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Abstract

In this paper, we use data collected from over 2000 non-residential electric ve-

hicle supply equipments (EVSEs) located in Northern California for the year

of 2013 to estimate the potential benefits of smart electric vehicle (EV) charg-

ing. We develop a smart charging framework to identify the benefits of non-

residential EV charging to the load aggregators and the distribution grid. Us-

ing this extensive dataset, we aim to improve upon past studies focusing on

the benefits of smart EV charging by relaxing the assumptions made in these

studies regarding: (i) driving patterns, driver behavior and driver types; (ii)

the scalability of a limited number of simulated vehicles to represent di↵erent

load aggregation points in the power system with di↵erent customer character-

istics; and (iii) the charging profile of EVs. First, we study the benefits of EV

aggregations behind-the-meter, where a time-of-use pricing schema is used to

understand the benefits to the owner when EV aggregations shift load from high

cost periods to lower cost periods. For the year of 2013, we show a reduction of

up to 24.8% in the monthly bill is possible. Then, following a similar aggrega-

tion strategy, we show that EV aggregations decrease their contribution to the

⇤
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system peak load by approximately 37% (median) when charging is controlled

within arrival and departure times. Our results also show that it could be ex-

pected to shift approximately 0.25kWh (⇠2.8%) of energy per non-residential

EV charging session from peak periods (12PM-6PM) to o↵-peak periods (after

6PM) in Northern California for the year of 2013.

Keywords: electric vehicles, demand response, non-residential loads, data

analysis

1. Introduction1

A recent analysis identifying the infrastructure and technology needs to meet2

California’s greenhouse gas (GHG) reduction goals for 2050 shows that the elec-3

trification of the transportation system plays a significant role in reaching these4

goals. In order to achieve the 80% reduction target in electrification, most of5

the direct fuel uses in buildings, transportation and industrial processes must6

be electrified. Among these, electrification of transportation yields the largest7

share of GHG reduction, where 70% of the vehicle miles traveled should be by8

electrically powered vehicles [1]. A study by the Electric Power Research In-9

stitute (EPRI) [2] also suggests that electric vehicles will constitute a rather10

significant 35% of the total vehicles in the US by 2020.11

12

This rapid growth in the electrification of transportation presents significant13

challenges as well as opportunities to the operation of today’s power system.14

When considered as inflexible loads, EVs will increase the current peak elec-15

tricity demand significantly, intensifying the stress on the electric power system16

and pushing it closer to its limits [3, 4, 5]. However, when considered as flexible17

resources, where EV charging is controlled by direct or indirect strategies, EVs18

promote the reliable operation of the power grid [6, 7, 8], while also provid-19

ing additional revenue streams that can be used towards the electrification of20

transportation [3, 7, 9]. This is particularly important considering the expected21

increase of renewable generation sources in the generation portfolio of many22
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states in the U.S., as smart EV charging may provide the means to balance the23

intermittency of these resources.24

25

A number of recent studies aim to understand the adaptation needs of the ex-26

isting operational control mechanisms to realize smart charging, and often pro-27

pose novel planning and control approaches. These approaches can be grouped28

into direct and indirect control approaches [7]. In direct control approaches, the29

control actions are realized without the vehicle owner in the control loop. Often,30

load aggregations are created to increase the size of the resource so it can o↵er31

economic benefits to the aggregator [8, 10]. In [11], for example, the authors32

propose a direct load control strategy to provide vehicle-to-grid services for 333

di↵erent predefined mobility patterns. In [12], the authors conduct a simulation34

study for 3000 EVs parked at a municipal parking lot and evaluate the real-time35

performance of a direct control approach, which maximizes the expected state36

of charge of the EV aggregation in the next time step subject to mobility con-37

straints. In [13], the authors develop an optimal direct control scheme based on38

global charging costs. The authors compare the proposed direct control scheme39

to the local scheduler in a simulation environment including 100-400 EVs. The40

arrival times of the EVs, the charging periods, and the initial energies of EVs41

are assumed to have a uniform distribution.42

43

In indirect control approaches, the control authority is managed by the elec-44

tric vehicle owner through a decentralized strategy. These strategies often make45

use of a broadcasted exogenous price signal. The cost of energy is minimized at46

each electric vehicle charging station considering the local mobility and charging47

constraints. An iterative cost minimal charging frame(p.1 l.1) work based on48

game theory is presented in [14] and a similar strategy is given in [15]. How-49

ever, these approaches do not include the impacts or additional costs that can50

be induced on the distribution network due to increased demand during low51

cost periods and often assume that the supply and non-EV demand is known.52

53
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Many researchers have investigated the benefits of EV charging and di↵er-54

ent grid-level services that can be provided by an aggregation of EV population55

using di↵erent control approaches. The authors of [10] discuss various services56

that can be provided by electric vehicles, including peak shaving, regulation,57

voltage control, and reserves, and many studies have quantified the benefits of58

smart charging from various stakeholder perspectives [16, 17, 18]. In [10], the59

authors demonstrate a proof of concept regulation case study. In [16], the au-60

thors estimate that smart charging will reduce the daily electricity costs of a61

plug-in hybrid EV by $0.23. They also identify daily profits for the individual62

driver when the charging of the vehicles can be regulated. The economic benefits63

of fleets that participate in specific markets have also been extensively studied.64

For example, in [17], 352 vehicles are used to estimate the economic potential65

of fleets when providing regulation up and down services using historical prices66

obtained from California Independent System Operator (ISO). In [19], the au-67

thors use historical market data and charging data collected from an EV located68

in a residential household to investigate financial savings and peak demand re-69

duction. The authors conclude that the peak EV demand can be reduced by up70

to 56%.71

72

In this paper, we primarily focus on direct control approaches and we create73

two case studies to investigate the potential benefits of smart charging to dif-74

ferent stakeholders. To develop these case studies, we use data collected from75

over 2000 non-residential electric vehicle supply equipments (EVSEs) located76

throughout 190 zip code regions in Northern California spanning one year. To77

the best of our knowledge, this is the first study that uses such an extensive78

dataset on EV charging. First, we analyze over 580,000 charging sessions to79

investigate the trends in load flexibility and infrastructure use in the dataset.80

Next, we create virtual aggregation points (VAP) in which a combination of the81

EVSEs is assumed to be fed by the same distribution feeder. The VAPs mostly82

coincide with Pacific Gas and Electric Company’s (PG&E) sub-load aggregation83

points (sub-LAPs). Additional details regarding this relationship is provided in84

4



Section 2. We introduce a smart charging framework to estimate the benefits85

of smart EV charging to various stakeholders in each VAP. As an initial case86

study, we investigate the potential benefits of EV aggregations operated under87

a single owner, where a time-of-use pricing scheme is used to estimate economic88

benefits to the owner via shifting load from high cost periods to lower cost peri-89

ods. Then, we create a case study where EV aggregations are used to decrease90

their current contribution to the system-level peak load.91

92

In this study, our main goal is to understand the potential benefits of smart93

charging to di↵erent stakeholders. Specifically, we aim to estimate an upper94

bound for such benefits when the EV charging load is managed preemptively95

between known EV arrival and departure times to the EVSEs. Previous re-96

search has developed robust algorithms that can handle randomized arrivals of97

EVs to an EVSE [20, 13], however, this is beyond the scope of this manuscript.98

We assume that the arrival and departure times of electric vehicles as well as99

the energy demand profile of each charging session is known by the controller.100

These values are obtained from over 580,000 unique charging sessions. This101

would potentially result in the overestimation of benefits. Furthermore, since102

we investigate two case studies with focus on aggregators and assume that the103

aggregators will be responsible of providing grid-level services, we use a central-104

ized smart charging strategy in both case studies to keep the control authority105

at the aggregator level. The preemptive EV charging load assumption also re-106

sults in a mixed-integer-programming problem for the EV aggregation and can107

be solved with bounded optimality guarantees [21].108

109

The motivation for this study is threefold: (i) Most of the work investigating110

the potential of smart charging of EVs is based on assumptions made regard-111

ing trip and customer characteristics. For example, in [22], the authors use a112

fleet which includes commuter cars, family cars and taxis with predetermined113

departure and arrival locations randomly selected from a limited number of al-114

ternatives. In [23], the authors use data from driving surveys that reflect the115
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driving behavior of people using internal combustion engine cars. They assume116

that the driving behavior of an EV owner will be similar to that of an internal117

combustion engine car owner. The dataset used in this study allows us to ex-118

tract trip and customer characteristics, hence no such assumptions are needed119

on these characteristics. (ii) Often, a limited number of vehicles and mobility120

patterns are used in fleet-based studies to capture the most likely driving sce-121

narios. For example, in [11], the authors develop a proof of concept strategy122

and show cost benefits for 50 EVs with 3 di↵erent pre-defined mobility patterns.123

Although the exact number of EVs are not available in the dataset used in this124

study, the number of charging sessions (over 580,000) and the fact that these125

charging sessions are spread throughout the year ensure that a representative126

population of non-residential charging is studied. (iii) The individual charging127

profile of an EV is often represented by a typical constant-voltage, constant-128

current curve for certain battery chemistries, or more simply by a constant129

charging power [7]. For example, in [24], the charging power is assumed to be130

fixed at 4.4kW, whereas in [25], the authors use the charging profile of a typical131

lithium-ion battery pack obtained from [26]. The dataset used in this study132

includes time series of power measurements obtained every 15 minutes for each133

charging session. Hence, no assumptions are made on charging profiles of the134

vehicles, and individual charging data is available for each charging session.135

136

The remainder of the paper is organized as follows: Section 2 introduces the137

dataset and discusses the load flexibility and infrastructure use trends obtained138

from the dataset. Section 3 presents the smart charging strategy used in this139

study. Specifically, it discusses the framework and the underlying assumptions140

made when estimating the benefits to di↵erent stakeholders. Sections 4 and 5141

describe the case studies completed in this research. Finally, Sections 6 and 7142

discusses the conclusions, limitations and opportunities for future work.143
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2. Dataset144

The data used in this study is collected from individual EVSEs located in 16145

di↵erent sub-LAPs in PG&E’s territory for the year of 2013. For each charging146

session (i.e. from plug-in to departure of an EV), the EVSEs report the start and147

end period of the charging, the plug-in and departure time stamps, the average148

power, and the maximum power (measured every 15 minutes), as well as the149

charging port type, the location (zip-code level), and the non-residential build-150

ing category. In the CAISO region, load aggregations participate in demand151

response services must be located within the same sub-LAP [27]. To create152

aggregations of EVs that are within the region fed by the same sub-LAPs, we153

use a look up table provided by PG&E that matches the zip codes to sub-LAP154

regions. Since the dataset includes the location information based on zip codes155

and some zip codes are fed by multiple sub-LAPs, we create virtual aggregation156

points (VAPs) for the zip codes that are fed by multiple sub-LAPs. This is157

done by combining the sub-LAPs’ identifiers. Table 1 presents the final list of158

VAPs in the dataset and total number of zip code regions forming each of these159

VAPs, the total number of charging sessions, and the average number of daily160

charging sessions in each VAP. Figure 1 depicts the centroids of the zip code161

regions forming the considered VAPs.162

163

The minimum resource size for an aggregation of loads to participate in DR164

programs in CAISO [27] and various other ISOs [28] is 100 kW. More than165

99% of the charging sessions in the dataset are coming from Level 2 EVSEs166

(i.e. 4-7kW capacity). Hence, in this study, we use data from VAPs with an167

average of 20 or more charging sessions per day. This corresponds to approx-168

imately 96% of the charging sessions (i.e. 530,000 charging sessions in total).169

These VAPs are indicated in bold in Table 1. Figure 2 also shows the total170

number of charging sessions per month for each VAP used in this study. Over171

the course of 2013, the total number of charging sessions approximately doubles.172

173
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Figure 3 shows the combined load profiles of VAPs for the second weeks of174

January and December. The impact of the growth in charging session is reflected175

on the daily load profile of the loads. Moreover, the peak non-residential EV176

load occurs between 9AM and 11AM, and it more than triples from January to177

December of 2013.

1

2

1

2

EB-SB

P2-SB

SA-SI

CC

EB

FG

LP

NB

P2

SA

SB

SF

Sacramento

San Francisco

Los Angeles

Figure 1: Centroids of zip code regions forming the VAPs

178

2.1. Infrastructure Use179

To gain further insight into the dataset and to understand the distribution180

of charging sessions and the use of EVSEs in di↵erent regions, we analyze the181

charging sessions obtained from the VAPs marked in bold Table 1. The in-182

frastructure use, I
use

, in each VAP is represented by the average number of183

charging sessions N
sessions

per EVSE and calculated for every business day of184
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VAP Region

# of

zip

code

regions

# of

charging

sessions

# of

charging

sessions

per day

P2-SB Peninsula & South Bay 7 207501 568.50

SB South Bay 21 112250 307.53

SF San Francisco 30 72996 199.99

P2 Peninsula 17 59252 162.33

EB East Bay 27 52700 144.38

EB-SB East Bay & South Bay 6 16902 46.31

NB North Bay 14 12346 33.82

LP Los Padres 8 9035 24.75

CC Central Coast 15 8428 23.09

SA Sacramento Valley 11 7787 21.33

FG Geysers 11 7918 21.69

SA-SI Sacramento V. & Sierra 2 7465 20.45

CC-P2 Central Coast & Peninsula 2 6778 18.57

FG-NB Geysers & North Bay 4 3845 10.53

F1 Fresno 4 377 1.03

NV North Valley 1 336 0.92

ST Stockton 3 244 0.67

FG-NC Geysers & North Coast 1 246 0.67

SI Sierra 2 181 0.50

SN San Joaquin 1 134 0.37

HB Humboldt 1 101 0.28

P2-SF Peninsula & San Francisco 1 73 0.20

NC North Coast 1 15 0.04

Table 1: VAPs used in this study
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2013. Formally:185

I
use

=
N

sessions

N
EV SE

(1)

where N
EV SE

is the number of EVSEs. Figure 4 depicts the box plots of the186

infrastructure use within 2013 for all of the VAPs. For each month of 2013, a187

box plot is created to represent the distribution of the I
use

values calculated188

for every business day of the month. The median value of infrastructure use is189

marked with a red line in each box plot, and the boundaries of the box depict190

the 25th and 75th percentiles. The whiskers correspond to the 99th percentiles191

assuming the distributions per each month are normal. The median infrastruc-192

ture use increases in all VAPs from 1.8 to 2.1 sessions per EVSE from January193

to December. This is due to the fact that the demand has increased faster than194

the number of EVSEs.195

196

2.2. Load Flexibility and Arrival and Departure Times197

In addition to the infrastructure use, we investigate the load flexibility in198

each VAP. The load flexibility depends on the charging duration d
charge

and the199

overall duration of each charging session d
session

. Formally, we define the load200

flexibility l
flex

as the ratio of the duration that a car is plugged but not charging201

to the overall session duration:202

l
flex

=
d
session

� d
charge

d
session

(2)

Figure 5 depicts the load flexibility for all VAPs by month. As observed in203

Figure 5, the load flexibility decreases slowly as the number of charging sessions204

per EVSE increases. Also, most of the distributions have a slight positive skew.205

The size of the box representing the 25th and 75th percentiles is also decreas-206

ing with time, suggesting an increase in skewness. Identifying the reason behind207

such behavior requires further assessment of di↵erent factors contributing to the208

load flexibility metric. One such factor contributing to varying flexibility can209
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be the use of auxiliary equipment in electric vehicles (i.e., windshield wipers,210

air conditioning etc.) and the e↵ects of seasonality. A recent study [29] analyz-211

ing the impacts of outside temperature to EV battery performance and energy212

demand shows an approximate 9% change in energy demand between yearly213

average and the worst day scenarios for San Francisco, California. Hence, fur-214

ther analysis of the change in flexibility requires considering such factors and is215

therefore left for future studies. In this study, however, we neglect such impacts216

on flexibility and overall energy demand.217

The load flexibility metric shows the charging duration relative to the session218

duration; however, it does not capture when the charging sessions occur. The219

start and end times of the charging sessions play a key role when estimating220

the benefits of EV aggregations to the power system. We show a histogram of221

arrival (i.e. session start) and departure (i.e. session end) times in Figures 6a222

and 6b, respectively.223

224

As can be seen in Figures 6a and 6b, most of the charging sessions start225

within the 7AM-10AM period and often end within the 5PM-7PM period. Con-226

sidering these loads are currently uncontrolled (i.e. they immediately start charg-227

ing when they are plugged in), they coincide with the typical working hours of228

a non-residential location. These figures suggest that employees or customers229

arrive in the morning and plug in their vehicles. Some leave around noon and230

come back, and most leave work between 4PM and 7PM.231

3. Smart Charging Strategy232

In this section, we introduce the proposed smart charging methodology. In233

particular, we describe the general optimization strategy used to obtain the234

charging schedules for each charging session.235

236

The goal of the proposed smart charging framework is to reschedule the237

power time series measured in discrete time slots [1, . . . ,K] for any charging238

12
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session in a population of EVs, [P
1

, P
2

, . . . , P
K

] such that an objective function239

is optimized. The objective function should capture the desired benefits from a240

stakeholder’s perspective. While rescheduling the charging, we would like to en-241

sure that the order of the measurements in this time series is preserved. This is242

because the power that EVSEs draw is dependent on the state of charge (SOC)243

of the EV that is being charged, and keeping the order of the measurements244

accounts for this dependency. In addition, we assume that the charging is pre-245

emptive; that is, the charging tasks are interruptible without any decrease in246

the SOC of the EV.247

248

In a typical charging session, an EV starts charging when it is plugged in,249

and often the charging is complete before the vehicle departs. The smart charg-250

ing framework proposed in this study is designed to move some of the charging251

to the slack time slots (i.e. the time slots where the vehicle is plugged in but252

the charging is completed).253

254

For the purposes of this paper, we discretize a day into 15-minute intervals.255

We define the time period for the optimization within a day as the time between256

the start time slot t
start

and the end time slot t
end

. In this period, each charging257

session i has an arrival time slot denoted by t
(i)

a

and a departure time slot258

t
(i)

d

. For each charging session, a column vector including the charging power259

time series can be created using the power measurements for every time slot in260

[t(i)
a

, t(i)
d

]. If necessary, the time series is zero-padded to match the size of the261

optimization time period [t
start

, t
end

]. Hence, for each EV i, the power time262

series is given as follows:263

P (i) = [P (i)

1

, P
(i)

2

, . . . , P
(i)

K

]T (3)

whereK is the total number of time slots in [t
start

, t
end

]. Next, for each charging264

session i, we identify Q(i) whose elements Q
(i)

j

correspond to the jth non-zero265

element of P (i). The goal is to reschedule the time slots t
(i)

j

in [t(i)
a

, t(i)
d

] cor-266
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responding to Q
(i)

j

without changing their order. We define M (i) as the total267

number of non-zero power measurements in charging session i (i.e. total number268

of elements in Q(i)).269

270

To capture the precedence and the session duration constraints we proposed271

above, the following formal constraints are introduced:272

t
(i)

j

� t
start

t
(i)

j

 t
end

t
(i)

j

� t(i)
a

t
(i)

j

 t
(i)

d

t
(i)

j

< t
(i)

j+1

9
>>>>>>>>>>>=

>>>>>>>>>>>;

8i 2 [1, N ],

8j 2 [1,M (i)]
(4)

The proposed constraints are constructed using a binary decision matrix to rep-273

resent charging or non-charging time slots within the optimization duration. In274

particular, for each element Q
(i)

j

in Q(i), we create a binary vector x(i,j) that275

includes K binary decision variables. Each element in this vector represents a276

candidate time slot at which Q
(i)

j

could be positioned. Hence, we define row277

vectors x(i,j) 8i 2 [1, N ] and 8j 2 [1,M (i)]. The elements in these vectors are278

x
(i,j)

k

2 {0, 1} that are defined 8k 2 [1,K].279

280

From these binary vectors x(i,j), we form a binary decision matrix X(i) for281

each charging session i 2 [1, N ]. In particular, the individual decision variables282

x
(i,j)

k

form the elements of the binary decision matrix X(i) as follows:283

X(i) =

2

6664

x
(i,1)

1

. . . x
(i,1)

K

...
. . .

...

x
(i,M

(i)
)

1

. . . x
(i,M

(i)
)

K

3

7775
(5)

Finally, we write the variables in the constraints given in (4) using the binary284
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decision variable as follows:285

t(i) = X(i)O, where O =

2

6666664

1

2
...

K

3

7777775
(6)

The aggregate power vector for the VAP AP (d) =
P

N

i=0

(P (i)) for the day d is286

given as follows:287

AP (d) =

2

6666664

Q(1)

Q(2)

...

Q(N)

3

7777775

T

2

6666664

X(1)

X(2)

...

X(N)

3

7777775
(7)

For each case study proposed in this paper, we build on the general opti-288

mization framework described above, identify the objective functions to cap-289

ture the benefits from each stakeholder’s perspective and introduce additional290

constraints when necessary. We use the Gurobi optimizer [21] to solve the op-291

timization problems formulated for each case study. Due to the size of the292

optimization problem for certain VAPs and the number of times the optimiza-293

tion problem is solved to obtain values to estimate benefits for the year of 2013,294

a proved optimal solution is expected to be hard to reach within a reasonable295

time frame. For these reasons, we alter the optimality criteria by controlling the296

relative gap between a feasible integer solution and the general optimal solution.297

We set this optimality criteria to 5% and allow early termination once a feasible298

solution is found.299

4. Charging Infrastructure Owner’s Perspective300

In the first case study, our goal is to capture and maximize the benefits of301

smart charging from an EV charging service provider’s perspective. Currently,302
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each charging meter is independently owned by the building owner, and the con-303

sumption is billed to the building owner as part of the building’s monthly bill.304

However, in our work, we focus only on the load resulting from EV charging,305

i.e. decoupled from other loads, but aggregated over VAPs formed based on sub-306

LAPs. This corresponds to the situation in which the charging stations within307

each VAP are combined and operated under a single owner or an aggregator and308

the owner is charged according to a time of use (TOU) tari↵ structure, where309

shifting load from high cost periods to lower cost periods can o↵er some benefits310

to the owner. Although the current VAPs are created based on sub-LAPs, the311

current scale of the charging infrastructure and the number of charging sessions312

can easily represent a large parking structure or a campus in the future, where313

the EV aggregation is behind a single meter and the non-EV load is relatively314

steady.315

316

4.1. Problem Formulation317

In a typical TOU rate structure, there are two separate charges forming the318

monthly bill: the energy charges and the demand charges. The energy charges319

are calculated based on the amount of energy consumed over given time peri-320

ods of the day using the corresponding hourly TOU energy rate. The demand321

charges are calculated based on the maximum power demand for specific time322

periods of the day over the course of the billing period. At the end of each billing323

period, the maximum demand values for the specified periods are multiplied by324

the demand charge rates and added to the overall energy charge.325

326

In order to model a similar rate structure in the proposed smart charging327

framework, we define EC(d) as the energy charge for day d of a month with D328

days (i.e. d 2 [1, . . . , D]). Then, we define DC
h

as the demand charges for each329

time period h of the day of any month. For example, in PG&E’s E-19 TOU rate330

structure, for winter billing periods, the demand charges are calculated based331

on 2 time periods part-peak (i.e. 8:30AM-12:00PM & 6:00PM-09:30PM) and332
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o↵-peak (i.e. 09:30PM-08:30AM) [30]. Formally, the monthly bill for the owner333

is therefore given by:334

f(DC
h

, EC(d)) =
X

8h
DC

h

+
X

8d
EC(d) (8)

The energy charges EC(d) can easily be incorporated into the proposed daily335

optimization routine. Defining ER as a column vector reflecting the price of336

energy for each time slot j, EC(d) for any day d in a billing period is given by:337

EC(d) = AP (d)ER (9)

For time period h within day d, a subset of the entire daily aggregate power338

vector AP (d) is needed and is referred to as AP
(d)

h

.339

340

In order to minimize the cost function given in (8), the maximum demand341

for the daily time periods h must be accurately known beforehand for the entire342

month. However, in a real life scenario, this is not a valid assumption. To343

incorporate demand charges into the proposed daily smart charging framework,344

we therefore propose the following strategy for the owner: for each day d, we345

define the peak aggregate power values for each period h as AP
(d)

peak,h

. Since the346

historic AP
peak,h

values for each day in [1, . . . , d � 1] are available to the main347

scheduler, we can define the maximum of the historic AP
peak,h

values until d�1348

as follows:349

AP
(d�1)

max,h

= max(AP
(1)

peak,h

, . . . , AP
(d�1)

peak,h

) (10)

Using the above definition, the monthly demand charges can be calculated350

at the end of the month based on AP
(D)

max,h

and the demand rates DR
h

for each351

period as:352

DC
h

= AP
(D)

max,h

DR
h

(11)

As we move from one day to the next, we try to limit the demand charges353

based on the maximum daily demands occurred up to the current day. At the354
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beginning of the billing period, we start with no knowledge of the historical355

peak values, and we keep track of the maximum historical value up to day d.356

This strategy can be represented by incorporating the maximum value of the357

peak values AP
(d)

max,h

for time period h and day d as decision variables into the358

following optimization problem:359

minimize
X(i)

,AP

(d)
max,h

AP
(d)

max,h

DR
h

+ EC(d)

subject to (4) and the following additional constraints:360

AP
(d�1)

max,h

 AP
(d)

max,h

AP
(d)

h

 AP
(d)

max,h

9
=

; 8h 2 [1, TP ] (12)

Note that with (12), we ensure that the current maximum AP
(d)

max,h

is more361

than or equal to the maximum historical value AP
(d�1)

max,h

for period h. By def-362

inition, this allows for the tracking of the maximum value up to that day. In363

addition, these maximum values set the day based on which the demand charges364

will be calculated. If none of the current peak values exceeds the historical max-365

imum values, the demand charges for each period h are not set by the current366

day d.367

368

4.2. Case Study369

For the purposes of this paper, we use the demand and energy rates from370

PG$E’s E-19 TOU rate structure [30]. The E-19 rate structure gives the owner371

the option to manage their electric costs by shifting load from high cost periods372

to lower cost periods. Detailed information on E-19 is given in Table 2. The373

summer period starts with May 1st and ends October 31st, and the winter374

period includes the remaining months of the year. This rate is for non-residential375

customers in PG&E’s territory with highest demand exceeding 499 kW for three376

consecutive months.377

378
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Demand Charges $/kW Time Period

Max. Peak Demand Summer $19.71253 12:00PM-6:00PM

Max. Part-Peak Demand Summer $4.07
8:30AM-12:00PM &

6:00PM-09:30PM

Max. Demand Summer $12.56 Any time

Max. Part-Peak Demand Winter $0.21 8:30AM-09:30PM

Max. Demand Winter $12.56 Any time

Energy Charges $/kWh Time Period

Peak Summer $0.16253 12:00PM-6:00PM

Part-Peak Summer $0.11156
8:30AM-12:00PM &

6:00PM-09:30PM

O↵-Peak Summer $0.07818 09:30PM-08:30AM

Part-Peak Winter $0.10479 08:30AM-09:30PM

O↵-Peak Winter $0.08200 09:30PM-08:30AM

Table 2: E-19 rate structure [30]
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To evaluate the benefits of smart charging when the EV aggregation has a379

single bill calculated on a TOU tari↵, we first calculate the current bill under380

this tari↵ but without smart charging. Then, we use the proposed optimization381

strategy to schedule the loads in a way that minimizes the customer’s monthly382

bills, and we report each monthly bill calculated for each VAP and the contri-383

butions from energy and demand charges in the bill.384

Note that, the TOU tari↵ we use in this paper is devised for loads where the385

expected system peak is well-aligned with the corresponding peak in the load.386

For the E-19 tari↵, the expected system peak is between 12:00PM and 6:00PM,387

however the system wide peak of the non-residential EV charging occurs before388

12:00PM as shown in Figure 3. This suggests that the E-19 tari↵ might fail to389

capture the system level objectives that the tari↵ itself is designed for.390

4.3. Results391

Figure 7 shows the sum of monthly bills calculated in dollars for all of the392

VAPs. For each month, the left bar shows the current bill, and the right bar393

shows the optimized bill for the month. It is obvious that the di↵erence between394

the summer and winter rates impacts the aggregate monthly bill. The increase395

within the winter and the summer period is due to the increase in the number396

of charging sessions over the year.397

398

Figures 8a and 8b show the total energy and demand charges, respectively,399

over all LAPs. The cumulative energy charges increase slightly for the summer400

months when using smart charging, whereas there is a significant drop in the401

demand charges. This suggests that the peak load of the EVs is shifted from the402

morning partial-peak period (8:30AM-12:00PM) to the peak-period (12:00PM-403

6:00PM). This shift is still beneficial because the increase in the energy charges404

is significantly lower than the decrease in the demand charges.405

406

The cumulative load shapes given in Figure 3 and the arrival and departure407

time histograms given in Figures 6a and 6b support these results. These figures408
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VAP Period

Bill [dollars]

Reduction

Reduction [%]

Current Optimized
[dollars

/session]

DC EC Total

P2-SB
Summer 63001 50395 0.65 20.86% -0.85% 20.01%

Winter 29603 22575 0.46 23.41% 0.33% 23.74%

EB-SB
Summer 4588 3788 0.52 16.96% 0.49% 17.45%

Winter 2092 1724 0.28 17.23% 0.36% 17.59%

SA-SI
Summer 1645 1413 0.36 13.80% 0.30% 14.10%

Winter 828 752 0.13 9.06% 0.12% 9.18%

CC
Summer 2365 2178 0.24 7.34% 0.57% 7.91%

Winter 1037 896 0.22 13.31% 0.29% 13.60%

EB
Summer 12033 10003 0.41 16.44% 0.43% 16.87%

Winter 5874 4868 0.26 16.66% 0.47% 17.13%

FG
Summer 1803 1568 0.33 11.98% 1.05% 13.03%

Winter 920 807 0.18 11.82% 0.46% 12.28%

LP
Summer 2370 2135 0.29 9.37% 0.55% 9.92%

Winter 1141 1002 0.20 11.88% 0.30% 12.18%

NB
Summer 3136 2865 0.23 8.16% 0.49% 8.64%

Winter 1391 1271 0.13 8.48% 0.22% 8.63%

P2
Summer 16795 14171 0.48 16.13% -0.51% 15.62%

Winter 8567 7010 0.34 17.98% 0.20% 18.17%

SA
Summer 2313 1991 0.45 13.88% 0.04% 13.92%

Winter 1215 914 0.52 24.76% 0.01% 24.77%

SB
Summer 32911 27439 0.53 17.72% -1.09% 16.63%

Winter 15645 12602 0.37 19.34% 0.11% 19.45%

SF
Summer 17679 14224 0.51 18.07% 1.47% 19.54%

Winter 8591 7046 0.28 17.10% 0.88% 17.98%

Table 3: Average results based on summer and winter month rates in E-19
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Figure 7: Monthly bills calculated with E-19. The left bar for each month shows the current

bill, and the right bar shows the optimized bill.

suggest that energy charges increase because a large portion of the EV charging409

sessions end (i.e. the charger is unplugged) before the system peak period ends.410

Thus, when coupled with the higher part-peak demand rates, the optimization411

converges to a result in which the load is shifted from the EV load peak period412

(9AM-11AM) to the system peak period (12PM-6PM).413

414

The results given in Table 3 provide further insight into the results depicted415

in Figures 7, 8a and 8b. Specifically, we reflect on the average monthly bill416

before and after optimization for winter and summer months. Then, we report417

on average bill reduction per session during these periods. The values range418

between 0.13 and 0.65 dollars among all VAPs. Overall, we find that the rate419

structure in the summer periods yields to more reductions per session than420

the rates in winter months, with the exception of the Sacramento Valley (SA)421

VAP. We also report on the total percent bill reduction and we break down this422

percentage into contributions from demand charges and energy charges. We423

observe that average percent bill reductions range between 8.63% and 24.77%.424

Even though the average reduction per session values are mostly higher during425

summer months, the relative cost reduction in monthly bills for individual VAPs426
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(a) Monthly energy charges calculated with E-19

Month of 2013

D
em

an
d 

C
ha

rg
es

 
[T

ho
us

an
ds

 o
f D

ol
la

rs
]

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec0

50

100

150

200

250

 

 EBïSB
P2ïSB
SAïSI
CC
EB
FG
LP
NB
P2
SA
SB
SF

(b) Monthly demand charges calculated with E-19

Figure 8: Decomposition of monthly bills to energy and demand charges. In each figure, the

left bar shows the current charges, and the right bar shows the optimized charges for each

month.
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Figure 9: Demand Charge Reduction by Session Size
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varies less. This is due to high overall costs in the summer months.427

428

Figures 9a and 9b depict the relationship between the reduction in demand429

charges and the number of charging sessions in each VAP per month. Specifi-430

cally, in Figure 9a, we examine the decrease in demand charges in dollars. We431

observe a linear trend: as the number of sessions per month rises, the reduction432

in demand charges increases linearly. Given the current load flexibility and ar-433

rival and departure times, this is expected because most of the EVs contribute434

to the peak load of the EV aggregation. In Figure 9b, we look at the percent435

reduction in demand charges. For up to 2000 charging sessions per month (in-436

dicated by a red dashed line in Figure 9b), there is no clear separation between437

the winter and summer months and, for a given number of sessions, the demand438

charge reduction values vary. Beyond this point, we can see a clear separation439

between the winter and summer months, and the demand charge reduction val-440

ues show less variance.441

442

The relative decrease in the summer months is less than the relative de-443

crease in the winter months. This is due to the time of the peak EV load, the444

arrival and departure patterns of the EVs and the corresponding rate structure.445

In particular, the peak EV load coincides with the part-peak rate period, and446

most of the EVs depart before the system peak period (12PM-6PM) is over.447

The system peak period has a separate and higher demand rate in the summer448

months (detailed in Table 2). This limits the smart charging framework’s ability449

to move the EV loads from part-peak period to system peak period. The winter450

rates we use in this study do not include a separate demand rate for the system451

peak period; rather, the part-peak period extends from 8:30AM-09:30PM. This452

makes it possible to manage the EV peak load in a more e↵ective way.453

454
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5. Distribution System Operator’s Perspective455

Smart charging of an aggregate EV population can o↵er multiple benefits456

to distribution system operators (DSOs). For example, it can help manage the457

capacity limits through demand response or can act as a balancing resource to458

accommodate distributed energy resources within a distribution system. In this459

case study, we investigate the potential of each charging session to decrease its460

contribution to the peak system demand via smart charging. We first quantify461

the percentage of peak load shed during the system peak load period (12AM-462

6PM). We then quantify the amount of energy that is shifted outside the peak463

period by the EV load aggregation for each month of 2013. Finally, we report464

on the amount of energy that can be expected to be moved outside of the system465

peak period per charging session.466

467

5.1. Problem Formulation468

To realize peak shaving, we propose to develop a two-stage optimization. In469

the first stage, we minimize a bound on the aggregate power consumed by the470

EVSEs within a VAP during the pre-defined peak period (12AM-6PM) only.471

We simplify refer to the pre-defined peak period as pp, and to simplify the472

notation introduced earlier, we refer to the aggregate power vector within the473

peak period as AP
(d)

pp

. To implement the initial stage optimization, we define474

AP
(d)

bound,pp

as a decision variable to represent the proposed bound on the AP
(d)

pp

.475

Then, in the second stage, using the optimal bound as a constraint, we minimize476

the total energy consumed within the peak period. This implicitly ensures that477

the energy bill for the customer is decreased or unchanged based on a typical478

TOU tari↵. The first part of the optimization can be written as:479

minimize
X(i)

, AP

(d)
bound,pp

AP
(d)

bound,pp
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subject to (4) and the following additional constraints:480

AP (d)

pp

 AP
(d)

bound,pp

(13)

Then, using the optimal AP
(d)

bound,pp

values obtained in the first stage
⇤

AP
(d)

bound,pp

,481

we can form the second stage as follows:482

minimize
X(i)

X

8k✓pp

AP
(d)

k

subject to (4) and the following additional constraints:483

AP (d)

pp


⇤

AP
(d)

bound,pp

(14)

5.2. Case Study484

The motivation behind our second case study is to evaluate the potential485

of EV aggregations to decrease their contribution to the system peak load via486

smart charging. As the arrival and departure time histograms given in Fig-487

ures 6a and 6b suggest, the amount of energy that can be moved outside of488

the peak period is expected to be low, mostly because most non-residential EV489

sessions end before the system peak period is over. However, there is potential490

in using smart charging and exploiting the inherent flexibility in each charging491

session to decrease the contribution of EVs to the system peak load.492

493

To demonstrate and quantify this potential, we calculated optimal schedules494

for each VAP-level aggregation using the optimization strategy described in the495

above section, and obtained percentage of peak shed values and the total energy496

moved outside of the peak period for every day in each month of 2013.497
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Figure 10: Distribution of percent peak shed for all the VAPs

5.3. Results498

Figure 10 shows the box plots created using daily peak shed values for each499

month of 2013. The percentage of peak shed for each day d is defined as:500

%peakshed(d) =

⇤
AP

(d)

bound,pp

max(AP
(d)

pp

)
(15)

The red lines denote the median value of the distribution, the box bound-501

aries are the 25th and 75th percentiles and the whiskers denote the 1st and 99th502

percentiles, assuming the distributions per each month are normal. The out-503

liers outside the whiskers’ boundaries are marked with points. As expected, the504

smart charging significantly reduces the peak EV load during the system peak505

period. The median values for all of the months range between 30 and 42%. A506

decrease in the peak shaving potential and a slight decrease in the variation of507

the distributions over the course of 12 months are also apparent in Figure 10.508

This can be explained by the increase in the number of charging sessions per509

EVSE and the related decrease in the variation of available flexibility.510

511

Figure 11 depicts the distribution of the average energy moved outside of the512

peak period per charging session for all of the VAPs estimated every day of the513

month. The median value over 2013 is approximately 0.25kWh per charging514

session, which corresponds to ⇠2.8% of the average energy put during each515
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Figure 11: Total energy moved outside of system peak period

charging session.516

6. Conclusions517

In this paper, we quantify the potential benefits of smart charging to dif-518

ferent stakeholders using data collected from over 2000 non-residential electric519

vehicle supply equipment (EVSEs) located throughout 190 zip code regions in520

Northern California. We created virtual aggregation points (VAP) in which the521

aggregate power consumption of a selected population of EVSEs is assumed to522

be managed via individual charging control at each EVSE. We developed and523

used a smart charging framework to estimate the benefits of EV smart charg-524

ing to di↵erent stakeholders: a single owner/an aggregator of behind-the-meter525

EVSEs (i.e. aggregators) and distribution system operators.526

527

In our first case study, we investigated the potential benefits of behind-528

the-meter EV aggregations. The aggregate load is re-scheduled using a TOU529

rate structure. Our results suggest that up to 24.8% decrease in the aggre-530

gate monthly bill per VAP is possible. In all months, this reduction is due to531

a corresponding decrease in demand charges in the monthly bill: we observed532

that decreases in energy charges are contributing by up to 1.5% to the overall533

decrease, whereas the demand charges contribute up to 24.7%.534
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535

In our second case study, we used the EV aggregations to decrease their con-536

tribution to the system-level peak load. We have observed median peak shed537

values around 30%-42% for each month. In addition, we have quantified the538

amount of energy that can be shifted outside the peak period per charging ses-539

sion over the course of 2013, and found the median value to be approximately540

0.25kWh/session (⇠2.8% of the average energy put in each session).541

542

The results from the optimization from the perspective of the EV infrastruc-543

ture owners includes most, if not all of the optimized charging patterns from544

the DSO perspective due to the di↵erential cost of electricity between peak and545

o↵ peak. However, there is a strong additional incentive to reduce the overall546

peak consumption, which happens immediately before the system peak period,547

in the infrastructure owners case. Hence, as the results suggest, the deferment548

of electricity consumption into the system peak to reduce demand charges is549

greater than the resulting shift of load out of the system peak period.550

7. Limitations and Future Work551

In this paper, we assume that the session start and end times of the EVs are552

available to the controller. However, in a real-life scenario, start and end times553

must be forecasted. Since the current strategy does not account for potential554

errors in forecasting, the benefits are overestimated. Furthermore, we assume555

that there is no modulation of charging power, and that the amount of energy556

charged by each EV is required by the EV owner. Hence, a constraint is included557

to ensure that the observed charging energy consumption in each session is con-558

served through the optimization. In a real-life scenario, the mobility patterns of559

an EV owner might allow for only partial charging at the EVSE and defer the560

rest of the charging to a later time. Both of these assumptions might result in561

an underestimation of the flexibility of charging sessions and the potential ben-562

efits. The impact of these assumptions will be further elaborated in future work.563
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564

In addition to the assumptions made on the availability of information from565

di↵erent charging sessions, this study is limited to data obtained from non-566

residential charging loads only. In case similar residential data is available, a567

broader discussion of the benefits of smart charging could be done that may lead568

to di↵erent results and conclusions. Furthermore, we have selected a commer-569

cial tari↵ from PG&E for the first case study. Di↵erent tari↵ structures would570

significantly impact the savings estimated from the EV aggregations. Lastly,571

we would like to acknowledge that the study captures the EV charging benefits572

estimated based on charging patterns obtained in Northern California. Hence,573

the mobility constraints and the energy demand reflected in the dataset are574

shaped by the users of EVSEs in Northern California.575

576

Although the session length and the flexibility play an important role in the577

estimated benefits for EV aggregations, understanding the contributing factors578

of these benefits at the charging session level is challenging. Additional charging579

session characteristics, such as start time and end time, play a significant role in580

the estimated aggregate benefits. This is because these benefits are impacted by581

the time of use. For example, two di↵erent charging sessions that have identical582

session lengths and flexibility levels can provide significantly di↵erent benefits583

depending on what time of the day the charging session starts. Hence, we leave584

the discussion of contributing factors to EV aggregation benefits at the charging585

session level to future work.586

587

In the future, we would also like to investigate the impact of di↵erent non-588

residential customer categories (e.g., retail vs. workplace) within each VAP to589

similar metrics calculated in this study and identify suitable grid services for590

these customer categories. In addition, we would like to expand the current591

smart charging framework and develop control algorithms for workplace charg-592

ing that use variable charging rates. We also would like to study the impacts593

of smart non-residential EV charging to the overall system load, in particular594

32



when the system level solar generation is expected to cause over-generation and595

ramping problems in the grid.596
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