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CONVERGENCE IN CASCADES OF NEURAL NETWO 

Morris W. Hirsch 
Department of Mathematics 

University of California 
Berkeley, California 94720 USA 

Convergence of the activation dynamics of a 
cascade of neural nets is studied. Several mathematical 
results are presented which guarantee convergence of the 
cascade provided each component subnet is convergent. 

Cascades 
In studying the activation dynamics of a net, i t  is 

often useful to  decompose i t  into simpler subnets, and 
then t r y  to understand the qualitative dynamics of the 
full net in terms of the dynamics of the subnets. The 
dynamics of feed-forward nets, for example, can be 
analyzed in terms of the dynamics of the individual units. 

I t  is built up from a 
collection of subnets No, NI, ..., in  such a way that the  
output of N,-l is fed only into N,. A generalization of a 
layered net is a cascade. Let No and N, be two separate 
nets. If some units of No feed their outputs to  units in 
N, via new connections, we obtain a larger net Al, called a 
cascade of No into NI. If outputs from Ab, are fed into a 
third net N,, separate from A,, w e  obtain a net A2, a 
cascade of A, into N,. By iterating this process we 
obtain cascades of any number of nets No, NI, ... For 
example each N, might be a recurrent net doing 
competitive learning, feeding i ts  output to  N,, k > j. A 
n e t  N obtained i n  this way is called the cascade of the 
components N,. A basic problem is to  understand the 
behavior of a cascade in terms of the behavior of i ts  

ponent subnets. 

We call a ne t  Irreducible if every pair of distinct 
s belongs to  a loop of directed transmission lines, or in 

other words, if every unit can directly or indirectly 
influence the output of every other unit. A net that  is 
not irreducible is called reducible. A net  is reducible if 
an only if i ts  units can be ordered so that  the weight 
matrix is in lower block triangular form:  square 
submatrices down the diagonal, zeroes above them, 
arbitrary entries below. A feed-forward net with more 
than one unit is reducible to  one-unit nets. Every 
cascade is by definition reducible. 

A maximal irreducible subnet of a given net is 
called a bask subnet. I t  is easy to  see that every 
irreducible subnet of a given net is contained in a unique 
basic subnet. The following is a crude but useful 

Consider a layered n e t  N: 

ucture theorem for reducible nets: 

eorem 1 Every reducible net N is a cascade whose 
components are the basic subnets of N. 

Convergent cascades 
It is frequently useful to  know whether some 

particular property shared by all the components of the 
cascade N is also true for N itself. Here we consider this 
question for two dynamical properties: A system is 
convergent if every trajectory converges; it is globally 
asymptotically stable if in addition there is only one 
equilibrium, and i t  is asymptotically stable. Globally 
asymptotically stable nets have been considered by D. G. 

For simplicity we assume that  equilibria are 
erbolic, and that some bounded set attracts all 

trajectories. This implies that  the equilibrium set is 

A convenient mathematical model of a neural net is 

a dynamical syste 
systems governed 
results hold for  di 
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this is the cascade of the  two 

parameters can be 
follows. Let  Eo, ... 
dimensions. Let FJ 

XJ=FJ(~O, ... ,x’), 

cade of two systems, 
a trajectory of (1). 

ble, x(t) converges t o  
efore the omega limit 

in pXR”, invariant 
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nonempty invariant set of a 
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I t  is not true th  

cascade (1) is convergent. 

Suppose for  exa dynamics of F are 
convergent; that  for ea 

of z(t) is an invar e dynamics of G(p,y) 
which has the  prope 
definition of chain r 
the fact that  a str 
any chain recurrent set IS finite. 
Therefore K must CO 
(being connected) of . T h u s  (1) is 
convergent. 

of constructing a 
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Theorem 3 In system (1) assume that F has a C’ 
(continuously differentiable) strict Liapunov function V(x), 
and that there is a C’ function U(x,y) such that for  each 
fixed E, V(E,y) is a strict Liapunov function for the vector 
field G(f,y). Then there is a C’ strict Liapunov function 
for system (1). 

Proof 
them with arctan otherwise. 

We may assume V and U are bounded, composing 

Let 6 denote the finite equilibrium set of F. Let 
p be aC’ real-valued function on R” taking the value 1 on 
a neighborhood N of 6, and the  value 0 outside a larger, 
bounded neighborhood N’ of S. Pick 6>0, to be specified 
later. 

Define the function 

L(X,Y) =V(x) +GP(X)U(X,Y). 

Clearly L is C’. We show L is a strict Liapunov function 
provided 6 is small enough. 

Let H(x,y) =(F(x).C(x,y)) denote the vector field 
defined by the right hand side of (1). Then the 
derivative of L along a trajectory of H is 

L =VL .H =V,V .F +( ~ V , P  .F)U + G ~ V , U  .G, ( 2 )  

where VyU means the gradient of U, with respect t o  the y 
coordinates, etc. If we evaluate L a t  a point (a,b) such 
that  a belongs to a region where p is constant, then the 
middle term of (2) drops out and the each of the other 
terms is go. Moreover if. a4N’ then the first term is 
negative; and if aEN then L(a.b) =VxV.F+GVyU.G, which 
is negative unless H(a,b)=O. Therefore i t  suffices to 
prove L(a,b)<O for aEN’\N, the set where O<p(a)<l. 
Since V is a strict Liapunov function and a is outside the 
neighborhood N of 6, it follows that V,V.F(a) < -K < 0 
for  some constant K and all aEN’\N. Now the third term 
on the right hand side of ( 2 )  is  always <O, so w e  have 

L --K + 6MB 

where M is an upper 
bound for IUI. 
QED 

bound forlVxpl and B is an upper 
By taking 6 small enough w e  ensure L<O. 

One can iterate Theorem 3 for  certain addme 
cascades of networks that  individually admit strict C’ 
Liapunov functions for  their activation dynamics. In an 
additive cascade, functions of the outputs of the 
component nets are added t o  the  input units of later nets 
in the cascade. 

Consider for example a cascade whose component 
nets N, each satisfy the hypotheses of the Cohen- 
Crossberg theorem2. Fix J and let y be the vector of 
activations of N,. The activation dynamics of N, are 
assumed t o  be 

Y ,  = af(yl)[b,(yl) - F c l k d k ( ~ , ) l  + h,(zJ) (3) 

where zJ is a vector whose components are the activations 
of the units i n  the nets N1 ,..., N,-I. Assume a,>O, dk’>O 
and qt=cti. Denote h,(zJ) by E. We recast (3) as 

Y, a,(Y) [ B,(Y,) - xc,kd&Yk)] =G,(C*Y) (4) 
k 

where B,(y,)=b,(y,)+(f/a,(y,)). This is in the form required 
by the Cohen-Crossberg theorem, for each fixed E. 
Therefore the Cohen-Grossberg Liapunov function gives a 
function U($,y) which for  each E is  a strict Liapunov 
function for G,(f,y). We need one more hypothesis in 
order to  apply Theorem (3): the vector fields (4) and the 
functions U(E,y) must be C’. To achieve this i t  suffices 
to assume that the functions a,, b,, d, and h, are C’. 

This gives a generalization of the Cohen-Grossberg 
Theorem: There is a Liapunov function for an additive 
cascade of nets, each component of which separately 
satisfies the hypothesis of the Cohen-Crossberg theorem. 
More precisely, w e  can weaken the requirement of 
symmetry of the weight matrix, assuming instead that i t  is 
in triangular block form with symmetric diagonal blocks, 
provided we restrict the amplification factors to be 
functions of one variable: 

Theorem 4 Consider a network 

x, = a,(x,)[b,(x,) - xC(kd~(Xk)I (5) 

with C’ functions a,, b,, d,. Assume a,>O and d,‘>O. 
Assume the constant matrix [c,,] is in lower (or upper) 
block triangular form, and that  the diagonal blocks are 
symmetric. Then the activation dynamics has a strict C’ 
Liapunov function. 

Proof. The block triangular form allows us  to  represent 
the net as  an additive cascade, of which each component 
satisfies the requirements of the Cohen-Grossberg theorem 
and hence has a strict Liapunov function. The preceding 
discussion shows that Theorem 3 can be applied to  the 
successive stages of this cascade. 

k 

QED 

It is more difficult t o  obtain convergence for 
cascades of systems that are merely assumed to  be 
convergent, but without benefit of Liapunov functions or 
global asymptotic stability. One way of doing this is  to 
place strong restrictions on the rates of convergence. 
Roughly speaking, the cascade will be convergent provided 
trajectories in earlier components converge to equilibria a t  
faster exponential rates than equilibria i n  later stages. 

Let us  assume about the cascade (1) that every 
equilibrium is hyperbolic and that  every trajectory of 
x=F(x) converges. Assume also that for each equilibrium 
p of F, every trajectory of C(p,y) converges to  an 
equilibrium q of (1). The key assumption is: For any 
such equlllbrla p and q, trajectories of F(x) approach p at 
a faster exponentlal rate than trajectories of G(p.y) 
approach q. The technical formulation of this rate 
condition is the following: For any eigenvalues A,,u of the 
linearizations of F(x) a t  x=p and of G(p,y) a t  y=q 
respectively, if the real part of X is negative, then i t  is 
less than the real part of p .  

Theorem 5 With the assumptions of the preceding 
paragraph, every trajectory of the cascade (1) converges. 

Proofs, details and examples will appear in a 
forthcoming article in Neural Networks. 
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