
UC San Diego
UC San Diego Previously Published Works

Title
Turbulent equipartition theory of toroidal momentum pincha)

Permalink
https://escholarship.org/uc/item/9r43j3h7

Journal
Physics of Plasmas, 15(5)

ISSN
1070-664X

Authors
Hahm, TS
Diamond, PH
Gurcan, OD
et al.

Publication Date
2008-05-01

DOI
10.1063/1.2839293

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9r43j3h7
https://escholarship.org/uc/item/9r43j3h7#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Turbulent equipartition theory of toroidal momentum pincha…
T. S. Hahm,1,b! P. H. Diamond,2 O. D. Gurcan,2 and G. Rewoldt1
1Princeton University, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,
New Jersey 08543, USA
2Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla,
California 92093-0424, USA

!Received 9 November 2007; accepted 11 January 2008; published online 15 February 2008"

The mode-independent part of the magnetic curvature driven turbulent convective !TurCo" pinch of
the angular momentum density #Hahm et al., Phys. Plasmas 14, 072302 !2007"$, which was
originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent
equipartition !TEP" theory. It is shown that the previous results can be obtained from the local
conservation of “magnetically weighted angular momentum density,” nmiU%R /B2, and its
homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature
modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory
frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular
momentum density in the previous work, is closely related to the Coriolis drift coupling to the
perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is
highlighted. Finally, it is illustrated that there should be a difference in scalings between the
momentum pinch originated from inherently toroidal effects and that coming from other
mechanisms that exist in a simpler geometry. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2839293$

I. INTRODUCTION

Understanding momentum transport, which influences
plasma rotation, is very important since it can play a crucial
role in reducing turbulence and transport as well as in stabi-
lizing magnetohydrodynamic !MHD" instabilities including
the resistive wall mode. In most cases, the toroidal momen-
tum transport from experiments is observed to be anomalous,
i.e., higher than neoclassical theory predictions, and is there-
fore believed to be caused by low frequency, ion gyroradius
scale, electrostatic drift wave turbulence, including ion tem-
perature gradient !ITG" mode turbulence and trapped elec-
tron mode !TEM" turbulence. For instance, the toroidal mo-
mentum diffusivity !" was comparable to the ion thermal
diffusivity !i !see Ref. 1" in Tokamak Fusion Test Reactor
!TFTR" experiments, in rough agreement with theoretical
predictions based on ITG turbulence.2

While the toroidal momentum transport is often de-
scribed by a diffusion coefficient !",eff alone, there is accu-
mulating evidence that a variety of rotation phenomena of
great potential importance cannot be properly characterized
by the diffusion coefficient only. This includes the observa-
tion of spontaneous toroidal rotation of plasmas in the ab-
sence of apparent external torque input.3–11 Some prefer to
call it an “intrinsic rotation.”8 In many cases, rotation profiles
are peaked near the axis, even for off-axis deposition, zero
torque, or no neutral beam injection !NBI", suggesting the
existence of a nondiffusive inward flux of toroidal angular
momentum.12 In addition, recent perturbation experiments on
JT60-U13,14 and NSTX15 neutral beam heated plasmas

showed the need for an “inward pinch term” of angular mo-
mentum to match the measured centrally peaked rotation
profiles.

Theoretically, one can write an expression for the radial
flux of the toroidal momentum as

#" = − !"
d

dr
U" + VpinchU" + S .

Here, the nondiffusive component of the turbulence driven
radial transport of toroidal momentum16 includes not only
the turbulent convective !TurCo" pinch !Vpinch", but also the
residual stress !S", which does not depend on the flow ex-
plicitly. It should be emphasized that a nondiffusive flux of
momentum can be obtained from various physics
mechanisms.17–25 Depending on plasma parameters and con-
figurations, a specific mechanism can be more relevant than
others, and sometimes a combination of two or more mecha-
nisms is necessary to reproduce basic features of experi-
ments. For instance, a commonality of spontaneous rotation
of plasmas26 in NBI-free H-mode plasmas is the empirical
“Rice” scaling,5 which states that the rotation at the axis is in
the co-current direction, and proportional to the incremental
stored energy divided by the plasma current. This scaling is
suggestive of a mechanism associated with the "Pi-driven
E$B shear. It is also of interest to study physics mecha-
nisms for an inward pinch of toroidal angular momentum in
the absence of E$B shear, since spontaneous rotation has
also been observed in L-mode4,27 and Ohmically heated
!OH" plasmas6,8 in which the E$B shear effect is expected
to be weak.

After the details of a quasilinear derivation from the gy-
rokinetic equation28 and turbulent equipartition !TEP" inter-
pretation of the mode-independent part of the turbulent con-
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vective !TurCo" pinch of angular momentum density were
published in Ref. 24, we presented29 a simpler and more
intuitive derivation of the TEP pinch based on an ansatz of
local angular momentum conservation and homogenization.
In this paper, we recapitulate the essence of these two differ-
ent approaches and clarify their relation. This puts the TEP
interpretation of the mode-independent part of the TurCo
pinch, which was originally derived from the gyrokinetic
equation, on a firmer and more transparent theoretical
ground.

Our quantitative predictions can be summarized as fol-
lows. To the lowest order in r /R0, with R0 the major radius at
the magnetic axis, the TEP pinch velocity is driven by the
magnetic field curvature !or equivalently, "B in low-% plas-
mas", rather than ion thermal effects, and given by

VAng
TEP & −

2Fballoon

R0
!Ang !1"

for the angular momentum density nU%R, and

VMom
TEP & −

3Fballoon

R0
!Mom !2"

for the parallel momentum density nU%. Here, !Ang and !Mom
are diffusivities for angular momentum and parallel momen-
tum, respectively. A dimensionless coefficient on the order of
unity, Fballoon characterizes the “ballooning structure” of the
turbulence. For poloidally symmetric, flutelike turbulence in-
tensity, Fballoon→0. For strongly outward ballooning fluctua-
tions !peaked at the low-B side", as are often found from
comprehensive linear kinetic calculations30 based on profiles
from experiments, Fballoon&1,24 and the pinch is inward in
radius. The TEP pinch originates from the fact that magnetic
curvature can modify the acceleration of ions along the mag-
netic field, as can be appreciated from the gyrokinetic
equations.28 When the magnetic curvature #b$ !b ·""b$
changes its sign along the B field as one moves from the low-
B field !bad curvature" side to the high-B field !good curva-
ture" side, the variation of fluctuation amplitude along the
magnetic field !a property of ballooning fluctuations in tor-
oidal geometry" can yield a net acceleration. This symmetry
breaking mechanism due to magnetic curvature, alongside
the k%-symmetry breaking due to the E$B shear,22 consti-
tutes the unified “B*-symmetry breaking” as discussed in
Ref. 24.

In this paper, we also discuss theoretical issues that arise
when one calculates the turbulence driven radial flux of par-
allel flow in the rotating frame. In particular, we identify
terms in the gyrokinetic equation that lead to the diffusive
flux and the momentum pinch, respectively. We demonstrate
that the magnetic curvature modification of the parallel ac-
celeration in the nonlinear gyrokinetic equation in the labo-
ratory frame,28 which was shown to be responsible for the
TEP part of the TurCo pinch of angular momentum density
in our previous work,24 is closely related to the Coriolis drift
coupling to the perturbed electric field.23,31,32 We also high-
light the origin of the diffusive flux in the rotating frame.

The remainder of this paper is organized as follows. In
Sec. II, the standard quasilinear derivation of the TEP part of

the TurCo pinch is briefly reviewed with a focus on its in-
sensitivity to the plasma model and key physics assumptions.
A simple TEP theory interpretation based on the local mag-
netically weighted angular momentum conservation is given
in Sec. III. In Sec. IV, we present theoretical issues which
arise when one formulates the turbulence driven radial flux
of parallel flow in the rotating frame. Theoretical issues re-
lated to scalings of the momentum pinch are discussed in
Sec. V. Conclusions are drawn in Sec. VI.

II. QUASILINEAR DERIVATION OF TEP MOMENTUM
PINCH IN TOROIDAL GEOMETRY

In this section, we briefly review the standard quasilinear
derivation of the TEP part of the TurCo pinch24 with a focus
on mode-independent key physics. We show that a careful
treatment of geometric effects due to nonuniform B !with
nonvanishing curvature "$b", yields a novel pinch mecha-
nism for parallel momentum and angular momentum densi-
ties. We cast the expressions in a form where not only the
new momentum pinch terms are clearly identified, but also
the underlying approximate conservation laws responsible
for the TEP pinch are transparent. A more detailed derivation
can be found in Ref. 24. Here, we discuss the essential phys-
ics ingredients in a simpler manner.

The following nonlinear electrostatic gyrokinetic equa-
tion with proper conservation laws in general geometry is
given by Eqs. !19", !21", and !22" of Ref. 28:

$F

$t
+

dR
dt

· "F +
dv%

dt

$F

$v%

= 0, !3"

with

dR
dt

= v%

B*

B*
+

cb
eiB*

$ #ei " ''&"(( + mi' " B$ !4"

and

dv%

dt
= −

B*

miB*
· #ei " ''&"(( + mi' " B$ . !5"

Here, the gyrokinetic Vlasov equation !3" is written in terms
of the gyrocenter distribution function F!R ,' ,v% , t", with '
)v!

2 /2B, and ''…(( denotes an average over the gyrophase.
B* is defined by

B* ) B +
mic

ei
v% " $ b .

We can derive the nonlinear evolution of the parallel mo-
mentum density per ion mass, i.e., nU% )2(*d'dv%B*Fv%,
by taking a moment of the nonlinear gyrokinetic equation
!3", or equivalently of a conservative form of the nonlinear
gyrokinetic equation #Eq. !24" of Ref. 28$:

$!FB*"
$t

+ " · +FB*
dR
dt
, +

$

$v%
+FB*

dv%

dt
, = 0. !6"

With the Mach number using the sound speed Ms)U0 /Cs,
we adopt an ordering k)*s+ !a /qR"Ms, and assume Ms,1,
so that we can ignore B ·"nU%

2 in comparison to B ·"P%. The
pressure moments per unit mass are defined as usual.24 With
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these considerations, we can write a nonlinear evolution
equation for the parallel momentum, by multiplying Eq. !6"
by v% and integrating over the velocity space, to obtain

$

$t
!minU%" = − cb $ "&" · "+minU%

B
, − 2minU%b

$ !b · ""b · "&" −
mi

2c

ei
b $ "B · "+P!U%

B2 ,
− 3

mi
2c

ei
b $ !b · ""b · "+P%U%

B
,

− nieib · "&" − b · "P% . !7"

The second term on the right-hand side !RHS" of Eq. !7"
originates from the magnetic curvature modification of the
parallel acceleration in Eq. !5". The last two terms are the
origin of the E$B shear induced residual stress.22 The E
$B shear has been known to produce a nondiffusive radial
flux of the parallel flow in simple geometry.18 The physics of
residual stress has been extensively discussed in Ref. 22.
Therefore, from this point, we do not keep these terms in this
paper, which focuses only on the inward pinch driven by
toroidal effects. In low-% plasmas, b$ !b ·""b= !"$b"!

&−B$"!1 /B". With this approximation, by combining the
second term on the RHS into the first term, Eq. !7" can be
further simplified to

$

$t
+minU%

B3 , = −
cb $ "&"

B
· "+minU%

B3 ,
−

mi
2cb $ "B

eiB
3 · "+P!U%

B2 ,
− 3

mi
2cb $ "B

eiB
4 · "+P%U%

B
, . !8"

It is also instructive to write Eq. !8" in a continuity form,
anticipating that we will eventually calculate the radial flux
of the parallel angular momentum, and that the divergence of
that term will determine the time evolution of the mean an-
gular momentum density. The algebra is nontrivial due to the
fact that the E$B flow is no longer incompressible in an
inhomogeneous plasma #i.e., " ·uE)" · !cb$"" /B"%0$.
Fortunately, we can make a low-% approximation, i.e.,
" · !uEB2"=4(J ·""-B2" ·uE, to make further analytic
progress. We can then rewrite Eq. !8" as follows:

$

$t
+minU%

B
, = − " · +minU%

B
uE, −

mi
2c

ei
"

$-!b $ "B"+T!nU%

B3 ,.
−

mi
2c

ei
" · -!3b $ "B"+T%nU%

B3 ,. . !9"

It is important to recognize the following facts. First, since
B.1 /R in tokamaks, we note that minU% /B.minU%R
=minR2/% is the parallel angular momentum in tokamak ge-
ometry, with /% being the parallel angular rotation frequency,
and I)minR2 being the density of the moment of inertia.

The expression “" · !mi&!nU% /B"&uE"” essentially leads to
the radial flux of the parallel angular momentum. We note
that the relation B.1 /R does not hold for all geometries. For
instance, in a spherical torus, further refinement in the analy-
sis using a more realistic MHD equilibrium is desirable. The
rest of the terms in Eq. !9" can be identified as the geodesic
curvature driven momentum flux !Geo,

24 which is subdomi-
nant to the standard E$B drift induced contribution from
the first term on the RHS of Eq. !9". So, as far as the evolu-
tion of the mean angular momentum profile is concerned, we
will ignore these terms from now on.

Typically, transport analyses33 deal with the temporal
evolution of the flux-surface-averaged toroidal angular mo-
mentum density 'minR2(/", where the toroidal angular fre-
quency is a flux function. In this paper, we use a set of
variables !0 ,) ,1" to denote the radial, poloidal, and toroidal
coordinates, respectively. The equilibrium magnetic field B
is given by

B = "1 $ "0 + g!0" " 1 , !10"

where d0=RB)dr, and the toroidal magnetic field strength is
given by B"=g!0" /R. Following the same procedure de-
scribed in Ref. 24, we obtain

$

$t
!'minR2(/%" = − '" · !Ang(

= −
1
V!

$

$0
#V!'!Ang · "0($

= −
1
V!

$

$0

$-V!/mi&!nU%R"
c

B
b $ "&"* · "00.

& −
1
V!

$

$0-V!/micR1
k

&!nU%R"k
$

$1
&"k

*0. .

!11"

Here, we used the fact that k% -k!. For the evaluation of the
nonlinear turbulent flux of angular momentum !Ang

Turb in Eq.
!9", the expression for the perturbed angular momentum
&!nU%R" can be obtained from Eq. !7". In k-space, it can be
written as

#− i/k + 2/k + i!3/d%k + /d!k"$&!nU%R"k

= − &vrkê0 · "!n0U0R" − i2/d%k
e&"k

T%

n0U0R

− i+3/d%k
&T%k

T%

+ /d!k
&T!k

T!
,n0U0R . !12"

It is noteworthy that &!nU%R" can be driven not only by the
radial gradient of nU%R, which eventually leads to a diffusive
radial flux, but also by the gradient of B. This is contained in
the definitions of /dk. /d%k)!cT% /eB"b$ !b ·""b ·k is the
curvature drift of thermal ions, while /d!k)!cT! /eB2"b
$"B ·k is the grad-B drift of thermal ions. This leads to a
non-diffusive radial flux of the parallel momentum, as long
as electrostatic fluctuations are present. The second term on
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the RHS has been identified as the “turbulent equipartition
!TEP" pinch” in Ref. 24, based on its insensitivity to details
such as the dispersion relation of ambient fluctuations. This
TEP part of the TurCo pinch is the main subject of this paper.

On the other hand, the third term on the RHS is related
to ion temperature fluctuations whose magnitude and phase
relationship with respect to &" depend on the nature of the
fluctuations !for instance, depending on whether it is ITG or
TEM dominated". We have classified this part as the curva-
ture driven thermoelectric !CTh" pinch in Ref. 24, since both
ion thermal effects and magnetic curvature are required for
this term. Due to its mode dependency, we cannot make any
further generic statement on this part of the TurCo pinch,
except that it is expected to be smaller than the TEP pinch in
the hot electron mode regime !Te+Ti" as expected in OH
and electron heated plasmas.6,8 The expression multiplying
&!nU%R"k on the left-hand side of Eq. !12" is the !k ,/"-space
version of the renormalized propagator, in which 2/k is the
decorrelation rate that originates from the E$B nonlinear
term in Eq. !8". Here, "ck)#−i/k+2/k+ i!3/d%k+/d!k"$−1

is the inverse of the propagator. Its real part, which is posi-
tive definite and independent of mode propagation direction,
corresponds to the correlation time of the turbulence.

Now, we can explicitly evaluate the diffusive part and
the TEP part of the TurCo pinch of angular momentum flux
and can calculate its divergence from Eq. !11". While one

can measure the angular momentum density flux directly
from nonlinear turbulence simulations, transport analysis33

of experimental data involves flux-surface-averaged quanti-
ties. We denote the flux-surface-average by '…(. From the
first term on the RHS of Eq. !12", we obtain the usual diffu-
sive part of the radial component of the parallel angular mo-
mentum density flux:

'!Ang
Diff · "0( = − /1

k
Re 3ck2&vrk22 " !min0U0R" · "00

= − !Ang/!RB)"2 $

$0
!min0R2/%"0 . !13"

Here, the flux-surface-averaged “angular momentum density
diffusivity” can be defined as

!Ang ) /1
k

Re 3ck2&vrk220
=/+ c

RB)
,2

1
k

Re 3ck!22&"k220 . !14"

To obtain Eq. !14", we used the following identities: 2"02
=RB), b$ ê0 ·k=!B /RB), and &vrk=−i!c! /RB)"&"k with
!=toroidal mode number. From the second term on the RHS
of Eq. !12", we obtain the turbulent equipartition !TEP" part
of the toroidal angular momentum density TurCo pinch; i.e.,

'!Ang
TEP · "0( = − 2/1

k
Re 3ck&vrk

* i+/d%k
e&"k

T%
,min0R2/%RB)0 = 'min0R3B)(/%VAng

TEP. !15"

Here, the flux-surface-averaged “TEP angular momentum
pinch” can be defined as

VAng
TEP ) − 2/1

k
i Re 3ck&vrk

* /d%k
e&"k

T%
0

= 2/ c

RB)
1
k

Re 3ck!/d%k
e

T%

2&"k220 . !16"

Using the identity /d%,k!0"=−!cT% /eiRB)"! /R at the low-B
side midplane !)=0", we can write

VAng
TEP = − 2/ 1

R
+ c

RB)
,2

1
k

Re 3ck!2/d%k!)"
/d%k!0"

2&"k220
= − 2/ 1

R1
k

Re 3ck
/d%k!)"
/d%k!0"

2&vr,k220 . !17"

Note that the details of the turbulence dynamics do not enter
the expression for the TEP pinch, which is insensitive to the
mode propagation direction, etc.; it depends only upon the
correlation time and the spectrum of radial E$B velocities.
From Eqs. !14" and !17", we obtain

VAng
TEP & −

2Fballoon

R0
!Ang, !18"

with Fballoon)'/dk!)"2&"!)"22( / '/dk!0"2&"!)"22(. Note that,
for the TEP pinch of the !linear" momentum density nU%, an
additional contribution from /d!k appears in the TEP pinch
expression due to the fact that R.1 /B #see Eq. !14" and Eq.
!37" of Ref. 24$. Therefore, we have

VMom
TEP & −

3Fballoon

R0
!Mom. !19"

III. TURBULENT EQUIPARTITION PINCH
OF PARALLEL ANGULAR MOMENTUM

After the quasilinear derivation from the gyrokinetic
equation and the turbulent equipartition !TEP" interpretation
of the mode-independent part of the turbulent convective
!TurCo" pinch of angular momentum density was published
in Ref. 24, we presented a simpler and more intuitive deri-
vation of the TEP pinch based on an ansatz of local angular
momentum conservation and homogenization.29 In this sec-
tion, we recapitulate the essence of the two different ap-
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proaches and clarify the relation between them, and thereby
put the TEP interpretation of the mode-independent part of
the TurCo pinch, which was originally derived from the gy-
rokinetic equation, on a firmer theoretical ground.

As discussed in relation to Eq. !9" in Sec. II, if we ignore
the parallel dynamics and the flux of momentum due to the
thermal !velocity-dependent" magnetic drift, we can write
the evolution of the angular momentum density as

$

$t
!minU%R" + " · !minU%RuE" = 0, !20"

noting that B.1 /R in tokamaks. Here, the unique role
played by the angular momentum density in toroidal geom-
etry should be appreciated. For instance, it is not possible to
construct a simple continuity equation for the linear momen-
tum density minU% in toroidal geometry, as is obvious from
Eq. !7", even in the absence of ion thermal effects.

Indeed, Eq. !20" is the starting point of our TEP
interpretation,24 and of a simple physical derivation thereof,
as presented in Ref. 29. As is familiar from the TEP theory of
the particle pinch34–37 and of the angular momentum
pinch,24,29 the quantity that gets homogenized !mixed" by
turbulence is the one that is locally conserved, i.e., a scalar
field A, which satisfies the relation

d

dt
A = + $

$t
+ u · ",A = 4"2A , !21"

where 4"2A is the diffusive dissipation on small scales. In
toroidal geometry, the E$B flow is compressible due to the
inhomogeneous magnetic field, and as a consequence, the
angular momentum density minU%R cannot satisfy a relation
such as Eq. !21". For a low-% tokamak equilibrium, we have
shown that " · !uEB2"-B2" ·uE. Therefore, considering
uEB2 as incompressible, we can write

d

dt
+minU%R

B2 , = + $

$t
+ uE · ",minU%

B2 R = 0 !22"

up to the diffusive dissipation on small scales. This is the
local conservation of the magnetically weighted angular mo-
mentum !MWA" density24 which is the central element of the
TEP TurCo pinch of angular momentum. This relation can be
also obtained from Eq. !8", by ignoring the ion thermal ef-
fects that eventually lead to the CTh part of the TurCo pinch.

According to the homogenization theory,38 a scalar field
that is locally advected by a shearing flow, within a closed
streamline in the presence of diffusion !i.e., the MWA,
minU%R /B2 in this case" will eventually be mixed or homog-
enized. It is expected that turbulence driven sheared E$B
zonal flows39,40 coexist with the ambient turbulence in OH
and L-mode plasmas. This will tend to speed up the process
of homogenization within the same flux surface via the ran-
dom shearing.41,42

Note that we can rewrite Eq. !22" as

$

$t
minU%R + B2uE · "+minU%R

B2 , = 0 !23"

and regard B2uE as an incompressible flow. This homogeni-
zation by turbulent incompressible flow occurs via diffusion

of a locally conserved quantity; i.e., the MWA density. For
the transport of angular momentum in which we are inter-
ested, in the context of magnetic confinement physics, this
diffusion of MWA density manifests itself as a combination
of the TEP pinch and the diffusion of the angular momentum
density. Thus, the homogenization tends towards a state
where "!minU%R /B2"→0, linking "U% to "B. This is
equivalent to an off-diagonal, inward pinch.

Indeed, the physical origin of the "B-driven piece of the
TurCo momentum pinch is easily revealed by considering
the radial quasilinear turbulent flux of the magnetically
weighted angular momentum !MWA" density. While the de-
tailed derivation can be found in Ref. 24, it is crucial to note
that the total flux of the parallel angular momentum density
nU%R consists of !i" a diffusive piece, driven by "!nU%R" and
!ii" an off-diagonal, or convective piece, driven by "!1 /B2".
Since "!1 /B2" ·"0+0, on the low-B side, where the fluctua-
tion amplitude peaks, this piece is indeed a pinch, and pro-
duces an inward flux of parallel angular momentum density.
The pinch term described above corresponds to the
"B-driven TEP component of the TurCo flux of angular mo-
mentum, since it is not driven by a thermodynamic force,
such as "Ti or "n.

Some comments comparing the TEP theories for angular
momentum and density are appropriate here. Pinches in both
quantities originate from the local advection and homogeni-
zation !mixing" of the locally conserved quantities. These
quantities are magnetically weighted, due to the fact that the
E$B flow in an inhomogeneous B field is no longer incom-
pressible. These are nU%R /B2 in the case of angular momen-
tum transport, and n /B in the case of a simple density trans-
port model.36 On the surface, a relation such as !d /dt"
$!n /B"=0 reminds one of the “frozen-in law.” Indeed, one
can interpret the TEP theory of angular momentum density
as a consequence of the frozen-in law !linking n and B", and
the fact that angular momentum density and density obey the
same continuity equation involving the E$B flow, approxi-
mately !linking nU%R and n".29 This interpretation illustrates
the similarity between the particle pinch and the angular mo-
mentum density pinch explicitly.

However, great care should be exercised in using the ion
density continuity equation alone !without considering the
electron dynamics and quasineutrality", in studying particle
transport and its effect on momentum transport. Actually,
other magnetic fusion relevant TEP theories for density in-
volve magnetically trapped electrons.34,35,37 The dynamics
for these is governed by bounce-kinetics in which parallel
streaming averages out, and thus is constrained by conserva-
tion of two adiabatic invariants; namely, the magnetic mo-
ment ' and the second invariant J, the bounce action. In
contrast, our momentum pinch theory does not require the
conservation of J. While their explicit formulas are different,
due to the trapped particle effects, for instance, both these
theories yield pinches with roughly comparable magnitudes
when normalized to the corresponding diffusivities !!Ang and
Dptl", respectively. The TEP theories for angular momentum
and density are summarized in Table I.

As stated in Ref. 24, we have chosen to formulate the
problem in terms of the angular momenum density, rather
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than the flow U%, because it is the most natural quantity for a
theoretical formulation that identifies some generic features
from the thermodynamic point of view, but does not explic-
itly specify the density dynamics. Indeed, neoclassical theo-
ries of momentum transport are also formulated in terms of
the angular momentum.31,48,49 We also note that this is the
quantity that gets perturbed directly in transient momentum
transport analysis using NBI.14 Of course, it is the flow that
gets measured in experiments, and the effects of particle
transport should be taken into account in theory-experiment
comparisons, unless the particle transport is negligible, as is
often claimed to be the case in the cores of tokamaks. A
careful treatment of particle transport for the nonadiabatic
electron response, and of its coupling to momentum trans-
port, is one of the outstanding issues that should be ad-
dressed in the future.

IV. GYROKINETIC FORMULATION
IN THE ROTATING FRAME

In this section, we discuss theoretical issues that arise
when one calculates the turbulence driven radial flux of par-
allel flow in the rotating frame. In particular, we identify
terms in the gyrokinetic equation that lead to the diffusive
flux and the momentum pinch, respectively. In the laboratory
frame, the advection of the mean parallel flow via the fluc-
tuating E$B drift, which will eventually lead to the diffu-
sive flux of parallel flow, is described by a term !c /B"b
$"''&"(( ·"F0, where F0 contains the radially dependent
mean flow U0 explicitly. In most cases, it is taken as a shifted
Maxwellian distribution function F0.exp#−!v% −U0"2 /2vTi

2 $,
where v% is one of the independent variables. On the other
hand, in the rotating frame of reference, c% )v% −U0, rather
than v%, is an independent variable. Therefore, with F0
.exp#−c%

2 /2vTi
2 $, the !c /B"b$"''&"(( ·"F0 term contains

only the advection of the mean temperature gradient and the
mean density gradient, but not the parallel flow gradient. We
note that the "B-driven term is also contained in this term if
' rather than v! is used as an independent variable. It is not
widely known which term is responsible for the diffusive
flux of parallel flow in a formulation in the rotating frame.
We demonstrate that the magnetic curvature modification of
the parallel acceleration in the nonlinear gyrokinetic equation
in the laboratory frame,28 which was shown to be responsible
for the TEP part of the TurCo pinch of angular momentum
density in our previous work,24 is closely related not only to

the term responsible for the diffusive flux in the rotating
frame, but also to the Coriolis drift coupling to the perturbed
electric field. The Coriolis force, which is familiar in the
geophysical fluid dynamics context, for instance,50 also ap-
pears in the drift kinetic31 and gyrokinetic32 formulations in
the rotating frame, as it should. In Ref. 23, it was shown that
the Coriolis drift can lead to a momentum pinch in toroidal
plasmas. By illustrating this intriguing manifestation of
physics related to momentum transport in the rotating refer-
ence frame, we elucidate some crucial points that were not
presented in Ref. 23.

The nonlinear toroidal gyrokinetic equation with proper
conservation laws28 is presented in Eqs. !3"–!5". In the ref-
erence frame moving with U0, it can be written in terms of
!' ,c% ,R", where c% is the parallel component of the relative
velocity,32

$F

$t
+

dR
dt

· "F +
dc%

dt

$F

$c%

= 0, !24"

with

dR
dt

= U0 + c%b +
cb

eiB*

$#ei " ''&"(( + mi' " B + miU0
* · "U0

*$ !25"

and

dc%

dt
= −

B*

miB*
· #ei " ''&"(( + mi' " B + miU0

* · "U0
*$ .

!26"

Here, the gyrokinetic Vlasov equation !24" is written in
terms of the guiding center distribution function
F!R ,' ,c% , t", with ')v!

2 /2B. B* is defined by

B* ) B +
mic

ei
" $ !c%b + U0" .

The &f version of the gyrokinetic equation is

$&f

$t
+

dR
dt

· "&f +
dc%

dt

$&f

$c%

= −
dR!1"

dt
· "F0 −

dc%
!1"

dt

$F0

$c%

,

!27"

with

TABLE I. Turbulent equipartition pinches of particles and angular momentum.

Quantity of interest
in transport problem

Density n !Refs. 34–37" Angular momentum density nU%R
or parallel momentum density nU%

Locally conserved quantity
that gets homogenized

n /B in two-dimensional slab !Ref. 36" Magnetically weighted momentum density
nU%R /B2 in torus !Ref. 24"

Inward pinch velocity
of transported quantity

Vpinch /D&−#!1 /2"+ !4ŝ /3"$ /R0
!Ref. 37"

VAng
TEP /!Ang&−2 /R0

VMom
TEP /!Mom&−3 /R0

Possible relevance to
experiments

L-mode plasmas in
various tokamaks !Refs. 43–46"

Comparisons in progress
NSTX !Ref. 15", JET !Ref. 47"
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dR!1"

dt
=

cb
B*

$ "''&"((

and

dc%
!1"

dt
= −

ei

mi

B*

B*
· "''&"(( .

Here, U0
*)U0+c%b, and we take U0=R2/"!0""1

=R/"!0"e1. Therefore,

" $ U0
* = c% " $ b + 2R/"!0" " R $ "1

+ R2 " /"!0" $ "1 . !28"

While /", rather than U0=R/", is a flux function in most
cases, it is more customary to use U0 and "U0 as the main
variables in momentum transport analysis.33 For this pur-
pose, one can write Eq. !28" as

" $ U0
* = c% " $ b + U0 " R $ "1 + R " U0 $ "1 . !29"

The acceleration due to the perturbed electric field in the
rotating frame can then be written as

dc%
!1"

dt
= −

ei

miB*
B · "''&"(( −

c

B*
3c% " $ b + U0 " R

$ "1 + R " U0 $ "14 · "''&"(( . !30"

Now, after making the approximation U0&U0b, it is clear
that the E$B advection of the mean parallel flow can be
described by the contribution of the last term in Eq. !30" to
the last term of Eq. !27", i.e.,

c

B*
" U0 $ b · "''&"((

$F0

$c%

&
c

B
b $ "''&"(( · "U0

$F0

$c%

,

!31"

with the approximation B*&B, which should be safe, away
from the separatrix where the magnetic shear diverges.51 In-
deed, this expression is identical to a part coming from the
radial gradient of the mean parallel flow in !c /B"b
$"''&"(( ·"FM from the formulation in the laboratory
frame with FM .exp#−!v% −U0"2 /2vTi

2 $.24 Accordingly, this
term will eventually lead to the diffusive flux of the parallel
flow if one performs a standard quasilinear calculation24 con-
sistently. We also note that this term is responsible for desta-
bilization of the parallel shear flow instability,2,52 as noted in
the context of the gyrokinetic formulation in slab geometry
in the moving frame; i.e., Eq. !2" of Ref. 53. The third term
on the right-hand side of Eq. !30" is the Coriolis drift cou-
pling to the perturbed electric field, which leads to a part of
the inward pinch of parallel flow discussed in Ref. 23. It is
useful to note from Eq. !2" of Ref. 53 that the parallel flow
gradient term !the last on the RHS" remains, while other
toroidal geometry-related terms !the second term on the RHS
related to the magnetic curvature, and the third term related
to the Coriolis drift" in Eq. !30" of the present paper disap-
pear in slab or cylinder geometry.

The derivation in Ref. 23 contains some ambiguities.
The term proportional to "/" #the last term of Eq. !28"$ is

absent in the gyrokinetic equation and the associated guiding
center equations of motion in Ref. 23. Probably this is what
is meant by the assumption of a constant rigid body toroidal
rotation. However, the parallel flow gradient term appears in
the fluid moment equation without an explanation of its ori-
gin in the gyrokinetic equation from which the fluid mo-
ments are taken. It appears in a form equivalent to the last
term of Eq. !29", rather than in the form of the last term of
Eq. !28", which has been dropped originally. As a conse-
quence, the second term of Eq. !29" has been double-
counted. We believe that this leads to an overestimation of
the Coriolis drift induced inward pinch of parallel flow in
Ref. 23. The remaining part of the parallel flow pinch in
toroidal geometry can originate from the second term on the
left-hand side of Eq. !27".

V. SCALING OF MOMENTUM PINCH

The scaling and magnitude of Vpinch /!" are of great
practical interest since this determines the overall peakedness
of rotation profiles in the region where external torque input
and residual stress driven by the E$B shear are absent.
Therefore, careful theoretical underpinning of scalings indi-
cated by various theories is necessary to make comparisons
to experiments and simulations more meaningful. Further-
more, any extrapolation to larger future machines, such as
ITER, can be considered credible only after a proper under-
standing of the theory and its validity regimes.

The TEP part of the TurCo pinch24 is a common element
of the turbulence driven inward pinch in toroidal geometry,
which is independent of the details of the ambient turbulence
as long as it has a significant electrostatic component, and its
perpendicular correlation length is larger than, or comparable
to, ion gyroradii. In the absence of particle flux, the predicted
TEP pinch velocity satisfies VAng

TEP /!Ang&−2 /R0 for angular
momentum U%R, and VMom

TEP /!Mom&−3 /R0 for parallel flow
U%. Its origin is the magnetic curvature "$b, which exists in
toroidal experiments. Since this makes the E$B flow com-
pressible, the magnetically weighted angular momentum
density nU%R /B2 !a locally conserved quantity, approxi-
mately", rather than the angular momentum density nU%R,
gets homogenized !mixed" by turbulence. The inward pinch
of the “observed” quantity nU%R is a manifestation of this
tendency towards homogenization or equipartition in the
space of motion invariants. The scaling with respect to R,
i.e., Vpinch /!"→0 as 1 /R→0, is consistent with this physical
interpretation based on the geometric effect B.1 /R.

While this TEP part of the TurCo pinch is the common
element of the turbulence driven inward pinch, there exist
other physical mechanisms that can possibly lead to a stron-
ger inward pinch depending on plasma parameters and the
nature of the ambient turbulence. The CTh !curvature driven
thermoelectric" part of the TurCo pinch depends on &Ti and
its phase relationship with respect to &". While we did not
pursue a detailed analytic prediction in our previous paper24

due to its algebraic complexity, this CTh part of the TurCo
pinch should also have the property that Vpinch /!"→0 as
1 /R→0, since it is also related to the magnetic curvature.
Note that due to the hybrid nature of toroidal instabilities54
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yielding /. !/*pi/Di"1/2, a scaling such as Vpinch
CTh /!".

−1 / !RLp"1/2 is not impossible. Another mechanism that is not
captured by the TEP theory of the momentum pinch is the
wave-particle resonant interaction. The importance of this
mechanism in momentum transport has been recognized with
varying degrees of theoretical generality.17,19,20,25 Since this
mechanism must exist in simple geometry !in the absence of
magnetic curvature and toroidicity", a “scaling” such as
Vpinch /!".−1 /L! is possible, with L! from the radial gradi-
ent in either temperature or density, while toroidal effects can
modify the coefficient in front.

Reference 23 presents a simple analytic formula for the
inward pinch of parallel flow, for pure ITG instability based
on fluid moment equations. It has been attributed to the
Coriolis drift effect. Its scaling with respect to the density
gradient length, i.e., Vpinch /!"=−1 /Ln−4 /R, is puzzling
from a theoretical point of view. As Eq. !2" of Ref. 53 sug-
gests, any toroidal effect !including that of the Coriolis drift"
should vanish in simple !slab or cylinder" geometry, i.e., in
the limit R→5. However, the density gradient driven inward
pinch persists in this limit according to Ref. 23. If such a
linear dependence on Ln

−1 is real, it should come from a phys-
ics mechanism which exists in simple geometry, such as a
wave-particle resonant interaction.25

VI. CONCLUSIONS

In this paper, we put the TEP interpretation of the mode-
independent part of the TurCo pinch,24 which was originally
derived from the gyrokinetic equation, on a firmer and more
transparent theoretical ground. The principal results of this
paper are:

!i" The essence of a quasilinear derivation from the gyroki-
netic equation has been recapitulated, and its relation to
a simpler and more intuitive derivation based on an an-
satz of local angular momentum conservation and
homogenization29 has been elucidated.

!ii" Our quantitative predictions on the pinch velocities are
VAng

TEP&−!2 /R0"!Ang, for the angular momentum density
nU%R, and VMom

TEP &−!3 /R0"!Mom, for the parallel mo-
mentum density nU%.

!iii" We have demonstrated that the magnetic curvature
modification of the parallel acceleration in the nonlinear
gyrokinetic equation in the laboratory frame,28 which
was shown to be responsible for the TEP part of the
TurCo pinch of angular momentum density in our pre-
vious work,24 is closely related not only to the previ-
ously little known term responsible for the diffusive flux
in the rotating frame, but also to the Coriolis drift cou-
pling to the perturbed electric field.23

!iv" The basic implications of scalings of the pinch velocities
in relation to their underlying physics mechanisms have
been discussed. In particular, we have observed that
some proposed scalings must come from physics mecha-
nisms which exist in a simpler geometry, rather than the
toroidal geometric effect which is the focal point of this
paper.

Several other comments are in order here. First, this

work is in the spirit of identifying the most common ele-
ments from a quasilinear theory in toroidal geometry, and
focuses on evaluating the momentum pinch given an abso-
lutely minimal characterization of the turbulence. In particu-
lar, the effects of magnetic curvature coupling to ion tem-
perature fluctuations,24 nonlinear wave-particle interaction,25

the residual stress from the E$B shear,22 and turbulence
spreading,55–64 are not addressed here. All of these effects
may contribute to non-diffusive momentum transport. In-
deed, depending on plasma parameters and configurations, a
specific mechanism can be more relevant than others, and
sometimes a combination of two or more mechanisms would
be necessary to reproduce basic features of experiments. For
instance, for spontaneous core rotation of NBI-free plasmas
with H-mode edge, it seems both the residual stress and an
inward pinch are needed. From the "Pi-driven E$B shear
in the pedestal, one can get an enhancement of edge toroidal
rotation via the residual stress, while an inward pinch is
needed to form a rotation profile that peaks at the axis. It is
crucial to note the dual role played by the mean E$B shear,
i.e., the reduction of turbulence and transport due to
shearing,65,66 and the production of the residual stress via
symmetry breaking.22 Of course, details depend on the edge
boundary conditions and flows in the scrape-off layer.67,68

Outstanding issues for future theoretical research include
the role of perpendicular flows in toroidal momentum trans-
port and the dynamics of poloidal momentum transport. Both
of these can be quite important, since experimental measure-
ments of poloidal flows exhibit significant deviations from
the neoclassical theory predictions.69,70 We note that a proper
gyrokinetic treatment of this problem requires not only a
lengthy calculation along the lines of Ref. 71, but also a
deeper understanding of the wave-particle resonance.25
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