
UC Irvine
ICS Technical Reports

Title
The megabyte mini

Permalink
https://escholarship.org/uc/item/9r27h7gn

Authors
Hopwood, Gregory L.
Loomis, Donald C.
Feldman, Julian

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9r27h7gn
https://escholarship.org
http://www.cdlib.org/

THE MEGABYTE MINI

Gregory L. Hopwood
Donald C, Loomis

Julian Feldman

Technical Report No. 54
January 1974

••'osce; !his Material
be protected

Copyright Law
(Title 17 u.SC)

A Proposal to Attach LCS to Minicomputers

Copyright 1974

Department of Information and Computer Science
University of Cailifornia, Irvine

Irvine, California
92717

January 7, 1974

SUMMARY

The major difference between minicomputers and larger

computers is a state of mind* Part of that state of mind is

the notion that minicomputers have small memories. Given

current technology, there are no technical reasons why

minicomputers cannot have large main memories. In this

proposal we discuss the issues involved in configuring large

memory (megabyte or larger) minicomputers.

In the first section of the proposal, we review some of

the concepts associated with memories and some of the

pressures for expanding primary memories. The possibility

of replacing- the primary memory and swapping subsystem of a

multi—user timesharing mini with an extended core memory is

discussed in particular detail.

The; technical issues in. developing the megabyte mini

are presented in the second section of the proposal.

Potential problems and means for solving them are discussed,

and ways of organizing non-conventional memory addressing

are introduced.

The technical description of a controller for the

megabyte memory is presented in the third section.

The megabyte mini has three major markets. The first

is for applications which require or can economically use

- 1 -

large memory* The second is for systems v/hich now use

modest size core memories and swapping devices. At today s

LCS prices/ it is possible to replace such configurations

with megabyte memories at less cost with better performance

and greater reliability. The third market is one in which

modifications to the memory controller could significantly

improve performance. This market is sometimes referred to

as the "smart memory" market.

Just as the small computer with a large file system

configuration is becoming popular/ we believe that there is

a substantial market for minicomputers with megabyte or

larger memories.

- 2 -

I. THE LARGE MEMORY MINICOMPUTER

The problem* briefly stated* is that minicomputers

normally are restricted in the amount of main memory which

they can address by the small number of bits available in a

memory word. .The most common word size for minicomputers is

sixteen bits. This allows the computer to generate* at

most* 2^^ or 65,535 (64K) different addresses. Many

minicomputers use a bit in the address word to indicate

indirect addressing and/or byte addressing, and thus the

number of words which they can address directly is reduced

by a factor, of two to 32K. (Henceforth, memory sizes will

be in words unless specified otherwise.)

The set of words (or data items) addressable by a

program is called its logical (or virtual) address space.

The set of words of main memory actually attached to the

machine determines its physical address space. The size of

the logical address space determines the maximum size of a

program which can theoretically be run on the machine* and

(in the case of multiprogramming) the size of the physical

address space practically limits the program size and

determines the maximum number of jobs of a given size which

can reside in the main memory at one time. Even with a full

complement of main memory (i.e.* the logical address space

- 3 -

equal to the physical address space), most 16-bit

minicomputers are limited to a maximum of 32K-64K of program

and data storage. ,

In the past there was little reason to put more than

32K-64K of core memory on minicomputers. A relatively small

memory was sufficient for most tasks for which minicomputers

were used. Besides, since the machine could not address any

more memory, an increase in memory size without a convenient

hardware mechanism for increasing the addressing capability

of the machine would be useless. This paper discusses such

an enhancement feature.

Minicomputers today are only small in physical size

compared with their giant counterparts of fifteen to twenty

years ago. It is common for minicomputers to be able to

perform more than one million instructions per second. This

level of computational power has opened up new "markets for-

minicomputers, markets formerly the realm of much" more

expensive machines.

Minis are not only being used in their traditional

roles as controllers for machinery, communications

processors, front-ends, or laboratory data-gatherers, but

also as the central machine in time-sharing systems,

graphics display systems, and general accounting systems.

Many of these tasks involve multiprogramming with foreground

- 4 -

and background partitions, terminal communication, and

real-time response rates to remote experiments. These

sophisticated tasks require the services of an operating

system for the scheduling of resources. If the available

core storage on the machine is 32K, and 16K of that is used

for the operating system, then the effective size of the

machine as far as the user is concerned is 16K. The more

users to be kept in core at the same time, the smaller share

of memory each one can occupy.

For time-sharing applications involving multiple users

on a conventional mini not only is the job size of a user

severely limited, but the number of user jobs which can be

held in main memory concurrently is also limited. In a

single user system, where the program is too large to fit

into memory at one time, a method for running the program is

to break; it into independent parts (overlays) and transfer

them to and from main memory as they are needed via a disk

or drum. In a multi-user system, the operating system can

manage the main memory use and swap each job or part of a

job in and out of memory as needed. Of course, this

swapping requires a substantial amount of system overhead

and additional equipment when compared to a system which

could keep all of its jobs in core at once.

The demand for increased main memory capacity for

- 5 -

minicomputers has led to the recent introduction to the

marketplace of 16-bit machines with a memory enhancement

feature called a memory map. The hardware box essentially

translates (maps) the logical addresses generated by the

machine into specific areas of a large core memory by

extending the length of the addresses put on the memory bus

to the length necessary for addressing the physical address

space of the large core store (LCS). For a byte-addressed

four million byte memory this would be twenty-two bits. The

bits added to the 16-bit address to form the 22-bit address

are selected by the mapping hardware from a set of hardware

registers called the memory map. (The map registers, are

loaded and changed by a supervisor program.) Once the new

22-bit address is generated by the mapping hardware# it is

presented to the memory address register of the LCS for a

memory cycle. Extension of the mapping concept to include

memory protection is very simple and is almost always

included in a map system.

Table 1 lists those minicomputer manufacturers who are

currently offering memory map options on their machines.

- 6 -

Table 1. Minicomputer manufacturers who have announced a
16-bit machine with a memory mapping feature.

Manufacturer Model Max Core

DEC PDP-11/40-45 124K

Data General Nova 840 128K

General Auto. SPC-16/65 128K

Prime Comp. Prime 300 256K

Varian Data V-70 series 256K

Table 2 lists those manufacturers of larger computers

who have used the memory mapping concept in their machines.

Most of these machines have a very large logical address

space relative to their physical address space because they

have addresses of up to twenty-four bits or more in length*

Their map facilities were introduced to allow paging of main

memory to secondary storage. Table 2 is included to

indicate that mapping concepts are not a new , hardware

invention# but have been around in the large machines for

about fifteen years. Primitive mapping schemes were

introduced with memory bank selection registers even earlier

than the machines mentioned.

- 7 -

Table 2., Manufacturers of large machines using a mapping
feature.

Manufacturer Model Date Delivered

Ferranti Atlas 1963

Burroughs 5500 1965

6500 1969

XDS , 940 1966

Sigma 7 1968

GE 645(MULTICS) 1966

. IBM 360/67 1967

370 1972

RCA Spectra 70/45 1968

DEC KI-10 1972

The demand for large main memory capacity on

minicomputers will increase as memory mapping hardware

becomes available and the cost of core or semiconductor

memory becomes lower. Also a substantial number of the

minicomputer installations presently in existence v;ould be

interested in an add-on memory map and bulk core product

that could be field-installed on a machine that was not

originally designed to interface with such a system. Users

of newer computers which have a memory map capability but

who did not order the option would be potential customers

for a bulk memory system which could be offered at a lower

price than that which could be bought from the manufacturer.

Also, minicomputer memory sizes on the order of a megabyte

or more are not being offered by the mainframe

manufacturers. Stores of this size are common, however, in

- 8 -

the 360/370 add-on market. These stores or the technology

used to create them could be adapted easily to provide

multi-megabyte minicomputer memory systems.

Availability of LCS memory systems for minicomputers

causes certain interesting economic and performance

questions to arise when one attempts to configure a

mini-system for .tasks which are limited by main memory size.

The suggested equipment for a DEC PDP-11/45 system capable

of supporting twenty-four BASIC language time-sharing users

(RSTS/E) includes 56K words of core memory and a swapping

subsystem. Assuming user areas of a fixefl size of 8K each

reside in the 56K of memory# at most seven user programs may

be resident in core at any one time. Seventeen users must/

be on the swapping device.

If the core memory and swapping device were replaced

with a megabyte of LCS with mapping capability; all

twenty-four 8K users could reside in memory at once. In a

megabyte memory twenty-four resident users of 8K each would

occupy 24x8K=192K words and leave 512K-192K=320K words

unused. With such an LCS system the machine could keep all

thirty-two user programs of a total of 16K words each (the

maximum program size on the PDP-11/45 system) in memory at

one time with no swapping whatsoever (32xl6K=512K words).

An equivalent DEC system is not available. The largest main

- 9 -

memory configuration that may be put on the PDP-11/40-45

machines is 124K words. This would allov/ only seven 16K

users in core at once.

The obvious advantages of an LCS system over a swapping

system such as the PDP-11/40-45 system are:

1. elimination of the swapping device which is more

prone to mechanical and electronic failure than the

LCS;

2. elimination of swapping which reduces supervisor

complexity and overhead and reduces non-essential

memory accesses;

3. increase in the number of resident users and/or

program size.

For systems not available with a memory map option, the

availabilty of an LCS system provides a significant hardware

upgrade not available before. In addition, as will be

discussed later, the LCS could provide new non-linear

mapping functions which are often simulated in software.

Examples are the addressing of stacks, lists, and queues,

special table lookup procedures, associative addressing, and

hashing functions.

Other possible arguments and counterarguments which

might be postulated regarding the addition of an LCS system

to a minicomputer are listed below.

- 10 -

1. Mainframe manufacturer reluctance to maintain

system—many minicomputer owners maintain their own

systems; maintenance strategies similar to those used

in the 360/370 add-on memory market can be used in the

mini LCS market.

2. Compatibility with map and protection features (if

any) of manufacturer are necessary so manufacturer's

software works--such compatibility is not needed when

using an LCS system on a machine which was not designed

for a mapped memory; user-owned software can be

modified to use the new - features of the LCS memory

system.

^ 3. Increase in cost over standard system—the cost of/

an LCS system must be considered in relation to the

equipment which it replaces and to any additional

capability it .may provide. On the 24-user PDP-11

system the DEC memory* memory map* and the swapping

discs and controller would cost about $60,000 using

dec's new (January 197.4) 16K memory board prices. The

entire system configuration would cost between $150,000

and $180,000. including the recommended peripherals and

twenty-four terminal devices. A megabyte of DEC memory

(if you could put it on their PDP-11 machine) would

cost about $200,000. This means that a megabyte LCS

- 11 -

system selling for between $50#000 and $100#000 would

be an attractive economic alternative as well as

quadrupling the available physical address space of the

machine.

4. Decreased memory speeds of the LCS causes programs

to run slower—LCS memories may be constructed of

slower components than manufacturer supplied smaller

memorieJs in order to reduce the cost of the unit*

However# with the addition of a semiconductor cache

memory (high speed buffer between the LCS memory and

the central processor) this speed differential can be

eliminated and the LCS system could possibly run faster

than the standard core available from the mainframe

manufacturer. The lack of swapping decreases the

number of unproductive memory cycles needed to run

.programs# and could increase the effective job

throughput.

- 12 -

II. DESIGN CONSIDERATIONS

The use of a large amount of memory on a minicomputer

requires the solution of a number of problems and evaluation

of a number of tradeoffs. The importance of these problems

is not that they are obstacles to use of large amounts of

memory on minicomputers but that they are . questions for

which the best solutions are not obvious. Connecting a

large amount of memory to a minicomputer will provide an

opportunity for evaluation, of the relative merits of

alternative solutions to the tradeoffs. Each of the

following sections summarizes a potential obstacle and some

alternative solutions.

LINEAR ADDRESSING

.Providing a, linear address space which allov/s programs

to address any of the memory locations using sequential

addresses for instruction execution and data references is

important to allow the use of existing computer programs.

While memory could be treated as an external storage device

similar to drum storage# the full effectiveness and

efficiency of fast, random access storage can best be used

by providing a means of addressing it for execution and

operand reference in the same way as the conventional

- 13 -

minicomputer memory.

Because of the importance of this requirement» this

proposal concentrates on evaluating alternatives for

providing this linear addressing mechanism. The use of a

paging strategy has been selected as the most promising.

The fundamentals of a paging mechanism have been described

previously. Details on the operation of the proposed

implementation are given in the memory interface

specification at the end of this report. For comparison

with other mechanisms which have been rejected as less

suitable, the operation of paging is summarized here.

The problem to be overcome in all of the solutions is

to provide a means of addressing all of a large amount of

memory using the address bits of the minicomputer.

Minicomputers normally have only as many address bits as the

word-size—typically sixteen. To address four million bytes

of memory requires twenty-two bits. Hence a useful means

must be provided to convert the 16-bit address to a "22-bit

address.

Paging

Paging has been used in larger computers (e.g., Atlas,

SDS 940, IBM 360/67, 370) to provide a mapping between a

virtual (logical) address space and real memory address

space. As is indicated in Table 1 minicomputer

- 14 -

manufacturers are now beginning to market small machines

with such a mapping capability. In a typical paged system

the high order four bits of the 16-bit address may be used

to address a very fast memory which would give the 10 high

order bits of a 22-bit address. The low order twelve bits

of the 16-bit address would be used directly as the low

order twelve bits of the 22-bit memory address. Based on

the values loaded in the fast memory (map)» the high order

four bits of the 16-bit address would specify a 4K byte

(word) "page" in the memory. The low order twelve bits

would directly specify the desired byte (word). Because

there are four bits to select a word in the map# a program

in the minicomputer can directly address any of sixteen/

pages which have entries in the map. • By changing the

entries in the map the program can gain access to any of the

locations in the memory.

Extension Registers

Some computers (e.g.* PDP-1 and SDS 930) have used

extension registers to develop additional address bits.

"Bank switching" on computers such as the PDP-8 are

extension register implementations. When the high order

bits of the short address are zeros, the short address is

extended on the left with zeros for the required longer

memory address. Thus the program can directly address

- 15 -

locations at the bottom of memory in the normal manner. To

gain access to other locations the extension registers are

used.

When the high order bits of the short address are not

zerof they specify an extension register from which the high

order bits of the 22-bit address are to be taken. The

extension register technique is equivalent to a page map

except the map entry used when the high order bits of the

short address are all zeros cannot be changed and always

specifies the first page in memory. The extension registers

are equivalent to the other entries in a map. Since it is

slightly more flexible . and can be implemented just as

easily^ the full page map is a more desirable alternative.

Relocation Registers

Another alternative for developing 22-bit addresses

from:16-bit addresses is to provide a relocation register

which will be loaded with a value to be added to every

16-bit address to give the required 22-bit address. By

placing the appropriate value in the relocation register the

16-bit address could be adjusted to reference any portion of

the memory. When only one relocation register is used/ all

of the addresses will be relocated by the same amount. It

is awkward to access data areas in memory not addressable

using this one relocation register value. The value of the

- 16 -

relocation register must be changed for each access to a

different area.

The use of several relocation registers can provide the

same ability to translate 16-bit addresses into arbitrary

areas of the 22-bit memory as the paging scheme. The high

order bits of the 16-bit address can be used to select a

relocation register and the low order bits used as the

displacement to be added to the value of the relocation

register. Relocation registers provide all the features of

a page map when the number . of relocation registers is at

least as large as the number of page map entries.

Systems utilizing relocation registers usually have

only a small number of them (e.g.» the DEC PDP-10 KA-10

processor has only two relocation registers). With a small

number of relocation registers it is possible but still

relatively inconvenient for a program to access a data base

which is located in a number of parts of the memory since

the contents of the relocation registers must be changed

frequently as data items in different areas of memory are

referenced.

When all data used together is located in no more areas

than there are relocation registers, frequent reloading of

the relocation registers can be avoided. This complicates

the allocation of real memory. When new items are to be

- 17 -

placed in memory not only must the required amount of free

memory be found# but it must be contiguous and have the

required proximity to the other data areas v/ith which it is

used. Frequently it will be necessary to do a large amount

of compaction of data in the memory to create the available

space meeting all.the conditions.

If a large number of relocation registers are provided#

the capabilities and implementation are very similar to

paging. Comparing a relocation register system with a page

map system where the number of relocation registers is equal

to the number of entries in the page map shows the relation.

Each relocation register (typically implemented as a word of

a fast memory array) corresponds.to an entry in the page map-

(a word in the map memory). In both systems the word is

selected on the basis of the high order bits of an address.

The difference is in the way these values are used to

generate the new memory address. The low order bits of the

address would be added to a selected relocation register.

The page map system v;ould use the low order bits directly

and they would be concatenated with the.high order bits from

the map entry to form the full address. These methods are

equivalent if the low order bits of the value in the

relocation register are always zero. The difference in the

hardware implementation is the requirement for an adder and

- 18 -

the need for a larger relocation register memory in order to

hold the low order bits.

The relocation register scheme can be described as a

page mapping scheme in which pages need not be located in

real memory on address boundaries which are multiples of the

page size. It is questionable whether this added

flexibility warrants the slight additional cost of the

hardware. To simplify allocation and use of memory it is

most convienent to allocate the memory in blocks of a fixed

size (page) anyway.

Loading the Page Map

A mechanism must be provided for the program to place

values into the page map table. There are four ways this,

can be accomplished.

1. The instruction set could include the map entries as

specialized central processor registers. For a page

map table which is integrated with the central

processor# this is viable. However, the address

translation is inherently unrelated to the central

processor activity and can just as well be implemented

separately from the central processor. For a map

facility which is supplied by another vendor#

independence from the central processor is important

for two reasons. It simplifies the interface and it

- 19 -

makes the map more easily adaptable to different

computer systems.

2. A second possibility is to provide a means by which

the map would automatically be loaded with values from

the computer memory, the values having been placed

previously in fixed locations by the program. While

the hardv/are to control this automatic loading is

relatively complex, the benefits over the program

directly loading the map seem small. Either

alternative 3 or 4 for directly loading the map is

acceptable. The choice will' depend on the particular

minicomputer.

3. The memory map can be interfaced to the I/O bus to

allow loading in the same way I/O is performed. V7hile

the main computer facilities can be the same as I/O,

the all electronic nature of the map will allow higher

speed operation than normal I/O. The program will

never have to wait for the device to become ready,

complete operations, etc.

4. Another possibility is to have certain locations in

the memory address space correspond to the map. Thus

when the program stores data into these locations

(which would normally be regular memory), the values

will go into the fast memory for the map. For

J

- 20 -

computers which have a single bus for both I/O devices

and memory# alternatives 3 and 4 are equivalent. (All

I/O devices are addressed in the same way as memory.)

Where there are separate I/O and memory buses# loading

the map via the memory bus instead of the I/O bus

avoids the need for interfacing the memory map hardware

to the I/O bus as v^ell as the memory bus.

NON-LINEAR ADDRESSING

The use of addressing mechanisms where the data in

memory is not randomly addressable through a linear address

space has been considered very little. The organization of

most computers is based on the von Neumann model with

consecutive integers used to select the bytes or words of

memory. Notable exceptions have been Burroughs machines

such as the 5500 and 6500 series where many of the program's

operands are kept by the hardware in a stack structure so

the program need not be concerned with their address in

memory.

Many changes in the way in which computer hardware

provides non-linear addressing to data in main memory

involve the computer instruction set and central processor,

applications. Hov/ever# there are a number of functions

which can be independent of the central processor and thus

-21 -

can be used with currently available processqrs. These can

be implemented by providing a memory system which interfaces

to the central computer in the standard manner but operates

in modes other than just storing and fetching at locations

specified by a linear address space.

Historically linear addressing came first# and thus

became traditional. While providing both linear and

non-linear addressing modes entails somewhat more hardware

than simple linear addressing# the difference is not that

great. Some very useful non-linear addressing facilities

can be easily included with linear addressing by using much

of the circuitry in common with the linear addressing.

Even- though the memory may be organized to be addressed

linearly# a relativly small amount of hardware interfacing

the central processor to memory can implement non-linear

address.modes in the same manner that a page map translates

linear address from a virtual address space to a real

address space. These facilities are potential products a

memory manufacturer could provide as part of its memory

products. The following are some candidates for

investigation and possible development.

Stacks

One or more locations in the computer's address space

can be regarded as the top location of a stack which

- 22 -

operates in the following manner. V/henever the computer

stores data at this address, the data is instead placed in

memory at the location specified by another word called the

top of stack pointer. The top of stack pointer is then

automatically adjusted to point to the next word in memory.

Another store will place the new data in the word adjoining

the first and again adjust the pointer. V7hen the program

fetches a word from the top of stack location, the last word

stored in the stack is returned and the pointer adjusted to

the next-to-last word stored. Hence, if another fetch

follows, the next-to-last word stored will be returned.

Since the last data item stored is returned first and the

first data stored is returned last", this function is known

as either a last-in-first-out (LIFO) or first-in-last-out

(FILO) stack. Additional means of assuring a program does

not :Overfill the stack and use more than the amount of

memory available or remove items when the stack is empty

enhance the facility. The area in the memory where the data

in the stack is kept may also be addressable through the

computer's linear address space. If it is not, all accesses

must be on the LIFO.basis.

Although the hardware implementation can be as simple

as a counter and some gating, stacks can facilitate

programming in a number of ways. They are useful in many

- 23 -

situations , where data is read in the opposite order from

which it was created. Examples include the storing of

return addresses and program context for nested subroutine

calls. The information about an activity can be stacked

while the computer services higher priority interrupt

activity. Assemblers, compilers, and other processors

utilize stacks to hold data while they scan ahead to see

what comes next in the input text. A simple hardware stack

will free the programmer from coding software to perform the

function. The hardware implementation will cause the

program to execute faster. In cases where software stacks

are not feasible, hardware implementation will allow

programs to have additional features such as recursion. The

usefulness of hardv/are stack mechanisms has been known for

years and several computers, including some minis, have such

hardv/are incorporated into their mainframe. However, the

implementation of the stack hardware, especially on

minicomputers, is often not complete particularly with

regard to stack limit checking.

Queues

Another function which can be implemented in the same

way as the stack is the queue. A double ended queue (deque)

is like a stack with separate pointers to the top and bottom

of the data storage area. Hence, data items can be added or

- 24 -

removed . from either end. More commonly, only a

first-in-first-out (FIFO) facility is needed so it is only

necessary to add items at one end and remove them at the

other. As with the stack, checks are useful to detect

attempts to remove items when the queue is empty or to store

more items than can be held in the available memory.

Important applications for queues include maintenance of the

queue of tasks to dispatch in the operating system scheduler

and the buffering of data to or from I/O devices.

Linked Lists

For many computer programs it is convenient, either

because of the inherent structure of the problem's data or

as a programming convenience to make extensive use of

address pointers or links. The major advantage of the links

is that they are easy to manipulate and change. Using

multiple .pointers to a single copy, of a large data item

eliminates having a copy of the data item everywhere it is

relevant. A reference to a data item can be added or

deleted by changing a pointer without moving the whole data

item. The use of pointers can be extended to include lists

of pointers to pointers (to other pointers for many levels).

Such structures are known as lists.

Lists of one form or another are used in a wide range

of circumstances from the linking of control blocks in an

- 25 -

operating system to many sorting algorithms. For problems

where list structures are necessary, languages such as LISP,

SLIP and L^ have been developed.

The implementation of non-linear addressing facilities

which are designed to operate with pointers and lists can

greatly facilitate calculations with data structures so

organized. Providing these facilities for a minicomputer

has several advantages. It reduces the number of computer

instructions needed to access an element of a list. This

makes coding a program easier. It reduces the size of the

resulting programs and consequent memory requirements.

Also, since fewer instructions need be executed to perform a

given function, the programs will run faster. The most/

important implication for use on minicomputers is that the

amount of data a. program may address can be extended.

Placing responsibility for much of the handling of the

address pointers as part of the computer-memory interface

makes it possible to use fields larger than the normal

16-bit addresses most minicomputers can process. The

computer-memory interface can handle pointers (e.g.,

22-bits) which can address all of real memory. To

manipulate a large pointer the central processor must use

double precision arithmetic. Providing automatic facilities

reduces the number of places this is necessary and makes the

- 26 -

use of large pointers practical-

Associative Look-up

Another non-linear addressing technique to increase the

usefulness of memory is look-up or associative addressing

facilities. A typical use of this capability would be for

the central processor to provide to the memory some data

instead of a memory address. The memory would then compare

this search key with each of a number of data keys. The

data returned to the processor would then be a data item

which the processor had previously associated with the key.

Both the data keys and data items can be kept in

conventional memory by giving the computer-memory interface

the ability to reinitiate memory cycles until data matching

the search key is read. More elaborate schemes could allow

the data keys to be kept in faster memory or in an

associative memory designed to compare all data keys with

the search key in parallel during one cycle.

Associative or look-up facilities are useful in

applications such as sort programs* compilers, assemblers,

and information retrieval systems.

Hashing

Storage organization techniques known as hashing or

scatter storage can be used to speed finding data items when

searching for an item with a particular key. The principle

- 27 -

of hashing is to take each data key and perform an operation

such as modulo division which gives a result having a

relatively small number of bits. The particular operation

is arbitrary but very important. Operations which are even

simpler than modulo division can be used. The important

properties of this operation are that for a given key value

it always gives the same result and that the results are

fairly uniformly distributed over the possible results for

typical keys. Use of the hash function on the data keys

allows each to be classified into one of a number of

categories. Keeping all items in the same category either

together in memory or on the same linked list facilitates a

search since the search key can be hashed and then only the/

data items of the relevant category searched.

Hashing could be facilitated by the computer-memory

interconnection as a repeatable» partial scrambling of the

address bits. In this mode the program could use a data

item as an address which v/ould be translated into the real

memory address for the beginning of the data items or list

of data items for the category. Hashing could be implmented

either separately or in conjunction with an associative

look-up facility. It is also useful in sort programs#

compilers# assemblers# and information retrieval systems.

- 28 -

PROTECTION

With increased memory size the probable increase in

program complexity makes memory protection an extremely

desirable if not mandatory feature. It is necessary to

protect the operating system areas from damage by a user

program/ inadvertent destruction of executable code mistaken

as a data area/ and in multiprogramming systems the

destruction of one program's data or code by another

program.

The primary protection problem for minicomputers is the

lack (in most minicomputers) of dual-state (supervisor

state/problem state) processors to allow a supervisor

program to control.the protection mechanism. To solve this

problem we have developed a scheme for implementing a

mapped/ problem state mode and an unmapped/ supervisor mode

in conjunction with the page map interface between the

central processor and the memory. This mechanism will allow

a supervisor program to control the areas accessible by a

problem program and intercept any attempts to access

protected areas.

While the use of keys associated with blocks of

physical memory is sufficient to specify read and write

protections for blocks of memory/ in some cases other

techniques can be useful. When there are more programs than

- 29 -
I

I

available keys, the use of keys associated v/ith physical

blocks of memory becomes cumbersome since the keys in memory

must frequently be changed when the processor is switched

from execution of one program to another.

A page map itself is a powerful protection mechanism

since the contents of the page map specify what areas of

memory a program can access. Those areas of memory which

are not addressable through the page map cannot be read or

written by the program. The addition of a protection bit

for each entry of the page map allows selective

specification of read or write access for each of the pages

which is accessible through the page map.

A final protection technique" is the use of limit

registers. A limit register can be used to specify a

maximum displacement allowed from a relocation register.

Limit registers can also be used to limit the bounds of list

addresses, stacks and queues, or look-up areas.

I/O AND DIRECT MEMORY ACCESS

The use of I/O devices designed to fetch or store data

directly from memory is affected since the I/O controllers

have been designed to access only a small amount of memory.

In larger computers designed for large memory address spaces

an unmapped address in the real memory address space is

- 30 -

usually provided to the I/O controller. This will not work

with a large amount of memory on minicomputers since the I/O

controllers were not designed to handle a large address.

One solution is to only allow I/O into a relatively small

fixed area of memory (e.g., the number of locations at the

bottom of memory corresponding to the original computer

size). This data must then be moved by the central

processor to or from the other areas of memory where it is

used.

A more pleasing alternative is to have I/O done through

a page map. Since it is important to be able to have I/O as

independent as possible for the I/O devices and processor

there should be tv;o maps. Hov/ever» much of the control

circuitry can be shared. Thus some entries will be for use

by the central processor and others by the I/O devices.

Essentially the only additional cost for the I/O mapping is

the additional fast memory elements to hold the additional

map entries.

PROGRAMMING SUPPORT

A primary criterion in this analysis of the use of

large memory on minicomputers is to permit existing programs

to run unaltered. Additional advantages can be achieved by

tailoring software to the potential of the larger memory

- 31 -

capacity. Although user programs can run unchanged#

alterations to algorithms to make use of larger memory and

non-linear addressing facilities could improve their

performance. The other area of improvement is the system

support software. Additional operating system type

functions are potentially very useful. For minicomputers

having operating systems these functions will enhance their

performance. Where there is no operating system they can

constitute a simple program support kernel. The additional

memory will make it feasible to run more than one program at

a time in many cases. To support this, context sv>?itching

software to keep track of the progress of multiple programs

is required. This involves memory allocation, map setup for/

addressing, protection setup, and handling of protection

violations. While the impetus for using a large memory on a

minicomputer is to retain most of the data required in main .

memory, the paging box hardware permits easy implementation

of demand paging. In some circumstances this may be useful.

MECHANICAL AND ELECTRICAL

There are a number of mechanical and electrical details

worth noting at this point. Good solutions to the problems

discussed previously necessitate the use of a moderate

amount of electronic circuitry. Thus to connect an existing

- 32 -

minicomputer with a traditionally organized memory an

interface unit between them is needed. It seems reasonable

that a single basic interface design could be adapted for

use with a variety of minicomputers. Forethought to this

problem could allov/ the special requirements of each

computer to be met with only a specialized cable and

appropriate jumpers in the interface unit.

The mechanical considerations include the interface

packaging and its location in the same cabinet with the

memory, minicomputer, or separately. Pov/er cables, and

signal cables to both the memory and minicomputer must be

provided.

Electrical considerations include both the logic

levels, cable terminations, and signal protocols.

Adaptability to a variety of minicomputers requires

considerable flexibility in adapating to different

synchronous or asynchronous timings of the computer memory

bus.

- 33 -

III. INTERFACE DESCRIPTION

The previous sections of this report have discussed in

general the capabilities and the problems of utilizing a

large amount of memory on a minicomputer. The following is

a proposed implementation to demonstrate its usefulness and

provide a vehicle for further exploration. All of the ideas

discussed previously are not included in this design. The

hardware is intended to be relatively easy to alter to allow

experimentation with the various ideas.

The interface will allov/ the Lockheed Electronics SUE

minicomputer to utilize Data Products 6361 large core store

(LCS). The SUE computer is a relatively new design of-

moderate speed which is typical of other 16-bit single bus

architecture machines (PDP-lli etc.). Although the

interface will be designed specifically to operate with the

SUE, with slight modification and new cables it will operate

with other machines such as the PDP-11, or even with

machines having separate memory and I/O buses (e.g., Varian

620 or Data General Nova).

The 6361 LCS is 1.8 microsecond core memory which can

be accessed in either 32 or 64 bit wide modes. Originally

designed for use with IBM 360's as bulk core storage, it

includes a parity bit for each 8-bit byte and a 8-bit

- 34 -

protection key for each 2 kilobyte block.

Basic Operation

The basic operation of the memory interface is shown in

Figure 1.

SUE COMPUTER

16 bit address bus 15 bit data bus

3 bits

4 bits

MAP- DATA SELECTOR

9 bits

10 bits

19 bit address 64 bit 64 bit
; • data out data in

LCS MEMORY

Figure 1. LCS memory mapping interface.

The address paths are shown at the left and the data paths

at the right. For each memory oiperation the SUE processor

provides a 16-bit address to the interface unit. The high

order four bits are used to select one of the sixteen

- 35 -

entries in the page map. The 10-bit entry selected is used

as the high order bits of the address given to the LCS. The

low order nine bits of the 19-bit address of a doubleword

given to the LCS are taken directly from the SUE's 16-bit

address. The final part of the addressing logic is the use

of the low order three bits of the SUE's address by the data

selector. On a read operation the data selector uses these

bits to select the proper bits from the LCS bus out lines

for either a byte or 16-bit word fetch. These values are

placed on the SUE bidirectional data bus. On a write

operation the data selector places the contents of the SUE

data bus on the correct LCS data in lines and asserts the

proper mark lines to v/rite into the appropriate LCS memory .

bytes.

Mapped/Unmapped Modes

The • memory interface contains' a flip-flop which

indicates operation in the mapped-problem state mode or in

the unmapped-supervisor mode. In the mapped mode the

interface operates as described in the basic operation

section. In the unmapped mode the page map is bypassed and

addresses will refer to the first sixteen blocks, of real

memory except for the special address described in the

following. One special address enables the supervisor to

address the mode flip-flop and thereby set the system into

- 36 -

mapped mode- To allow the processor a chance to set the

proper mapped address in the program counter this action

will not take effect for three memory cycles. Note that a

user (problem) program cannot directly affect the map mode

since the special map location is not in its address space.

Loading the Map

Special addresses are recognized by the interface unit

when operating in the unmapped-supervisor mode. Data stored

into these locations will be placed in the various entries

of the map.

Protection Violations

Each entry in the map includes, in addition to the

10-bit real page address, a bit which specifies whether or

not a program may write on that page. If a program in the

mapped mode attempts to write in a write-protected location,

access a ;logical address less.than 128 (decimal), or access

the second page of real memory, the interface recognizes a

protection violation. V7hen a protection violation occurs

the interface will initiate an interrupt and switch to

unmapped mode operation. Thus read only access is granted

to a page of memory by setting the appropriate map bit. "No

access" through a map entry is set by pointing that entry to

the second real memory page. Since real memory page 2 will

most likely hold supervisor code it will not need to be

- 37 -

referenced in mapped mode- Since interrupt vectors are kept

in low memory* the special handling of references to the

first 128 locations provides a convenient means of causing a

switch to the unmapped mode when an interrupt occurs. This

is necessary since in a multiprogramming system the

interrupt may signal completion of an I/O operation started

by a different program than the one executing at the time of

the interrupt. This special convention also allows programs

to call the supervisor and enter unmapped mode by

referencing one of the low locations.

Clock and V7atchdog Timer

To enable timeslicing in a time-sharing environment a

clock interrupts execution in the mapped mode fifty times a

second. While many minicomputers already have such a clock*

this is implemented in the memory interface to serve as a

watchdog, timer. If* after the memory interface unit signals

a timer interupt to the central processor* the interrupt

does not occur within a reasonably short period of time*

then the user program has left the interrupts disabled or

possibly even issued a halt instruction. If set to do so*

the memory interface unit will provide auto.matic system

recovery by resetting and restarting the computer.

- 38 -

