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Satellite-Based Precipitation Measurement
Using PERSTANN System

Kuo-Lin Hsu and Soroosh Sorooshian

Abstract PERSIANN (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks) is a satellite-based rainfall estimation algorithm.
It uses local cloud textures from longwave infrared images of the geostationary en-
vironmental satellites to estimate surface rainfall rates based on an artificial neural
network algorithm. Model parameters are frequently updated from rainfall estimates
provided by low-orbital passive microwave rainfall estimates. The PERSIANN al-
gorithm has been evolving since 2000, and has generated near real-time rainfall
estimates continuously for global water and energy studies. This paper presents the
development of the PERSIANN algorithm in the past 10 years. In addition, the val-
idation and merging PERSTANN rainfall with ground-based rainfall measurements
for hydrologic applications are also discussed.

Keywords PERSIANN - Artificial neural network - Precipitation - Precipitation
data merging

1 Introduction

Realistic precipitation estimation is crucial to the global climate and land surface
hydrologic studies. However, while rain gauges and radar can provide relatively
continuous measurements with high temporal frequency, the gauges are sparsely lo-
cated and provide only point-scale measurements and the radar coverage is limited
by topography. The limitation of in-situ precipitation observation over the remote
regions makes global climatic and hydrological studies rely mainly on satellite ob-
servations and the numerical weather prediction modeling analysis.

Since the 1970s, the satellite information has been used to analyze precipitation.
Since then, a large number of rain retrieval algorithms have been developed. As
visible (VIS) and infrared (IR) images provide excellent temporal resolutions of
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cloud albedo and top temperatures less than an hour from geosynchronous orbit
(GEO) satellites; they are frequently used to monitor cloud motion. These image
channels, however, do not provide direct information to infer the actual rainfall at
the ground surface. The indirect relationship gives rise to the retrieval of surface
rainfall with high uncertainty.

Passive Microwave (PMW) sensors carried by satellites in low earth orbits (LEO)
sense rainfall clouds more directly. The rain retrieval algorithms based on PMW
sensors provide better instantaneous rainfall estimate, however the hind side is that,
each LEO satellite only provides limited (1-2) samples in a day for a specified study
area.

In 1997, the launch of the Tropical Rainfall Measurement Mission (TRMM)
provided the first satellite to measure precipitation with an orbital radar sensor to
calibrate the other passive microwave sensors (Kummerow et al., 1998; Kummerow
et al., 2000; Simpson et al., 1988). Because of its superior sensor and non-sun syn-
chronous orbit, TRMM data are regularly used to calibrate and integrate information
from other satellite-based rainfall measurements (NRC report, 2004). The follow on
mission of TRMM, the Global Precipitation Measurement (GPM), is in the planning
stage. With enhanced dual frequency radar sensors and deployment of a constel-
lation of pre-existing and new experimental satellites with microwave sensors on
board, the deployment of Global Precipitation Mission (GPM) satellites will cover
more than 90% of the globe sampled within a return interval of less than 3-hours
(Hou, 2006).

To overcome the less frequent sampling problem, by effective integration of
information from several satellites, a better spatial/temporal coverage of diurnal
rainfall pattern as well as continuous monitoring of heavy storm events may be
obtained. To utilize both the strengths and compensate the weaknesses of those
PMW and IR sensors, algorithms were developed to jointly use GEO and LEO satel-
lite information. The results demonstrated the great potential of improving surface
rainfall retrieval (Adler et al., 1993; Ba and Gruber, 2001; Bellerby et al., 2000;
Hsu et al., 1997, 1999; Huffman et al., 1997, 2001; Lavizzani et al., 2007; Marzano
et al., 2004; Miller et al., 2001; Sorooshian et al., 2000; Tapiador et al., 2004a;
Turk et al., 2000; Vicente et al., 1998; Xie and Arkin, 1997; Xu et al., 1999). Val-
idation of satellite-based precipitation products has been established in the past 15
years (Arkin and Xie, 1994; Xie and Arkin, 1995; Ebert and Manton, 1998; Adler
et al., 2001; Xie et al., 2003). The results have shown that the combined multiple
satellite sensors offer superior results (Ebert et al., 2006; Turk et al., 2006).

Following this progress, many satellite-based high resolution precipitation prod-
ucts have been in routine operation for generating near real-time global coverage
of precipitation (Huffman et al., 2002; Turk et al., 2000; Joyce et al., 2004; Vicente
et al., 1998; Tapiador et al., 2004a; Sorooshian et al., 2000; Hong et al., 2004).
A recent validation activity, the Pilot Evaluation of High Resolution Precipitation
Products (PEHRPP) program, sponsored by the International Precipitation Working
Group (IPWGQG), plans to evaluate the high-resolution precipitation products (Arkin
et al., 2005). The evaluation regions of HRPP include Australia, United States, and
Europe and will be extended to other regions, such as Japan, Korea, Taiwan, etc. The
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evaluation focuses on the large-scale validation of daily rainfall estimates at higher
spatial and temporal resolutions.

In addition to satellites, precipitation observations are also available from many
other sources, such as radar and gauges. These sources differ significantly in their
sampling scale and resolution, as well as the information content to interpret the
surface rainfall. Because each measurement technically has its own strengths and
weakness, suitable integration of those sensors may provide better measurement
than one single sensor alone. The challenge has been the development of system-
atic measurements of global precipitation using multiple satellites, and the effective
merging of precipitation data from many other sources, including gauge, radar, and
satellite observations.

This paper describes the precipitation estimation using data fusion methods to
integrate precipitation observations from several data sources. The contents cover
several activities, including: (1) the development and operation of the Precipita-
tion Estimation from Remotely Sensed Information using Artificial Neural net-
works (PERSIANN), a multiple satellite-based precipitation estimation algorithm;
this algorithm integrates the local texture of the GEO IR image and LEO PMW
rainfall rates to generate near global precipitation estimates; (2) the extension of IR
pixel-based in the original PERSIANN algorithm to cloud patch-based classification
methods leads to the development of the PERSIANN Cloud-patch Classification
System (PERSIANN-CCS). This algorithm includes more effective IR cloud-patch
texture information to the rainfall retrieval; (3) approaches to reduce the PERSTIANN
product bias and quantify the random error of merged product using satellite and
ground based observations; and (4) evaluation and application of satellite-based
PERSIANN rainfall estimates. A summary is given in the final section.

2 Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks (PERSIANN)

Artificial Neural Network (ANN) models, being well known for their flexibil-
ity and capability of modeling complex nonlinear processes, are widely applied
in the forecasting and control of nonlinear systems. The applications of ANNs
have been extended to the modeling of hydrologic and environmental systems in
the 1990s (ASCE Task Committee, 2000; Govindaraju and Rao, 2000; Maier and
Dandy, 2000; Krasnopolsky and Schiller, 2003; Krasnopolsky and Chevallier, 2003).
As for rainfall estimation from satellite imagery, many algorithms based on ANNs
have been developed and are continuously being improved (Bellerby et al., 2000;
Coppola et al., 2006; Grimes et al., 2003; Hong et al., 2004; Hsu et al., 1997,
Tapiador et al., 2004a,b).

The development of the Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Networks (PERSIANN) is based on the more reliable
but less frequently sampled instantaneous precipitation rate from microwave sensors
to adjust the mapping function of the infrared image of GEO satellites and rainfall
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rate. The input features of PERSIANN are extracted from the local image texture of
the longwave IR imagery (10.2—-11.2 p m) of GEO satellites. The mapping function
of ANN using longwave (10.2-11.2 wm) IR image to the rainfall map is imple-
mented by (1) extracting the local image texture, in terms of calculating the mean
and variance of IR brightness temperature near the calculation pixel, (2) classifying
the extracted feature, and (3) multivariate mapping of classified texture to the surface
rainfall rate. An adaptive training feature facilitates updating of the network param-
eters whenever independent estimates of rainfall are available (Hsu et al., 1997;
Sorooshian et al., 2000). The parameters of PERSIANN are constantly updated
when PMW-based rainfalls are available (Ferraro and Marks, 1995; Hsu et al., 1997,
Janowiak et al., 2001). The system first used GEO IR imagery. It was later extended
to use both GEO IR and VIS imagery and found that the rainfall estimates were im-
proved (Hsu et al., 1999). The PERSIANN algorithm estimates rainfall rate at each
0.25° x 0.25° pixel of every 30 minutes. The estimated rainfall is then integrated to
various spatial and temporal scales, such as six-hour, daily, monthly, etc.

In the operation of PERSIANN, two PERSIANN algorithms are running in
parallel: one is run in the simulation mode and the other in the update mode. The
simulation mode generates the surface rain rate at the 0.25° x 0.25° resolution at
every 30 minutes from the GEO satellites infrared images, while the update mode
continuously adjusts the mapping function parameters of PERSIANN based on
the fitting error of any pixel for which a PMW instantaneous rainfall estimate is
available. The simulation mode generates the regular rainfall rate output, and the
update mode improves the quality of the product. The accuracy of the final product,
however, depends on many factors, such as the effectiveness of the input feature
detection and classification scheme, the accuracy of the individual input-output
mapping functions, and the accuracy and frequency of the PMW rainfall estimates
used for updating (Sorooshian et al., 2000). Description of the current operation
of PERSIANN is listed in Fig. 1. IR imagery is provided by GEO satellites, such
as GOES-8, GOES-10, GMS-5, and MeteoSat-6&7 (Janowiak et al., 2001), while
PMW rainfall is calculated from the information provided by TRMM, NOAA-
15, -16, -17, DMSP F-13, F-14, and F-15 satellites (Ferraro and Marks, 1995;
Kummerow et al., 1998) is used to train the mapping parameters of PERSIANN.

PERSIANN System “Estimation” Products
Humy Global Precipiation Estmates _

Global IR

Satellite Data

Hourly Rain Estimate

Fig. 1 Rainfall estimation from PERSIANN system using GEO and LEO satellite information
(See also Plate 1 in the Colour Plate Section)
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Fig. 2 The adaptive capability of PERSIANN model using limited ground radar rainfall observa-
tion over Florida peninsula (See also Plate 2 in the Colour Plate Section)

The simulation of PERSIANN adaptive learning capability using limited rainfall
observation from ground radar over Florida peninsula is discussed in Fig. 2. As
shown in Fig. 2a, the monthly reference rainfall estimate is provided by the ground-
based radar; Fig. 2b shows the monthly PERSIANN estimate of non-adaptive pa-
rameter model estimation. As for Fig. 2¢, we assumed that hourly ground-based
rainfall data are available at only 10 (randomly selected) pixels (0.25° x 0.25°) to
simulate the availability of rain gauge data; the scatterplot of radar observation and
10-pixel adjusted PERSIANN estimate is listed in Fig. 2g. In Fig. 2d, we assumed
that hourly ground-based rainfall data are available at 12-hour interval to simulate
the instantaneous twice-daily rainfall rate estimates of LEO satellites; the scatterplot
of radar observation and 12-hour adjusted PERSIANN estimate is listed in Fig. 2h.
Finally, the PERSIANN estimate based on all available (every-hour) ground-based
radar rainfall samples for adaptive parameter estimation is listed in Fig. 2e; the
scatterplot of radar observation and full radar rainfall adjusted PERSIANN esti-
mate is listed in Fig. 2i. Comparison of the three training strategies reveals that the
performance improved from the additional information of the training PERSIANN
model. In addition, it shows that, compared with the adjusted estimates using partial
available data (Fig. 2¢,d), the improvement from using all available data (Fig. 2e) is
only marginal. Therefore, there is no need to include a large amount of training data.

Demonstration of PERSIANN’s capability of using limited TRMM TMI data to
display the diurnal pattern of the monsoon season rainfall (June, July, and August
2002) is listed in Fig. 3. The solid-black line calculated is from the NexRAD radar
rainfall, while the gray and the dash lines are diurnal rainfall pattern estimated from
the adjustment of model parameters with and without using TRMM (2A-12) rainfall
data. It shows that the TRMM 2A-12 rainfall adjusted PERSIANN rainfall (gray
line) is effective in correcting the underestimated diurnal rainfall pattern (dash-line)
toward the referenced radar rainfall pattern (solid-black line).
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Fig. 3 Diurnal distribution of monsoon rainfall (Summer, 2002) calculated from ground radar
observation and PERSTANN estimates with and without TRMM 2A 12 rainfall adjustment
(See also Plate 3 in the Colour Plate Section)

3 PERSIANN Cloud Classification System (CCS)

The follow on development of the PERSIANN system is to extend the classification
features of the GEO IR image from local texture-based to the cloud patch-based fea-
tures and to improve the resolution of the retrieved product from lower-resolution
of 0.25° x 0.25° lat-lon scale to finer resolution of 0.04° x 0.04°. The designed
patch-based algorithm is named as PERSIANN Cloud-patch Classification Sys-
tem (PERSTIANN-CCS). The PERSIANN-CCS patch-based cloud classification and
rainfall estimation system is described in Fig. 4. The PERSIANN-CCS consists of
four major steps: (1) IR cloud image segmentation, (2) feature extraction from IR
cloud patches, (3) patch feature classification, and (4) rainfall estimation. These
image processing and computation steps are briefly discussed below. Description of
the PERSIANN-CCS can be found from Hong et al. (2004) and Hsu et al., 2007.
Those four steps are brief listed below:

(1) Cloud image segmentation: Cloud segmentation is operated through a process
that may eventually divide the image into separable patches. This is operated
through a watershed-based segmentation approach (Vincent and Soille, 1991).
The algorithm starts with finding the local minima temperature of the IR cloud
map, followed by raising the IR temperature gradually and connecting the
neighborhood pixels attracted to a same local minimum pixel until all the local
minimum basins are separated into distinct patches.

(2) Feature extraction: The selected patch features are separated into three
categories-coldness, geometry, and texture. From these categories we extract
representative features such as the cloud height (coldest temperature), cloud
size and shape, surface textures, and surface gradients in our study. In addition,
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Fig. 4 The data information extraction, classification, and rainfall estimation of PERSIANN-CCS
algorithm (See also Plate 4 in the Colour Plate Section)
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all the relevant features are extracted from three temperature threshold levels
(220K, 235K, and 253K).

Feature classification: Clustering is proceeded based on the similarities of
patches measured in their feature spaces. An unsupervised clustering method,
Self-Organizing Feature Map (SOFM), is used to classify patch features into
a number of cloud patch categories (Kohonen, 1995; Hsu et al., 1999). After
training, cloud patches with similar input features are assigned to a same cat-
egory. An array of 20x20 (i.e. 400) groups was assigned to the classification
category. Cloud patches with similar features are grouped together in the same
category or assigned to the neighborhood categories.

Specify patch rainfall distribution: The final stage is to specify rainfall distri-
bution to the classified cloud patch categories. At this stage, a large amount of
GEO satellite IR image and surface rainfall data is needed. We used one year of
radar (over the continental US) and PMW rainfall estimates of LEO satellites
(Ferraro and Marks, 1995; Kummerow et al., 1998) to build the rainfall distri-
butions of the classified patch group. The Probability Matching Method (PMM)
(Atlas et al., 1990; Rosenfeld et al., 1994) was used to match the relationship
between the GEO IR temperature and the hourly rainfall rate in each classified
IR patch group, with the assumption that the higher rainfall rate is associated
with the lower IR temperature. Finally the 7, — R relationship is fitted by an
exponential function of five parameters, where parameters were found from the
SCEUA optimization algorithm (Duan et al., 1992).
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Fig. 5 (a) scatterplot of T,-R relationship, (b) fitting T;-R from one-single function, and (c) fitting
T,-R using multiple fitting functions (PERSIANN-CCS)

Figure 5 shows the fitting of the IR brightness temperature (Tb) to the rainfall
rate from one-single function and multiple function (PERSIANN-CCS) approaches.
The scatterplot of the GEO IR image and radar rainfall (Fig. 5a) shows that the Tb-R
relationship is quite wide spread, which cannot be well fitted by a single polynomial
curve (see Fig. 5b). Instead of fitting through one single fitting function, approaches
were developed to use limited PMW rainfall to correct the Tb-R relationship. Al-
though the results show improvement over those unadjusted estimates, the effective-
ness of the algorithms, however, largely relied on the blending procedures to modify
the mapping function spatially and temporally.

PERSIANN-CCS, on the other hand, creates a large amount of fitting curve to
generate rainfall rates from IR image (see Fig. 5¢). With distinguishable features
based on IR cloud coldness, size, and textures, each classified cloud patch is as-
signed a specific Tb-R curve. In the case study, 400 classifications were assigned
and therefore multiple Tb-R curves were used to the fitting of the scatter points
in Fig. 5a. Compared to other fittings using one-single function, PERSIANN-CCS
gives great potential to provide improved estimates.

4 Merging Precipitation Observations from Multiple Sources

Precipitation measurements are available from many sources, including satellites,
radar, and gauges. These measurements differ significantly from each other, in terms
of scale, resolution, and information contents of their samples. GEO IR and VIS
sensors sample cloud top temperature and albedo every 30-minutes, providing in-
formation that is indirectly related to surface rainfall rates. PMW sensors carried
by LEO satellites sense the water content of rain clouds more directly, but sam-
ple the same location only a few (1-2) times per day. In contrast, rain gauges
and radar provide much more direct measurements of surface rainfall. However,
while rain gauges and radar can provide relatively continuous measurements with
high temporal frequency, gauges are sparsely located and provide only point-scale
measurements and radar coverage is limited by topography. Because each mea-
surement technology has its own strengths and weaknesses, it is important to de-
velop integrated (merging) approaches that will make the best use of all available
information.
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Techniques for data smoothing and/or assimilation to combine two or more
measurements types, such as objective analysis, Kriging and multi-resolution in-
terpolation, have been suggested (Adler et al., 2000; Huffman et al., 1997; Kumar,
1999; Gorenburg et al., 2001; Gourley et al., 2002; Grimes et al., 1999; Seo and
Breidenbach, 2002; Smith and Krajewski, 1991; Xie and Arkin, 1997). Those dif-
ferent techniques vary in their data sources, product scale and coverage, methods for
merging (e.g., mean vs. local bias, statistical based method of local bias removal,
and recursive scale estimation), and their use of information about uncertainty.

Merging of PERSIANN and other sources of information is also under devel-
opment. The merging procedure includes either grid-based or watershed based data
merging. Our goal, however, is to improve the quality as well as to identify the
uncertainty of estimates suitable for hydrologic applications.

4.1 Grid-Based of Data Merging

The uncertainty in satellite precipitation estimates can be highly variable due to
many factors such as retrieval technique, weather/climate regime, rainfall type (con-
vective/stratiform), and so on. Usually, bias in satellite precipitation products, such
as PERSIANN estimates, can be removed when a given a reference dataset of pre-
cipitation is available. After bias is adjusted, the error variance (or random error) of
bias corrected estimates can be identified.

4.1.1 Bias Adjustment

For the adjustment of PERSIANN rainfall bias, the Global Precipitation Climatic
Centre (GPCC, Rudolf et al., 1994) monthly gauge rainfall product at 1° x 1°,
monthly resolution is used as a reference data. PERSIANN rainfall product is avail-
able at hourly, 0.25° x 0.25° scale. Our assumption is that, with high gauge count,
the monthly scale gauge GPCC observed rainfall is more reliable. Therefore, to
remove the bias of PERSIANN rainfall, the satellite-based rainfall is accumulated
to monthly, 1° x 1°, monthly scale. The bias of satellite-based rainfall at the monthly
scale is calculated and then downscaled at the monthly 1°x 1° bias spatially and tem-
porally to the basic product level of 0.25° x 0.25° hourly scale. The adjusted satellite
rainfall at the monthly scale on the pixel x is calculated below (Kalnay, 2003):

Rs® = Rs" + Z w; [Rgi — Rs,-b]
i€,

where Rs? is the before adjusted satellite-based rainfall at calculation pixel x; Rs9
is the after adjusted satellite-based rainfall at calculation pixel x; Rg; is the CPCC
monthly rainfall at pixel i; and (), defined a neighborhood region centered at the
pixel x; and w; is a normalized weighting factor being a function of gauge number
counts of pixel i, as well as the distance from pixel i to the estimation pixel x, i.e.:
w; = f(n;, di—). The adjusting factor is set to a function of distances and gauge
counts:



36 K.-L. Hsu, S. Sorooshian

_ / /

Jjeldy
/
where w; = wg; X wy; ,

wy = (D> —d})/ (D* +d7?), and
wy =2/ (1 +exp(—an;))—1 and w,; =0.1 ifw,; <0.1

The w,; is the distance weighting factor from the pixel i to the pixel x and wy; is the
gauge density weighting factor at pixel i, respectively; D is the maximum effective
distance from center pixel x; d; is the distance between center calculation pixel x to
a pixel i; « is a factor related to the gauge counts in the pixel i; a smaller « has a
higher slope with respect to the gauge count.

This adjustment is run through several iterations until a stable adjusted rainfall is
obtained. Assuming that the errors of 1° x 1° resolution pixels are positive propor-
tional to the satellite-based rainfall at fine spatial and temporal scale, the calculated
monthly adjustment error at x of 1°x 1° grid is then downscaled to the fine resolution
grids of hourly and 0.25° x 0.25°.

Figure 6 shows an example of using 1° x 1° GPCC monthly rainfall for the
spatial and temporal adjustment of PERSIANN rainfall bias and then the monthly
bias is downscaled to the PERSIANN rainfall at 0.25° x 0.25° six-hour accumulated
resolution. Compared with the NCEP Stage IV radar rainfall, the consistent bias
and the RMSEs error in PERSIANN estimates are reduced substantially during July
2001. In our follow on activity, the same bias adjustment procedure is applied to
remove the bias correction of PERSIANN-CCS rainfall at 0.04x0.04 hourly scale
using daily and 0.25° x 0.25° CPC precipitation analysis.

4.1.2 Variance Quantification

When the product bias is corrected, we could further calculate the random error
of the product based on a reliable reference source, such as gauge or radar mea-
surements. In the calculation of the error variance of PERSIANN estimates, we use
NCEP radar stage IV radar rainfall as the reference data source. This error variance
here is a relative error statistics related to a selected reference, such as the NCEP
stage IV radar rainfall in our case. The reliable error variance of PERSIANN esti-
mates can be estimated further using an error variance separation approach when the
error variance of NECP radar rainfall is identified (Anagnostou et al., 1999; Ciach
and Krajewski, 1999; Gebremichael et al., 2003). It is also assumed that the error
variance Vg of the PERSIANN product is a function of the product at its temporal
resolution 7', spatial resolution L, as well as the rainfall rate » (Hong et al., 2006;
Steiner et al., 2003). The scaling property of PERSIANN rainfall random error, o,
is represented as:
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Fig. 6 Evaluation of original (blue-line) and GPCC month gauge data corrected (red-line) PER-
SIANN six-hour rainfall using NCEP stage IV radar estimates in U.S. Although the correlation
coefficients (upper panel) are similar for both original and bias correction PERSTANN rainfalls;
the biases and RMSEs are significant improved in July 2001 for the bias corrected PERSIANN
rainfall (See also Plate 5 in the Colour Plate Section)

N /1\°
oE=a (L) | (T) )
where a, b, c, and d are the parameters to be determined by calibration and the
units for L, 7', and r are degrees of lat.-lon., hour, and mm hrt, respectively. In
our experiment, parameters of the error model were calculated from the summer
period of 2003 and 2004 using both PERSIANN and NCEP stage IV radar rainfall.

Application of the PERSIANN product error in the evaluation of hydrologic model
responses will be discussed later.

4.2 Basin Scale Merging of Gauge and Satellite Rainfall

Another merging approach is to consider that the rainfall measurement from gauge
and satellites are subject to bias and random error. The basin scale merged rainfall
is parameterized based on the gauge and satellite observed rainfall data, and extend-
able to other sources, such as the radar rainfall below:
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rm(t) = wg(1 — by)rg(t) + wg(l - bg)rg(t)

where, r,,(f) is the merged averaged rain rate, r¢(¢) is the satellite-based (PER-
SIANN) rain rate, and r,(¢) is the observed gauged rain rate; w, and w, are the
merging weights for the satellite rain rate r((7) and the simultaneous gauge rain rate
rg(t), respectively; b, and b, are the bias parameters of r; and r,. It is understandable
that in the merging equation, the b, and b, is the bias of r, and r, (assuming that the
rainfall bias is positive proportional to rain rate), and w, and w, are the weighting
factor of bias-removed r, and r,.

In the catchment scale hydrologic simulation, by applying the merged rainfall
data r,,,(¢) to the hydrological forecast system, the consequent streamflow g(7) is
generated. An optimal set of those parameters 0 = [wy, w ¢» bs, bg] 1s obtained by
maximizing the likelihood function of modeled streamflow, g(t), and its observa-
tions, ¢, (t). The distribution of 6 can be estimated from the Monte Carlo Simulation
techniques (Doucet et al., 2000; Gelman et al., 1995; Robert and Casella, 2004).
Let’s say the precipitation merging parameters are defined as 6. Given the stream-
flow observation time series: D = {rg(1), rg(1) qo(1)}, t=1...T, the most plausible
parameters 0 can be calculated from the Bayes’ rule below:

P@|D) = P(DI§)P®)/P(D)

where P(D) = ) P(Dlé)P(é) is the total probability, while P(0) is the a priori
probability of the parameters, 6. The factor P(D|0) is the likelihood function of
the parameters provided by the data D, and P(6|D) is the posterior distribution of
parameters given by a set of data D. The posterior distribution presents the relevant
information in the data and provides a summary of post-data uncertainty.

From the Monte Carlo simulation through a calibrated hydrologic model, the dis-
tribution of parameters (f and the merged precipitation can be calculated. Through
the simulation of a hydrologic model, the uncertainty of merged rainfall, hydrologic
state variables, as well as the streamflow forecasts can be estimated.

A case study of combining gauge and satellite-based rainfall using basin-scale
merging method was tested. The size of the test watershed (Leaf-River Basin) was
around 1949 km?. The National Weather Service Soil Moisture Accounting SACra-
mental model (SAC-SMA) was used to generate streamflow from the merged rain-
fall; the SAC-SMA model parameters were set to the default parameters, which
were calibrated from long years of historical data.

The upper panels of Fig. 7 show the rainfall time series from the basin aver-
aged gauge rainfall, PERSIANN rainfall, and merged gauge-PERSIANN rainfall,
respectively. The lower panel shows the streamflow responses with input rainfall
time series from the gauge, PERSIANN, and merged rainfall. The plot with the
square symbol is the observed streamflow. The performance indexes of the hydro-
logic streamflow forecasting given the precipitation forcing from the gauge, PER-
SIANN, merged rainfall were calculated. These statistics include root mean square
error (RMSE), correlation coefficient (CC), and bias (BIAS) listed below:
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Fig. 7 The top three panels show the gauge, PERSIANN, and merged rainfall, respectively; The
bottom panel shows the streamflow responses from gauge rainfall (blue-line), PERSIANN rainfall
(green-line), and merged rainfall (black-line). Observed Streamflow is shown in red dots (See also
Plate 6 in the Colour Plate Section)

RMSE{Gauge, PERSTANN, Merged rainfall} = {51.82, 80.78, 34.91} cmsd;
CORR{Gauge, PERSTANN, Merged rainfall} = {0.876, 0.706, 0.901}
BIAS{Gauge, PERSIANN, Merged rainfall} = {15.34,-17.68,-3.52} cmsd.

From the performance statistics, in terms of RMSE, CORR, and BIAS, input forc-
ing that uses the merged rainfall source outperforms those using either gauge or
satellite-based rainfall.

The 95% conference bound of merged rainfall is listed in Fig. 8. With the un-
certainty of precipitation forcing provided, the uncertainty of streamflow forecasts
from the forcing uncertainty can be further derived.

5 Evaluation and Hydrologic Application of PERSIANN Rainfall

The operational PERSIANN precipitation data has continued to provide the IPWG
precipitation product evaluation on a regular basis. Figure 9 shows the visual display
of PERSIANN precipitation estimates, and the relevant information is available
at: http://hydis8.eng.uci.edu/hydis-unesco/. The product is generated at every 30
minutes at the resolution of 0.25° x 0.25° scales. In addition, the high resolution
PERSIANN-CCS estimates are available from: http://hydis8.eng.uci.edu/CCS/.
Due to the lack of independent observations at sub-daily scale over global cov-
erage, only limited validation sources were used for the evaluation of PERSIANN
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Fig. 8 Merged rainfall time series and 95% confidence interval (red-bar) of merged rainfall
(See also Plate 7 in the Colour Plate Section)

data. PERSIANN validation activities can be found from Hong et al. (2004, 2005);
Hsu et al. (1997, 1999); Sorooshian et al. (2000, 2002); Yilmaz et al. (2005).

As displayed in Fig. 10, the monthly PERSIANN rainfall data were evaluated
for locations consisting of more than five gauges in the area coverage of 5° x 5°
around the low- to mid-latitude of continents around the Pacific Ocean (Sorooshian
et al., 2000, for detail). Those selected grid boxes are listed in Fig. 10a. The
scatterplots (Fig. 10b—d) show that the fitting is quite good (correlation coeffi-
cient o > 0.77) and improves for cells having larger numbers of gauges. For
grid boxes with more than 10 gauges, the correlation increases to 0.9, while the

root mean square error reduces to 59 mm/month, and the bias shows a tendency to
overestimate.
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Fig. 9 The visual display of PERSIANN precipitation estimates and relevant information is avail-
able through: http://hydis8.eng.uci.edu/hydis-unesco/ (See also Plate 8 in the Colour Plate Section)
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Fig. 10 Monthly rainfall from PERSIANN and GPCC gauge data for gauge count greater than (a)
5 gauges, (b) 8 gauges, and (c) 10 gauges in 5° x 5° grid boxes

For a finer scale of evaluation, around two months (January 7-February 28,
1999) of TRMM field campaign precipitation data observed from TOGA radar near
Rondonia Brazil were used. Evaluation was done at daily rainfall at 1° x 1° and
the diurnal rainfall pattern in the radar coverage. The result shows in Fig. 11, for
the daily rainfall at 1° x 1° grid boxes, the correlation coefficients of PERSIANN
and radar rainfall is around 0.68-0.77. For averaged diurnal cycle of rainfall in
the testing 2-month period, the peak-hour of diurnal PERSIANN rainfall tends to
have approximately 1-hour lag from the radar-based rainfall. The maximum diurnal
rainfall of PERSIANN'’s is similar to the radar estimates, but it tends to be extended
for a longer duration from the potential contamination by the cold anvil cirrus clouds
(Sorooshian et al., 2000).

Although many several satellite-based rainfall evaluation activities had been con-
ducted in the past years, most of the evaluations focused at climate scales of lower
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Fig. 11 Evaluation of PERSIANN rainfall based on TRMM field campaign precipitation data ob-
served from TOGA radar near Rondonia, Brazil (January 7-February 28, 1999)
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spatial and temporal resolution (Adler et al., 2001; Arkin and Xie, 1994; Ebert
etal., 1996). Although some recent developed algorithms using merged IR/VIS and
PMW information are considered to be capable of providing finer spatial and tempo-
ral resolution precipitation estimates (e.g. Huffman et al., 2002; Joyce et al., 2004;
Kuligowski, 2002; Sorooshian et al., 2000; Tapiador, 2004; Turk et al., 2000;
Vicente et al., 1998), they have not been systematically evaluated. Recently, the
International Precipitation Working Group (IPWGQG) initiated a satellite-based pre-
cipitation evaluation program to cover three regions, including:

(1) United States: (see: http://www.cpc.ncep.noaa.gov/products/janowiak/us_web.
shtml),

(2) Australia: (see: http://www.bom.gov.au/bmrc/SatRainVal/sat_val _aus.html), and

(3) Europe (see: http://kermit.bham.ac.uk/~kidd/ipwg_eu/ipwg_eu.html).

A number of satellite-based precipitation products were evaluated at daily, 0.25° x
0.25° lat-lon scale. The evaluation activities of IPWG are ongoing and further
extended to the program of the Pilot Evaluation of High Resolution Precipitation
Products (PEHRPP). This program includes a few additional regions for validation
from several scales (monthly, daily, and sub-daily) as well as to include evalua-
tion using high quality field observations (Arkin et al., 2005; Turk et al., 2006).
The global PERSIANN precipitation estimates are routinely evaluated. The results
of the evaluation program provide important information of the model capability
to crossover various seasons and climate regions. Figure 12 shows the evaluation
of PERSIANN rainfall over Australia, hosted by Bureau of Meteorology Research
Centre, Australia (http://www.bom.gov.au/bmrc/SatRainVal/sat_val_aus.html).
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Fig. 12 PERSIANN evaluation over Australia region (See also Plate 9 in the Colour Plate Section)
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Fig. 13 Uncertainty of hydrologic response with respect to the PERSIANN rainfall uncertainty
(See also Plate 10 in the Colour Plate Section)

PERSIANN products have been used in a number of hydrologic applications.
These studies have included: comparison of mean areal precipitation with rain gauge
and NEXRAD radar estimates; evaluation of MM5 numerical weather forecast
model estimates over the Southwest U.S., Mexico, and adjacent oceanic regions
(Li et al., 2003a,b); assimilation into a Regional Atmospheric Modeling System
(RAMS) model for the Southwest United States to investigate land-surface hy-
drologic process including soil moisture (Yi, 2002); evaluation the sensitivity of
convective parameterization of MM35 model in the simulation of the climate in the
North American Monsoon region (Gochis et al., 2002); documentation of the di-
urnal rainfall pattern of tropical and mid-latitude regions (Sorooshian et al., 2002;
Hong et al., 2005); intercomparison of gauge, radar, and satellite-based estimates
in hydrologic forecasting (Yilmaz et al., 2005); and the uncertainty analysis of hy-
drologic responses due to the forcing precipitation uncertainty (Hong et al., 2006;
Moradkhani et al., 2006).

Figure 13 shows the hydrologic response with consideration of the input forc-
ing uncertainty (PERSIANN rainfall). The scale dependent error variance of PER-
SIANN rainfall is calculated based on the catchment size and time scale (daily)
of the simulation. The 95% confidence of the steamflow response from the Monte
Carlo simulation of PERSIANN precipitation and its error variance property through
a conceptual rainfall-runoff model is obtained (Hong et al., 2006). Further
consideration of the uncertainty of the input forcing and initial condition of states
of hydrologic model was also explored and discussed in Moradkhani et al. (2006).

6 Summary

In this paper, the development of the PERSIANN system and its continuing evo-
lution during the past years was presented. The advantages of the proposed PER-
SIANN system include: (1) its flexibility to include various types of testing features,
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(2) automatic classification process, and (3) effective mapping capability. PER-
SIANN system is considered as a data merging/fusion algorithm for precipitation
retrieval from multiple satellites. The adaptive training feature of PERSIANN also
makes it easy to make better use of both the effective sampling capability at every
30 minutes interval from GEO satellites and the better quality PMW sensors but less
frequent samples of LEO satellites.

Input features of PERSIANN consist of the statistics of local texture (mean and
standard deviation of the brightness temperature of neighborhood pixels) of thermal
IR channel of GEO satellites. They were also tested to include the VIS channel and
it was shown to be rather effective in the day-time rainfall retrieval. However, for the
simplicity of the regular operation, only thermal IR image were used, which enables
the algorithm to be directly applied to the full-day and all-weather conditions. The
development of PERSIANN extended the input features and classification system
from local texture-based to the regional cloud patch-based. This led to the develop-
ment of the PERSIANN-CCS algorithm. The PERSIANN-CCS algorithm separates
the disjointed thermal IR cloud image into disjointed cloud patches and then extracts
the patch features and classifies them into several patch categories. Each classified
category is assigned a specific rainfall distribution. The PERSIANN-CCS generates
estimates at hourly and 0.04° x 0.04° lat-lon scale. Routine operation of PERIANN-
CCS is underdevelopment.

Precipitation is a major forcing variable to the land surface hydrologic pro-
cess. The uncertainty of precipitation estimates has important consequences to the
streamflow response of a catchment. With the interest of data quality in mind, our
continuing effort has been in quantifying the uncertainty of satellite-based rainfall
through available ground observations. This has been conducted through the bias
correction of PERSTANN rainfall at lower spatial and temporal scale (e.g. daily and
0.25° x 0.25°) and then to downscale the bias to high spatial and temporal reso-
lutions, for example hourly 0.04° x 0.04°. In addition, for the catchment scale, a
merging method that combines observations from gauge, radar, and satellite-based
observed rainfall, is under investigation. This approach is being implemented at
the catchment scale and has the potential to provide a better merged precipitation
product for basin scale hydrologic simulation.
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