UC Irvine
ICS Technical Reports

Title
The megabyte mini

Permalink
https://escholarship.org/uc/item/9r27h7gn

Authors

Hopwood, Gregory L.
Loomis, Donald C.
Feldman, Julian

Publication Date
1974

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9r27h7gn
https://escholarship.org
http://www.cdlib.org/

THE MEGABYTE MINI

Gregory L. Hopwood
Donald C. Loomis

Julian Feldman : NO{ ar lhlS Mate”a!
Technical Report No. 54 ‘ m ay be Uretpcted

January 1974
by Copyright | ay
- (TltleWUSC)

A Proposal to Attach LCS to Minicomputers

Copyright 1974

Department of Information and Computer Science (
University of California, Irvine ' :
Irvine, California
92717

Januarjr 7, 1974

SUMMARY

The major difference between minicomputers énd larger
computers is a state of mind. Part of that state of mind is
the notion that minicomputers have small memories. Given
current technology., there are no technical reasons why
minicomputers cannot have 1érge maiﬁ membries. " In- this
proposal we discuss the issues involved in configuring large
memory (megabyte or larger) minicomputers.

In tﬁe first séétion of the préposal, ve review some of
the concepts associated with memories and some of the
pressures for expanding primary -memories. The possibility
of replacing-thé'primary'memory aﬁd swapping subsystem of a
multi-user timesharing mini with an extended.core mehory is
discussed in partibular detail. |

Thetteéhnical 'issues in. deVeloping ~the megabyte mini
are presented in the second section of the proposal.
éotential problems and means for solving them are discussed,
and ways of organizing non-conventional memory addressing
aré introduced.

The technical description of a controller for the
megabyte memory is presented iﬁ thé third sectione. |

The megabyte mini has three major markets. The first

is for applications which require or can economically use

large memorys The second is for systems yhich now use
modest size core memories and swapping devices. At today’s
LCS prices, it is possible to replace such configurations
with megabyte memories at less cost with better performance
and greater reliability. The third market is one in which
modifications to the memory controller could significantly
improve performance. This merket is sometimes referred to
as the "smart memory" market.

Just as the small computer with a large file system
configurafion is beceming popular, we believe that there is
a substantial market for minicomputexs with megabyte or

larger memories.

' I. THE LARGE MEMORY MINICOMPUTER

The problem, briefly stated, 1is thatr minicomputers
normally are restricted in the amount of main memory which
they can address by the small number of bits available in a
‘memofy word. .The most common word size for minicomputérs is
sixteen bits.' This allows the computer to generate, at
most, 2;6 or 65,536 (64K) different addresses. Many
minicomputers use a bit in the address word to indicate
indirect addressing and/or. byté addressing, and thus the
number of words which they can address directly is reduced
by a factor of two to 32K. (Henceforth, meﬁory sizes will
be in words unless séé&ified otherQise-i

The set of words (or data items) addressable by a
program is called its logical (or virtual) address space.
The :se-t' of WOrds :of maint meﬁory actually attached to the

‘machine deterhines its physical address space. The size of
thé logical address space determines the maximum size of a
program which can theoretically be run on the machine, and
(in the case of multiprogramming) the size of the physicai
address space practically limits the pro@;;m size and
determines the_maximum number of jobs of a given size which

can reside in the main memory at one time. Even with a full

complement of main memory (i.e., the logical address space

equal to the physical address space), most 16-bit
minicomputers are limited to a maximum of 32K-64K of program
and data storage. ,

In the past there was 1little reason . to put more than
32K-64K of core memory on minicomputers. A relativeiy small
memofy was sufficient fgr most'tasks for which minicomputers
werelused- Besides, since the machine could not aadress any
more mémory, an increase in memory siie without a convenient
hardware mechanism for increasing the addressing capabilify
of the‘machine would be uselesé. This paper discussés such
an enhancement feature.

Minicomputers today are only small in‘ physicai size
comﬁared with their giant counterparts of fifteén to twent?
years ago. It is common for minicomputers to be able to
perform‘more than one million instructions pef‘secpndg This
level ofvcomputationai power hdé opened up new‘markéfs for
minicomputers, markets formerly the realm of much more
expensive machines.

Minis are not only 7being used in their traditional
roles as controllers for machinery, communications
processors, front—ends,. or laboratory datafgathe:ers. but
also as the central machine in time-sharing systems,

graphics display systems, and general accounting systems.

‘Many of theée tasks involve multiprogramming with foreground

and background partitions, terminal communication. and

real-time response rates to remote experiments. These
sophisticated tasks fequire the services of an operating
system for the scheduling of resources. 'If the aﬁailable
core storage on the machine is 32K, -and 1GK of that is used
for the operating system, then the effective.size of the

machine as far as the user is concerned is 16K. The more

‘users to be kept in core at the same time, the smaller share

of memory each one can occupy.

For fime-sharing applications involving multiple users
on a conventional mini not only is the job size of a user
severely limited, but the number of user jobs which can be
held in main- mémory coﬁcurreﬁtly is also 1limited. In a
single user system,'where the program is too large fo fit
into memory at one time, a method for running the program is
to break:it into independent-par£5"(overlays) and transfer.
them to and from main memory as they are needed via a disk
6r drum. In a multi-user system, the operating éystem can
manage the main memofy use. and swap each job or paft,of a
job in and out of memory as needed. Of course,‘ this
swapping requires a substantial amount of sxstém overhead
and additional equipment when compared to a system which

could keep all of its jobs in core at once.

The demand for increased main memory _capacity for

minicomputers has led to‘.the recent introdgction to the
marketplace of 16-bit nﬁchines with a memory enhancehent
feature called a memory mape. The hardware box essentially
translates (maps)‘ the 1logical addresses generated by the
machine into specific areas of a llafée core 'memofy .by
extending the length of the addresses put on the memery bus
to the length necessary for éddressing the bhysical address
space of the 1afge core store (LCS). For a byte-addressed
four million byte memory this would be twenty-two bits. The
bits added to the 16-bit address to.form the 22-pit address
are selected by the mapping hardware from a set of hardware
registere called the memory map - (The map registers. are
loaded and chanéed by a'supervisor program.) Once the new
22-bit address is generated by the mapping hardware..it is
presented to the memory address register of the LCS for a
memory cycle- Exteesion'of the happing concept to ‘include
memory protection 1is very simple and 1is almost always
ihcluded in a map systeme.

Table 1 lists those minicomputer manufacturers Who are

currently offering memory map options on their machines.

Table 1: Minicomputer manufacturers who have announced a
16-bit machine with a memory mapping feature.

Manufacturer Model Max Core
DEC PDP-11,/40-45 124K :
Data General Nova 840 128K
General Auto. SPC~-16/65 128K
Prime Comp. Prime 300 256K
Varian Data V-70 series- 256K

Table 2 lists those manufacturers of larger computers
who have used the memory mappiﬁg concept in their machinés.
Most pf these machines have a véry large logical address
space relative to their physical address space because they
have addresses of up to_tweﬁty-four bits or more invlengtha
Their map fdcilities weaere intrbduced to allow paging of'main
memory to secondary storage. Table 2 1is included to
indicate that mapping concepts are not a new . hardware
invention, but have been around in the lafge machines for
about fifteen years. Primitive mapping schemes were
introduced with memory bank selection registers even earlier

than the machines mentioned.

Table 2. Manufacturers of large machines using a mapping
feature. A ,

Manufacturer Model Date Delivered
Ferranti Atlas 1963
Burroughs 5500 1965
: ‘ 6500 1969
XDS . 940 1966
' . . Sigma 7 1968
GE 645 (MULTICS) 1966
IBM . 360/67 1967
370 1972
RCA Spectra 70/45 1968
DEC KI1-10 1972

The demand for larée hain memory capacity on
minicomputers will increase as memory mapping hardware
becomes available' and the cost of core or semiconductor
memory becomes lowef.l .Also a sﬁbstantial number of the
minicomputer installations presently in existence would be
interested in ap add-on memory map and bulk core product
that: cbhld be fiéld-instéllea on a machine that was not
originally deéignedlto interface with such a systém- Users
of hewer computers which have a memor? map capability but
who did not order the option would be pbtential customefs
for a bulk memory system which could be offered at a 1ower
price than that which could be bought from the manufacturer.
Also, minicomputer memory sizes on the order of a megabyte
of more aré not being offered by the mainframe

manufacturers. Stores of this size are common,- however, in

the 360/370 add-on market. These stores br the technology -
used .to create them could be adapted easily to provide
multi-megabyte minicomputer memory systems. ‘

Availability of LCS memory systems~fo£ minicomputers

causes certain interesting economic and performance
questions to arise when one atteméts tp configure a
mini-éystem for"tasks.wﬁich are limited by main mehory size.
The suggested equipment for a DEC PDP-11/45 system capable
of supporting thnty-four BASIC language time-sharing users
(RSTS/E) includes 56K WOfds of core memory and a swapping
subsysteme. Assuming user areas of a fixed size of 8K each
reside in the 56K of memory., at most.seven user proérams ma§
be resident in core at any one time. Seventeen users must:
be on the swapping device.

If the core memory %nd swappiné device were‘replaced
with a .mégabyte- of LCS . with' mapping capabilit?)' alll
twenty-four 8K users could reside in memory at once. In a
megabyte memo;y twenﬁy-four resident users of 8K each would
occupy 24x8K=192K words and leave 512K-192K=320K words _
unused. With such an LCS system the‘machine could keep all
thirty-two user programs of a tqtal of ISK wprds each (the
maximum program size on the PDP-11/45 system) in memory at
one time with no swapping whatsoever (32x16K=512K words).

An equivalent DEC system is not available. The largest main

'memory ,configufation that 1may be put on the PDP-11,/40-45
machines is 124K words. This would allow only seven 16K
users in core at once.
The obvious advantages of an LCS system’over a swapbing
system such as the PDP-11/40-45 system are:
1. eliminétion of the swapping device which is more
brone' to mechanical and electronic failure than the
LC-S ;
2. elimination of swapping which reduces supervisor
cohplexity and overhead and reduces non-essential
' memory accesses;

3. increase in the number of resident users and/or

o
i

program size.
For systems not available with a memory map option, the
availabilty oﬁ an LCS system provides a significant hardware_
"upgrade not available before. ':In addition, as wiii be -
discussed later, the LCS could provide new non-linear
mapping functions whiéh are often simuiated» ih softwafe..
Examples are the addressing of stacks, lists.'and queues,
special table lookup procedures, associative addressing, and
hashiﬁg functions. | |

Other possible 'arguments and counterarguments which
might be postulated regarding the addition of an LCS system

to a minicomputer'are~1isted belqw- o

1._Mainframe manufacturer reluctance to maintain
system--many minicomputer owners maintain their own
systems; maintenance strategies similar to those used
in fhe 360/370 add-on memory market can be used in the
'mini LCS market.

2. Compatibility with map and protection features (if
ény) of manufacﬁufer are necessary so manufacturér's
software works--such compatibility is not needed when
using én LCS system on a machine which was not designed
for a mapped memory; user-owned software can be
"modified to usé the new.featurés of the LCS memory
systems |

3. Increase in cost over standard system--the cost of:
an LCS system must be considered in relation to the
equipment which it replaces ahd to any additional
capébility it . may 'proviaeQ - On - the 24-user '?bP-lli
system the DEC memory., memory map., and the swapping
discs and controller would cost about $60,000 using
DEC’s new (January 1974) 16K memory board prices. The
entire system configuration would qost'between $150,000
and $180,000.iﬁc1uding the recommended peripherals and
ﬁwenty-four terminal devices. A megabyte of DEC memory
(if you could put it on their PDP-11 machine) would

cost about $200,000. This means that a megabyte LCS

system selling for between $50,000 and $100,000 would
be an attractive economic alternative as well as
gquadrupling the available physical address space. of the
machine.

4- Decreased memory speeds of the LCS causes programs
to run slowér--LCS memories may be constructed _pf
siowéf cohponents than manufacture; supplied smaller
memoriet in order to reduce the cost of the unit.
However, with the addition of a semiconductor cache
memory (high speed buffer bétween the LCS memory and
the central processor) this speed differential can be
eliminated and the LCS éystem could possibly run faster
than the standard core available from the mainframe
manufacturer. The lack of swapping decreases the

number of unproductive membry cycles needed to run

.programs, .and could increase the' effective 'job

throughput.

II. DESIGN CONSIDERATIONS

The use of a large.amount of memory on a minicomputer
requires the solution of a number of problems and evaluation
of a number of tradéoffs- The importance of these problems
is not that they are obstacles to use of large amounts of
.memory' on minicomputers but that they are questions for
which the best solutions are not obvious. Connecting a
large amount of memory to a minicomputer will provide an
opportunity for evaluation. of. . the relative merits of
alternative solutions to the tradeoffs. Each of the
following sections summarizeé a potential obstacle and some

alternative solutionse..

LINEAR ADDRESSING

_Providing a linear address space whichiallows programs
to address any of the memory locations using sequential
addrésses for instruction execution and data references is
important to allow the use of existing computer progfams-
While memory could be treated as an external storage device
similar to drum storage, the full effectiveness' and
efficiency of fast, random accesé storage can: best be used
by providing a means of addressing it for execution and

operand reference in the same way as the conventional

minicomputer memory.

Because of the importance of this requirement, this
proposal concentrates on evaluating alternatives for
providing this linear addressing mechanism. The use of a
paging strategy has been selected as the most promising.
The fundamentals of a paging mechanism have been described
previously. Details on the opération of the p;oposed
implementation are given in the memory interface
specification at the end of this report. For comparison
with other mechanisms. which have been rejected as less
suitable, the operation of paging is summarized here.

The problem to be overcome in all of the solutions is
to provide a means of addressing all of a large amount of
memory using the address bits of the minicomputer.
Minicomputers normally have only as many add;ess bits as the
word‘size--tybically sixteen- To address four million bytes
of memory requires twenty-two bits. Hence a useful means
must be provided to convert the 16-bit address to a 22-bit
address. |
Paging

Paging has been used in larger computers. {(e.g., Aﬁlés.
SDS 940, IBM 360/67, 370) to provide a mapping between a

virtual (logicél) address space and real memory address

space. As is indicated in Table 1 minicomputer

manufacturers are now beginning to market small machines
with such a mapping capability. In a typical paged.system
the high order four bits of the 16-bit address may be used
to address a very fast memory which would.give the 10 high
order bits of a 22-bit address. The low order twelve bits
of the 16-bit address would be used directly as the low

order twelve bits of the 22-bit memory address.' Based on

_the values loaded in the fast memory (map):. the high order

four bits of the 16-bit address would specify a 4K byte
(word) “"page" in the memory. The low order twelve bits
would directly specify the desired byte (word). Because

there are four bits to select a word in the map, é program

in the minicomputer can directly address any of sixteen;

pages which have entries in the map. * By .changing the
entfies in the map the program can gain access to any of the
1ocations,ip the memory.

Extension Registers

Some computers (e.g., PDP-1 ahd SbS 930) haye used
extension registers to develop additional address bitse.
"Bank switching" on computers such as the PDP-8 are
extension register implementatiqns- When the high order
bits 6f the short addreés ére zeros, the short address is

extended on the 1left with 2zeros for the required 1longer

memory address. Thus the program can directiy address

locations at the bottom of memory. in the normal manner. To

gain access to other locations the extension registers are
used.

When the high order bits of the short address are not
zero, they specify an extension register from whiéh the high
order bits of the 22-bit address are to be taken. The
extension “regiéter technique is equivalent to a page map.
-except the map entry used when the high order bits of the
short address are all 2zeros cannot be changed and always
specifies the first pagé in memory; The extension registers
are equivalent to the other entries in a map. Since it 1is
slightly more flexible . and éan bé implemented just as
easily, the.fhll page map is a more desirable alternative.
Relocation Registers |

Another alternative for developing 22-bit addresses
from. 16-bit addresses is to provide a.relécation regiéter
which will be 1loaded with a value to be added té every
16-bit address to give the required 22-bit address. By
placing the appropriate value in the relocation register the
l6-bit address could be adjusted to reference any portion of.
the memory. When only one relocation register is used, all
of the addresses will be relocated by the same ‘amount. It
is awkward to. access data areas in memory not addressable

using this one relocation register value. The value of the

-16 -

reloéat;on'register must be changed for each access to a
different area.

The use of several relocation regiéters can pfovide the
same ability to translate 16-bit addresses into arbitrary
areas of the 22-bit.memory as the paging scheme- The high
o:der bits of the 16-bit address can be used to select a
'relocatioﬁ redister and the low order vbits used as the
displacement to be added to the valuei of the feloéation
register. Relocation registers provide all the features of
a page map when the number . of relocation registers is at
least as large as the number of pagé map entries.

Systems utilizing _reloéation regisgers dsual}y have
only a small number of.them (e.g., the DEC PDP-10 KA-10
processor has only two relocation régisters). With a small
number of relécation registers it is lpossible but still
relatively inéonvenient for a program to access a data base
which is located in a number of pafts of the memory since
the contents of the relocation registers must be changed
~ frequently as data items in different areas of memory are
referenced..

When all data used togethef is located inAno more areas
than there are relocation regisfers, fregquent reloading of

the relocation ‘registers can be avoided. This complicates

the allocation of real memory. When new items are to be

placed in memory ﬁot iny must the required amount of free
memory be found, but it must - be cdntiguous and have the
required proximity to the other data areas with which it is
used. Frequently it will be necessary to do a large amount
of compaction of data in the memory to create the available
space meeting all. the conditions. |

if é large numbef éf relocation registers are.provided;
the cababilities and implementation are very similar to
paginge. Compariﬁg a relocation register syétem with a page
map sysﬁem where the-nhmber of relocation regiéters is equal
to the number of entfies in the page map shows the relation.
Each relocation register (typically implemented as é word of
a fast memory array) corresponds/to an entry in the pagelmap/
(a Qord in the map memory). In both systems the word is
selecfed on the basis of the high order bits of an address.
The. differeﬁce is 4in the way these ‘values are uééd to:
generate the new memory address. The low order bits of the
address would be added td a selected rélocation'registér.
The page'map syStem would -use the low order bits directlyf
and they would be concatenated with the high order bits from
the mdp entry to .form the full address. These methods are
equivalent if the low order bits of the value in the
relocation regiéter are always‘zero. The difference in the

hardware implementation ‘is the requirement for an_adder and

the need for a larger relocation register memory in order to
hold the low order bité.

The reloéation register scheme can be described as a
page mapping scheme in which pages need not be located in
real memory>on address boundaries which are multiples of the
page size. It is questionable whether this added
flexibility ~warrants the slight additional cost of the
hardware. To simplify allocation and use of memory it is
most convienent to allocate the memory in blocks of a fixed
size (page) anyway.

Loading the Page Map

A mechanism must be provided for'the'program'to place
values into the page map table. There are four ways this,
can be accomplished.

1. The instruction set.could include the map entries as

B speéia;ized central p:océss@r registers. For 53'page:
‘map ‘table which is integrated with the central
processor, this is viable. However, +the address
translation is inherently unrelated to the central
processor activity and can just as, well be implemented
separately from the central processor. For a map
facility which is supplied by aﬁofher | vendor,
independence from the central processor is ' important

for two reasons. It simplifies the interface and it

makes. the map more easily adaptable to different

computer s?stems.

2. A second possibility is to brovide a means by which
the map would automatically be loaded with values from
the computer memory, the values having been placed
previously in fixed locations by the progranﬂ While
ghe .hardﬁare to control this automatic 1loading is
relatively complex, the benefits over the program
directly loading the map seem émall.] Either
alternative 3 or' 4 for difectly loading the map is.
acceptable. The choice will’ depend on the particular
minicqmputer.

3. The.memory map can be intetfaced to the 1/0 bus to
allow loading in the same way I/0 is performed. While
the main computer facilities can be the same as I1/0,
: the allfeléctfonié nature of the map will éllow highef
speed operatioﬁ than normal 1/0. The program will
never have to wait for the device to become ready,
complete operations, etc. |

4. Another possibility is to have certain locations in
thé memory address space correspond to‘the map. 'Thus
when the program stores data into these locations
(which would normally be regular memory), the values

will go into the fast memory for the map. For

computers which have a single bus for both I/O devices-
and memory. altefnatives 3 and 4 are equivalent. (All
'I/O devices are addréssed in the same way as memory-)
Where there are separate 1/0 énd memory 5uses. loading
the map via the memory bus instead of the- I/0 bus
avoids the need for interfacing the memory map hardware

to the I/0 bus as well as the memory bus.

NON-LINEAR ADDRESSING

The use of addressing mechanisms where the data in
memory is not randomly addressable through a linear address
space has been considered vefy little. The érganiéation of

most computers 1s based on the wvon Neumann model with

éonsecutive integers used to select the bytes or words of

memory. Notable exceptions have béen Burroughs machines
such as the 5500 and 6500 seriésfwhere many of the prégram’sl
operands are Kkept by the hérdware in a stack structure so
the. program need not be concerned with their address 'in
memory.

Many changes in the way in whi;h computer hardware
provides non-linear addressing to data in main 'memory
involVe the computer instruction set and benfral.processor_
applications. However, there are a number of functions

which can be independent of the central processor and thus

can be used with currently available processors. These can
be implemented by providing a memory system which interfaces
to the central computer in the standard mannér but operates
in modes other than just storing and fétching at locations
specified by a linear address space.

Historically 1linear addréssing came first, and thus
‘became traditional. | While. providing béth linear and
non-linear addressing modes entails somewhat more hardware
ﬁhan simple linear addressing._ the difference is not that
great. Séme very useful non-linear_ addressing facilities
can be easily included with linear addressing by using much
of the circuitry in common with the linear addressing.

Even-thoﬂgh the memdry”may be organized to be addressed
linearly, a relativly small amount of hardware interfacing
the central processor to memory can implement non-linear
address.modés in the:samé manner ﬁhat'a page map:translates
linear address from a virtual address space to a real
aadress space. These facilities are potential products a
memory manufacturer' could Aprovidg as part of itsllmemory
products. The following are some candidates for
inyestigatiqn and possible development. |
Stacks)

One or more locations in the computer's'address space

can be regarded as the top lbcation of a stack which

operates in the following manner. Whenever the computer
stores data at this address, the data is instead placed in
memory at the location specified by another word called the
top of stack pointer- The top of stack pointer is then

automatically adjusted to point to the next word in memory.

Another store will place the new data in the word adjoining

the first“and.again adjust the pointer. When the program
fetches a word from the top of stack location, the last word
stored in the stack is réturned and the pointef adjusted to
the next-to-last word. stored. 'lHence. if another fetch.
follows, the next-to-last word stored will be returned.
Since the last data item stored is returned first and the
first data %tored is returned last, this function is known
as either a last-in-first-out (LIFO) or first-in-last-out
(FILO) stack. Additional means of assuring a program does
not :overfill ' the -Stack and use more thaﬁ the amounf of
memory available or remove items when the stack is empty
enhance thé facility. The area in the memory where the data
in the stack is kept may also be addressable through the
computef's linear address space. If it is not, all accesses
must be on the LIFO basis.

Although the hardware implementation can be as simple
as a counter and some gating, stacks can facilitate

programming in a number of ways. They are useful in many

situations where data is read in the opposite order from

which it was created. Examples include the storing of
return addresses and program context for nested subroutine
calls. The information about an activity can be stacked

while the computer services - higher priority interrupt

activity. Assemblers, compilers, and other processors

utilizé sﬁacké to hold data while they scan ahead to see
what comes next in the input text. A simple hardware stack
will free the programmer from coding software to perform the
function. The hardwére impleméntation will cause the
program to execute faster. In cases where software stacks
are not feasible, hardware implementation will allow
programs to 5ave additional features such as recursion. The
usefulness of hardware stack mechanisms has been known for
vears and several computers, including some minis, have such
hardware incorporated into their mainframé- However}. the
implementation of the stack hardware, especially on
minicomputers, is often not complete particularly with
regard to stack limit checking.
Queues

Another function which can be implemented in the same
way as the stack is the queue. A double ended gqueue (deque)
is like a stack with separate pointers to the top and bottom

of the data storage area. Hence, data items can be added or

removed . from either end. More commonly., only a

first-in-first-out (FIFO) facility is needed so it is only
necessary to add items at one end and remove them at the
other. As with the stack, checks are useful to detect
attempts‘to remove items when the queue is empty or to storé.
more items than can be held in the available memory.
Important applications for queues include maintenance of the
queué of tasks to dispatch in the operating system scheduler
and the buffering of data to or from I/0 devices.

Linked Lists

For many computer programs it is conveﬁient, either
because of the inherent structure of the problem’s data or
as a programming _convehienge td make extensive use of
address pointers ér links. The major advantage of the links
is that they afe easy to manipulate and change. Using
multiple :pointers to a single copy. of a large -data item
eliminates having a Eopy of the data item everywhere it is
relevant. A reference to a data item can be added or
deleted by changing a pointer without moving the whole data
itém- Thé useé of pointers can be.extended to include 1lists
of pointers to pointers (to other pointers fo;‘many levels).
Such structures are known as lists.

Lists of one form or another are used in a wide range

of circumstances from the linking of control blocks in an

operating System to many softing algorithﬁs. For problems
where list structures ére necessary. ianguages such as LISP,
SLIP and L6 have been developed.

The implementation of non-linear addressing facilities
which are designed to operate with pointers‘and lists can
greafly facilitate <calculations with data structures so
organized. Providing these facilities for’ a minicomputer
has several advantages. It reduces the number of computer
instructions needed to access an element of a list. This
makes coding a program easier. It reduces the size of'the
resulting programs and consequent memory requirements.
Also:, since fewer instructions need be executed to perform a
given function, the programg will run faster. The most;
important implication for use on minicomputers is.that the
amount of ‘data a. program may addfess can be extended.
Placing 'responsibility for mﬁch of the handling 6f4 the:
address pointers as part of the computer-memory interface
makes it possible to use fieldé larger than the nornal
16-bit addresses most minicomputers can process. The
computer-memory interface can | hand}e pointers (e.g.,
22-bits) which can address all of real - memory. To
manipﬁlate a iarge pointe; the. cential proceésor.must use
double preﬁision arithmetic. Providing automatic facilities

reduces the number of places this is neceséary and makes the

use of large pointers practical.
Associative Look-up

Another non-linear addressing(technique to increase the
usefulness of memory_is 1ook-up or associative addressing
facilities. A typical use of this capability would be for
the central processor to provide to the memory some data
insteaa of a mémory address. The memory would then compare
this search key with each of a number of data keys. The
data returned to the processor would then be a data item
which the processor had previously associated with the key. °
Both the data keys and .data items can be kept in
conventional memory by giving the computer-memory interface
the ability-to reinitiate memoty cycles until data matching
»the search key is read. More elaborate schemes could allow
the data keys to be kept in faster memory or in an
associative mgmoryfdeéigned to compare ali data keys with
the search key in parallel during one cycie.
| Associative or look-up facilities are useful in
applications such as sort programs, compilers, assemblers,
and information retrieval systems. |
Hashing

Storage organization techniques known as hashing or
scatter storage can be used to speed finding data items when

searching for an item with a particular key. The principle

1

of hashing is to take each data key and perform an operation
such as modulo division which gives a result having a
relatively small number of bits. The particular operarion
is arbitrary but very important. Operations which are even
" simpler than modulo division can be used. The important
properties of this operation are that for a given key value
it aIWays gives the eahe result and that the results are
fairly‘uniformly distributed over the possible results for
typical keys. Use of the ‘hash function on the data keys
allows each to be classified into one of a number of
categories. Keeping all items in the same category either
together in memory or on the same linked list faciiitates a
search since the eeareh key can be hashed and then only' the;
data items of the relevant category searched.

Hashing could be facilitated by the computer-memory
interconﬁeetion as a.repeatabieifpartial scrambling Af the:
address bits. In this mode the program could use a data
item as an address which would be translated into the reel
memory address for the beginning of the data items or list
of data items for the category. Hashing could be implmentea
either separately or in cenjunction with an assoeiative
1ook-ﬁp facility. It is also useful in sort brograms.

compilers, assemblers, and information retrieval systems.

; 428.'—

PROTEC?ION

With increased memory size the probable increase in
program complexity makes memory p;otection an extrgmely
desirable if not mandatory feature. It 1is necessary to
protect the operating system areas from damage by a user
program, inadvertent destruction of executable code mistaken
as a data area, and' in 'multiprogrammihg systems the
destfuction of one program’s data or code by another
program.

The primary protection problem for minicomputers is the
lack (in most minicomputers) of dual-state (supervisor
state/problem state) processors to allow a supervisor
program to control the protection'mechanism- To solve this
problem we have- developed a scheme for implementing a
mapped, problem state mode and an unmapped, supervisor mode
in conjunction with the page 'map .interface between the
central processor and the memory. This mechanism will allow
a'supervisor'program to control the areas accessible by a
problem program and inﬁercept any attempts to ‘'access
prétected areas. .

While the wuse of keys associated w;th bloéks of
phyéical memory 1is sufficient to specify read and write
protections for blocks of memofy. in some cases other

techniques can be useful. When there are more programs than

available Xeys, the use of keys associated with physical
blocks of memory becomes cumbersome since the keys in memory
must frequently be changed when the processor 1is switched
from execution of one program to another.

A page map itself is a powerful protection mechanism

since the contents of the page map specify what areas of

memory'a brogfam can access. Those areas of memory which
are not addressable through the page map cannot be read or
written by the brogram- The addition of a protection bit
for each entry of - the - pagev map allows selective
specification of read or write access for each of the pages
which is accessible through the page map.

. finai protection - technique is the use of 1limit
registers. A 1limit register can be used to specify a
maximum displacement allowed from a relocation register.
Limit registers can also be used to limit thé bounds of iist

addresses; stacks and queues, or look-up areas.

I/0 AND DIRECT MEMORY ACCESS

The use of I/0 devices designed to fetch or store data
directly from memory is affected since the I/0 controllers
have been designed to access only a small amount of memory.
In larger computers designed for large memory address spaces

an unmapped address 1in the real memory address space 1is

usually provided to the I/0 controller. This will not work

with a large amount of memory on minicomputers since the I/0
controllers were not designed to handle a 1large address.
One solution is to only allow 1/0 into a relatively small
fixed area of memorf (e.g., the number of locations ét the
bottom o0f memory corresponding to the original lcomputer
‘sizé)-. This data must then be moved by the central
processor to or f:om the other areas of memofy where it is
used.

A more pleasing alternative<ié to have I/0 done through
a page map. Since it is important to be able to have I/0 as
independenf as possible.for.the I/0 devices and processor -
there should be two maps. However, much of the control
circuitry can be shared. Thus some-entries will be for ﬁse
by the central processor and others by the I1I/0 devices.
Essentially the only additional cost for the I/0 mapping is
the additional fasf memory elements to hold the additioﬁal

map entries.

PROGRAMMING SUPPORT

A primary criterion in this analysis of the use of
large memory on minicomputers is to permit existing programs
to run unaltered. Additional_advantages can be achieved by -

tailoring software to the potential of the larger memory

- 31 -

capacity. Although ‘user programs can run unchanged,
alterations to algorithms to make use of larger memory and‘
non-linear . addressing facilities could improve their
performance. The other area of improvement is the system
‘support software. Additional operating system type
functions are ‘potentially very useful. For minicomputers
having operating systémé these functions will enhénce their
'performénce."Where there is no operating system they can
constitute a sihplé pfogram support kernel. The additional
memory Will make it feasible to run more than one program at
a time in many cases. To support this, context switching
software to keep track of the progress of multiple.programs
is required. This involyes memory allocation, map se£up'for/
addressing, protection setup, and handling of protection
violations. While the impetus for using a large memory on a
minicompﬁter is to retain most-of the data required iﬁ‘main:
memory, the paging box hardware permits easy implementation

of demand paging. In some circumstances this may be useful.

MECHANTCAL AND ELECTRICAL

There are a number of mechanical and electrical details
worth.noting at this point. Good solutions to the problems
discussed previously necessitate the use- of a moderate

amount of electronic circuitry. Thus to connect an existing

- 32 -

minicomputer with a traditionally organized memory an

interface unit between them is needed. It seems reasonable
that a single basic interface design could be adapted for
use with a variety of minicomputers. Forethought to this
problem could allow the special Arequireﬁents of each
computer to be met with only a specialized cable and
apprqpriate jumpers in the inferface unit.

The mechanical considerations include the interface
packaging and its 1location in the same cabinet with the
memory, minicomputer; dr separateiy. Power cables, and
signal cables to both the memory and minicomputer must be
provided.

'Electrical considefations include both the logic
levels, cable terminations, and signal protécols-
Adaptability to a variety of minicomputers requires
considerable' flexibility in édapating ﬁo "different
synchronous or asynchronous timings of the computer memory

bus.

III. INTERFACE DESCRIPTION

The previous sections of this report have discussed in
general the capabilities and the problems of utilizing a
large amount.of memoryY on a minicomputer. The following is
a proposed implementation to demonstrate its usefulness and
provide a vehicle for'fﬁrther exploration. All of.the ideas
discusséd previously are not included in this design. The
hardware is inteﬁded to be relatively easy to alter to allow
experimentation with the various ideas.

" The interface will allow the Lockheed Electronics SUE
minicomputer to utilize Data Products 6361 large cére store
(LCS). The SUE computer 1s a relatively new design of/
moderate speed which is typical of other 16-bit single bus
architecture machines (pDP-11, etc.). Although the
interfacé.will-be-designed specifically-to operate wifﬁ the:
SUE, with slight modification and new cables it will operate
with other machines such as the PDP-11, or even with
machines having separate memory and I/O buses (e.g., Varian
620 or Data General Nova)-.

The 6361 LCS is 1.8 microsecond core memory which can
be accessed in either 32 of 64 bit wide modes. Originally

designed for use with IBM 360°s as bulk core storage, it

includes a parity bit for each 8-bit byte and a 8-bit

protection key for each 2 Kkilobyte block.
Basic Operation

The basic operation of the memory interface is shown in

Figure 1.
SUE COMPUTER
16 bit address bus . . 16 ‘-bit data bus
. 3 bits
4 bits 1
MAP. ' ! DATA SELECTOR
i 1 9 pbits

10 bits

A g

19 bit address . . 64 bit 64 bit .
L o s : g data out data in
LCS MEMORY ’

Figure 1. LCS memory mapping interface.

The address paths ére shown at the left and the data paths
at the right. ~For each memory operation the SUE processor
provides a 16-bit address to the interface unit. The high

order four bits are used to select one of 'the sixteen

- 35 -

entfies in the paée map . The 10-bit entry selected is used
as the high order bits of the address given to the LCS. The
low order nine bits of the 19-bit address of a doubleword
given to the LCS are taken directly from the SUE’s 16-bit
address. The final part of the addressing logic is the use
of the low ofder three bits of the SUE’s address by the data
selector. On a read opeiatioﬁ the data seléctor uses these
bitslto select the proper bits from the LCS bus out iineé
for either a byte or 16-bit word fetch. These values are
placed onl the SUE bidirectional aata bus. On a write
operatioﬁ the data selector places the contents of the SUE
data bus on the correct LCS data.in lines and asserts the
propexr mark lineé i ole) wriie into the appropriate LCS memory

bytes.

Mapped/Unmapped Modes

The memofy interface contains ~a - flip-flop” which

indicates operation in the mapped-problem state mode or in

- the unmapped-supervisor mode. In- the mapped mode the

interface' operates -‘as described _in the Dbasic opération
section. In the unmapped mode the page map is bypaséed and
addresses will refer to the first sixteen blocks. sf real
memory except for the special address described in the
following. One special address enables the supefvisor to

address the mode flip-flop and thereby set thg system into

mapped 'mode- To allow th_e processor a chan;e to set the
proper mapped address in the program counter this action
will not take effect for three memory cycles. Note that a
user (problem) program cannot directly affect the map mode
since the special map location is not.in its address space.

Loading the Map

Special addresses are rebdgnized by thé interface unit
when operating in the unmapped-supervisor mode. Data stored
into these 1locations will be placed in the various entries
of the map. |

Protection Violations

Each entry in the map includes, in addition to the
10-bit real page7address{va‘bit which specifies whether or
not a prdgram maf write on that page. If a program in the
mapped mode attempts to write in a write-protected location,
access a;logical addfess'less.thaﬁ 128 (decimal), or access
the second page of réal memory., the interface recognizes a
pfotection violation. When a protection violation occurs
the interface will rinitiate an interrupt and switph to
unﬁapped mode ‘operation- Thus reéd only access is granted
to a page of memoiy by setting the appropriate map bit. "No
accéss" through a map entry is set by pointing that entry to
the second real memory page. Since real mémory page 2 will

most likely hold supervisor code it will not need to be

referenced in mapped mode. _Siﬁce interrupt vectors are kept
in low memory, the special handling of references to the
first 128 locations provides a convenient means of causing a
switch to the unmapped mode when an interrupt occurs. ,This
is necessary since in a multiprogramming system the
interrupt may signal completioﬁ of an I/0 operation started
by'a different program than tﬁe one executiné at the time of
the interrupt. This special convention also allows programs
to call the supe;visor and enter unmapped mode by
referenciné one of the low locations.

Clock and Watchdogq Timer

To enéble timeslicing in a time—sharing environment a
clock interruptsnexecutioﬁ'in the mapped mode fifty times a
second. While many minicomputers already have such a clock,
this is implemented in the memory interface to serve as a
watchdog.timér- Iff:after the-membry'interface unit 'signals
a timer interupt to the central processor, the interrupt
aées not occur within a reasonably short period of time,
then the user program‘has left thg interrupts disabied or
possibly even issued a hait instruction. If set to do so.
the memory interface: unit will provide automatic system

recovery by resetting and restarting the computer.

