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Abstract

BACKGROUND—Adverse childhood experiences (ACEs) are associated with poor physical and

mental health outcomes in adulthood. Adverse childhood experiences are also associated with

shortened leukocyte telomere length (LTL) in adults, suggesting accelerated cell aging. No studies

have yet assessed the relationship of ACEs to LTL in individuals with major depressive disorder

(MDD), despite the high incidence of antecedent ACEs in individuals with MDD. Further, no

studies in any population have assessed the relationship of ACEs to the activity of telomerase, the

major enzyme responsible for maintaining LTL, or the relationship between telomerase and LTL

in individuals with ACEs.

METHODS—Twenty healthy, unmedicated adults with MDD and 20 healthy age-, sex- and

ethnicity-matched controls had ACEs assessed and had blood drawn for LTL and peripheral blood

mononuclear cell (PBMC) resting telomerase activity.

RESULTS—In healthy controls, greater ACE exposure was associated with shorter LTL (p<

0.05) but was unassociated with telomerase activity. In MDD, however, the opposite pattern was
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seen: Greater ACE exposure was unrelated to LTL but was associated with increased telomerase

activity (p< 0.05) and with a higher telomerase: LTL ratio (p= 0.022).

LIMITATIONS—Study limitations include the small sample size, a single timepoint assessment

of telomerase activity, and the use of retrospective self-report to assess ACEs.

CONCLUSIONS—These results replicate prior findings of shortened LTL in healthy adults with

histories of multiple ACEs. However, in MDD, this relationship was substantially altered, raising

the possibility that activation of telomerase in ACE-exposed individuals with MDD could

represent a compensatory response to endangered telomeres.
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Introduction

Serious adverse childhood experiences (ACEs) are remarkably prevalent, with between 52–

64% of individuals in the United States experiencing at least one serious ACE before the age

of 18 and between 6.2–12.5% of individuals experiencing four or more serious ACEs before

that age (Anda et al., 2006; Felitti et al., 1998). ACEs are associated with increased risk of

adult physical and mental disease and with shortened life expectancy (Anda, Butchart,

Felitti, & Brown, 2010; Brown et al., 2009; Chapman, et al., 2004). The mechanisms

underlying this increased risk are unknown, but one possibility is that ACEs are associated

with premature biological aging. An emerging measure of biological age at the cellular level

is the length of telomeres in circulating leukocytes. Shorter leukocyte telomere length (LTL)

is associated with earlier onset or elevated risk of several common diseases of aging

(Andrews, Fujii, Goronzy, & Weyand, 2010; Epel et al., 2006).

Telomeres are deoxyribonucleic acid (DNA)-protein complexes found at the ends of linear

chromosomes that cap and protect the genome from damage. Telomere shortening can occur

with repeated cell division as well as with chronic exposure to cytotoxic stressors such as

oxidative stress and inflammation (O’Donovan, Pantell, et al., 2011; von Zglinicki, 2002),

and telomere length may provide a biomarker for assessing an individual’s cumulative

exposure to, or ability to cope with, stressful conditions (Kotrschal, Ilmonen, & Penn, 2007).

Telomere shortening can be counteracted or reversed by telomerase, an enzyme that

elongates telomeres (Blackburn & Colins, 2011). However, the amount of telomerase in

most somatic cells is insufficient to maintain telomere length indefinitely (Beyne-Rauzy,

2005; Kotrschal et al., 2007), and when telomeres reach a critically short length, cells

become susceptible to senescence and apoptosis (Price, Kao, Burgers, Carpenter, & Tyrka,

2013; Epel et al., 2006).

Shortened LTL has been associated with psychiatric illness, such as anxiety, and depressive

disorders (Hartmann, Boehner, Goenen, & Kalb, 2010; O’Donovan et al., 2011; Simon et

al., 2006), and accelerated LTL shortening has been demonstrated in adults with ACEs

(Kiecolt-Glaser et al., 2011; Tyrka et al., 2010; Price, Kao, Burgers, Carpenter, & Tyrka,

2013). Despite the high prevalence of both ACEs and poor health outcomes in MDD, no
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studies have assessed the relationship of ACEs to LTL in individuals with major depressive

disorder (MDD). Further, the role of peripheral blood mononuclear cell (PBMC) telomerase

activity (TA) has not been well characterized in stressed and psychiatrically ill individuals,

nor in individuals with histories of ACEs.

This study examined LTL and TA in healthy unmedicated adults with MDD and in well-

matched healthy controls. We hypothesized that graded exposure to ACEs would be

associated with diminished LTL in both groups. We did not hypothesize specific TA

changes or telomerase: LTL ratios that would be associated with graded exposure to ACEs

due to the lack of prior data.

Methods

Participants

This study was approved by the University of California San Francisco Committee on

Human Research. Participants gave informed consent to participate and were reimbursed for

their participation.

Twenty subjects with MDD and 20 healthy controls (individually matched on age ± 3 years,

gender and ethnicity) particpated and completed all procedures. The individuals with MDD

and 18 of the controls have been described in other publications using different measures

and testing different hypotheses (Wolkowitz et al., 2012). MDD diagnoses were made using

the Structured Clinical Interview for DSM-IV-TR (First, Spitzer, Gibbon, & Williams,

2002) and verified through clinical interview with a Board-certified psychiatrist. Depressed

subjects were required to have a minimum rating of 17 on the 17-item Hamilton Depression

Rating Scale (Hamilton, 1960). Healthy controls were required to have no present or lifetime

history of any DSM-IV Axis I diagnosis. All subjects were medically healthy, as assessed by

physical examination, vital signs and standard laboratory screening tests. All subjects were

free of acute illnesses at the time of testing. For at least 6 weeks prior to participation, no

subjects had received vaccinations, immunizations, psychotropic medications, or other

medications thought to affect LTL, TA, oxidative stress or inflammation (except prn short-

acting sleep medication, up to 3 times per week, but none within one week of the study

visit). Subjects with lifetime diagnoses of bipolar or psychotic illness or with diagnoses of

alcohol or substance abuse within the preceding six months were excluded, as were subjects

with symptoms of PTSD in the past month. Other comorbid anxiety diagnoses were

permitted within the MDD group if MDD was considered the primary diagnosis.

Procedures

Subjects were admitted as outpatients to the UCSF Clinical Translational Science Institute at

8:00 am following a 12-hour overnight fast (except for water). After subjects rested quietly,

an indwelling intravenous catheter was placed for blood drawing.

Assays

LTL assay procedures were adapted from the published original method (Cawthon, 2002).

Whole blood was drawn into lavender top EDTA Vacutainer tubes, and buffy coat was
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saved for LTL assay. High molecular weight DNA was extracted from frozen whole blood

using commercially available reagents (Puregene, Gentra Systems, Qiagen, Valencia, CA).

DNA quality and quantity were assessed with a nanodrop spectrophotometer and random

samples were also assessed by agarose gel electrophoresis. The T (telomeric) and S (single

copy gene) values of each sample were determined by quantitative polymerase chain

reaction (PCR) using the following primers: tel1b [59-CGGTTT( GTTTGG)5GTT-39] and

tel2b [59 GGCTTG(CCTTAC)-5CCT-39] for T and hbg1 [59

GCTTCTGACACAACTGTGTTCACTAGC-39] and hbg2 [59

CACCAACTTCATCCACGTTCACC-39] for S (human beta-globin). Genomic DNA from

HeLa cells was used as the reference to quantify the T and S values relative to the reference

DNA sample by the standard curve method. All PCRs were carried out on a Roche

Lightcycler 480 real-time PCR machine with 384-tube capacity (Roche Diagnostics

Corporation, Indianapolis, IN). The telomere thermal cycling profile consisted of: cycling

for T (telomeric) PCR: denature at 96uC for 1 second, anneal/extend at 54uC for 60 seconds,

with fluorescence data collection, 30 cycles; cycling for S (single copy gene) PCR: denature

at 95uC for 15 seconds, anneal at 58uC for 1 second, extend at 72uC for 20 seconds, 8

cycles; followed by denature at 96uC for 1 second, anneal at 58uC for 1 second, extend at

72uC for 20 seconds, hold at 83uC for 5 seconds with data collection, 35 cycles. Blood

samples from MDD participants and their matched controls were assayed in the same batch.

The inter-assay coefficient of variation (CV) for telomere length measurement was 4%.

Blood for PBMC TA determination was collected into Cell Preparation Tubes (Becton-

Dickinson, Franklin Lakes, NJ, USA, Vacutainer CPT), which contain a Ficoll separation

gradient. Blood processing procedures have been described in detail previously (Wolkowitz

et al., 2012). Telomerase activity was assayed with the telomere repeat amplification

protocol (TRAP). TA assay was optimized on the basis of the commercially available kit

TRAPeze (Chemicon, Temecula, CA, USA). Telomerase activity is defined as 1 unit = the

amount of product from one 293T cell/ 10 000 PBMC’s. Blood samples from MDD

participants and their matched controls were assayed in the same batch. Inter-assay CV of

PBMC telomerase activity was 6.8%.

Ratings

Subjects reported depressive symptoms over the preceding week using the Quick Inventory

of Depressive Symptoms Scale (QIDS; Rush, Gullion, Basco, Jarrett, & Trivedi, 1996).

Subjects reported on ACEs using the self-administered 8-item Adverse Childhood

Experiences scale (Felitti et al., 1998). This scale has been well-validated (Anda et al., 2010)

and assesses history of personal abuse, neglect, and household dysfunction. Scores range

from zero (no history of ACEs) to eight (all eight types of ACEs). Sleep quality was was

assessed with the Insomnia Severity Index (Morin, Belleville, Bélanger & Ivers, 2011)..

Subjective socioeconomic status was measured using a 10-rung ladder version of the

MacArthur Scale of Subjective Social Status (Adler, Epel, Castellazzo, & Ickovics, 2000).

All variables were screened for normality, and non-normal distributions were natural log-

transformed. Independent sample t-tests and chi-square tests were used to compare groups

on demographic variables, including age, gender, ethnicity, socioeconomic variables (e.g.,
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education), exercise activity, tobacco and alcohol use, and insomnia. Age was significantly

associated with telomere length (r = −.52, p < .05) among depressed individuals but not

among controls (r = −.07, p = .78). In the control group only, effects were found between

gender and telomere length (telomere length was longer in males; r = .51, p < .05), and

between age and telomerase activity (r = −.63, p < .01).

Results

MDD and control groups did not significantly differ in age, sex, ethnicity, educational level,

socioeconomic status, or alcohol or tobacco use. Individuals with MDD reported more

difficulties with insomnia (t(22.8) = −4.89, p = .000), compared to healthy controls, but

sleep was not associated with LTL or TA, in either group.

As expected, individuals with MDD reported a higher severity of depressive symptoms on

the QIDS than healthy controls (t(17.5) = −11.64, p=0.000) as well as a greater number of

ACEs (M= 3.90, SD ±2.05 t(38)= −3.04, p=0.004). Among individuals with MDD, 65% had

ACE scores of > 4 (out of a maximum score of 8), compared to 25% of the controls (χ2

(1,n=40)=14.07, p < .001). As reported previously with a subset of this sample (Wolkowitz

et al., 2012), individuals with MDD had higher TA than healthy controls (t(36)= −2.53,

p=0.016) and did not have significantly shorter leukocyte telomeres than controls. Finally,

controlling for age and gender, individuals with MDD had increased TA: LTL ratios

compared to healthy controls (F= 6.06, p= 0.02).

Partial correlations examined associations between ACEs and LTL controlling for

participants’ age and gender. Among healthy controls, ACEs were significantly inversely

correlated with LTL (r = −.61, p < .05) (Fig 1a) but were not significantly correlated with

TA (r= −.22, p > .10) (Fig 2a). or with the TA: LTL ratio (r =.12, p > .10). By contrast,

among individuals with MDD, ACEs were not significantly correlated with LTL (r = −.13, p

> .10) (Fig. 1b), but were positively correlated with TA (r = .58, p < .05) (Fig. 2b), and the

TA: LTL ratio (r= 0.60, p < 0.01).

Discussion

We replicated previous findings of shortened LTL in healthy non-depressed individuals with

extensive ACEs (Kiecolt-Glaser et al., 2011; Tyrka et al., 2010; Price et al., 2013), but found

a distinctly different pattern in healthy unmedicated individuals with MDD. Specifically,

greater exposure to ACEs was correlated with significantly shorter LTL among the healthy

controls but not among the MDDs. By contrast, greater exposure to ACEs was significantly

correlated with increased TA in the individuals with MDD but not in healthy controls.

Likewise, greater exposure to ACEs was associated with greater TA: LTL ratios in the

individuals with MDD but not in the healthy controls.

To our knowledge, no study has previously examined the relationship between ACEs and

LTL in individuals with MDD, despite the fact that histories of ACEs are common in adults

with MDD (Anda et al., 2006), and no study has yet examined the relationship between

ACEs and TA in any population. The present findings suggest that ACEs may be an

important factor to consider in studies of LTL and may explain some of the variability
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reported acrosss studies (Price et al., 2013; Shalev, Moffit, et al., 2013; Shalev, Entringer et

al., 2013;).

The mechanisms by which ACEs, at least in non-MDD individuals, come to be associated

with shortened LTL are not known, and it is unknown if a causal relationship exists.

However, there are multiple pathways through which early adversity may become

“biologically embedded” throughout the lifespan (Shalev et al., 2013; Shalev, 2012),

including excessive oxidative stress and inflammation (Tyrka et al., 2013; Fagundes, Glaser,

& Kiecolt-Glaser, 2013; Danese & McEwen, 2012) and dysfunction of the HPA and

noradrenergic stress response systems (Heim, Newport, Mletzko, Miller, & Nemeroff,

2008).

Our overall findings may be best explained by the balance between TA and LTL.

Specifically, the increased TA observed among individuals with MDD may reflect a

compensatory response that maintains LTL or mitigates telomere shortening, as previously

hypothesized (Wolkowitz, Reus & Mellon, 2011; Damjanovic et al., 2007). This

mechanistic explanation might be consistent with prior preclinical and human studies that

indicate upregulation of TA in response to cell damage (Baek, Bu, Kim, & Kim, 2004;

Mattson, Fu, & Zhang, 2001), and a preferential elongation by telomerase of shorter

telomeres (Britt-Compton, Capper, Rowson, & Baird, 2009). Finally, the associations

between ACEs and increased TA: LTL ratios in the MDD subjects are consistent with

several recent studies that also indicate higher ratios in other unhealthy or high-risk

conditions (Damjanovic et al., 2007; Kroenke, Pletcher et al., 2012). Higher TA relative to

LTL could indicate greater telomere endangerment, requiring greater telomerase activation

in an attempt to maintain telomere homeostasis.

This putative compensatory telomerase response is absent in the controls, who exhibit LTL

shortening but no TA in proportion to their history of ACEs. It is unknown why telomerase

activation did not accompany shorter leukocyte telomeres in the healthy controls. It is

possible that additional biochemical alterations seen in MDD (e.g., NFkB activation,

oxidative stress, inflammation) contribute to telomerase activation (Schiavone, Jaquet,

Trabace, & Krause, 2013; Yamagiwa, Meng, & Patel, 2006). Larger studies with

prospective designs will be needed to further assess issues of mediation and causality.

Strengths of the present study include the use of well-screened and characterized subjects

who were medically healthy and who had been off of psychoactive and other interfering

medications for a minimum of 6-weeks before participation. Another strength was the

assessment of both telomere length and telomerase activity at the same time in the same

subjects. Limitations include the small sample size, and the use of only single timepoint TA

assessment. Whereas LTL is a relatively stable marker, TA can change more quickly (Epel

et al., 2010). Another limitation is the significant mean difference in ACE scores in the

control and MDD groups, calling into question whether the different findings in the two

groups are related to diagnosis vs. level of antecedent ACE. Future stuides utilizing flow

cytometry with cell separation will be needed to assess whether changes in average LTL are

due to changes on a per-cell basis or due to a redistribution of leukocyte subpopulations (Lin
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et al., 2010). Finally, ACEs were assessed through retrospective self-reports, which may be

subject to bias (Hardt & Rutter, 2004).

Conclusions

The present data are the first to relate ACEs to TA in any population and the first to relate

ACEs to LTL in individuals with MDD. These data highlight biological sequellae of early

life psychological and physical trauma and suggest that these sequellae may differ in

depressed vs. non-depressed individuals. ACE-related alterations in cell aging in certain

populations might also contribute to, and help explain, the excess medical morbidity and

early mortality seen in adults with histories of multiple ACEs. In addition, given recent

findings suggesting that parent-child relationships may play a key role in the associations

between childhood adversity and telomere length (Asok, Bernard, Roth, Rosen, & Dozier,

2013; Brody, Yu, Beach, & Philibert, 2014), interventions promoting secure attachment

relationships among children exposed to adversity (Ghosh Ippen, Harris, Van Horn, &

Lieberman, 2011; Lieberman, Van Horn, & Ghosh Ippen, 2005) can also be examined for

long-term biological benefits.
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Figures 1.
a and b. Associations between Adverse Childhood Experiences and leukocyte telomere

length in non-depressed individuals (r = −.61; p < .05) (1a) and individuals with Major

Depressive Disorder (r = −.13, p > .10) (1b).
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Figures 2.
a and b. Associations between Adverse Childhood Experiences and peripheral blood

mononuclear cell telomerase activity in non-depressed individuals (r = −.22, p > .10) (2a)
and individuals with Major Depressive Disorder (r =.58, p < .05) (2b).
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