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Abstract

Cyclooxygenase (COX) and soluble epoxide hydrolase (sEH) inhibitors have therapeutic potential. 

The present study investigated efficacy of a novel dual acting COX-2/sEH inhibitor, PTUPB in 

type 2 diabetic Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were treated with vehicle or 

PTUPB (10 mg/kg/d, i.p.) for 8 weeks. At the end of the 8-week experimental period, ZDF rats 

were diabetic (fasting blood glucose, 287±45 mg/dL) compared to Zucker Diabetic Lean rats 

(ZDL, 99±6 mg/dL), and PTUPB treatment improved glycemic status in ZDF rats (146±6 mg/dL). 

Kidney injury was evident in ZDF compared to ZDL rats with elevated albuminurea (44±4 vs 4±2 

mg/d) and nephrinurea (496±127 vs 16±4 μg/d). Marked renal fibrosis, tubular cast formation and 

glomerular injury were also present in ZDF compared to ZDL rats. In ZDF rats, PTUPB treatment 

reduced kidney injury parameters by 30–80% compared to vehicle. The ZDF rats also 

demonstrated increased inflammation and oxidative stress with elevated levels of urinary 

monocyte chemoattractant protein-1 excretion (862±300 vs 319±75 ng/d), renal macrophage 

infiltration (53±2 vs 37±4 /mm2) and kidney malondialdehyde/protein ratio (10±1 vs 5±1 μmol/

mg). PTUPB treatment decreased these inflammatory and oxidative stress markers in the kidney of 

ZDF rats by 25–57%. These data demonstrate protective actions of a novel dual acting 

COX-2/sEH inhibitor on the metabolic abnormalities and kidney function in ZDF rat model of 

type 2 diabetes.
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INTRODUCTION

The incidence of diabetic nephropathy continues to increase worldwide in association with 

the epidemic rise in diabetes [1]. Approximately 20–40% of all diabetic patients develop 

diabetic kidney disease in their life time, which often progress to end-stage kidney failure 

[2,3]. In the United States, diabetic kidney disease is now the major cause of end-stage 

kidney disease and is associated with co-morbid cardiovascular complications [4].

The mechanisms responsible for the pathophysiology of diabetic nephropathy are complex; 

however, it is recognized that multiple risk factors interact synergistically during the 

development of diabetic nephropathy [5,6]. Therefore, there is interest in developing novel 

therapeutic strategies that target multiple risk factors associated with diabetic kidney 

diseases in diabetic patients [7]. To improve the patients’ quality of life these new 

therapeutic strategies should slow the progression of diabetic kidney disease, and aim to 

reduce all causes of morbidity and diabetes-associated mortality [8].

Arachidonic acid metabolism is one pathway that can be targeted to develop a novel therapy 

for diabetic kidney diseases. In support of this approach, products of arachidonic acid 

metabolism have been associated with the pathophysiology of metabolic syndrome and 

diabetes [9,10]. Epoxygenase metabolites of arachidonic acid, epoxyeicosatrienoic acids 

(EETs) are decreased and cyclooxygenase (COX-2) metabolites are increased in patients 

with metabolic syndrome and type 2 diabetes [11–13]. COX-2 metabolites have also been 

implicated in renal injury that occurs in animal models and patients with type 2 diabetes and 

metabolic syndrome [7,14,15]. COX-2 derived metabolites are increased in these conditions 

and contribute to glomerular matrix deposition and stimulate glomerular mesangial cell 

expansion [16,17]. Accordingly, COX-2 inhibition decreases renal injury in animal models 

of metabolic syndrome and type 2 diabetes [12,18,19]. Unlike COX-2 metabolites, the 

decrease in epoxygenase metabolites of arachidonic acids that occur in animal models of 

metabolic syndrome and type 2 diabetes contributes to renal injury [13,16]. EETs have 

multiple biological actions that are important for kidney protection, and the biological 

activity of EETs can be enhanced by attenuating their metabolism by soluble epoxide 

hydrolase (sEH) [20]. Indeed, sEH inhibition decreases inflammation, renal injury, and 

improve pancreatic function in animal models of hypertension, inflammation, cardiovascular 

disease, and diabetes [20–22].

Since selective inhibition of either COX or epoxygenase provides beneficial outcomes in 

models of hypertension, inflammation, cardiovascular disease and diabetes, we developed a 

novel dual-acting COX-2/sEH inhibitor, PTUPB [4-(5-phenyl-3-{3-[3-(4-

trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide]. PTUPB has 

biological activity, as it has recently been shown to have a beneficial action in an animal 

model of tumor suppression and metastasis [23]. In the present study, we tested the 

hypothesis that simultaneously inhibiting COX-2 and sEH pathways of eicosanoid 
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metabolism by PTUPB would be efficacious in attenuating disease using a rat model of type 

2 diabetes and metabolic syndrome. We demonstrate that PTUPB markedly prevented the 

development of metabolic abnormalities and diabetic kidney injury in type 2 diabetic ZDF 

rat model.

MATERIAL AND METHOD

Chemicals

The chemistry and synthesis process dual COX-2/sEH inhibitor, 4-(5-phenyl-3-{3-[3-(4-

trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) 

described earlier [23]. All chemicals used in this study are purchased from Sigma Aldrich 

(St Louis, MO, USA) unless and otherwise mentioned.

Animal Groups

The Medical College of Wisconsin Institutional Animal Care and Use Committee that 

conforms to the National Institutes of Health Guidelines for Care and Use of Laboratory 

Animals approved all animal studies. Male obese Zucker Diabetic Fatty (ZDF, strain code 

370) and Zucker Lean (ZDL, Lean +/?, strain code 371) rats are obtained from Charles River 

Laboratories (Wilmington, MA, USA). Animals were housed in the Biomedical Resource 

Center at the Medical College of Wisconsin with a 12/12h light–dark cycle and free access 

to water and rodent chow. ZDL rats (n=6) were used as the control group. ZDF rats were 

divided into two groups. Vehicle treated ZDF group (n=6) received vehicle and treated group 

received PTUPB (10mg/kg/d, n=6) for 8 weeks. Both vehicle and PTUPB were administered 

continuously for the 8-week experimental period by intra-peritoneal osmotic pump 

(ALZET® osmotic pump, DURECT Corporation, Cupertino, CA). All rats were weighed 

and systolic blood pressure was measured by tail-cuff plethysmography (IITC Life Science 

Inc., Woodland Hills, CA, USA) after 8 weeks of the treatment protocol.

Glucose Tolerance Test

Intra-peritoneal glucose tolerance test was carried out at the end of the 8-week treatment 

protocol in rats that were fasted overnight and injected with glucose (2 g/kg i.p.). Blood 

samples were collected from the tail vein before and at different time points after glucose 

injection. The tail vein blood glucose levels were measured using a glucometer LifeScan 

(Miltipas, CA, USA).

Urine and Plasma Biochemical Analysis

Urine and plasma samples were collected at the end of the 8-week experimental period. 

Serum and urinary biochemical analysis were carried out by colorimetric and ELISA assays. 

Triglyceride, cholesterol, protein and creatinine assay kits were from Cayman (Ann Arbor, 

MI, USA), albumin and nephrin assay kits were from Exocell (Philadelphia, PA, USA), and 

monocyte chemoattractant protein-1 (MCP-1) assay kit was from BD Biosciences (San Jose, 

CA, USA). Serum insulin and C-peptide were measured using ELISA (Mercodia AB, 

Uppsala, Sweden). Serum glucose was measured using glucose oxidase method (abcam, 

Cambridge, MA, USA). Homeostatic index of insulin resistance (HOMA-IR) calculated 

according to the homeostasis of the assessment as described earlier [24]. To determine the 
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kidney tissue malondialdehyde (MDA) level, the rat kidney was homogenized with buffer 

containing 1.5% potassium chloride to obtain a 1:10 (w/v) whole kidney homogenate. MDA 

was measured using colorimetric method after reaction with thiobarbituric acid. Kidney 

tissue MDA was measured in the kidney using a commercially available kit (Cayman 

Chemical).

Histopathological Analysis

The kidney and pancreas were excised and immersion-fixed in 10% neutral buffered 

formalin and paraffin embedded. The embedded kidney and pancreas sections were cut into 

4μm slices for use in histology. Formalin-fixed paraffin-embedded tissue slices were 

deparaffinized, re-hydrated, and kidney tissue slices were stained with Periodic Acid-Schiff 

(PAS) and Masson’s Trichorme. Glomerulosclerosis and mesangial matrix expansion were 

blindly scored from kidney sections stained with PAS staining using the following numeric 

scale: 0= no damage; +1 = very mild; +2 = mild; +3 = moderate and +4 = severe. Two 

observers in a blinded fashion conducted histological analysis at a magnification of X200 

using Nikon NIS Elements Software (Nikon Instruments Inc., Melville, NY, USA). 

Proteinaceous cast in the kidney was also determined in PAS stained kidney sections at 

magnification of X200 using Nikon NIS Elements Software. The percentage area positive 

for proteinaceous cast was calculated from the mean of eight cortical and five medullary 

fields for each animal. Fibrosis in the kidney was determined in kidney sections stained with 

Masson’s Trichorme at a magnification of ×200. The percentage area positive for collagen 

was calculated as fibrotic area from the mean of eight cortical and five medullary fields for 

each animal. Renal tubular cast and collagen positive fibrotic areas in the kidney sections 

were determined by two blinded observers. The pancreas slices were stained with 

Hematoxylin and Eosin staining and gross histological features of the pancreas were studied 

in different experimental groups in blinded fashion.

Immunohistopathological Analysis

Formalin-fixed paraffin-embedded kidney slices were deparaffinized, re-hydrated, and 

subjected to immunohistochemistry. Kidney sections were immunostained with anti-CD68 

(1:100; Serotec, Raleigh, NC, USA) to determine macrophage/monocyte infiltration in the 

kidney. Biotinylated rat anti-mouse secondary antibody (1:200) was used for development 

with avidin-biotinylated HRP complex (Vectastain ABC Elite kit, Vector Laboratories, 

Burlingame, CA, USA) followed by counterstaining with hematoxylin and mounted for 

image capturing. Stained sections were visualized by light microscopy at 400x magnification 

and digital images of the stained kidney were taken for analysis using Nikon NIS Elements 

Software (Nikon Instruments Inc., Melville, NY, USA). Macrophage/monocyte infiltration 

was determined by point counting CD68-positive cells by two experienced blinded 

reviewers. The number of positive cells per picture was divided by the metric area of the 

image to obtain the number of positive cells per mm2.

Statistical analysis

Data are expressed as mean SE and were analyzed using one-way ANOVA followed by 

Tukey’s post-hoc test for multiple group comparisons using Prizm version 4.0 software by 
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GraphPad Software Inc. (La Jolla, CA, USA). Statistical significance was assumed at 

P<0.05.

RESULTS

Treatment with a dual COX-2/sEH inhibitor improves the metabolic profile of ZDF Rats

The ZDF rats were diabetic with fasting blood glucose (287±45 mg/dL) and glucose 

intolerance, while ZDL rats were normoglycemic (99±6 mg/dL). The dual COX-2/sEH 

inhibitor PTUPB lowered fasting blood glucose and improved glucose tolerance in ZDF rats 

(146±6.2 mg/dL) (Figure 1A). The ZDF rats also had insulin resistance with a higher 

glucose area under the curve and higher HOMA-IR compared to ZDL rats, and PTUPB 

reduced insulin resistance in the ZDF rats (Figure 1B,C). The ZDF rats also had gross 

morphological changes in islet morphology characterized by irregular islet boarders and 

evidence of endocrine cell death. The morphological changes observed in ZDF islets are 

largely prevented in ZDF rats treated with PTUPB (Figure 1D). The ZDF rats (461±11g) had 

higher body weight compared to ZDL (319±13 g) rats, and treatment with PTUPB did not 

modify the body weight of ZDF rats (468±9 g). In contrast, PTUPB administration 

attenuates the elevated systolic blood pressure of ZDF rats (177±16 mmHg, ZDF; 125±17 

mmHg ZDL; 141±12 mmHg treated ZDF). The ZDF rats also had dyslipidemia with 

elevated levels of cholesterol, triglyceride, free fatty acid, and decreased serum adiponectin 

compared to ZDL rats, PTUPB reduced dyslipidemia in ZDF rats (Table 1). These findings 

indicate that PTUPB administration attenuates the development of glucose intolerance and 

hyperglycemia, reduced insulin resistance and has anti-lipidemic action in ZDF rats.

Dual COX-2/sEH inhibition reduces renal inflammation and oxidative stress in ZDF Rats

There is increased renal oxidative stress in ZDF rats with 3 times higher kidney 

malondialdehyde (MDA) level compared to ZDL rats. PTUPB reduced renal oxidative stress 

in ZDF rats by reducing kidney MDA levels by 57% (Figure 2A). The ZDF rats also 

demonstrated marked inflammation with 3 times higher urinary excretion of MCP-1 and 2 

times higher infiltration of macrophages/monocytes in the kidney when compared to ZDL 

rats. PTUPB reduced renal inflammation in ZDF rats as evidenced by a decrease urinary 

excretion of MCP-1 (50%) and lower levels of macrophage infiltration (25%) (Figure 2B–

D). These data indicate that oxidative stress and inflammation in the kidney in ZDF rats can 

be attenuated using the dual COX-2/she inhibitor PTUPB.

Dual COX-2/sEH inhibitor reduced renal damage in ZDF Rats

The ZDF rats demonstrated marked renal damage with 10 times higher albuminuria 

compared to ZDL rats. Moreover, the elevated albuminuria was associated with 

histopathological changes including tubular cast formation, renal interstitial fibrosis and 

glomerular injury (Figure 3). The dual COX-2/sEH inhibitor PTUPB reduced albuminuria 

(by 30%) (Fig 3A) and tubular proteinaceous cast formation in the kidney of ZDF rats 

(Figure 3B–C). PTUPB treatment also reduced interstitial fibrosis in the kidney of the ZDF 

rats (Figure 4). In addition, PTUPB decreased glomerular injury by reducing nephrinuria 

(Figure 5A) along with reduction in extracellular matrix formation, glomerular sclerosis, and 

mesangial expansion in the kidney of ZDF rats (Figure 5B,C). These findings support a 
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kidney protective action of the dual COX-2/sEH inhibitor PTUPB in terms of its ability to 

reduce tubular and glomerular injury.

DISCUSSION

Kidney disease is a major complication in type 2 diabetes, and causes almost half of all 

cases of kidney failure [26]. There is increasing interest in finding novel therapeutic 

strategies that target multiple risk factors associated with the complex pathophysiology of 

metabolic syndrome and type 2 diabetes [7]. An important role of eicosanoid metabolites 

has been identified in the etiopathology of metabolic syndrome and type 2 diabetes [9,10]. 

Indeed, eicosanoid metabolites are known to impact multiple factors associated with 

metabolic syndrome and type 2 diabetes including blood pressure, lipid levels, and insulin 

signaling in these conditions [27]. In the present study we examined the beneficial actions of 

a novel molecule that simultaneously targets multiple pathways of arachidoinic acid 

metabolism in type 2 diabetes. We demonstrated that the dual acting COX-2/sEH inhibitor 

PTUPB markedly ameliorated multiple pathophysiological features of metabolic syndrome 

and reduced diabetic kidney injury in the ZDF rat, a well recognized metabolic syndrome 

and type 2 diabetes rat model [28,29].

The PTUPB treatment, which concurrently acts on COX-2 and sEH pathways of arachidonic 

acid metabolism, ameliorated metabolic abnormalities in ZDF rats. Hyperglycemia, 

hypertension, and lipid profile in the PTUPB treated ZDF rats were at the levels of control 

ZDL rats. In regards to the action of PTUPB on the lipid profile, a contribution of sEH 

pathway in hyperlipidemia as well as the lipid lowering effect of sEH inhibition have been 

reported in several earlier studies [30,31]. Epidemiological studies have associated sEH 

polymorphisms with lipid abnormality in human and have shown that the R287Q variant of 

sEH polymorphisms is associated with increased levels of plasma cholesterol and 

triglycerides in familial hypercholesterolemia [30]. Moreover, sEH null (Ephx2−/−) mice 

have a 25% lower plasma total cholesterol level and 2-fold lower HMG-CoA reductase 

activity compared to wild type mice [31]. Similar to sEH inhibition, COX-2 inhibition has 

also been shown to lower lipids [32]. Consistent with our findings, these studies support the 

view that PTUPB maintained a normal lipid profile in the ZDF rats by acting on COX-2 and 

sEH pathways of arachidonic acid metabolism.

The current study also demonstrated that PTUPB treatment atteunuates hypertension and 

diabetes in the ZDF rats. Antihypertensive effects of sEH inhibitors are widely reported, and 

have been attributed to the increase in the ratio of EETs to their less biologically active diols 

[33–35]. Unlike sEH inhibition, COX-2 inhibition is not antihypertensive [18,36] and did 

not affect blood pressure in humans and animals [37]. However, several clinical trails have 

shown that chronic use of COX-2 inhibitors for periods of 6–9 months can induce 

hypertension in patients [38,39]. Thus, it is likely that the antihypertensive effect of PTUPB 

in this study are due to its inhibitory action on sEH.

In addition to the antihypertensive action, PTUPB improves glucose tolerance in ZDF rat. 

This anti-diabetic action of PTUPB can be linked to the effects of sEH inhibition. Indeed, 

several in vivo studies showed that sEH inhibition ameliorated type 2 diabetic phenotypes in 
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mice [11,23]. Studies also demonstrated that sEH inhibitors improved β-cell function and 

reduce β-cell death in streptozotocin-induced type 1 diabetic mice [40,41]. It is further 

reported that epoxygenase enzymes present in human and rat pancreas generate EETs, and 

EETs stimulate insulin secretion from isolated rat pancreatic islets [42,43]. These studies 

clearly indicate an important role of sEH inhibition and EETs in the pathophysiology of 

diabetes, and support the view that sEH inhibition and EETs possess anti-diabetic effect. 

Unlike sEH inhibition, there is limited evidence regarding COX-2 inhibition and pancreatic 

function in humans with obesity, type 2 diabetes, and metabolic syndrome. Nonetheless, it is 

reported that high-dose aspirin ameliorates insulin resistance and improves glucose tolerance 

in patients with type 2 diabetes [44]. Overall, we demonstrated that PTUPB prevented the 

development of metabolic abnormalities in type 2 diabetic ZDF rats, and these actions of 

PTUPB is attributed to its ability to inhibit both sEH and COX-2 pathways of arachidonic 

acid metabolism. Importantly, these findings indicate that dual acting COX-2/sEH inhibitors 

have great therapeutic potential in treating/preventing metabolic abnormalities in metabolic 

syndrome and type 2 diabetes.

One of the leading causes of mortality in diabetic patients is diabetic nephropathy that 

occurs in 20–40% diabetic patients, and its incidence is increasing dramatically worldwide 

[45,46]. In the current study we demonstrated that the dual COX-2/sEH inhibitor, PTUPB 

prevented kidney injury in type 2 diabetic ZDF rat. The kidney protective actions of PTUPB 

can be attributed to its ability to concurrently inhibit COX-2 and sEH pathways. Indeed, an 

important pathophysiological role of COX-2 pathway has been reported in diabetic kidney 

diseases. Up-regulated renal COX-2 expression and elevated urinary excretion of 

prosclerotic COX-2 arachidonic acid metabolites are present in rat models of type 1 and type 

2 diabetes [19,47]. COX-2 inhibition reduced renal injury in pre-clinical diabetic models 

including type 2 diabetic ZDF rat by decreasing glomerular and tubulointerstitial injury 

mediators in the kidney [18,19]. Apart from the COX-2 pathway, sEH pathway of 

arachidonic acid metabolism also contributes to the pathophysiology of diabetic kidney 

injury, and sEH inhibition ameliorated experimental diabetic nephropathy [40,48,49]. These 

earlier reports along with our data in the present study provide convincing evidence that in 

type 2 diabetic fatty ZDF rats the novel dual acting COX-2/sEH inhibitor PTUPB prevented 

the diabetic kidney injury by concurrently acting on COX-2 and sEH pathways.

The kidney injury in ZDF rats was associated with marked renal oxidative stress and 

inflammation. In several earlier studies, others and we reported such renal oxidative stress 

and inflammation along with marked kidney injury in ZDF rats [19,50]. Consistent with 

these earlier findings, there are marked elevation in urinary excretion of MCP-1, renal 

infiltration of macrophages, and the kidney levels of MDA is elevated in the ZDF rats 

[19,50]. This is an important finding as elevated oxidative stress and inflammation play 

important roles in the pathophysiology of diabetic kidney diseases [6,51]. Interestingly, in 

the present study we demonstrated that the dual acting COX-2/sEH inhibitor PTUPB 

attenuates renal inflammation and oxidative stress in ZDF rats. These anti-oxidative and 

anti-inflammatory actions of PTUPB are likely due to the inhibition of both COX-2 and sEH 

pathways, as inhibitors of each pathway can reduce oxidative stress and inflammation in the 

kidney [28,37]. Inhibition of sEH has been shown to reduce inflammation and oxidative 

stress in mouse models of hypertension and diabetes. The sEH null (Ephx2−/−) mice treated 
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with deoxycorticosterone acetate plus high salt (DOCA-salt) had markedly lower renal 

inflammation in terms lower expression of inflammatory genes and less infiltrated 

macrophages in their kidney compared to similarly treated wild type mice [52]. Moreover, in 

a renal fibrosis model, sEH inhibition markedly reduced renal oxidative stress and protected 

the kidney from fibrotic injury by reducing renal lipid peroxidation [53]. In ZDF rats, the 

diabetic kidney injury associated with elevated renal oxidative stress and inflammation is 

also ameliorated by COX-2 inhibition [19]. These earlier findings on the contributions of 

anti-oxidative and anti-inflammatory actions of COX-2 and sEH inhibition support the 

concept that the marked kidney protective effect of PTUPB in the ZDF rat is linked to its 

anti-oxidative and anti-inflammatory actions.

CONCLUSION

The present study investigated the efficacy of a novel dual acting therapeutic that can 

concurrently inhibit two arachidonic acid metabolic pathways on the development of type 2 

diabetes and associated kidney injury. We demonstrate that this novel dual acting 

COX-2/sEH inhibitor PTUPB attenuates the development of metabolic abnormalities and 

kidney injury in a rat model of type 2 diabetes. We also provide evidence that correlates the 

beneficial actions of PTUPB in the ZDF rats with reduced oxidative stress and inflammation 

in the kidney. The findings support the use of this dual and concurrent inhibitor of COX-2 

and sEH as a potential new therapeutic for metabolic syndrome and type 2 diabetes.
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HIGHLIGHTS

• A novel dual acting molecule that concurrently inhibits two arachidonic 

acid metabolic pathways (cyclooxygenase-2 and soluble epoxide 

hydrolase; PTUPB) was tested for therapeutic actions on type 2 

diabetes and the associated kidney injury.

• PTUPB decreased blood glucose and reduced renal oxidative stress and 

inflammation in the kidney of type 2 diabetic Zucker diabetic fatty rat.

• PTUPB has potential to be developed as new therapeutic for type 2 

diabetes and associated diabetic nephropathy.
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Figure 1. 
(A) Blood glucose levels during intra-peritoneal glucose tolerance test, (B) glucose area 

under the curve in Zucker Lean (ZDL) and Zucker Diabetic Fatty rats (ZDF) after 8 weeks 

of vehicle or the dual COX-2/sEH inhibitor PTUPB treatment. (C) HOMA-IR index as an 

indicator of the level of insulin resistance in different experimental groups. (D) The 

histological photomicrograph of pancreas showing general structure of pancreas in different 

experimental groups. Values are mean ± SEM. n=6 rats per group; *P<0.05 vs. ZDL + 

Vehicle; #P<0.05 vs. ZDF + Vehicle.
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Figure 2. 
(A) Kidney level of malondialdehyde (MDA) expressed as MDA-Protein ratio, (B) urinary 

excretion of monocyte chemotactic protein-1 (MCP-1), and (C) macrophage/monocyte 

levels in the kidney of Zucker Lean (ZDL) and Zucker Diabetic Fatty rats (ZDF) after 8 

weeks of vehicle or the dual COX-2/sEH inhibitor PTUPB treatment. (D) A representative 

photomicrographs (×200) showing macrophage/monocyte infiltration in the kidney (black 

arrows) of different experimental groups after 8 weeks of vehicle or PTUPB treatment. 

Values are mean ± SEM. n=6 rats per group; *P<0.05 vs. ZDL + Vehicle; #P<0.05 vs. ZDF 

+ Vehicle.
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Figure 3. 
(A) Urinary albumin excretion, (B) semi-quantitative scoring of kidney cast formation in 

Zucker Lean (ZDL) and Zucker Diabetic Fatty rats (ZDF) after 8 weeks of vehicle or the 

dual COX-2/sEH inhibitor PTUPB treatment. (C) Representative photomicrographs of 

Periodic-Acid Schiff staining (×200) depicting tubular cast formation (black arrows) in the 

kidney of different experimental groups after 8 weeks of vehicle or PTUPB treatment. 

Values are mean ± SEM. n=6 rats per group; *P<0.05 vs. ZDL + Vehicle; #P<0.05 vs. ZDF 

+ Vehicle.
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Figure 4. 
(A) Semi-quantitative kidney fibrosis scoring in Zucker Lean (ZDL) and Zucker Diabetic 

Fatty rats (ZDF) after 8 weeks of vehicle or the dual COX-2/sEH inhibitor PTUPB 

treatment. (B) Representative photomicrographs of Masson’s trichrome staining (×200) 

depicting kidney fibrosis (black arrows) in the kidney of different experimental groups after 

8 weeks of vehicle or PTUPB treatment. Values are mean ± SEM. n=6 rats per group; 

*P<0.05 vs. ZDL + Vehicle; #P<0.05 vs. ZDF + Vehicle.
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Figure 5. 
(A) Urinary nephrin excretion, and (B) semi-quantitative glomerular injury scoring in 

Zucker Lean (ZDL) and Zucker Diabetic Fatty rats (ZDF) after 8 weeks treatment with 

vehicle or the dual COX-2/sEH inhibitor PTUPB. (C) Representative photomicrographs of 

Periodic-Acid Schiff staining (×200) depicting glomerular injury with mesanglial expansion 

(black arrows) and other changes related to glomerular sclerosis in the kidney of different 

experimental groups after 8 weeks of vehicle or PTUPB treatment. Values are mean ± SEM. 

n=6 rats per group; *P<0.05 vs. ZDL + Vehicle; #P<0.05 vs. ZDF + Vehicle.
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Table 1

Effects of dual acting COX-2/sEH inhibitor PTUPB on lipid profile of ZDF rat.

Measurement ZDL+Vehicle ZDF+Vehicle ZDF+PTUPB

Serum Triglyceride (mg/dL) 14±2 111+19¶ 69±17¶,#

Serum Cholesterol (mM) 2.6±0.6 3.110.06¶ 2.7±0.03¶,#

Serum Free Fatty Acid (μM) 129+12 675+19¶ 253±14#

Serum Adiponectin (μg/mL) 17±2 8.0 1¶ 131¶

Values are mean ± SEM. n=4–6 rats per group;

¶
P<0.05 vs. ZDL + Vehicle;

#
P<0.05 vs. ZDF + Vehicle.
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