E. J. King, P. J. King, D. L.
Kinzel, J. S. Kissel, L. Kleybolte, S. Klimenko, S. M. Koehlenbeck, K. Kokeyama, S. Ko-
ley, V. Kondrashov, A. Kontos, S. Koranda, M. Korobko, W. Z. Korth, I. Kowalska, D. B.
Kozak, V. Kringel, B. Krishnan, A. Królak, C. Krueger, G. Kuehn, P. Kumar, R. Kumar,
L. Kuo, A. Kutynia, P. Kwee, B. D. Lackey, M. Landry, J. Lange, B. Lantz, P. D. Lasky,
A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, E. O. Lebigot, C. H. Lee, H. K. Lee, H. M.
Lee, K. Lee, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, B. M.
Levine, T. G. F. Li, A. Libson, T. B. Littenberg, N. A. Lockerbie, J. Logue, A. L. Lombardi,
L. T. London, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough,
C. O. Lousto, G. Lovelace, H. Lück, A. P. Lundgren, J. Luo, R. Lynch, Y. Ma, T. MacDon-
ald, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magaña Sandoval, R. M. Magee,
M. Mageswaran, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, I. Mandel, V. Mandic,
V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion,
S. Márka, Z. Márka, A. S. Markosyan, E. Maros, F. Martelli, L. Martellini, I. W. Martin,
R. M. Martin, D. V. Martynov, J. N. Marx, K. Mason, A. Masserot, T. J. Massinger,
M. Masso-Reid, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, G. Mazzolo,
R. McCarthy, D. E. McClelland, S. McCormick, S. C. McGuire, G. McIntyre, J. McIver,
D. J. McManus, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos,
G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. Merilh, M. Merzougui, S. Meshkov,
C. Messenger, C. Messick, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, H. Middleton,
E. E. Mikhailov, L. Milano, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari,
C. Mishra, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, A. Moggi, M. Mo-
han, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno,
S. R. Morriss, K. Mossavi, B. Mours, C. M. Mow-Lowry, C. L. Mueller, G. Mueller, A. W.
Muir, A. Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch,
D. J. Murphy, P. G. Murray, A. Mytidis, I. Nardecchia, L. Naticchioni, R. K. Nayak,
V. Necula, K. Nedkova, G. Nelemans, M. Neri, A. Neunzert, G. Newton, T. T. Nguyen,
A. B. Nielsen, S. Nissanke, A. Nitz, F. Nocera, D. Nolting, M. E. N. Normandin, L. K.
Nuttall, J. Oberling, E. Ochsner, J. O’Dell, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh,
F. Ohme, M. Oliver, P. Oppermann, R. J. Oram, B. O’Reilly, R. O’Shaughnessy, C. D. Ott,
D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Pai, S. A. Pai, J. R. Palamos,
O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, Y. Pan, C. Pankow, F. Pannarale, B. C.
Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti,
R. Passaquieti, D. Passuello, B. Patricelli, Z. Patrick, B. L. Pearlstone, M. Pedraza, R. Pe-
durand, L. Pekowsky, A. Pele, S. Penn, A. Perreca, H. P. Pfeiffer, M. Phelps, O. Piccinni,
M. Pichot, M. Pickenpack, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto,
M. Pitkin, J. H. Poeld, R. Poggiani, P. Popolizio, A. Post, J. Powell, J. Prasad, V. Predoi,
S. S. Premachandra, T. Prestegard, L. R. Price, M. Prijatelj, M. Principe, S. Privitera,
R. Prix, G. A. Prodi, L. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi,
J. Qin, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling,
H. Radkins, P. Raffai, S. Raja, M. Rakhmanov, C. R. Ramet, P. Rapagnani, V. Raymond,
M. Razzano, V. Re, J. Read, C. M. Reed, T. Regimbau, L. Rei, S. Reid, D. H. Reitze,

200



H. Rew, S. D. Reyes, F. Ricci, K. Riles, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi,
L. Rolland, J. G. Rollins, V. J. Roma, J. D. Romano, R. Romano, G. Romanov, J. H.
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Hoy, D. Hoyland, Y. Huang, M. T. Hübner, A. D. Huddart, E. A. Huerta, B. Hughey,
V. Hui, S. Husa, S. H. Huttner, B. M. Hutzler, R. Huxford, T. Huynh-Dinh, B. Idzkowski,
A. Iess, S. Imperato, H. Inchauspe, C. Ingram, G. Intini, M. Isi, B. R. Iyer, V. Jaberian-
Hamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, K. Jani, K. Janssens, N. N.
Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, M. Jeunon, J. Jiang, G. R.
Johns, N. K. Johnson-McDaniel, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones,
R. J. G. Jonker, L. Ju, J. Junker, C. V. Kalaghatgi, V. Kalogera, B. Kamai, S. Kandhasamy,
G. Kang, J. B. Kanner, S. J. Kapadia, D. P. Kapasi, C. Karathanasis, S. Karki, R. Kashyap,
M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, K. Kawabe,
F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, I. Khan, S. Khan, E. A. Khazanov,
N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, G. J. Kim, J. C. Kim, K. Kim, W. S.
Kim, Y.-M. Kim, C. Kimball, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel,
L. Kleybolte, S. Klimenko, T. D. Knowles, E. Knyazev, P. Koch, S. M. Koehlenbeck,
G. Koekoek, S. Koley, M. Kolstein, K. Komori, V. Kondrashov, A. Kontos, N. Koper,
M. Korobko, W. Z. Korth, M. Kovalam, D. B. Kozak, C. Krämer, V. Kringel, N. V. Kr-
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A. F. Vargas, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J.
Veitch, K. Venkateswara, J. Venneberg, G. Venugopalan, D. Verkindt, Y. Verma, D. Veske,

209
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“Search for a scalar induced stochastic gravitational wave background in the third LIGO-
Virgo observing run,” 7 2021.

[48] Q. Arnaud, D. Asner, J.-P. Bard, A. Brossard, B. Cai, M. Chapellier, M. Clark, E. Cor-
coran, T. Dandl, A. Dastgheibi-Fard, K. Dering, P. Di Stefano, D. Durnford, G. Gerbier,
I. Giomataris, P. Gorel, M. Gros, O. Guillaudin, E. Hoppe, A. Kamaha, I. Katsioulas,
D. Kelly, R. Martin, J. McDonald, J.-F. Muraz, J.-P. Mols, X.-F. Navick, T. Papaevangelou,
F. Piquemal, S. Roth, D. Santos, I. Savvidis, A. Ulrich, F. Vazquez de Sola Fernandez,
and M. Zampaolo, “First results from the news-g direct dark matter search experiment at
the lsm,” Astroparticle Physics, vol. 97, pp. 54–62, 2018.

[49] W. Guo and D. N. McKinsey, “Concept for a dark matter detector using liquid helium-4,”
Phys. Rev., vol. D87, no. 11, p. 115001, 2013.

[50] Y.-S. Liu, D. McKeen, and G. A. Miller, “Electrophobic Scalar Boson and Muonic
Puzzles,” Phys. Rev. Lett., vol. 117, no. 10, p. 101801, 2016.

[51] S. A. Hertel, A. Biekert, J. Lin, V. Velan, and D. N. McKinsey, “Direct detection of sub-
GeV dark matter using a superfluid 4He target,” Phys. Rev. D, vol. 100, no. 9, p. 092007,
2019.

[52] N. A. Kurinsky, T. C. Yu, Y. Hochberg, and B. Cabrera, “Diamond Detectors for Direct
Detection of Sub-GeV Dark Matter,” Phys. Rev., vol. D99, no. 12, p. 123005, 2019.

[53] J. D. Vergados and H. Ejiri, “The role of ionization electrons in direct neutralino detection,”
Phys. Lett. B, vol. 606, pp. 313–322, 2005.

[54] R. Bernabei, P. Belli, F. Montecchia, F. Nozzoli, F. Cappella, A. Incicchitti, D. Prosperi,
R. Cerulli, C. J. Dai, H. L. He, H. H. Kuang, J. M. Ma, X. D. Sheng, and Z. P. Ye, “On

210



electromagnetic contributions in wimp quests,” International Journal of Modern Physics
A, vol. 22, no. 19, pp. 3155–3168, 2007.

[55] M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal Effect in Dark Matter Direct
Detection Experiments,” JHEP, vol. 03, p. 194, 2018.

[56] C. Kouvaris and J. Pradler, “Probing sub-GeV Dark Matter with conventional detectors,”
Phys. Rev. Lett., vol. 118, no. 3, p. 031803, 2017.

[57] S. Knapen, T. Lin, M. Pyle, and K. M. Zurek, “Detection of Light Dark Matter With
Optical Phonons in Polar Materials,” Phys. Lett., vol. B785, pp. 386–390, 2018.

[58] T. Trickle, Z. Zhang, K. M. Zurek, K. Inzani, and S. Griffin, “Multi-Channel Direct
Detection of Light Dark Matter: Theoretical Framework,” JHEP, vol. 03, p. 036, 2020.

[59] P. Cox, T. Melia, and S. Rajendran, “Dark matter phonon coupling,” Phys. Rev. D, vol. 100,
no. 5, p. 055011, 2019.

[60] S. M. Griffin, K. Inzani, T. Trickle, Z. Zhang, and K. M. Zurek, “Multichannel direct
detection of light dark matter: Target comparison,” Phys. Rev., vol. D101, no. 5, p. 055004,
2020.

[61] T. Trickle, Z. Zhang, and K. M. Zurek, “Effective field theory of dark matter direct
detection with collective excitations,” Phys. Rev. D, vol. 105, no. 1, p. 015001, 2022.

[62] S. M. Griffin, Y. Hochberg, K. Inzani, N. Kurinsky, T. Lin, and T. C. Yu, “Silicon carbide
detectors for sub-GeV dark matter,” Phys. Rev. D, vol. 103, no. 7, p. 075002, 2021.

[63] A. Coskuner, T. Trickle, Z. Zhang, and K. M. Zurek, “Directional detectability of dark
matter with single phonon excitations: Target comparison,” Phys. Rev. D, vol. 105, no. 1,
p. 015010, 2022.

[64] K. Schutz and K. M. Zurek, “Detectability of Light Dark Matter with Superfluid Helium,”
Phys. Rev. Lett., vol. 117, no. 12, p. 121302, 2016.

[65] S. Knapen, T. Lin, and K. M. Zurek, “Light Dark Matter in Superfluid Helium: Detection
with Multi-excitation Production,” Phys. Rev., vol. D95, no. 5, p. 056019, 2017.

[66] F. Acanfora, A. Esposito, and A. D. Polosa, “Sub-GeV Dark Matter in Superfluid He-4:
an Effective Theory Approach,” Eur. Phys. J., vol. C79, no. 7, p. 549, 2019.

[67] A. Caputo, A. Esposito, and A. D. Polosa, “Sub-MeV Dark Matter and the Goldstone
Modes of Superfluid Helium,” Phys. Rev., vol. D100, no. 11, p. 116007, 2019.

[68] A. Caputo, A. Esposito, F. Piccinini, A. D. Polosa, and G. Rossi, “Directional detection
of light dark matter from three-phonon events in superfluid 4He,” Phys. Rev. D, vol. 103,
no. 5, p. 055017, 2021.

211



[69] G. Baym, D. H. Beck, J. P. Filippini, C. J. Pethick, and J. Shelton, “Searching for low
mass dark matter via phonon creation in superfluid 4He,” Phys. Rev. D, vol. 102, no. 3,
p. 035014, 2020. [Erratum: Phys.Rev.D 104, 019901(E) (2021)].

[70] K. T. Matchev, J. Smolinsky, W. Xue, and Y. You, “Superfluid Effective Field Theory for
dark matter direct detection,” 8 2021.

[71] Y. Kahn, G. Krnjaic, and B. Mandava, “Dark Matter Detection with Bound Nuclear
Targets: The Poisson Phonon Tail,” Phys. Rev. Lett., vol. 127, no. 8, p. 081804, 2021.

[72] S. Knapen, J. Kozaczuk, and T. Lin, “Migdal Effect in Semiconductors,” Phys. Rev. Lett.,
vol. 127, no. 8, p. 081805, 2021.

[73] K. V. Berghaus, R. Essig, Y. Hochberg, Y. Shoji, and M. Sholapurkar, “The Phonon
Background from Gamma Rays in Sub-GeV Dark Matter Detectors,” 12 2021.

[74] S. Knapen, J. Kozaczuk, and T. Lin, “DarkELF: A python package for dark matter
scattering in dielectric targets,” Phys. Rev. D, vol. 105, no. 1, p. 015014, 2022.

[75] H. Schober, “An introduction to the theory of nuclear neutron scattering in condensed
matter,” Journal of Neutron Research, vol. 17, pp. 109–357, 2014.

[76] G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering. Mineola, New
York: Dover Publications, Inc., 1996.

[77] A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr.
Mater., vol. 108, pp. 1–5, Nov 2015.

[78] G. Placzek, B. R. A. Nijboer, and L. V. Hove, “Effect of short wavelength interference on
neuteron scattering by dense systems of heavy nuclei,” Phys. Rev., vol. 82, pp. 392–403,
May 1951.

[79] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, and K. a. Persson, “The Materials Project: A materials genome
approach to accelerating materials innovation,” APL Materials, vol. 1, no. 1, p. 011002,
2013.

[80] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11169–11186, Oct
1996.

[81] Z.-L. Liang, C. Mo, F. Zheng, and P. Zhang, “A phonon-mediated description of the
Migdal effect in semiconductor detectors,” 5 2022.

[82] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O’Keefe, and B. T. M. Willis, Intensity of
diffracted intensities, ch. 6.1, pp. 554–595. American Cancer Society, 2006.

[83] S. Knapen, J. Kozaczuk, and T. Lin, “Dark matter-electron scattering in dielectrics,” 1
2021.

212



[84] R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, and T.-T. Yu, “Direct
Detection of sub-GeV Dark Matter with Semiconductor Targets,” JHEP, vol. 05, p. 046,
2016.

[85] G. Srivastava, “Phonon conductivity of insulators and semiconductors,” Journal of Physics
and Chemistry of Solids, vol. 41, no. 4, pp. 357–368, 1980.

[86] Z.-L. Liang, C. Mo, F. Zheng, and P. Zhang, “Describing Migdal effect with
bremsstrahlung-like process and many-body effects,” 11 2020.

[87] M. W. Goodman and E. Witten, “Detectability of Certain Dark Matter Candidates,” Phys.
Rev. D, vol. 31, p. 3059, 1985.

[88] E. Aprile, K. Abe, F. Agostini, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. An-
gelino, J. R. Angevaare, V. C. Antochi, D. Antón Martin, F. Arneodo, L. Baudis, A. L.
Baxter, M. Bazyk, L. Bellagamba, R. Biondi, A. Bismark, E. J. Brookes, A. Brown,
S. Bruenner, G. Bruno, R. Budnik, T. K. Bui, C. Cai, J. M. R. Cardoso, D. Cichon,
A. P. Cimental Chavez, A. P. Colijn, J. Conrad, J. J. Cuenca-Garcı́a, J. P. Cussonneau,
V. D’Andrea, M. P. Decowski, P. Di Gangi, S. Di Pede, S. Diglio, K. Eitel, A. Elykov,
S. Farrell, A. D. Ferella, C. Ferrari, H. Fischer, M. Flierman, W. Fulgione, C. Fuselli,
P. Gaemers, R. Gaior, A. Gallo Rosso, M. Galloway, F. Gao, R. Glade-Beucke, L. Grandi,
J. Grigat, H. Guan, M. Guida, R. Hammann, A. Higuera, C. Hils, L. Hoetzsch, N. F. Hood,
J. Howlett, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, A. Joy, N. Kato, M. Kara, P. Kav-
rigin, S. Kazama, M. Kobayashi, G. Koltman, A. Kopec, F. Kuger, H. Landsman, R. F.
Lang, L. Levinson, I. Li, S. Li, S. Liang, S. Lindemann, M. Lindner, K. Liu, J. Loizeau,
F. Lombardi, J. Long, J. A. M. Lopes, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso,
L. Manenti, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, D. Mas-
son, E. Masson, S. Mastroianni, M. Messina, K. Miuchi, K. Mizukoshi, A. Molinario,
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Spolaor, S. Chatterjee, S. Chen, J. M. Cordes, N. J. Cornish, F. Crawford, H. Thank-
ful Cromartie, M. E. Decesar, P. B. Demorest, T. Dolch, J. A. Ellis, E. C. Ferrara, W. Fiore,
E. Fonseca, N. Garver-Daniels, P. A. Gentile, D. C. Good, J. S. Hazboun, A. Miguel Hol-
gado, K. Islo, R. J. Jennings, M. L. Jones, A. R. Kaiser, D. L. Kaplan, L. Z. Kelley,
J. Shapiro Key, N. Laal, M. T. Lam, T. W. Lazio, D. R. Lorimer, J. Luo, R. S. Lynch, D. R.
Madison, M. A. Mclaughlin, C. M. Mingarelli, C. Ng, D. J. Nice, T. T. Pennucci, N. S. Pol,
S. M. Ransom, P. S. Ray, B. J. Shapiro-Albert, X. Siemens, J. Simon, R. Spiewak, I. H.
Stairs, D. R. Stinebring, K. Stovall, J. P. Sun, J. K. Swiggum, S. R. Taylor, J. E. Turner,
M. Vallisneri, S. J. Vigeland, and C. A. Witt, “The NANOGrav 12.5 yr Data Set: Search
for an Isotropic Stochastic Gravitational-wave Background,” Astrophys.J.Lett., vol. 905,
no. 2, p. L34, 2020.

[155] V. De Luca, G. Franciolini, and A. Riotto, “NANOGrav Data Hints at Primordial Black
Holes as Dark Matter,” Phys. Rev. Lett., vol. 126, no. 4, p. 041303, 2021.

220



[156] K. Kohri and T. Terada, “Solar-Mass Primordial Black Holes Explain NANOGrav Hint of
Gravitational Waves,” Phys. Lett. B, vol. 813, p. 136040, 2021.
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Szczepańczyk, D. Talukder, D. B. Tanner, M. Tápai, S. P. Tarabrin, A. Taracchini, R. Tay-
lor, T. Theeg, M. P. Thirugnanasambandam, E. G. Thomas, M. Thomas, P. Thomas, K. A.
Thorne, E. Thrane, V. Tiwari, K. V. Tokmakov, K. Toland, C. Tomlinson, Z. Tornasi, C. V.
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