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GENERALIZATION OF THE FIRST HORTON LAW 

CHRISTIAN WERNER 

School of Social Sciences, University of California, Irvine 

THE CONCEPT of stream numbers, first introduced by Horton and later modified by 
Strahler, underlies one of the most widely used methods in the description of channel 
networks (Horton 1945, p. 281 ; Strahler 1952, p. 1 120). Not only does it provide a 
numerical (but incomplete) characterization of a network‘s topology, but it has also 
led to the observation and formulation of empirical regularities (e.g., the now famous 
“laws” established by Horton) and their formal explanation by means of theory 
construction (Shreve 1966, 1969; Smart 1968; Werner 1970). Nevertheless, the 
stream number concept is less than satisfactory for at least two reasons: 

1 .  The disaggregation of channel networks into sets of streams is not based on any 
geologic or morphologic reasoning, nor does the physiography of a drainage basin 
and its network lend itself to this type of analysis. Rather, the stream concept as 
defined by Strahler is a strictly mathematical notion from graph theory (Riordan 
1958, p. 135). It is therefore not surprising that it is strongly related only to those 
concepts which are derived from it, i.e., to the length, slopes, and drainage areas of 
the streams. Conversely, it exhibits little relation to most of the geomorphic and 
hydrologic parameters traditionally used in drainage basin and network description 
(e.g., Anderson 1949; Morisawa 1962; Werner and Smart 1973, p. 293). 

2. In determining the stream numbers of a given channel network, each individual 
stream has to be identified. From these raw data only the stream numbers are 
obtained, and the remaining information is not utilized. In  particular, the stream 
numbers allow one only to conclude how many streams of a given order merge to 
form streams of the next higher order; most of the information contained in the data 
(e.g., how many streams of order i merge with streams of order j when i # j ,  and 
from which side in each case) is not used at all, although it holds the key to various 
generalizations of the Horton Laws and, possibly, to other topologic/morphometric 
relationships in drainage basins. 

This paper addresses the second of the two shortcomings of the stream number 
concept as described above. It offers a partial solution to the problem of data utiliza- 
tion and derives several interesting conclusions. More specifically: 

1 .  The use of the raw data is increased by establishing a more detailed description 
of the network under consideration. 

2. Based on this detailed description, the paper gives additional insight into the 
mathematical structure of channel network topology and provides a new network 
classification scheme. 

3. The First Horton Law is shown to be a special case of the realtionships charac- 
terizing the patterns of merging streams in topologically random channel networks. 

THE STREAM MERGER MATRIX OF A CHANNEL NETWORK 

For the purpose of this paper we define the stream merger matrix, M M ,  of a channel 
network of order m as the matrix (n i j  I i, j = 1,2, ..., m), where nfj is defined as the 
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Stream Number 
Sequence: 

3 2 9 3 1  

Stream Merger 
Matrix: 

1 8 7 4 3  
7 6 1 2  
4 1 2 1  
3 2 1 1  

FIGURE 1. Channel network with stream numbers and stream 
of mergers among streams of all 

merger 
orders. 

matrix showing the number 

number of (Strahler) streams of order i merging with streams of order j .  We further 
define nnrln = 1. Figure 1 shows a channel network of magnitude 32 as well as its 
stream number sequence (ni), and its merger matrix M M  = ( n i l ) .  Since the matrix 
contains the frequencies of mergers among streams of equal order i, where i = 1 ,  ..., 
m - 1, it obviously includes the information given by the sequence ( ni) . The matrix 
M M  has a number of noteworthy properties, most of which will be listed here without 
proof because they are evident or can easily be verified. 

Let C be a network of magnitude n and order m with stream numbers n, ,  n2, ..., n,  
where n ,  = n and n,, = 1, and let M M  = (nij I i ,  j = 1, ..., m) be the associated merger 
matrix. M M  is symmetric; thus, all of the following statements which refer to rows 
(columns) apply to columns (rows) as well. By definition, nnl,,, = 1. The remaining 
elements of the main diagonal are equal to the stream numbers ni multiplied by 2: 

(1) n i i  = 2 n i + , ,  where i < m. 
The network magnitude n is equal to the sum of the elements of the first row. The 

sum of the ith row is equal to the number of links of all streams of order i, where 
i = 1 ,  ..., m. Thus, the sum of all elements of M M  is equal to the total number of 
network links, i.e., 

f f nij  = 2n - 1. 
j = I  

If the network is reduced by eliminating all streams of order 1 through i, then the 
merger matrix of the remaining network is the submatrix of M M  created by cancelling 
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the first i rows and columns. The sum of the elements of the submatrix is equal to 
the preceding diagonal element minus 1, or: 

“ i i  = ( i 2 n k j )  + 1 = 2 * n i + l , j ,  where i < m. 
k = i + l  j = i + l  j = i + l  

(3) 

The list of relationships among streams of different orders given above can easily 
be extended and has some convenient applications in the analysis of network 
topology. For example, the average number L ( i )  of links for streams of order i, 
using our matrix notation, is 

5 n l j ,  where 1 < i < m. 2 L(i) = ~ 

n i - 1 . i - 1  j = 1  
(4) 

Notice that this average number of links for streams of order i has been derived from 
the matrix elements although the matrix refers only to streams and no information on 
the number of links per stream has been collected. 

A more important property of the stream merger matrix as a possible research 
tool is probably its discriminating power. The grouping of networks by stream 
numbers has led to weak or inconclusive results regarding possible relations between 
sets of stream numbers and morphologic-hydrologic variables. This may be due in 
part to the relatively small number of classes produced by the stream number clas- 
sification. In contrast, if networks are grouped by defining a class as consisting of all 
networks which have the same merger matrix, the result will be a much finer classifi- 
cation in which the stream numbers constitute a subclassification. 

Table I shows the number of classes generated by the stream number as well as 
the matrix classification for varying network magnitude n. 

Table II  shows the disaggregation of the three stream number classes for networks 
of magnitude 7 when the matrix classification is used. The figures in brackets are the 
numbers of topologically distinct networks in each class. 

The mathematical expressions for the respective class frequencies can be estab- 
lished by a few combinatorial manipulations. Equation ( 5 )  below specifies, for any 
set of networks having the same stream number sequence, the number of classes 
when these networks are classified according to their merger matrices. Equation (7) 
gives the number of topologically different networks having the same merger matrix. 
Following are the proofs of the two equations: 

(a )  Let nt (i = 1 ,  ..., m) be a sequence of stream numbers. The number of 
streams of order i which merge with streams of higher order is u = ni - 2 n i + , .  There 
are v = m - i stream order classes of higher order. Therefore the number of ways in 
which the u streams of order i can be assigned to the streams of the v higher-order 
classes is the binomial coefficient C ( u  + v - 1, u ) .  Hence, the number f of different 

TABLE I 

n 1 2 3 4 5 6 7  8 9 1 0 1 1 1 2 1 3  14 15 

( n r ) 1  1 1  2 2 3  3 5 5 7 7 10 10 13 13 
(nrj) 1 1 1 2 3 5 7 11 16 25 37 57 84 125 179 
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TABLE I1 

Stream numbers 

Order : Class 
I II  111 size Corresponding stream merger matrices with class sizes 

merger matrices corresponding to the stream number sequence (ni I i = 1, ..., rn) is 

ni  - 2 n i + l  + rn - i - 1 f ( n i  I i = 1, ... , rn) = n 
i =  1 ni - 2 n i + l  ( 5 )  

It is easy to see that, form I 2, f will always be one. 

are subdivided by the streams of order k ,  j > k > i, into 
(b)  Consider a merger matrix M M  = (hj I i, j = 1 ,  ..., rn). The streams of order j 

w = c n,j 
k = i + l  

segments. The number of ways in which the nij streams of order i can be attached to 
either side of these segments of the order j streams is therefore C ( n i j  + w - 1, ni j )  
times 2ai. Since the matrix is symmetrical and the elements on the diagonal are fixed 
once the off-diagonal elements are determined, the number of topologically different 
networks having the same stream merger matrix ( nir) is 

(7) F ( ~ , ~ I  i, j = 1, ... , rn) = n n 
i = l  j = i + l  

The information content of the merger matrix M M  can be increased, and the 
classification can be further refined, by defining nij as the number of streams of order 
i joining streams of order j from the left side (nji for mergers from the right). Al- 
though the merger matrix is usually no longer symmetrical, most of the above results 
and considerations apply once a few obvious adjustments are made. 

THE EXPECTED STREAM MERGER MATRIX FOR TOPOLOGICALLY RANDOM 
CHANNEL NETWORKS 

The statements made so far hold, without restriction, for any dendritic network or set 
of networks. In this section, we shall first establish the expected merger matrix for 
networks of a given order when chosen at random and then deduce several relation- 
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ships among the matrix elements. These relationships subsume the First Horton Law 
as a special case. 

Let us assume that in the absence of geologic control randomly selected channel 
networks can be treated as finite subnetworks of infinite topologically random chan- 
nel networks (Shreve 1969, p. 398). This specifically implies that networks of the 
same magnitude but different topology are equally likely. The assumption seems 
justified for at least two reasons. Typically, natural channel networks investigated in 
geomorphology are embedded in networks of very large magnitude. Furthermore, 
theoretical implications of the assumption have by and large been verified by 
empirical tests, and the notion of topological randomness of natural channel net- 
works is generally accepted as a good approximation (Smart 1972, p. 341). The 
following two theorems hold for finite subnetworks selected at random from infinite 
topologically random networks (Shreve 1969, pp. 399-400). The expected magni- 
tude E, (n)  for a stream of order m is 

(8) Em(n) = (2'"'-' + 1)/3, 
i.e., the expected stream numbers of a channel network of order i are, starting with 
the stream of highest order, 1, 3, 11, 43, 171, ..., E i ( n ) .  The sequence quickly 
approximates a geometric progression with constant factor 4 and represents a 
theoretical explanation of the First Horton Law. Furthermore, the average number 
of streams of order j which merge with a stream of order i, where i > j ,  is 2&j-l. 
Using these two relationships we obtain, after some algebraic manipulation, the 
following equations for the expected stream merger matrix E , , , ( M M )  of networks of 
order m: 

(9) 

(10) 
Table III shows the expected merger matrix E s ( M M )  for networks of order 5 .  

Note that the elements of the main diagonal do not satisfy equation ( lo) ,  i.e., the 
numbers of mergers among streams of equal order do not fall "in line" with the 
numbers of mergers among streams of unequal order. Only for m approaching in- 
finity, for i, j finite, and after converting frequencies into probabilities does equation 
(9)  become a special case of equation (10).  (The matrix corresponding to these 
conditions consists of the probabilities of the mergers of streams of order i, j in 
topologically random networks of infinite magnitude. The values of these probabili- 
tiesare2-(i+j),i,j= 1 ,2  ,...) 

The elements of the matrix shown in Table IV are the mean values for eight 
observed channelled networks of order 5 as sampled from USGS 1 :24,000 maps 
(mostly Pennsylvania and Kentucky; data kindly provided by Dr S. Smart, IBM 
Watson Research Center, New York). They are presented here for illustrative pur- 
poses only; the sample size does not permit a statistical analysis which would allow 
any conclusions as to whether the observed values of Table IV differ significantly 
from the expected figures of Table I I I .  Besides, the underlying assumption of random 
network topology as a first approximation for natural channel networks has been 
extensively tested in the literature; thus the emphasis of this section of the paper is 
not on another test of that assumption but rather on some of its implications. 

Em(ni i )  = (22"-2i  + 2)/3 

E m (n. .)  [ J  = (22"-i-j + 2li-A-1 )/3 

( i  = 1, ... , m), 
( i , j  = 1, ... , m; i # j ) .  
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TABLE I11 
EXPECTED MERGER MATRIX FOR 

NETWORKS OF ORDER 5 

86 43 22 12 8 
43 22 11 6 4 
22 1 1  6 3 2 
12 6 3 2 1 
8 4 2 1 1 

TABLE 1V 
MEAN MERGER MATRIX FOR EIGHT 
OBSERVED NETWORKS OF ORDER 5 

75.1 41.4 3 0 . 5  17.9 1 1 . 1  
41.4 19.3 7 . 9  6. I 4 . 4  
30 .5  7 . 9  5 . 3  1 . 8  2 .5  
17.9 6.1 1 . 8  2.0 0 . 6  
1 1 . 1  4 . 4  2 .5  0 . 6  1 

The elements of the first row (column) of the expected merger matrix E ( M M )  
have simple relationships to the remaining matrix elements: 

Hence E ( M M )  can be built stepwise from the one element matrix [ l ]  by repeating 
simple addition of the row and column elements. The above relationships show that 
the determinant of any E ( M M )  is equal to 1 ,  but it is not clear whether this has any 
specific meaning in a morphologic context. 

Since the elements of the main diagonal of the expected merger matrix are the 
expected stream numbers multiplied by 2, they satisfy the Horton Law. Do the 
expected frequencies of mergers among streams of unequal order display a similar 
regularity? The following statements, which can be easily deduced, provide interest- 
ing answers to this question. 

( a )  The elements of each diagonal parallel to the main diagonal of the matrix 
approximate a geometric progression with constant factor 4. They have the same 
sequence of bifurcation ratios as the elements of the main diagonal, i.e., as the 
expected stream numbers. Let R ,  denote that sequence of bifurcation ratios and 
E ( n i )  the expected number of streams of order i. The above statement can then be 
expressed mathematically as 

where i = m, m - 1, ..., j + 1 and 1 < j < m and i - j is a positive constant c. Since 
the matrix is symmetric, exchanging i and j will take care of all diagonals to the 
right of the main diagonal. As an example, consider the three diagonals adjacent to 
the main diagonal in Table 111. If we extend the matrix towards the upper left (i.e., 
if we consider the expected numbers of stream mergers in a network of higher than 
fifth order) their respective figures are 1, 3, 1 1, 43; 2, 6 ,22,  (86)  ; and 4, 12, (44) ,  
(172). It is easy to see that all these sequences of expected stream merger frequencies 
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have the same sequence of bifurcation ratios (which is that of the main diagonal if 
we exclude n55, and therefore that of the First Horton Law). 

(b)  On either side of the main diagonal, each series of elements parallel to the 
minor diagonal approximates a geometric progression with constant factor 1,  and 
they all have the same sequence (or subsequence) R2 of bifurcation ratios. In other 
words, any series of matrix elements parallel to the minor diagonal will approximate 
a constant value as it progresses towards the main diagonal. The sequence of bifurca- 
tion ratios R2 is given by 

= 314, 11/12,43/44, ... , E(ni-  I ,j+ 1) 3 
+ 4  R2 = = - 22m-2i+3 

E(nij)  
(13) 

where i = rn, rn - 1 ,  ..., and i 2 j and i + j is some constant c. (For j = 1,2,  ... and 
i 2 j and i + j = c we obtain subsequences of R ,  which correspond to series of 
matrix elements starting in the first column rather than the last row; the equivalent 
relations on the other side of the main diagonal are again described by the symmetry 
of the matrix.) The minor diagonal in Table III is too short to demonstrate how the 
elements gradually approximate a constant and, therefore, the bifurcation ratios 
approximate the value 1 .  For a channel network of order 10 the values of the minor 
diagonal are, respectively, 256, 192, 176, 172, ..., and of the diagonal adjacent and 
parallel to it 128, 96, 88, 86, ... Again it is obvious that the sequences have the same 
bifurcation ratio figures. 

(c) The two bifurcation sequences R ,  and R.) which characterize the matrix 
elements located either parallel to the main diagonal or orthogonal to it differ only by 
a constant factor: 

(14) K, = 4R2. 

Combining the three statements, we can now formulate a generalization of the 
First Horton Law. 

The expected frequencies of mergers among streams of order i, j with i - j = c 
(constant) approximate a geometric progression with constant factor 4, i.e., they 
satisfy the First Horton Law. For the special case i - j = 0 these frequencies cor- 
respond to the network stream numbers for which this law was originally formulated. 
Moreover, the various progressions corresponding to different values of c have the 
same sequence of bifurcation ratios. 

The expected frequencies of mergers among streams of orders i, j with i + j 
constant approximate a geometric progression with constant factor 1. Again the 
various progressions corresponding to different values of c have the same sequence 
(or subsequence) of bifurcation ratios, and this sequence is related to the first one 
by a constant factor 4. Thus, the Horton Law is again satisfied, except that the 
bifurcation ratios approximate the value unity rather than 4. 

Figure 2 shows a histogram-type illustration of the expected merger matrix 
E ( M M )  for channel networks of order 5 .  The base of the diagram is formed by the 
pairs i, j (1 5 i, j I 5 ) and the third dimension represents the expected frequencies 
E(nu)  of mergers among streams of orders i and j .  The main diagonal (i.e., the 
heavy dotted line connecting A and B )  is the graphic representation of the original 
Horton Law as derived by Shreve (1 969, p. 399). Notice that the various diagonals 
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'. ..$ 

A 

FIGURE 2. Histogram showing the three-dimensional frequency distribution of the expected 
number of mergers among streams of orders i and j in a channel network of order five. The main 
diagonal on the surface (connecting A and B )  corresponds to the First Horton Law; notice that 
the diagonals parallel to it show the same slope distribution. The histogram also shows that the 

minor diagonal and those parallel t o  it approximate horizontal lines. 
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parallel to the main diagonal tend to have the same slope distribution, and that the 
diagonals parallel to the minor diagonal approximate horizontal lines. The third 
feature of the generalized Horton Law as presented in this paper, namely the similar 
slope distribution of the two types of diagonals (equation (14)), cannot as readily 
be recognized in this illustration. 

SOME CONCLUDlNG COMMENTS 

There are many papers which deal with the mathematics of channel network topology, 
and adding yet another one makes it increasingly important to reflect on the merits 
of such theoretical studies. The following statements are made to identify the position 
which this and similar papers occupy, in the author’s judgment, within the field of 
geomorphology . 

1. One could argue that, by definition, any subject matter becomes a part of a 
discipline if, among the members of the corresponding profession(s), there are 
researchers who want to explore it, editors who are prepared to publish the results, 
and readers who are interested in reading about it. In  this case, the question as to 
whether graph-theoretical research on network topology should become part of 
geomorphology has already been answered by the course of events since Horton first 
introduced (semi-) topologic concepts and observations into the geomorphic 
literature. 

2. The above argument is unsatisfactory to the extent that every discipline should 
try to establish a rational base for its activities, rather than see itself only as a 
partially interrelated sequence of historical accidents. If the field of geomorphology 
is to qualify as a scientific discipline its research has to emphasize, by definition, 
scientific methodology including the construction of theory. The work of Shreve and 
others has generated such a theory, namely that of the random topology of channel 
networks. This theory not only represents the mathematical analysis of certain 
abstract branching patterns which may or may not have real world counterparts, but 
it is also a geomorphologically relevant theory because it provides theoretical ex- 
planations for observed geomorphic phenomena. Examples are: ( a )  distribution of 
bifurcation ratios in channel networks (Shreve 1966) ; (b )  distribution of the ratios 
of stream lengths in channel networks (Smart 1968; Shreve 1967, 1969); (c)  the 
0.6 power relationship between main stream length and basin area in channel net- 
works (Shreve 1970; Werner and Smart 1973); (d )  the relationship between the 
Langbein arealdistance distribution parameter and basin area (Langbein et al. 
1947; Werner and Smart 1973); (e )  several other relationships between morpho- 
metric basin and network variables (Werner 1975). It should be emphasized that 
some of these examples show the applicability of theorems derived from the theory 
of topologic randomness to morphometric parameters, thereby tying topologic con- 
cepts and relationships into the larger context of geomorphic research in general. 

3. The theory of topologic randomness of channel networks permits the derivation 
of a virtually infinite number of theorems, each of which could become a geomorphic 
“law” once it has been established under which real world conditions natural channel 
networks actually satisfy the specific behaviour predicted by the theorem. (It is at 
least questionable, however, if every empirical regularity backed up by theory is 
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therefore of sufficient interest.) Alternatively, the lack of correspondence between 
theoretical prediction and real world observation draws attention to peculiarities of 
natural channel networks which otherwise would not have been noticed. An example 
is the discovery by Shreve and Krumbein that the distribution of cis and trans links 
in natural channel networks is far from random and shows a large and systematic bias 
in favour of cis links. 

4. Within the framework of these rather general comments, the contribution of 
this paper is twofold: 

( a )  The paper deduces several new theorems including, specifically, a generaliza- 
tion of what has become known as the “First Horton Law.” In this respect, the paper 
is as “relevant” as Horton’s Law (the relevance of which, however, may be con- 
sidered as only historic, inasmuch as it led to the graph-theoretical investigations of 
channel networks). 

(b)  The Foncept of stream numbers has so far resisted being linked to other 
geomorphic parameters, either because such relationships simply do not exist, or 
because stream numbers are too crude a concept to possess any significant discrim- 
inating power. This paper provides a more detailed description and analysis of the 
stream patterns of channel networks and will therefore allow a more sensitive testing 
regarding the geomorphic relevance or irrelevance of the stream number concept. 
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