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Abstract

Random item effects item response theory (IRT) models, which treat both person
and item effects as random, have received much attention for more than a decade.
The random item effects approach has several advantages in many practical settings.
The present study introduced an explanatory multidimensional random item effects
rating scale model. The proposed model was formulated under a novel parameteriza-
tion of the nominal response model (NRM), and allows for flexible inclusion of
person-related and item-related covariates (e.g., person characteristics and item fea-
tures) to study their impacts on the person and item latent variables. A new variant
of the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm designed for latent
variable models with crossed random effects was applied to obtain parameter esti-
mates for the proposed model. A preliminary simulation study was conducted to
evaluate the performance of the MH-RM algorithm for estimating the proposed
model. Results indicated that the model parameters were well recovered. An empiri-
cal data set was analyzed to further illustrate the usage of the proposed model.
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Introduction

Likert-type items are ubiquitously utilized in education and psychology to measure

traits that cannot be observed directly. Item response theory (IRT) models, such as

the rating scale model (RSM; Andrich, 1978a, 1978b) and the partial credit model

(PCM; Masters, 1982), are routinely applied in practice to analyze item-level

responses with more than two categories. These polytomous IRT models depict the

relationships between observed item responses, person latent traits (e.g., attitude, and

academic proficiency), and item properties (e.g., item location). For example, the

RSM specifies the log-odds of conditional probabilities that the response of a person

p (p = 1, . . . , P) to an item i (i = 1, . . . , I), denoted by ypi, falls into category

k (k = 0, 1, . . . , K � 1) over k � 1 as

log
P ypi = kjupð Þ

P ypi = k�1jupð Þ

� �
= up � di + tkð Þ, ð1Þ

where up is a theoretical person latent variable and is often assumed to follow a nor-

mal distribution, up;N (0, s2). Depending on the parameterization of the model, s2

can be either estimated from the data or fixed at one. The RSM assumes that the

threshold structure is the same across all items in a test so that di represents the over-

all location of item i, and tk is the threshold parameter for category k from category

k � 1: The RSM, like most IRT models, assumes the person effects (i.e., up) are ran-

dom. In other words, the persons who respond to items are viewed as the sample of a

larger person population. On the other hand, item effects/parameters (i.e., di) are

often assumed fixed in using marginal maximum likelihood (MML) estimation

(Andrich, 1978a; De Boeck, 2008).

Random item effects IRT models, which consider that item effects/parameters

random, have received much attention for more than a decade (e.g., De Boeck, 2008;

Janssen et al., 2000; Van den Noortgate et al., 2003). Theoretically, it is reasonable

that an IRT model treats item parameters as random variables. As the generalizability

theory (G-theory; Shavelson & Webb, 1991) states, items in a measurement scale

can be viewed as a random sample of an item universe (i.e., the population of items).

Therefore, distributional assumptions regarding item effects need to be made if gen-

eralized conclusions are to be drawn for more items (Briggs & Wilson, 2007). IRT

models are also recognized as special cases of the generalized linear mixed model

(GLMM; Chalmers, 2015; De Boeck & Wilson, 2004; Rijmen et al., 2003) so that

random item effects IRT models become natural extensions of conventional IRT

models.

The random item effects approach also has substantive advantages in many practi-

cal settings. For example, in large-scale international survey studies, different nations

would use a common measurement scale but it is not uncommon to observe that item

characteristics vary across nations (e.g., De Jong et al., 2007; De Jong & Steenkamp,

2010; Fox & Verhagen, 2010; Rijmen & Jeon, 2013). In this context, random item

effects IRT models can serve as a general tool for studying the issue of measurement
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invariance (Meredith, 1993), which is also known as differential item functioning

(DIF; Holland & Wainer, 2012), across nations (De Boeck, 2008; Muthén &

Asparouhov, 2018). Automated item generation, where hundreds of items are created

as random ‘‘clones’’ from item families (Geerlings et al., 2011; Glas & van der

Linden, 2003), is another area where the random item effects IRT models apply. The

random item effects perspective allows understanding the heterogeneity within item

families, identifying problematic items, and empowering test assembly. In addition,

random item effects IRT models can be also desired in scenarios where the number

of persons for item calibration is relatively small. This is because they generally

require estimating fewer parameters than their fixed item effects counterparts.

Based on what item effects are random, the random item effects IRT models can

be categorized into two types. In the first type, the item effects are random over

items; while in the second type, the item effects are made random over persons or

clusters. A well-known example of the first type is the random item effects Rasch

model introduced in Van den Noortgate et al. (2003). While considering both person

and item effects random, the binary item responses are cross-classified by persons

and items. In other words, the random item effects Rasch model is essentially a gen-

eralized linear model with crossed random effects. The logit that a person p correctly

answers a dichotomous item i is specified as

logit P ypi = 1
� �� �

= uperson
p + uitem

i + b0, ð2Þ

with uperson
p represents person p’s latent variable, and uitem

i is item i’s random effect

and represents its easiness level. Both uperson
p and uitem

i are assumed to be normally

distributed, uperson
p ;N (0, s2

person) and uitem
i ;N (0, s2

item). b0 represents the logit of the

probability that an average person correctly answers an average item, that is,

uperson
p = uitem

i = 0.

The basic model presented in Equation 2 was extended to the two-parameter

logistic (2PL) model (e.g., Janssen et al., 2000; Van den Noortgate et al., 2003), the

three-parameter logistic (3PL; e.g., Johnson & Sinharay, 2005; Van den Noortgate

et al., 2003) model, and generalized partial credit (GPC; e.g., Johnson & Sinharay,

2005) model. Janssen et al. (2000) proposed a hierarchical IRT model for dichoto-

mously scored items in criterion-referenced measurement. The hierarchical IRT

model assumes the difficulty and discrimination parameters of items are both random

effects and are drawn from certain normal distributions. Effects of items that mea-

sure the same criteria would share a common mean and variance. Johnson and

Sinharay (2005) considered the 3PL (Birnbaum, 1968) and the GPC (Muraki, 1992)

models so that the difficulty, discrimination, asymptote (for the 3PL model), and step

(for the GPC model) parameters of items are all treated as random effects.

The second type of random item effects IRT models allows the item effects to be

random over persons or clusters (e.g., countries), and are often adopted in cross-

national studies (e.g., De Jong et al., 2007; De Jong & Steenkamp, 2010; Rijmen &
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Jeon, 2013). For an item i with two score categories, the logit of the probability that

a person p from country j (j = 1, . . . , J ) correctly answers it is

logit P yp jð Þi = 1
� �� �

= up(j) + bij, ð3Þ

where up(j) presents this person’s latent variable level and is sampled from a distribu-

tion with its country average uj and variance s2
j , up(j);N (uj, s2

j ). The country aver-

age uj is then viewed to be drawn from a normal distribution with the grand average

u and variance t2. The item easiness parameter bij is also assumed to be country-spe-

cific, bij;N (bi, s2
b). The 2PL model and graded response model (GRM; Samejima,

1969) versions of the model in Equation 3 have also been developed (De Jong et al.,

2007; De Jong & Steenkamp, 2010), in which each country has its own discrimina-

tion and threshold parameters. Wang et al. (2006) proposed a random item effects

rating scale model (RERSM), where item thresholds are treated as random effects to

account for randomness in subjective judgment across persons. The variation of

thresholds reflects the magnitude of the randomness. This RERSM was further

extended to incorporate item-specific discrimination parameters (Wang & Wu, 2011)

and to accommodate multidimensional and multilevel data (Wang & Qiu, 2013).

An issue that has been of substantive interest and needs more investigation with

random item effects IRT models is how person characteristics (e.g., gender) and item

features (e.g., if an item is reservedly worded) explain differences in the person latent

variable(s) and the item properties (e.g., item location). De Boeck and Wilson (2004)

introduced the explanatory item response models (EIRM) to simultaneously model

the impacts of person-related and item-related covariates and the item response pro-

cess. A widely-used example of EIRM is Fischer’s (1973) linear logistic test model

(LLTM), which specifies the item location parameter as a weighted sum of multiple

item features. However, in practice, the person latent variable and the item location

parameters may not be fully explained by the covariates considered, leaving room

for the inclusion of random residuals. Several explanatory random item effects mod-

els have been proposed for dichotomous data, including the explanatory multidimen-

sional multilevel random item response model (EMMRIRM; Cho et al., 2013) and

additive multilevel item structure (AMIS; Cho et al., 2014), while the models have

not yet been extended to polytomous response data.

The present study focuses on the first type of random item effects model (i.e.,

models whose random effects vary over items.) To extend the utility of the random

item effects approach and EIRM to more contexts, this study introduces an explana-

tory multidimensional random item effects RSM for polytomous items. The proposed

model considers both person and item effects as random and allows the impacts of

person-related and item-related covariates to be studied simultaneously. The proposed

model is formulated under a novel parameterization of the nominal response model

(NRM; Bock, 1972, 1997; Thissen & Cai, 2016; Thissen et al., 2010). The new para-

meterization unifies a series of divided-by-total (Thissen & Steinberg, 1986) polyto-

mous IRT models, allows for straightforward multidimensional extensions of these

models, and has been implemented in widely-used IRT software packages, including

1232 Educational and Psychological Measurement 83(6)



flexMIRT (Cai, 2017), IRTPRO (Cai et al., 2011), and OpenMx/ rpf (Pritikin & Falk,

2020). In addition, as Falk (2021) noted, the new parameterization facilitates Monte

Carlo simulation studies since it allows for easy simulating a greater variety of cate-

gory response functions that are reasonable. With the original parameterization, vary-

ing one of the item parameters may make other parameters unrealistic and lead to

impractical category response functions. To estimate the proposed model, a new var-

iant of the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm designed for

estimating latent variable models with crossed random effects (Cai, 2008, 2010a,

2010b; Chung & Cai, 2021; Huang, 2021) is applied.

The remainder of this article is organized as follows. The ‘‘Nominal Response

Model’’ section presents the fixed item effects RSM as a constrained case of the

NRM based on a novel parameterization (Thissen & Cai, 2016; Thissen et al., 2010).

The ‘‘Proposed Modeling Approach’’ section proposes an explanatory multidimen-

sional random item effects RSM and illustrates the new variant of the MH-RM algo-

rithm for parameter estimation. The ‘‘Simulation Study’’ section presents a

preliminary simulation study for evaluating the performance of the MH-RM algo-

rithm for estimating the proposed model. The ‘‘Empirical Example’’ section ana-

lyzes an empirical data set and uses the proposed model to answer research questions

that are of substantive interest. The ‘‘Conclusion and Discussion’’ section sum-

marizes this study and discusses future research directions.

Nominal Response Model

In this section, the parameterization of the NRM proposed by Thissen et al. (2010)

and Thissen and Cai (2016) is briefly introduced to facilitate the understanding of the

proposed model.

A Novel Parameterization of NRM

The NRM was originally designed for item responses with no pre-determined orders

(Bock, 1972, 1997). Thissen et al. (2010) and Thissen and Cai (2016) presented a

novel parameterization of the NRM and showed that the NRM is best treated as a

template for polytomous IRT models. Adopting the new parameterization, an NRM

specifies the probability that person p’s response to item i is in category

k (k = 0, 1, . . . , K � 1) as

P ypi = kjup; a�i , si, ci

� �
=

exp zpikð ÞPK�1

m = 0
exp zpimð Þ

: ð4Þ

In Equation 4, zpik is a linear predictor:

zpik = a�i si k + 1ð Þup + ci k + 1ð Þ: ð5Þ
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in which a�i represents the overall slope for item i, si(k + 1) is the scoring function for

category k, and ci(k + 1) is the intercept parameter for the k th category of item i. up is

the person latent variable. The denominator of Equation 4 is the sum of exponentials

of linear predictors for all response categories, and m is an indicator of the response

category. For identification purposes, restrictions on the scoring functions si and the

intercepts ci need to be imposed. These restrictions are implemented through repara-

metrizing si and ci into two new vectors, namely, ai and gi, via a contrast matrix T:

si = Tai and ci = Tgi: ð6Þ

As pointed out in Thissen et al. (2010) and Falk (2021), elements in gi are inter-

pretable. The first element of gi reflects the overall location of item i, while the

remaining elements of gi parameterizes the spacing among the crossover points of

item characteristic curves.

A major benefit of adopting this novel parameterization is that it allows for

straightforward multidimensional generalizations of the NRM and its special cases

by expanding the scalar latent variable and the associated overall slope into vectors.

RSM as a Constrained NRM

As shown in Thissen et al. (2010) and Thissen and Cai (2016), several well-known

divided-by-total (Thissen & Steinberg, 1986) polytomous IRT models, including the

RSM, the PCM, and the GPC model (Muraki, 1992), can all be viewed as constrained

cases of the full-rank NRM. To formulate an RSM under the new parameterization,

three constraints need to be imposed: (a) the overall slopes are restricted to be equal

across items, a�1 = . . . = a�i = . . . = a�I , (b) ai is fixed to (1, 0, . . . , 0)
0
, which effec-

tively makes the scoring function values (0, 1, 2, . . . , K � 1)
0
, and (c) the second to

the last elements of gi are constrained to be equal across items.

If the person latent variable up is assumed unidimensional and follows a standard

normal distribution, free parameters in an RSM under the new parameterization

include: (a) an overall slope parameter a�, which also reflects the variation of the

person latent variable, (b) the first element of the gi vector for each item, gi1 for

i = 1, ::, I , and (c) the second to the last elements of gi, which are constrained equal

across items. Once estimates of these free parameters are obtained, parameters under

the original parameterization of the RSM can be derived. When the linear-Fourier

basis contrast matrix is used for the reparameterization, the location parameters in

Equation 1 can be computed as

di = �cK

a� K�1ð Þ =
�gi1

a� : ð7Þ

The threshold parameters are

tk = cK

K�1
� ck�ck�1

a� : ð8Þ
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Proposed Modeling Approach

In this section, an explanatory multidimensional random item effects RSM based on

the new parameterization is proposed. The measurement model, which specifies the

probability of selecting a response option as a function of the person and item latent

variables, is introduced first. The person latent variables represent the latent con-

structs that a test aims to measure. The level of the item latent variable reflects the

deviation of an item from the average item location. Then the structural models are

presented, which connect the person-related and item-related covariates with person

and item latent variables through regression equations.

Measurement Model

Adopting the novel parameterization, the probability that person p’s response to item

i falls into category k (k = 0, 1, . . . , K � 1) is specified as

P ypi = kjup, di; aperson, aitem, Sperson, sitem, c
� �

=
exp zpikð ÞPK�1

m = 0

exp zpimð Þ
, ð9Þ

where the linear predictor is

zpik = aperson
s s

person
k + 1

� �'
up + aitemsitem

k + 1di + ck + 1: ð10Þ

The item responses are cross-classified by persons and items. Therefore, like the

random item effects model presented in Equation 2, the first two terms of Equation

10 capture the person and item random effects, respectively. Specifically, in

Equations 9 and 10, aperson is a slope vector that corresponds to up, the latent vari-

ables that vary over persons. s
person
k + 1 is the (k + 1) th column of the scoring function

matrix Sperson, which is of size D3K . Each column of the Sperson matrix corresponds

to a category and each row of it corresponds to a latent dimension. The scoring func-

tion values are allowed to vary across latent dimensions. The symbol s denotes the

Schur product. aitem and sitem
k + 1 are respectively the slope and scoring function value

associated with item latent variable di, which varies over items and captures item i’s

deviation from the average item location. ck + 1 is the intercept parameter.

Restrictions on the scoring function matrix associated with person latent variables

Sperson, scoring function values that correspond to item latent variable sitem, and the

intercept parameter vector c are implemented through reparametrizing them as

s
person
k = Taperson

k , sitem = Taitem, and c = Tg, ð11Þ

where aperson
k , aitem, and g are vectors of size K � 1. In Equation 11, T represents a

K3(K � 1) contrast matrix and can take a linear Fourier-basis form:
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T =

0 0 . . . 0

1 f22 . . . f2 K�1ð Þ
2 f32 . . . f3 K�1ð Þ

..

. ..
. . .

. ..
.

K � 1 0 . . . 0

2
666664

3
777775,

in which

fmm0 = sin
p m0 � 1ð Þ m� 1ð Þ

K � 1ð Þ

� �
,

so that the second to last columns of T are mutually orthogonal.

To formulate the proposed model as an RSM type model, aperson
k and aitem are

valued (1, 0, . . . , 0)0 so that the scoring function values effectively become

(0, 1, 2, . . . , K � 1)0. Note that in Equation 11, the c and g vector has no item indica-

tor, meaning that g is constrained to be equal across items. In addition, the first ele-

ment of g is fixed to zero so that the average location of all items is 0.

Structural Model

Two regression equations for the person and item latent variables are defined, respec-

tively, incorporating person-related and item-related covariates:

up = Bxp + ep, ð12Þ

di = w
0
il + ji: ð13Þ

Equation 12 models the relationships between person-related covariates and the

person latent variables. up is a vector of size D and varies over persons. xp is a vector

that consists of m person-related covariates (e.g., gender), B is a D3m regression

coefficient matrix, ep is a D-dimensional vector of person random effects, and is

assumed to follow a multivariate normal distribution, ep;N (0, S). Equation 13 is for

the item latent variable di, which represents the deviation of item i’s location from

the average location. wi is the item covariate vector (e.g., reversely worded) and is

of size n, and l is the corresponding regression coefficient vector. ji represents item

i’s random effects, and is assumed to be normally distributed.

Identification Constraints

To identify the proposed model, a few constraints need to be imposed. Specifically,

the person and item random effects are let to have unit variances. In other words,

diagonal elements of S are all ones, and ji follows a standard normal distribution. As

a result, values of the associated slope parameters aperson and aitem effectively reflect

the variations in the person latent traits and item locations.
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Free parameters in the proposed model include elements of the regression coeffi-

cient matrix B, elements of the regression coefficient vector l, off-diagonal elements

of S, aperson, aitem and the second to the (K � 1) th elements of g. Compared with

the conventional RSM, the proposed model generally requires estimating fewer para-

meters, which can be desired in practical settings. For example, assuming no person-

related and item-related covariates are considered, for a unidimensional test consist-

ing of I items with K categories, a conventional RSM requires estimating I + K � 1

parameters (I location parameters and K � 1 thresholds), while the number of free

parameters in a random item effects RSM is K (2 slope parameters associated with

the person and item latent variables and K � 2 elements of g).

Estimation

A variant of the MH-RM algorithm (Cai, 2008, 2010a, 2010b; Chung & Cai, 2021;

Huang, 2021) that implements a new sampling strategy for estimating latent variable

models with crossed random effects is applied to estimate the explanatory multidi-

mensional random item effects RSM introduced above. The MH-RM algorithm pro-

duces the maximum likelihood estimates (MLEs) of model parameters and is

preferred in high-dimensional IRT settings (e.g., Chung & Cai, 2021; Falk & Cai,

2016; Monroe & Cai, 2014; Yang & Cai, 2014). The MH-RM algorithm makes use

of the idea of data augmentation and combines the MH (Hastings, 1970; Metropolis

et al., 1953) sampler with the RM (Robbins & Monro, 1951) Stochastic

Approximation (SA) algorithm.

The MH-RM algorithm has two strong motivations: (a) Fisher’s (1925) identity,

which states that the conditional expectation of the gradient of the complete data log-

likelihood is equal to the gradient of the observed data log-likelihood, and (b) the

RM algorithm, which is a root-finding algorithm designed for functions that are cor-

rupted by noise. To illustrate how the two motivations facilitate the MLE, the itera-

tive scheme of the standard MH-RM algorithm is outlined below first. Following the

general scheme, the sampling strategy applied in the new variant of the algorithm to

aid the estimation of crossed random person and random item effects is introduced.

Readers that are interested in more technical details are referred to Cai (2008, 2010a,

2010b), Chung and Cai (2021), and Huang (2021).

Each iteration of the MH-RM algorithm consists of three steps: stochastic imputa-

tion, stochastic approximation, and Robbins-Monro update. With the MH-RM algo-

rithm, the person and item latent variables/random effects are treated as missing data

(Dempster et al., 1977). The missing data and the observed data (i.e., item response

and covariates) form the complete data. In the first stochastic imputation step of each

iteration, the MH sampler is applied to impute missing data (i.e., person and item ran-

dom effects) so that the complete data are formed. In the stochastic approximation

step, made possible by Fisher’s identity, the gradient vector and information matrix

of the complete data log-likelihood are evaluated as an approximation of the observed

data log-likelihood, which is more difficult to evaluate. In the Robbins-Monro update
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step, the RM algorithm is applied to update the model parameters, accounting for the

missing data (i.e., noise) introduced in the stochastic imputation step.

In the stochastic imputation step of each iteration, a sampling strategy that cou-

ples the Metropolis-within-Gibbs algorithm with the alternating imputation posterior

(AIP) algorithm (Cho & Rabe-Hesketh, 2011) is adopted. In this process, values of

the person and item latent variables/random effects are simulated in alternation.

Specifically, the person latent variables/random effects are imputed first, fixing item

latent variables/random effects to the imputed values from the previous iteration.

Direct simulating latent variables/random effects for persons from their conditional

densities are not feasible. Therefore, a Gibbs sampler is constructed and combined

with the MH algorithm. Then the item latent variables/random effects are simulated

in the same manner, fixing the person latent variables/random effects to the imputed

values obtained in the current iteration.

Simulation Study

To evaluate the performance of the MH-RM algorithm in terms of estimating the pro-

posed explanatory multidimensional random item effects RSM, a simulation study

was conducted. Data were simulated and analyzed with the popular IRT software

flexMIRT (Cai, 2017).

Simulation Design

Item responses were simulated based on a five-category explanatory random item

effects RSM presented in Equations 9, 10, and 12. For illustration purposes, the per-

son latent variable up was assumed to be unidimensional and was predicted by one

person-related continuous covariate. The simulated value for the regression coeffi-

cient was 0.7. The item latent variable di was unidimensional and was predicted by

one item-related covariate. The data-generating value of the regression coefficient

was 0.3. Generating values of the second to the last elements of g were 1.2, 20.4,

and 0.1 respectively. A linear Fourier-basis contrast matrix was applied. Note that

the full generalization of the proposed model allows for accommodating multidimen-

sional person latent variables and multiple person-related and item-related covariates

that are of different types.

Manipulated factors considered in this simulation study were: (a) the number of

persons, (b) the number of items, and (b) the variances of persons and item random

effects. Specifically, the numbers of persons generated were 500 and 1,000, which

aimed to reflect a relatively small and large sample size. The numbers of items simu-

lated were 100 and 200. The numbers of persons and items were chosen to mimic

real-world scenarios where a large number of persons are employed to evaluate an

item pool that consists of a relatively small number of items. Another consideration is

that, as mentioned, the random item effects approach can be ideal in situations where
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the sample size is too small to produce stable parameter estimates if conventional

fixed item effects IRT models are adopted.

Three combinations of variances of person and item random effects were simu-

lated, which were aperson = aitem = 1, aperson = 2 and aitem = 1, and aperson = 1 and

aitem = 2. The three combinations led to conditions with equal person and item ran-

dom effects variances, conditions with larger person random effects variance, and

conditions with larger item random effects variance, respectively.

A total of 23233 = 12 conditions were simulated. For each condition, 100 replica-

tions were simulated.

Evaluation Criteria

The bias and root mean square error (RMSE) were used to evaluate if the model para-

meters were well recovered. Specifically, for a generic model parameter v, the bias

and RMSE were computed as

Bias v̂ð Þ=

PR

r = 1

v̂�vð Þ

R
,

ð14Þ

RMSE v̂ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

r = 1

v̂�vð Þ2

R
,

s
ð15Þ

where R is the number of converged replications.

Simulation Results

Table 1 summarizes the biases for parameter estimates of the proposed model under

various simulation conditions. As shown in the table, the slope parameter (aperson) and

the regression coefficient (b) associated with the person latent variable and elements

of the g vector were very well recovered. The biases for these parameters were all

below .01 with only two exceptions, which was the aperson estimate in the conditions

that combined 200 items and a larger person variance.

The slope parameter (aitem) and regression coefficient (l) associated with the item

latent variable were well recovered but slightly worse than aperson, b, and elements of

g. When the number of persons was relatively small, the absolute values of biases

were all below .03. For conditions with a relatively larger number of persons, the

absolute values of biases of aitem ranged from .032 to .072, and the absolute values

of biases of l ranged from .017 to .029. The relatively large biases of aitem and l

could be attributed to the relatively small numbers of items compared with persons.

Table 2 shows RMSEs for parameter estimates of the explanatory random item

effects RSM under all simulation conditions. Holding the number of persons constant,

the RMSEs for conditions with 100 items were slightly larger than those for condi-

tions with 200 items. For all equal variance and larger person variance conditions, the
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RMSEs for all parameters were all below .1 with four exceptions. For larger item var-

iance conditions, the RMSEs for the slope parameter (aperson) and the regression coef-

ficient (b) associated with the person latent variable and elements of the g vector

were all below .05. Similar to the biases, the RMSEs of the slope parameter (aitem)

Table 1. Biases for Parameter Estimates of the Random Item Effects Model.

Number
of person

Number
of item

aperson aitem g2 g3 g4 b l

Equal variance conditions
500 100 2.001 .000 .002 .001 -.001 -.004 -.001

200 2.001 .002 .001 .001 2.001 2.004 2.002
1,000 100 2.005 .032 2.001 .001 .000 .000 2.027

200 2.006 .053 .000 .000 .000 2.004 2.029
Larger person variance conditions

500 100 .002 .008 2.004 .000 .000 2.003 2.012
200 2.013 .002 2.002 .000 2.001 .005 2.006

1,000 100 2.003 .072 2.001 .000 2.001 2.003 2.030
200 2.025 .066 .000 .000 .000 .008 2.044

Larger item variance conditions
500 100 .001 2.015 .001 .001 .000 2.001 .028

200 2.005 .003 2.002 .000 2.001 2.003 2.006
1,000 100 2.006 .056 2.002 .002 .000 .003 2.017

200 2.006 .063 .000 .001 .000 .002 2.019

Table 2. RMSEs for Parameter Estimates of the Random Item Effects Model.

Number of person Number of item aperson aitem g2 g3 g4 b l

Equal variance conditions
500 100 .037 .076 .019 .008 .009 .049 .115

200 .035 .053 .015 .006 .006 .050 .086
1,000 100 .024 .084 .014 .006 .005 .031 .113

200 .025 .074 .010 .004 .004 .036 .074
Larger person variance conditions

500 100 .067 .085 .022 .011 .010 .052 .100
200 .058 .049 .014 .007 .007 .044 .072

1,000 100 .052 .125 .012 .006 .006 .031 .104
200 .053 .089 .010 .005 .004 .038 .087

Larger item variance conditions
500 100 .036 .163 .023 .011 .009 .048 .139

200 .038 .105 .016 .007 .007 .045 .075
1,000 100 .024 .177 .014 .008 .007 .030 .109

200 .023 .134 .011 .005 .005 .032 .077

Note. RMSE = root mean square error.
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associated with the item latent variable were relatively large, ranging from .105 to

.177. The RMSEs of the regression coefficient (l) associated with item latent vari-

ables ranged from 0.075 to 0.139.

Empirical Example

Data and Analysis

The proposed explanatory multidimensional random item effects RSM approach was

applied to an empirical data set presented in Zhang et al. (2016). The data included

responses of 312 persons to the abbreviated 18-item Need for Cognition (NFC) scale

(Cacioppo & Petty, 1982). The sample consisted of 252 females and 59 males. The

mean and standard deviation of the age were 19.95 and 2.72, respectively. The NFC

scale measures the tendency of an individual to engage in and enjoy thinking. Each

item of the NFC scale describes a cognitive activity (e.g., ‘‘I would prefer complex

to simple problems.’’) and has nine categories. Among the 18 items, nine are rever-

sely worded (e.g., ‘‘Thinking is not my idea of fun’’). Two person-related covariates,

including gender and age, and one item-related covariate that indicates if an item is

reversely worded were available.

Three research questions that are of substantive interest were asked:

Research Question 1: Compared with the variation in persons’ tendency to

engage in and enjoy thinking, how do the items in the abbreviated 18-item

NFC scale vary in their location parameters?

Research Question 2: If gender and age can predict a person’s tendency to

engage in and enjoy thinking?

Research Question 3: If the item type (reverse worded vs. positively worded

items) has an impact on the item location?

Based on the frequencies of item responses (shown in Table 3), categories 1 and 2

were collapsed into one category due to the low frequency of category 1, and cate-

gories 8 and 9 were combined as well due to the low frequency of category 9. Thus,

a seven-category explanatory random item effects RSM, which included a unidimen-

sional person latent variable and a unidimensional item latent variable, was applied

to fit the data. In addition, persons’ gender and their standardized age were incorpo-

rated as predictors of the person latent variable. The item type indicator was utilized

as the predictor of item latent variable. The analysis was conducted using flexMIRT

(Cai, 2017). The syntax is presented in the appendix.

Results

The estimates of the slopes associated with person and item latent variables were .44

(.02) and .31 (.01), respectively. These estimates indicated that compared with the
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item locations, the persons had more variation in the tendency of engaging in and

enjoying thinking. Estimates of the second to the last elements of the g and their

standard errors were 1.08 (.05), 0.07 (.03), 0.07 (.02), 0.02 (.02), and 20.03 (.02),

respectively.

Estimates of the two regression coefficients associated with gender and age

were .07 (.09) and .04 (.06). Neither of the two estimates was significant, indicat-

ing that there was no difference between the female and male groups in their ten-

dency to engage in and enjoy thinking, and age is not a significant predictor of the

tendency. The estimated regression coefficient for the item type is 2.17 (.35).

This insignificant estimate indicates that if an item is reversely worded has no

impact on its location.

Conclusion and Discussion

This study contributes to the IRT literature by introducing an explanatory multidi-

mensional random item effects RSM for polytomous items. The proposed model

adopted a novel parameterization of the NRM, which facilitates extending commonly

known polytomous IRT models to their multidimensional versions. The proposed

model allows for studying the relationships between covariates that are of interest

Table 3. Item Response Frequencies.

Response categories

Item 1 2 3 4 5 6 7 8 9

1 9 36 69 51 44 33 33 24 13
2 15 45 80 59 28 42 26 12 3
3 11 39 61 55 48 32 38 17 8
4 7 36 62 49 44 49 32 25 6
5 15 55 63 52 42 44 27 8 4
6 12 24 55 57 50 50 32 17 11
7 7 24 37 44 27 60 60 35 14
8 7 20 33 33 50 65 57 31 12
9 5 9 28 40 35 83 64 30 13
10 23 38 81 66 62 20 16 1 1
11 18 51 74 70 55 20 16 2 2
12 21 48 57 73 42 26 23 11 7
13 5 29 55 50 70 53 24 19 6
14 13 41 51 75 57 31 28 11 4
15 17 40 54 75 62 33 18 8 3
16 1 24 47 49 35 54 48 32 21
17 17 43 48 57 38 53 26 21 8
18 30 48 65 69 53 23 14 6 3
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with latent variables, such as the relationship between gender and the person’s per-

sonality, and the relationship between item features and item locations. A variant of

the MH-RM algorithm designed for estimating latent variable models with crossed

random effects was used to estimate the proposed model. A simulation study was

conducted to evaluate the performance of the MH-RM algorithm in terms of para-

meter recovery with a popular IRT software flexMIRT (Cai, 2017). The simulation

results indicated that the model parameter estimates were well recovered. The slope

parameter and regression coefficient associated with the person latent variable and

elements of g have smaller biases and RMSEs than the item latent variable slope

and regression coefficient. This could be due to the fact that in the simulation condi-

tions, which aimed to mimic real-world scenarios, the number of items were much

smaller than the number of persons. The proposed model was applied to an empirical

data set to further demonstrate how the proposed model can be used to address sub-

stantive research questions.

The proposed explanatory multidimensional random item effects RSM considers

item locations random over items and can be applied in many practical settings, such

as the automatic item generation. As illustrated in the ‘‘Proposed Modeling

Approach’’ section, the proposed random item effects RSM requires estimating a

smaller number of model parameters (compared with the fixed item effects RSM).

Therefore, it can also be desired in scenarios where the number of persons is rela-

tively small to obtain stable estimates of model parameters.

The present study enhances the idea that the full-rank NRM is best treated as a

flexible template and promotes the understanding of the novel parameterization pro-

posed by Thissen et al. (2010) and Thissen and Cai (2016). The flexibility of the

full-rank NRM template allows for straightforward extensions of unidimensional

polytomous IRT models to multidimensional models. It also makes it possible to

design models for specific purposes by imposing constraints on model parameters. In

addition, this paper facilitates the interpretations of outputs of popular IRT software

packages that implement this parameterization.

However, the present study evaluated the proposed model in a unidimensional

person latent variable setting and under a relatively small number of conditions.

Therefore, it is recommended that the proposed model be evaluated in a more gen-

eral multidimensional person latent variable case, and under a broader range of

simulation conditions, such as different sets of item parameters, multiple combina-

tions of numbers of persons and items, and multiple person-related and item-

related covariates, to facilitate decision-making in empirical studies. In addition,

the present study focused on the RSM and developed its random item effects

counterpart. Future studies can adopt this novel parameterization of the NRM to

extend other polytomous IRT models (such as the GPC model) to their random

item effects versions.
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Appendix

Sample flexMIRT syntax for estimating the explanatory multidimensional random item effects

RSM

\Project .

Title = ‘‘Empirical Data Analysis’’;

Description = ‘‘Zhang et al., 2016 Data’’;

\Options .

Mode = Calibration;

Rndseed = 1234;

Algorithm = MHRM; // The MH-RM algorithm is applied to estimate the model.

Processors = 4;

ProposalStd = 2.2;

ProposalStd2 = 2.4;

InitGain = 0.1;

Stage1 = 20000;

Stage2 = 1000;

SavePRM = Yes;

SaveMCO = Yes;

SaveSCO = Yes;

Score = EAP;

\Groups .

%Gr%

File = ‘‘LongData.dat’’;

Varnames = id, gender, age, item, res, rw; // Variable names in the data set

Select = res; // The variable res consists of item responses.

Dimensions = 2; // The proposed model included a person dimension and an item dimension.

Between = 1; // Item responses are cross-classified by the person and item dimensions.

Cluster = id; // The variable id indicates persons.

Block = item; // The variable item indicates items.

Code(res) = (1,2,3,4,5,6,7,8,9),(0,0,1,2,3,4,5,6,6); // The nine-category items are recoded.

Ncats(res) = 7;

Model(res) = Nominal(7); // The model is specified as an NRM with seven categories.

Crossed = Yes;

Covariates = gender, age, rw; // Two covariates are incorporated in the model.

L2covariates = 2; // The first two covariates are to be regressed to the person latent variable.

\Constraints . // Constraints are imposed to the full-rank NRM.

Fix Gr, (res),ScoringFn; // The alpha vector/scoring functions are fixed.

Fix Gr, (res),Intercept(1); // The first element of gamma vector is fixed to zero.

Value Gr, (res), Intercept(2), 0.2; // Assign a starting value to the 2nd element of gamma.
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Value Gr, (res), Intercept(3), 0.2;

Value Gr, (res), Intercept(4), 0.2;

Value Gr, (res), Intercept(5), 0.2;

Value Gr, (res), Intercept(6), 0.2;

Free Beta(1,1); // Allow the regression coefficient to be free estimated.

Value Beta(1,1), 0.2;

Free Beta(1,2);

Value Beta(1,2), 0.2;

Free Beta(2,3);

Value Beta(2,3), 0.2;
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