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Dataset of solution-based inorganic 
materials synthesis procedures 
extracted from the scientific 
literature
Zheren Wang1,2, Olga Kononova   1,2, Kevin Cruse1,2, Tanjin He   1,2, Haoyan Huo   1,2, 
Yuxing Fei1,2, Yan Zeng2, Yingzhi Sun   1,2, Zijian Cai1,2, Wenhao Sun   3 & Gerbrand Ceder   1,2 ✉

The development of a materials synthesis route is usually based on heuristics and experience. A possible 
new approach would be to apply data-driven approaches to learn the patterns of synthesis from past 
experience and use them to predict the syntheses of novel materials. However, this route is impeded 
by the lack of a large-scale database of synthesis formulations. In this work, we applied advanced 
machine learning and natural language processing techniques to construct a dataset of 35,675 solution-
based synthesis procedures extracted from the scientific literature. Each procedure contains essential 
synthesis information including the precursors and target materials, their quantities, and the synthesis 
actions and corresponding attributes. Every procedure is also augmented with the reaction formula. 
Through this work, we are making freely available the first large dataset of solution-based inorganic 
materials synthesis procedures.

Background & Summary
Big-data-driven approaches have helped to establish a new paradigm of scientific research1–3. In materials sci-
ence specifically, the Materials Genome Initiative (MGI) effort has significantly facilitated and accelerated mate-
rials discovery and design by deploying large-scale ab initio computation and building computed databases 
of structure–property relationships4–6. Unlike computational data, the experimentally determined properties 
and structures of inorganic materials are mainly available in manually curated databases7–11. Such well-curated 
experimental databases have led to early machine learning models that address difficult problems in materi-
als research, such as structure prediction3. The ability to efficiently design and predict the structure of novel 
advanced materials with the assistance of computed and experimental databases has shifted the materials inno-
vation challenge toward understanding and determining the synthesis routes for novel materials12. In principle, 
this challenge could also be mastered using data-driven approaches, since only limited predictive theories are 
available for materials synthesis13–23. Indeed, in organic chemistry, AI-guided synthesis planning24,25 has already 
been successfully implemented in certain cases, such as in predicting retrosynthesis26 and in complex natural 
product synthesis design27. Although datasets for the synthesis of organic materials are widely available28,29, there 
is not yet a large-scale database of inorganic synthesis routes, which is needed to train advanced deep-learning 
models to enable a breakthrough in AI-assisted design and optimization of inorganic materials synthesis.

Scientific publications represent the largest repository of knowledge about materials synthesis and can be 
used as a reliable source of data. However, human-written descriptions of syntheses require additional levels 
of interpretation for conversion into a codified, machine-operable format. Additionally, manual extraction of 
synthesis information is laborious, even for a very limited number of papers30–33. Given these obstacles, an auto-
mated information extraction pipeline can accelerate data collection and assist in building structured synthesis 
procedures from scientific text. Natural language processing (NLP) approaches have been widely developed in 
the past decade, and various advanced tools for high-quality information extraction from unstructured text are 
available to researchers.
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In materials science, NLP has been used to extract and analyze materials properties34–36, applications37,38, and 
synthesis conditions for some limited cases39. Various NLP tools, including ChemDataExtractor40, OSCAR41, 
ChemicalTagger42, and others30,43,44, have been developed to extract information from chemical text. Recently, 
advanced models based on deep convolutional and recurrent neural networks45–48 have been proposed to 
improve the accuracy of chemical data extraction.

Text-mining approaches in materials science have also been used to construct automated pipelines for 
collecting information about materials synthesis from publications and to build large-scale publicly avail-
able datasets from such collected data, including datasets of synthesis formulations for metal oxides39,49,50, 
germanium-containing zeolites51, and perovskites52. In recent work, our group has developed a text-mining 
pipeline to construct the first large-scale dataset of solid-state ceramics synthesis “recipes”, which includes 
not only the starting materials and final products but also the synthesis actions, their attributes, and balanced 
chemical-reaction equations53.

In the current work, we built a more advanced extraction pipeline (Fig. 1) which uses various advanced 
machine learning and natural language processing techniques to extract precise data for solution-based inor-
ganic materials synthesis procedures from the scientific literature. Solution procedures are considerably more 
complex than solid state synthesis and require the precise extraction of not only the chemicals involved but also 
their respective amounts (since they determine concentration in solution). In addition, more complex organic 
and mixed organic-inorganic compounds are used to solubilize ions or to control solution conditions. By apply-
ing the extraction pipeline, we codified 35,675 solution-based inorganic materials synthesis procedures from 
over 4 million papers. Extracted information includes target material and precursors, their quantities, and the 
synthesis operations and their attributes. Information about the targets and precursors is then used to build a 
reaction formula for every synthesis procedure. This dataset is the first large-scale dataset of solution-based 
synthesis procedures, and provides a foundation to test and verify existing empirical synthesis rules, improve 
prediction accuracy, and even data-mine new rules to guide synthesis. Also, this codified dataset should pave the 
way to design optimized synthesis procedures in automated experimentation.

Methods
Content acquisition.  The journal articles used in this work were downloaded with publisher consent from 
Wiley, Elsevier, the Royal Society of Chemistry, the Electrochemical Society, the American Chemical Society, 
the American Physical Society, the American Institute of Physics, and Nature Publishing Group. A customized 
web-scraper, Borges (see Codes Availability section below), was used to automatically download a broad selection 
of materials-relevant papers published after the year 2000 from publishers’ websites in HTML/XML format. We 
selected 2000 as the cutoff year as parsing of materials science papers stored as image PDFs (as for most papers 
published before 2000) introduces a significant number of errors due to the limitations of currently available 
optical character recognition models on chemistry-containing text54,55.

To convert the articles from HTML/XML into raw-text files, we developed the LimeSoup toolkit (see Codes 
Availability section below), which takes into account the specific format standards of various publishers and 

Fig. 1  Extraction pipeline and example. Top panel: Schematic representation of the standard text mining 
pipeline: (i) scrape papers in markup format from the major publishers; (ii) identify and classify synthesis 
sections; (iii) extract key information including materials, amounts, sequenced operations, and conditions; 
(iv) store synthesis procedures into the database for future data mining. Bottom panel: Example of a codified 
procedure extracted from a synthesis paragraph.
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journals. The full-text and metadata of the articles such as the journal name, article title, abstract, author names, 
etc., are stored in a MongoDB (www.mongodb.com) database collection. To date, we have accumulated 4.06 
million articles, which are used for further processing down the pipeline (Fig. 1).

Paragraph classification.  Paragraphs containing information about solution synthesis (referred to as “syn-
thesis paragraphs” throughout this paper) were identified using a Bidirectional Encoder Representations from 
Transformers (BERT) model56. The model was pre-trained on full-text paragraphs of 2 million papers randomly 
drawn from our database in a self-supervised way, i.e., by predicting masked words based on their surrounding 
context. After training the BERT model, we fine-tuned the paragraph classifier using 7,292 paragraphs labeled as 
either “solid-state synthesis”, “sol-gel precursor synthesis”, “hydrothermal synthesis”, “precipitation synthesis”, or 
“none of the above”. The resulting F1 score of the paragraph classification is 99.5%, an improvement over the F1 
score of 94.6% in our previous work57, when evaluated using the same labeled training dataset.

Synthesis procedure extraction.  A solution-based synthesis procedure includes the precursors and target 
materials, their quantities, and the synthesis actions and their attributes, properly sequenced. This is the mini-
mum essential information required to complete a synthesis route. A schematic representation of the procedure 
is shown in the bottom panel in Fig. 1. In the sections below, we provide a brief overview of the methods used for 
each step of the procedure extraction.

Materials entity recognition (MER).  Materials entities in synthesis paragraphs are identified and classi-
fied as target, precursor, or other via a two-step sequence-to-sequence model as introduced in our previous work46. 
In the current work, we replaced the original Word2Vec embedding model used previously58 with a BERT model 
trained on papers from the materials science domain (see Section “Paragraph classification” above). First, each 
word token was transformed into a digitized BERT embedding vector. A bi-directional long-short-term memory 
neural network with a conditional random-field top layer (BiLSTM-CRF) was used to determine whether the 
token was a materials entity or a regular word, and each materials entity was replaced with the keyword <MAT> 
before being classified as either a target, precursor, or other material using a second BERT-based BiLSTM-CRF 
network. In addition to the 834 annotated solid-state synthesis paragraphs from 750 papers used in our previous 
work46, we manually annotated 447 solution-based synthesis paragraphs from 405 papers by labeling each word 
token as material, target, precursor, or outside. The annotated dataset was split into training, validation, and test 
sets with a paper-wise ratio of 700:150:305 to train the aforementioned two neural networks.

Extraction of synthesis actions and attributes.  We implemented an algorithm which combines a neu-
ral network and sentence dependency tree analysis to identify synthesis actions in the text. First, the Word2Vec 
model from the Gensim library59 was re-trained on ~400,000 synthesis paragraphs of four synthesis types (see 
Section “Paragraph classification” above). These word embeddings were used as the input for a recurrent neural 
network that takes a sentence word-by-word and assigns labels to the verb tokens: not-operation, mixing, heat-
ing, cooling, shaping, drying, or purifying. For each obtained synthesis action, we parsed a dependency sub-tree 
using the SpaCy library60 to obtain information about the corresponding temperature, time, and environment. To 
extract the corresponding values of these attributes, we used a rule-based regular expression approach61.

Extraction of material quantities.  To extract the numerical values of material quantities and assign 
them to the corresponding materials obtained using the MER model (see Section “MER” above), we applied a 
rule-based approach to search along the syntax tree61. The NLTK library62 was used to build the syntax trees for 
each sentence in a paragraph. The words in given sentences are leaf nodes of syntax trees. We then applied an 
algorithm to cut the syntax tree of each sentence into the largest sub-trees for every material, with each sub-tree 
having only one material entity: 1. we first identified the materials on leaf nodes; 2. starting from each material, we 
identified the largest sub-trees, i.e., we traversed the syntax tree upwards until there was more than one material 
leaf node descending from the same node; 3. the largest sub-tree for a given material was defined as the sub-tree 
formed by the node and its descendants identified in step 2. Next, we searched for the quantities in each sub-tree 
given as molarity, concentration, or volume. Finally, we assigned the quantities found to the unique material 
entity in the sub-tree.

Building reaction formulas.  For every synthesis procedure described in a paragraph, we built a chemical 
formula. Every material entity was converted from a text-string representation into a chemical-data structure 
using an in-house material parser toolkit (see Codes Availability section below). The data structure included 
information about the material formula, composition, and ions. We then paired the target with precursors con-
taining at least one element in the target except for hydrogen and oxygen and defined those precursors as “precur-
sor candidates”. Next, we computed the oxidation state change of elements from each “precursor candidate” to the 
target and determined whether the precursor was oxidized or reduced. If precursors were reduced or oxidized, we 
also included the corresponding redox agents in the reaction formula. The agents can either be another “precursor 
candidate” or a commonly used oxidizing or reducing agent from the remaining material entities marked as other 
or precursor by the MER algorithm (see Section “MER” above).

Dataset generation.  The dataset generation followed the protocol displayed in Fig. 1. We downloaded a 
total of 4,061,814 papers using web scraping and identified the experimental sections by keyword matching in 
section headings, with keywords including “experiment”, “synthesis”, “preparation”, and their morphological der-
ivations. ChemDataExtractor40 was used to split the plain-text paragraphs into sentences and words. After classi-
fication (see Section “Paragraph classification” above), 364,076 paragraphs describing solid-state, hydrothermal, 
sol-gel, and precipitation syntheses were obtained. Among them, 189,553 paragraphs described hydrothermal or 
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precipitation syntheses, which we categorize as solution-based synthesis methods. These paragraphs were further 
processed to extract the precursors, targets, quantities, and operations with corresponding conditions and to 
build the reaction formula (Fig. 1).

Data Records
The solution-based synthesis dataset is provided as a single JSON file, available at https://doi.org/10.6084/
m9.figshare.16583387.v463. There are 20,037 hydrothermal synthesis reactions and 15,638 precipitation synthe-
sis reactions. Each record corresponds to a synthesis procedure extracted from a paragraph and is represented 
as an individual JSON object. If a paragraph reported the synthesis of several materials, the corresponding reac-
tions were split into separate data records. In addition to the chemical formula, the metadata for each reaction 
returns the data structure used in our previous work53, which includes: DOI of the paper, a snippet of the corre-
sponding synthesis paragraph (50 first and 50 last characters to facilitate its lookup), chemical information about 
the target and precursor materials used in the reaction, and operations with their corresponding attributes. We 
also included the materials with their corresponding quantities in the metadata. The details of the data format 
are given in Table 1

The chemical formula for the reaction is stored as a string (reaction_string) as well as in a dictionary 
containing lists of precursors (left_side) and target materials (right_side) in the reaction.

The metadata for target materials and precursors used to construct the chemical formula are represented by 
the following data structure:

•	 material_string: string of material as given in the original paragraph before being parsed into a chem-
ical composition.

•	 material_formula: chemical formula associated with the material (given originally or constructed 
empirically by parser).

•	 composition: chemical composition of the material derived from its formula. Aside from single-com-
pound materials, we found that a large portion of the materials (predominantly target materials) are com-
posites, mixtures, solid solutions, or alloys written as a sequence of compound-fraction pairs. Therefore, a 
chemical-composition entity is represented by a list of dictionary entries, where each item is associated with a 
compound found in the materials formula. The fraction of each compound in the material is given in amount, 
and its chemical composition (i.e., the elements and stoichiometry) is given in elements. If a material is  
one compound, the list has only one item and amount = 1.0. If a material is a hydrate, water is added to the 
composition list with its amount corresponding to the amount of water molecules (if specified).

•	 additives: list of additive elements (i.e., elements used for doping, stabilization, or substitution) resolved 
from the material string.

•	 elements_vars: lists all variable elements and their corresponding values found in the materials.
•	 amounts_vars: lists all variable element ratios and their corresponding values found in the material for-

mula. The values of each variable are given as a structure with values listing the values of each specific 
variable and max_value/min_value values if a range is given in the paragraph.

•	 oxygen_deficiency: yes/no attribute that reflects whether a material was synthesized with unspecified 
oxygen stoichiometry.

•	 mp_id: ID of the lowest-energy polymorph entry in the Materials Project database (https://materialsproject.
org/materialsproject.org) if the material is found there.

To facilitate querying of the dataset, the targets_string field contains the target material formulas, and 
the solvents field contains all solvent(s) from matching material entities marked as other by the MER model 
with a table of common solvents adopted from Common Solvents Used in Organic Chemistry (https://organic-
chemistrydata.org/solvents/organicchemistrydata.org/solvents).

Technical Validation
Extraction completeness and accuracy.  To ensure high accuracy of the dataset, we included only those 
data that produced complete reaction formulas at the final step of the pipeline. This strategy reduced potential 
errors in the dataset that may have been caused by composition-parsing failure, incomplete extraction, or incom-
plete information provided by the text. We applied the extraction pipeline to 189,553 solution-based synthesis 
paragraphs, 28,749 of which generated a reaction formula, giving an extraction yield of ~15%. To evaluate the 
source of the loss, we randomly selected and manually checked 100 solution-based synthesis paragraphs that did 
not produce any reactions. Among those 100 paragraphs, 36 were written with an incomplete list of precursors 
or targets in the text, such that human experts would not be able to reconstruct the reaction based solely on 
the information provided in the paragraph. For the remaining 64 paragraphs, the loss was due to: 1. the use of 
organic precursors with complex groups or complicated notation (e.g., acronyms) that could not be parsed into 
a chemical composition by our parser or 2. MER misidentification resulting in an incomplete or incorrect list of 
precursors and (or) target entities such that the reactions could not be built.

To evaluate the quality of the dataset, we had a human expert test 100 randomly pulled entries. The human 
expert manually extracted the information presented in the procedure, and the results were compared with 
those extracted by the pipeline. Table 2 presents the accuracy statistics, which include the precision, recall, and 
F1 scores calculated from the tested entries. For the fields that included reaction, targets, precursors, operations, 
operation temperatures, time, and atmosphere, the F1 scores were over 90%. The relatively low recall, and hence 
F1 score, for the extraction of materials quantities can be mainly explained by the MER algorithm missing the 
corresponding material entity and, thus, the quantities not being assigned. The accuracy of the obtained dataset 
is comparable to that in our previous work53 and of other text-mined datasets49.
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Exploratory data analysis.  To test the diversity of the dataset and its coverage of the materials space, we 
analyzed unique materials (targets and precursors) and reactions. The dataset contains 11,603 unique reactions 
that include 2,870 unique precursors and 5,416 unique targets. The ten most frequent targets in the dataset and 
their corresponding precursors are listed in Table 3. The target list captures materials that have drawn substan-
tial attention in the past two decades: catalysts (ZnO, Fe2O3, TiO2, Fe3O4, SnO2, ZrO2, CuO), adsorbents (SiO2), 
various materials for sensors (ZnO, Fe2O3, WO3), quantum dots (CdS), and semiconductors (ZnO, TiO2, SnO2, 
CdS). Unsurprisingly, these most frequent target materials usually appear in multiple applications, as they possess 
desirable physical and chemical properties in many scientific and engineering fields.

We use the periodic table representation (Fig. 2) to visualize the chemical space covered by the dataset. 
For each element, the fraction of synthesis procedures containing this element in the target formula is shown 
with the yellow-to-navy blue gradient framed at the top of each element box. The most data-rich elements are 
transition metals in the third period, such as Zn, Fe, Ti, Ni, and Co, in accordance with the compounds listed in 
Table 3. The next-most prevalent targets are materials with Bi, Sn, Al, W, Mo, Cu, Zr, or Li. The least common 
elements are rare elements such as Ru, Rh, Hf, Ta, Re, and Ir. The elements Fr, Ra, Tc, and Pm are not present 
as target materials in the dataset, likely due to their radioactivity. Additionally, we calculated the frequency of 
co-occurrence of chemical elements and common ions in precursor materials to understand how different ions 
are brought into solution. In Fig. 2, the frequencies for each ion are displayed as colored bars. The length of the 
bar is the fraction of one specific ion paired with the element normalized over all precursors for this element.

The commonly used precursors are mainly those that are widely available from companies such as 
Sigma-Aldrich and Fisher Scientific. For example, Li2CO3 or LiOH for Li and sulfate or chloride for Fe. Inorganic 
salts, such as nitrates, sulfates, and chlorides, are often used because of their high solubility64. Halides are not 
used for Lanthanide metals because Lanthanide halides are highly hygroscopic, and thus their molar weight 
is not well defined. We observed that precursors with neighboring elements in the periodic table tend to have 

Data description Data Key Label Data Type

DOI of the original paper doi string

Snippet of the raw text paragraph_string string

Chemical formula reaction

Object (dict):

- left_side: list of strings

- right_side: list of strings

Chemical formula in string format reaction_string string

Target material data target

Object (dict):

- material_string: string,

- material_formula: string,

- composition: list of Objects1,

- additives: list of strings

- elements_vars: {var: list of strings}

- amounts_vars: {var: list of Objects2}

- oxygen_deficiency: boolean

- mp_id: string

List of target formulas obtained after 
variables substitution targets_string list of strings

Precursor materials data precursors list of Objects (See target)

List of solvent formulas solvents_string list of strings

Sequence of synthesis steps and 
corresponding conditions operations

list of Objects (dict):

- token: string,

- type: string

- conditions: Object

–temperature: list of Objects3

–time: list of Objects3,

–atmosphere: list of strings

–mixing_device: list of strings

–mixing_media: list of strings

Materials with corresponding quantities quantities

list of Objects (dict):

- material: string,

- quantity: list of Objects4

Synthesis type type string

Table 1.  Format of each data record: description, key label, data type. 1{formula: string, elements: 
{elements: amount of element}, amount: string}. 2{max_value: float, min_value: float, values: list of 
floats}. 3{max_value: float, min_value: float, values: list of floats, units: string}. 4{number: float, 
unit: string}.

https://doi.org/10.1038/s41597-022-01317-2
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similar ions paired. For instance, nitrates, sulfates, and chlorides are commonly used anions for 3rd-period tran-
sition metals, whereas the precursors for lanthanides are mostly oxides and nitrates.

We used information about the extracted materials and sequences of synthesis actions to classify the 
solution-based synthesis procedures into four categories of synthesis protocols (table in Fig. 3) according to the 
following definitions:

•	 solution-mixing with heat treatment step has a final heat treatment step after the precipitate is obtained from 
the solution;

•	 aqueous solution synthesis has no final heat treatment step after precipitating the compound from the solution 
and the solvent is water;

•	 non-aqueous solution synthesis has no final heat treatment step after precipitating the compound from solu-
tion and the solvent(s) is (are) organic;

•	 aqueous–non-aqueous mixed solution synthesis has no final heat treatment step after precipitating the com-
pound from solution and the solvents are a mixture of water and organic solvent(s).

The resulting distributions of synthesis protocols over the aforementioned categories are shown in the two 
pie charts in the top-right corner of Fig. 3. Note that as solution-based synthesis includes both hydrothermal 
and precipitation synthesis according to our definition (see Section “Paragraph classification”), we analyzed 
these synthesis types separately. As observed in the pie charts, only 20% of the procedures in the hydrothermal 
synthesis subset have a heat treatment step after solution mixing. Among those that do not have heat treatment 
step, 63% use only water as a solvent, 8% use only organic solvents, and 9% use both water and organic solvents. 
In contrast, the fractions in the precipitation synthesis subset are 43%, 46%, 5%, and 6%, respectively.

A heat treatment step after solution mixing can be used to dehydrate the targets, decompose the interme-
diates to produce the final products, change the oxidation state, change the morphology, or improve crystalli-
zation65–67. To explore this in more detail, we split the targets according to their anion type (oxide, sulfide, etc.) 
and different oxidation states of several data-rich transition-metal elements. We then computed the distribution 
of synthesis categories for each of the split subsets. Figure 3 presents the results for the most prevalent subsets 
of oxides, sulfides, and elements Fe2+, Fe3+, Co3+, Ni2+, Cu2+, and Zn2+. The fraction of procedures with a heat 
treatment step in precipitation synthesis is larger than that in hydrothermal synthesis. This observation holds 
for all targets, all oxides, all sulfides, and individual oxides and sulfides with queried oxidation states of tran-
sition metals. This finding can also be interpreted as hydrothermal synthesis often being used to obtain final 
products in a “one-shot” process, without subsequent heat treatment after solution mixing, likely because many 
compounds can be crystallized as anhydrous powders with controlled size and morphology directly from hydro-
thermal synthesis. In a standard hydrothermal synthesis procedure, the reaction is performed in an autoclave 
with autogenic pressure so that it can operate in a wider temperature window, including temperatures above the 
atmospheric boiling point of the solvent. In contrast, precipitation synthesis is performed under normal pressure. 

Data attribute Precision Recall F1 score

Balanced reactions 0.94 / /

- targets 0.97 / /

- precursors 0.98 0.99 0.98

Operations 0.96 0.85 0.90

Conditions

- temperature 0.97 0.92 0.94

- time 0.98 0.89 0.93

- atmosphere 0.97 0.92 0.94

Quantities 0.90 0.85 0.87

Table 2.  Performance of data extraction for dataset entries.

Targets Common Precursors

ZnO Zn(NO3)2, Zn(Ac)2, ZnCl2

TiO2 Ti(OCH(CH3))4, Ti(OC4H9)4, TiCl4

Fe3O4 FeCl3, FeCl2

Fe2O3 FeCl3, Fe(NO3)3

SnO2 SnCl4

ZrO2 ZrOCl2, ZrO(NO3)2

CuO Cu(NO3)2, Cu(Ac)2, CuCl2, CuSO4

SiO2 Si(OC2H5)4

WO3 Na2WO4, WCl6, H2WO4

CdS Na2S, CH4N2S, CdCl2, Cd(NO3)2

Table 3.  Ten most common targets in the dataset with their corresponding precursors.

https://doi.org/10.1038/s41597-022-01317-2
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The higher temperature possible in hydrothermal synthesis is associated with enhanced kinetics in chemical 
transport, nucleation, and crystal growth and thus with a more effective dissolution–recrystallization process, 
which can help remove defects and improve crystallinity. Furthermore, the physico-chemical properties, such 
as the viscosity and dielectric constant of water or other solvents, change pronouncedly under conditions of 
hydrothermal synthesis, affecting the solubility and mobility of species in the solution and eventually facilitating 
crystallization68. Therefore, hydrothermal synthesis does not need a post-synthesis heat treatment as often as 
precipitation synthesis.

Solution-based synthesis is an important area of materials synthesis57 and this dataset can help with advanc-
ing the science and model building for solution synthesis. Nevertheless, challenges remain in the mining of 
scientific literature and construction of robust and accurate large-scale datasets. First, the organic precursors 
with complex radicals commonly used in solution-based synthesis pose a challenge for parsing and extracting 
chemical information. Constructing reaction formulas becomes problematic when the precursor information is 
lost. Therefore, these entries are mostly dropped out later in the pipeline. To address this issue, a universal parser 
that can parse chemical tokens needs to be developed.

Second, our data was extracted from the experimental section in the main body of each paper and does not 
include any information about the actual synthesis results, e.g., whether the material was synthesized using the 
reported procedure or which structure was obtained. This problem could be overcome by introducing a model 
that can parse characterization data (e.g., X-ray diffraction patterns or electron microscopy images) and relate 
them to the corresponding synthesis conditions, something which, to the best of our knowledge, has not yet 
been performed. Even though the actual results of a synthesis can be extracted from a paper, there remains the 
challenge of data interpretation and usage, as the authors usually report only successful and “cherry-picked” 
experimental results. This introduces significant anthropogenic bias toward “positive” data with little “nega-
tive” content in the dataset, thus limiting the tasks for future machine-learning applications69,70. A promising 
approach to solve this issue is to incorporate results obtained by autonomous robotic synthesis platforms that 
can provide a vast amount of “negative” data in a reasonable time frame71,72.

Fig. 2  The chemical space covered by the dataset. For each element, the box containing the element name 
is colored in a yellow-to-navy blue gradient representing the total amount of reactions that produce a target 
compound containing the element. The bar graph below each element shows the list of ions paired with the 
element in precursor compounds. The fractions of the precursors (i.e. element + ion) used are shown by the 
length of the bars. Boxes with no bar graph represent elements occurring in five and fewer targets. “Ac” stands 
for acetate radical CH3COO− in the compound formula.
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Finally, solution-based synthesis is advantageous when the control of specimen morphology is required, 
e.g., when synthesizing noble-metal nanoparticles. However, this dataset does not provide information about 
the morphology of the synthesized materials, though such information is often contained in characterization or 
results paragraphs instead of the experimental section. The extraction of morphology and other solution syn-
thesis outcomes is another text-mining challenge in materials science research that requires the development of 
advanced algorithms and models30, which is beyond the scope of the current study.

Usage Notes
The dataset is provided in JSON format as a single file. All major programming languages, such as Python, 
Matlab, R, and Wolfram Mathematica, can be used to read it. No particular dependency is required.

Because the dataset contains detailed information about chemical formulas as well as the compositions of the 
target materials and precursors for each procedure, it can be easily used to conduct a literature review by query-
ing desired precursors and (or) targets in different chemical spaces. For example, selecting all TiO2 synthesized 
from TiCl4 allows an exploration of how other synthesis formulations, such as synthesis actions, attributes, and 
quantities, affect the results. Furthermore, the materials entries in the dataset are supplied with the Materials 
Project5 identifiers, thus facilitating the integration of the procedures with the thermochemical data available in 
the Materials Project73,74.

In addition, this solution-based synthesis dataset keeps the same data structure as that in the solid-state 
dataset generated in our previous work53. Therefore, it is easy to analyze the procedures from the two datasets.

Despite the dataset being provided as a static snapshot63, we intend to update it on a regular basis.

Fig. 3  Correspondence between choice of synthesis route and selected types of targets. The top table gives an 
example of the four synthesis categories defined: with heat treatment step, aqueous, non-aqueous, and mixed. 
The two pie-charts on the top-right show the fractions of synthesis routes in the hydrothermal and precipitation 
datasets separately. The four rows of pie charts in the lower half of the figure represent the fractions of the 
four synthesis routes (given in the table) for all oxides, all sulfides, and individual oxides and sulfides with 
different oxidation states of data-rich transition metals separately. The first and second rows are results from the 
hydrothermal dataset. The third and fourth rows are results from the precipitation dataset. Each blank space 
means that there is not enough data to form a statistic for the corresponding type of target.
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Code availability
The scripts used to classify paragraphs and extract procedures as well as to perform the data analysis are home-
written codes which are publicly available at the GitHub repository https://github.com/CederGroupHub/text-
mined-solution-synthesis_public with acknowledgement of the current paper.

The underlying libraries used in this project are all open-source:
Tensorflow (www.tensorflow.org)
Keras (keras.iokeras.io)
SpaCy (spacy.iospacy.io)60

NLTK (https://www.nltk.org/)62

gensim (radimrehurek.comradimrehurek.com)59

scikit-learn (scikit-learn.org)75

ChemDataExtractor (chemdataextractor.org)40

Material Parser (github.com/CederGroupHub/MaterialParser)
Borges (github.com/CederGroupHub/Borges)
LimeSoup (github.com/CederGroupHub/LimeSoup).
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