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No early warning signals for stochastic transitions: insights from large1

deviation theory2

Carl Boettigera,∗, Alan Hastingsb
3

aCenter for Stock Assessment Research, Department of Applied Math and Statistics, University of California, Mail Stop SOE-2,4

Santa Cruz, CA 95064, USA5

bDepartment of Environmental Science and Policy, University of California, Davis, CA, 95616 United States6

In Boettiger & Hastings [1] we demonstrated that conditioning on observing a purely stochastic transition from7

one stable basin to another could generate time-series trajectories that could be mistaken for an early warning8

signal of a critical transition (such as might be due to a fold bifurcation [2]), when instead the shift is merely due9

to chance. While the goal was to highlight a potential danger in mining historical records for patterns showing10

sudden shifts when seeking to test early warning techniques, Drake [3] draws attention to a potentially more11

interesting consequence of our analysis. Drake argues that the bias observed could be used to forecast purely12

stochastic transitions – a task previously thought to be impossible [4]. We feel this interpretation is too generous.13

The pattern Drake points to arises in any large deviation, regardless of whether a system is or is not at elevated14

risk for a transition. We illustrate this pattern in systems with and without bistability, demonstrating that early15

warning signals do not exist for purely stochastic transitions.16

Here we provide a numerical demonstration that the pattern in question for consideration of an early warning17

signal appears not only before purely stochastic transitions (as seen in Reference 1) but during any large deviation.18

As large deviations can occur even in stochastic systems that have only a single stable point, these patterns19

cannot be considered indicators of stochastic transitions. We demonstrate this in two scenarios: first using the20

Allee model of alternative stable states considered in Reference 1, Eqn 2.1 - 2.2 and Figure 2, and then in a simple21

Ornstein-Uhlenbeck (OU) model which has only a single stable state. Rather than condition on a stochastic22

transition having occurred (as in Reference 1), we now condition on having merely observed a sufficiently large23

deviation. It does not matter precisely what “large” deviation is considered, only that the larger the deviation24

the more replicates or longer simulation times will be needed to sufficiently populate the sample. We pick values25

such that we get a sample of a few hundred large deviation events in a sample of 20,000 replicates.26

The OU model is defined by a stochastic differential equation in which there is only a single optimum whose27

strength is proportional to the displacement,28
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dXt = −αXtdt+ σdBt,

where the state Xt oscillates around a stable point (at zero in these arbitrary units), driven by Brownian noise29

dBt of intensity σ and restorative force α.30

The analysis for each model proceeds exactly as in Reference 1: For each model we generate 20,000 replicate time31

series. We condition upon only those experiencing a deviation of size L (X ≤ 250 in the Allee model and X ≤ −432

in the OU model). For the sequence of observations immediately leading up to the large deviation we compute33

the warning signals of variance and autocorrelation over a sliding window of half the length of the time-series, and34

we summarise the increasing or decreasing trend observed in the variance and autocorrelation using Kendall’s τ35

rank correlation coefficient (all following the method for early warning indicators outlined in Reference 5). We36

repeat this analysis on the entire set of time-series under each model to obtain null distributions for τ statistic.37
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Figure 1: Figure 1. Histogram shows the frequency the correlation statistic τ observed for each warning signal (variance, autocorrelation

coefficient) on the large deviation samples from each model. Background distribution of all samples show by smooth line (kernel

density estimate). More positive values of tau are supposed to indicate a rising indicator which can be a signal of an approaching

transition [2]. The OU model uses α = 5, σ = 3.5, t ∈ (0, 10), 2000 replicates, 20,000 sample points each. Conditionally selected

trajectories experiencing a deviation of at least -4, and analyzed the 1,500 data points prior to the threshold to determine a warning

signal (following Reference 5). (Code at: https://raw.github.com/cboettig/earlywarning/resubmission/inst/doc/Figure1.Rmd, data

at: https://raw.github.com/cboettig/earlywarning/resubmission/inst/doc/Figure1.csv (Once published, code and data will appear in

Dryad via doi: 10.5061/dryad.1dj62)
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We find (Figure 1) that τ is significantly skewed towards positive values when conditioning on large deviations in38

both models. This demonstrates that it is the presence of the large deviation, not the presence of the stochastic39

transition we condition on in Reference 1, that is responsible for this pattern (just as we claimed without example40

then).41

Observing the bias shown in the figures here depends on having a rapid enough sample frequency to capture42

the escape trajectory and a long enough trajectory for the statistic to demonstrate an increase over time. Since43

large deviations due to stochastic forces alone must be fast, so must the accompanying warning signal and44

management response (which will show up on the time scale of the perturbation). Note that fast relative to the45

system dynamics may or may not be fast relative to the timescale of management (just as with bifurcation-driven46

warning signals, Reference 6). The wider null distribution in the OU model results from the sample window being47

shorter relative to the system timescale.48

One might consider this a corollary of the Prosecutor’s Fallacy we originally presented, which demonstrated that49

examples of sudden transitions historically selected from the literature could be mistaken for positive evidence of50

early warning signals when they were in fact due to purely stochastic transitions. Here we have seen how any51

large deviation could be similarly misleading, whether or not it results in a stochastic transition to an alternative52

stable state. From a classical result of the large deviation theory one can gain considerable intuition about53

why these chance deviations show much higher variance and autocorrelation than expected from the stationary54

distribution of a stable point. Though large deviations are rare – the time we must wait to observe a deviation of55

size L in the system above scales as exp
(
L2/σ2)

(the familiar Arrhenius relationship), when these deviations56

occur they occur very rapidly. The expected time for an excursion to a distant point L that does not again57

cross the stable point before reaching L scales as log(L/σ), just as a trajectory returning down the gradient of58

the attractor from L to the stable point (proofs in Reference 7 or Reference 8). While most trajectories in the59

stationary distribution take steps in each direction with equal probability, these large deviations moving rapidly60

to the boundary will consequently show the greater autocorrelation. In achieving a much greater deviation than61

typically observed, these trajectories will also show an increase in variance, as observed. That such trajectories62

appear to be pulled in the direction of their escape rather than climbing away against a restorative force has led63

to confusion before. Reference 8 argues how this shows how a “punctuated equilibrium” pattern of stasis followed64

by rapid change could arise entirely from small steps, and Reference 9 empirically demonstrates this phenomenon65

in the trajectories of local population extinctions.66

In conclusion, we heartily agree with the need for a decision-theoretic approach to early warning signal questions67

[10]. Central to a decision-theoretic approach is enumerating alternative scenarios that are possible given the68

observed data. We have highlighted how purely stochastic transitions and large deviations are such possibilities.69

The challenge of sufficient or unique early warning indicators is not limited to stochastic shifts, but includes70

the more typical critical transitions. For instance, rising variance or autocorrelation patterns typical of fold71

bifurcations can be observed in more benign bifurcations or smooth transitions [11]. Early warning signals may72
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offer a promising technique that will one day allow us to avoid seemingly unpredictable catastrophes – but we73

must not lose sight of just how difficult are the challenges involved. A key step here and for early warning74

indicators more generally is to understand these other circumstances in which they can arise, that we may then75

develop ways to eliminate those possibilities. Though we may never be able to detect purely stochastic transitions,76

perhaps these approaches in this discussion may lead to more unique and sufficient indicators for true critical77

transitions.78
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