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Abstract: We construct invariant sets for the 2d-dimensional generalization of the 

sawtooth map which are semi-conjugate to any incommensurate rotation 

vector. When d $. 2 we show that these are Cantor sets. These invariant 

sets are hyperbolic, and we give a structural stability argument to show 

the existence of cantori for a non-trivial class of smooth symplectic maps. 
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§1. Introduction 

Aubry and Mather(1, 2] show that orbits with any rotation number exist for area­

preserving twist maps. Extension of this theory to symplectic maps with more than one 

degree of freedom appears to be a difficult task. Bangert(3] and Mather{4] have results 

about the set of rotation vectors for orbits of minimal action; however, an example of 

Hedlund(5] shows that in general one can not hope to obtain minimizing orbits with all 

rotation vectors. Bernstein and Katok(6] show that for maps close enough to 

integrable, the minimizing periodic orbits satisfy some regularity properties which are 

sufficient to allow the existence of a limiting orbit as the rotation vector approaches 

any limit. However, they can not prove anything about the rotation vectors of the 

limiting orbits. 
Here we consider the opposite situation, when the "potential" dominates the 

"kinetic" energy. In this limit, the· minimizing orbits of an area preserving map 

approach the minimizing orbits of the "sawtooth mapping" which is a piecewise linear, 

discontinuous mapping. As was shown independently by Aubry and Percival [7-1 0], 

an explicit formula can be obtained for orbits of the sawtooth mapping with irrational 

rotation number; these are dense on Cantor sets, and are called cantori. We consider 

the generalization of the sawtooth mapping to d degrees of freedom in §2, and obtain a 

formula for a set of orbits with incommensurate rotation vectors. When d .s. 2, these are 

shown to cover Cantor sets in §3. 

We use the structural stability of hyperbolic sets to show in §4 that the cantori 

persist under perturbations of the mapping which can be arbitrary in a region around 

the discontinuity, but which are C1 small on the cantorus. 

§2. Many-dimensional sawtooth map 

Let x = (x1, x2 .... xd) represent a configuration point in '}(}. Consider a mapping 

with the generating function 

h(x,x') = ~x-x'l2 + ~x} 1 Q {x} 
2 2 ( 1 ) 

.. 
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where x, x' e ~. a is a positive definite matrix, A.> 0, superscript t represents 

transpose, and {x} represents a fractional part of x with respect to the group of 

translations by integer vectors, zd. For definiteness, choose some cr = (cr1, ... crd) with 

cri e {+,-}and define the fractional part 

(2) 

where [x]+ ([x]·) is the right (left) continuous integer part. A fu(lction f(x) for which 

f(x+cre) ~ f(x) as e~o for all x and e>O, will be called q-contjnuous. The fractional part 

{x}a is a-continuous. 
A trajectory generated by (1) consists of a configuration (xs, xs+1, ... , xt) , s<t 

which is a stationary point of the action 

t-1 
W[xs,xs+1 , ... ,xt] = L h(xi,xi+1) 

j-s 

Differentiation yields the second difference equation 

(3) 

provided none of the configuration points falls on the discontinuities. This defines a 
map S: (xt-1, xt) ~ (xt, xt+1) which is the 2d-dimensional generalization of the 

sawtooth mapping(1 0]. If a is diagonal the components of (3) decouple and it can be 

treated as a pair area-preserving sawtooth mappings; however in general, (3) can not 

be decoupled. 

Con~ider an incommensurate rotation vector we~ (i.e. k·w e z 'Vk e zd\0). We 

l~ok for invariant sets with this rotation vector given by a function x : ~ ~ ~ where 

x(S+k) = x(S) + k, 'V ke zd, and such that the orbit of x(So) is x(So +rot), 'V90 e ~and t e 

z. By (3), x(S) must satisfy 

x(S+w) - 2x(9) + x(S-w)= A.a{x(S)} ( 4) 

Such sets exist if the parameter A. is large enough as is shown by the following 

Proposition: There exists an L>O such that for A.>L and any incommensurate 

we ~. there is an invariant set tV1w of the sawtooth map of the form 
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~ro = {(x<1(8), xcr(8+ro))l 8 e ~. cr e {+,-}d} (5) 

such that xcr(8+k) = xcr(8) + k '\1 ke zfJ and that xcr(8o + rot) is an orbit for all 80 e ~ and 

cre {+,-}d. The solution is given by 

xa(8) = 8 - L s-1b(n)B{8+nro}a (6) 
n 

where B is an orthogonal matrix which diagonalizes Q, and b(n), ne z, are diagonal 

matrices of the form 

(7) 

with <li and Pi positive (see (8)). 

Proof: We first show that a solution to (4) can be found of the form (6) under the 

assumptions that the solution satisfies (x<1(8)] = [8] and that x(8) has no points on the 

discontinuity set of { }. Let xcr(8) = 8 + 'V(8); by assumption {x<1(8)} is independent of the 

choice of fractional part, so choose the a-continuous one: 

{x0 (8)} = xa(8) - [xa(8)]a 
= 8 + 'V(8) - [8]a 
= {8}a + 'V(8) 

Therefore by ( 4) 'V must satisfy 

A solution to this can be obtained from the ansatz 

n--
providing 

a(n-1)- 2a(n) + a(n+1) = A.Qa(n) n;: 0 
a(-1) - 2a(O) + a(1) = A.Q(I +a(O)) 

Since Q is symmetric, it can be diagonalized by an orthogonal coordinate change. 

Let Q = s-108, where Bt= 9-1 and D = diag(qi) is a diagonal matrix; since Q is 

, 
• 
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positive definite, the entries qi are positive reals. Defining b(n) = -Ba(n)B-1, then the 

solution for b(n) which decays as· n ~ ± oo is given by (7) providing 

(8) 

So we obtain x(9) of the form (6) providing the assumptions [x<r(9)] = [9], and x<r(9) has 

no points on the discontinuity set are satisfied. To verify this we note the following 

properties of (6): 

(a) x<r(9) is a-continuous. This follows because for c: > 0, x<r(9+cre) ~ x<r(9) as 

c:~o. since {9}<r is a-continuous. 

(b) The derivative of x<r(9) vanishes at all points of continuity. Since the series 

for x(9) is uniformly convergent, its derivative can be computed term by term . 

. Evaluating the derivative of (6) at a point where {9+n(l)}<r is continuous '1 n gives 

ax= 1- s·1L, b(n)B = 0 
aa n 

which follows from the sum 

(9) 

Thus all changes in x<r(9) occur at the discontinuities of {S+nw}<r, that is the points 

for any integer m. Such points are dense. 

(c) x<rj(9) is a monotonic function of Sj. . The jump in xcr across a point Sj = m-n(l)i 

- 1/2, holding all the other ej, i ;e j, fixed, is 

Llx(n;j)= B·1b(n)Bei, '1 Si i;ej and cr. ( 1 0) 
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where ei is the unit vector in the j direction. Thus (ei, ~x(n;j)) > 0, so xcri strictly 

increases across such a discontinuity. Since the discontinuities are dense, xcri 

increases between almost every pair of values of 9j. 

(d) x(9) can be written as a sum of monotone vectors, each depending on a 

single ei: 

d 
xa(e) =I, xi(Sj) 

j ·1 

xi(Sj) = 9j- s-1 I, b(n){ei + nroi}<JJ Bei 
n 

(11) 

We call a vector function xi(Sj) monotone if (ei, xi(9j+ o) -xi(Sj) ) ~ 0, 'V o ~ 0. This is 

true for (11) as follows from (1 0). 

A bound on the ·norm of xi(Sj) can be obtained by noting that xi(O) = 0 and at any 

other point its value is the sum of the jumps ~x(n;j) for those n corresponding to 

discontinuities in {<p + nroj} for <p e [0,9j]. Providing l9il < 1/2, the discontinuity 

corresponding to n = 0 does not contribute. Furthermore xi(Sj) is odd almost 

everywhere, indeed xi(Sj +E) -4 - xi(-9j -E) as E~O+, so only half of the remaining 

discontinuities contribute, thus 

Thus from (11) the norm of x(9) itself is bounded by 

This implies x(9) is certainly in the fundamental domain (-1/2, 1J2)d when e is, 

providing A. satisfies 

A. > L = __4__j d4 1 ) 
~2d2 -1-

which completes the proof • 

( 12) 

( 13) 

An example for d=2 is shown in Fig. 1. Here we chose A.q = (0.02,0.03), 

and let B be a rotation by an angle 0.5. The rotation vector is ro = ( (3-'J'S)/2, .J2-1 ). 

Values fore were taken on a rectangular grid. 
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Ford = 1, (13) implies that the solution (6) is valid for all A.>O. Ford> 1, this is not 

necessarily the case, and numerical calculation for d=2 shows that if the qi are too 

small then x<r(S) can cross the discontinuity and therefore will not represent a valid 

solution. In practice the bound (13) is extremely weak; for d=2 the set appears to 

remain in the fundamental domain until A.min(qi) - 0(1 o-3). Even in this case, however, 

it is possible to modify the fundamental domain (-1/2, 1f2)d used in the definition of {x} 

to obtain a mapping for which (6) is valid for any A..t 

Note that (6) also gives invariant sets with commensurate rotation vector, 

whose topological form is different; in this paper we concentrate on the 

incommensurate case. 

§3 Cantori 

In this section we consider the topological form of the set ~00 • The sawtooth 

rt:laP commutes with the translations (x,x')-+(x+m,x'+m), forme zd, so it can be 

considered as a map of ~x~/ zd to itself. 

Proposition: Let w be incommensurate and M00 = Mwfzd, with M00 given by 

(5). Then ford s 2, M00 is a Cantor set. 

Proof: A Cantor set is a topological space which is non-empty, compact, 

totally disconnected and has no isolated points. Since oo is incommensurate, it 

follows from property (a) of §2 that for all d, M00 is non-empty, closed and has no 

isolated points. Furthermore, since the b(n) are summable, M00 is bounded .. So it 

remains to prove that M is totally disconnected. 

For d=1, this follows from the fact that the jumps (1 0) are positive and that oo is 

incommensurate. 

For d=2, consider a point Sj = niooi + 1/2, j = 1 ,2. The vectors ~x(nj;j} given by 

(1 0) span an area of positive orientation~ This area is the same as that spanned by 

Btlx(nj;j} since 8 e S0(2). Letting q> be the rotation ang.le, this area is given by the. 

cross product 

t This follows from the Proposition of the next section: choose the boundaries of the fundamental 
domain to run in the gaps between the ·rl(Q,±) curves and the y2(0,±) curves. 

'• ··~1~ ,. 

·.":. 
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Define two curves y1 (j,cr1) by joining the gaps in the points of xa(jw1 + 1/2, 82), for 82 e 

~ and cr2 e { +,-} with straight lines. By (c) these curves are graphs over the x2 axis. 

Similarly define the graphs y2(j,cr2) over x1. The positivity of (14) for all n2 implies that 

y1 (n1 ,+) and y1 (n1 ,-) do not intersect, and similarly for y2. Then (c) implies that the 

four curves tA(ni,±), as shown in Fig. 2, separate the points of M00 with Si > niWi and 9i 

< niWi where i = 1 ,2. 

Since w1 and w2 are irrational, this implies that M00 is totally disconnected, thus 

it is a Cantor set • 

We believe that this result is also true for d>2, but did not succeed in proving it. 

§5 Structural Stability 
In this section we show that many smooth symplectic maps have invariant sets 

topologically equivalent to those found for the sawtooth map. Although the sawtooth 

map is discontinuous, the invariant sets M00 avoid a neighborhood of the discontinuity 

set so the map can be modified there in any way leaving M00 unchanged. In 

particular, there are coo symplectic maps with the same M00• Since the invariant sets 

of the sawtooth map are hyperbolic, with hyperbolicity constant min(pi). they are 

structurally stable, that is M00 persists for all perturbations of the map which are C1 

small enough in a neighborhood of M00, see e.g. [11 ]. This allows us to deduce 

existence of topologically equivalent invariant sets for an open set of smooth 

symplectic maps of ~x~/zd. This set includes non-trivial examples, as in the 

following 

Theorem: Suppose f is a symplectic map with generating function 

h(x,x') = ~x-x12 + A.V(x), xe 'R9. such that V(x+k) = V(x) 'r:f ke zd, and V has a non­

degenerate local minimum with D3V(x) = 0 at this minimum (e.g. because of symmetry). 

Then there exist invariant sets topologically equivalent to M00 for all oo, provided A. is 

.. 

large enough. l.r 

Proof: With out loss of generality let x=O be the minimum of V; and write the 

quadratic part of V there as 112 xtQ x. Fore in the fundamental domain, (12) implies 

that the invariant set M00 of the sawtooth map is contained within in the region A: {lxl < 
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d2/ A. min(qi} 1 xe ~}. In this region A.V(x} is C2 close to its quadratic part, and so f is C1 

close to the sawtooth mapping. Hence M00 persists for large enough A. • 

The above example can be modified to h(x,x') = T(x-x') + A.[V(x}+W(x')], where T 

represents any positive definite quadratic form, since subtracting A.[W(x')-W(x)] from h 

does not change the orbits and T can be diagonalized as 1f21x-x'!2. We believe that 

the restriction D3V = 0 is not necessary, since f would still be co close to the sawtooth 

map, S, on Rand the relative change in the derivative (Df DS-1 - I) would be small. 

§5 Questions 
There are several remaining questions: 

1} Is M00 a Cantor set when d>2? We suspect that this is the case. In particular, 

since M00 is hyperbolic and its orbits are semi-conjugate to a rotation, it has zero 

Hausdorff dimension[12]. 

2) Can the theor~m be generalized to any V(x) with a non-degenerate minimum 

for which D3V ~ 0? Can one generalize to examples with a more general dependence 

of h on (x,x')? 

3) Do these orbits globally minimize the action? It is clear that they are local 

minima: however, we have not shown that variations which move a configuration 

point across the discontinuity necessarily do not decrease the action. Even if M00 

consists of orbits of minimum action for the sawtooth do the perturbed sets for nearby 

maps consist of minimizing orbits? For d=1, Mather has given examples where the 

continuation of a hyperbolic Aubry-Mather set by structural stability no longer 

consists of minimizing orbits(13]. 

4) Can these Cantor sets be regarded as the ghosts which remain when 

invariant tori break up? Does every invariant torus have such a ghost, or something 

similar? In Figure 3 we display a periodic orbit of the 4 dimensional Froeschle 

mapping(14] with primitive period 78635. When the parameter A. is small this orbit 

appear to nearly uniformly cover the fundamental domain; it is a close approximation 

to an invariant torus with incommensurate frequency. As A. increases the density of 

points becomes non-uniform, and low density regions begin to form. It appears that 

when A. is larger these low density regions will be empty, and the orbit will cover a 

Cantor set. Unfortunately in this situation the orbit becomes highly unstable, and 

·• 
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impossible to follow numerically. 
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Figure Captions 

1) Configuration space projection of a cantorus of the four dimensional sawtooth 

map. 

2) Disconnectedness of the set Mw. 

3,) Configuration space projection of a periodic orbit with rotation vector 

(17556/78635, 51 016/78635) for the four dimensional Froeschle map with 

parameters (a,b,c) = (0.5,0.35,0.02), corresponding to A.q = (0.483,0.327). 
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