
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Statistical Methods for Genome Assembly

Permalink
https://escholarship.org/uc/item/9r16f8ww

Author
Bresler, Maayan

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9r16f8ww
https://escholarship.org
http://www.cdlib.org/

Statistical Methods for Genome Assembly

by

Maayan Bresler

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yun S. Song, Chair
Professor Sandrine Dudoit

Professor Lior Pachter

Spring 2014

Statistical Methods for Genome Assembly

Copyright 2014
by

Maayan Bresler

1

Abstract

Statistical Methods for Genome Assembly

by

Maayan Bresler

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Computational and Genomic Biology

University of California, Berkeley

Professor Yun S. Song, Chair

In the last decade, sequencing technology has progressed rapidly, leading to much faster
and cheaper production of short-read data. The challenge of assembling the reads into an
accurate reconstruction of the sequenced genome, however, has increased. This is because the
assembly problem is made more difficult when the reads are shorter, especially for genomes
of most higher organisms, which contain complicated repeat structures. In this thesis we
study the algorithmic problem of de novo DNA sequence assembly, focusing on the challenge
of dealing with genomic repeats. We develop two new assembly tools, as well as initiate the
study of information-theoretic limits of shotgun sequencing for realistic genomes.

Our first novel algorithm for DNA assembly, Telescoper, is designed for assembly of
telomeres. Due to their many repeats, telomeric regions are notoriously difficult to assem-
ble. Telescoper iteratively extends long paths through a series of read-overlap graphs and
evaluates them based on a statistical framework. The algorithm utilizes both short and
long-insert libraries in an integrated way throughout the assembly process. This approach
is shown to effectively resolve some of the complex repeat structures found in the telomeres
of yeast genomes.

Our second novel algorithm for DNA assembly, Piper, takes a statistical approach to
resolving ambiguity caused by repeats. A lot of potentially useful information is present in
paired-end reads, but due to the inherent noise in the insert length and the combinatorial
nature of the problem, it is not clear how to best use this information. Piper selects a
set of candidate paths through the contig-graph, and scores them based on their likelihood
given a generative model for the reads. The output consists of a ranked set of assemblies
(rather than a single assembly) in order to give the maximum information available, while
still explicitly encoding unresolved ambiguity. On small simulated datasets, Piper produces
excellent error-free assemblies.

2

In the final portion of the thesis, we investigate the information-theoretic limits of DNA
sequencing, focusing on the effect of repeats. Specifically, we ask: how many reads of a given
length are necessary in order to perfectly reconstruct with a certain target probability?
We focus on a simple read model, with noiseless single-end reads, but consider arbitrary
genomic sequences. We first prove a lower bound on the read length and the coverage depth
required for reconstruction in terms of the repeat statistics of the genome. Building on
known algorithms, we design a de Brujin graph based assembly algorithm which can achieve
very close to the lower bound for repeat statistics of a wide range of sequenced genomes.
The results are based on a set of necessary and sufficient conditions for reconstruction that
depend on the DNA sequence and the reads.

i

To my twin brother, Guy, and our parents, Liora and Yoram.

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Contributions of this dissertation . 3
1.2 Terminology . 4

2 Assembly Using Iterative Extension 6
2.1 Introduction . 6
2.2 Methods . 8
2.3 Empirical Results . 12
2.4 Conclusion . 17

3 Maximum Likelihood Assembly 19
3.1 Introduction . 19
3.2 Methods . 21
3.3 Results . 28
3.4 Conclusion . 34

4 Information-Theoretic Requirements 35
4.1 Introduction . 35
4.2 Approach . 35
4.3 Lower bounds . 39
4.4 Towards optimal assembly . 41
4.5 Simulations and complexity . 48
4.6 Conclusion . 49

5 Conclusion 51

Bibliography 53

A Appendix: Assembly Using Iterative Extension 62

iii

A.1 Data simulation . 62
A.2 Additional data sets for benchmarking . 62
A.3 Running the assembly algorithms . 63
A.4 Optimizing over k . 66
A.5 Telescoper implementation details . 68
A.6 Runtimes and memory requirements . 68
A.7 Contig continuity plots for real yeast data D3 69
A.8 Results on additional data sets D4–D7 . 71

B Appendix: Information-Theoretic Requirements 74
B.1 Supplementary Material . 74
B.2 Lower bounds on coverage depth . 75
B.3 Proofs for algorithms . 79
B.4 Critical window calculations . 88

iv

List of Figures

2.1 High-level description of the algorithm. Beginning with the seed string S0, the
algorithm iteratively performs the steps described to construct an e-graph data
structure, from which a contig or contigs can be read. For simplicity, only a few
example arcs are shown; in reality, red arcs are present between each consecutive
pair of e-nodes, and orange arcs can be present between a given e-node and any
of its preceding e-nodes. 9

2.2 Illustration of step 1 of Figure 2.1, finding an e-node S’s possible extensions. (a)
A read “cloud” consists of those right-reads with left-mates that map to S. (b)
The reads in the cloud are then error corrected and organized into a read-graph,
which is in turn converted into a unitig graph. (c) Paths through the unitig graph
correspond to possible extensions. 10

2.3 Computing the expected number of left-reads mapping back from a unitig U2 to
the previous e-node S. (a) MU2 denotes the set of reads mapping from unitig U2

to the previous e-node S. (b) For a right-read Rr located at position t in unitig
U2, the probability of its left-mate Rl mapping to S at a distance x behind U2 is
h(x+ t), where h(·) is the expected insert distribution. (c) The expected number
of reads at position x behind unitig U2 is given by fU(x) defined in (2.1). 11

2.4 Illustration of step 2 of Figure 2.1, scoring an e-node’s possible extensions using
short-insert read-pairs. (a) The penalty for unitig U2 is 0 because no gaps of size
≥ `/2 exist (where ` is the read length). (b) The penalty for unitig U3 is > 0
because a gap, denoted g, of size ≥ `/2 exists. (c) The size of contig gap gc is the
distance between the reads that define the end and start of two adjacent unitigs. 12

2.5 The cumulative proportion of all aligned contigs exceeding the contig size indi-
cated on the x-axis. These plots illustrate the continuity and completeness of
different assemblies. For any given minimum contig length, Telescoper produced
more aligned bases. NG50 can be read from this graph as the x-coordinates at
which each curve hits the 50% mark of bases output relative to the reference. (a)
Results on simulated data D1. (b) Results on simulated data D2. (c) Results on
real data D3. (d) The legend for subfigures (a)-(c). 16

v

2.6 Contig continuity results for real data D3. The left and right telomeric regions
(separated by the dotted line) for two different chromosomes are shown, with the
aligned contigs displayed for each assembly algorithm. Different colors represent
different contigs in the produced assembly, so more colors per method indicates a
larger number of contigs. For each telomeric region shown, Telescoper produced
a single contig for almost the entire region, while other algorithms often produced
many small contigs. 17

3.1 To create each graph, reads were generated and input to Discovar. The graphs
pictured are the contig graphs after converting from an edge-string to node-string
format. Black edges denote overlap. Colored edges are superimposed on this
black-and-white graph to indicate the paths consistent with the reference, e.g.
for Fig. 3.1(a), the true assembly consists of the contigs ((0, 3, 1), (2, 3, 4)). . . 30

3.2 The output graph produced by Discovar for Nebulin. To create the graph, reads
were generated and input to Discovar. The graph pictured is the contig graph
after converting from an edge-string to node-string format. Black edges denote
overlap. Colored edges are superimposed on this black-and-white graph to indi-
cate the paths consistent with the reference. 31

4.1 For hc19, a log plot of number of repeats as a function of the repeat length `.
Red line is what would have been predicted by an i.i.d. fit. 37

4.2 Thick black lines are lower bounds on feasibility which holds for all algorithms,
and colored curves are performance achieved by specific algorithms. Four such
curves are shown: the greedy algorithm and three de Brujin graph based algo-
rithms. 37

4.3 Performance of MultiBridging on P Marinus, where `triple > `interleaved. 38
4.4 The likelihood of observing the reads under two possible sequences (the green and

magenta segments swapped) is the same. Here, the two red subsequences form a
repeat and the two orange subsequences form another repeat. 40

4.5 A subsequence s`t is bridged if and only if there exists at least one read which
covers at least one base on both sides of the subsequence, i.e. the read arrives in
the preceding length L− `− 1 interval. 41

4.6 Contracting an edge by merging the incident nodes. Repeating this operation
results in the condensed graph. 43

4.7 An example of the bridging step in SimpleBridging. 45
4.8 MultiBridging resolves an X-node with label ATTGCAA corresponding to a

triple repeat. 46

vi

4.9 Simulation results for each of the GAGE reference genomes. Each simulated
(N,L) point is marked with the number of correct reconstructions (e.g. 93, 98,
95) on 100 simulated read sets. All four algorithms (Greedy, DeBruijn, Sim-
pleBridging, and MultiBridging) were run on S. Aureus, R. sphaeroides
and hc14. Note that MultiBridging is very close to the lower bound on all 3
datasets. 48

A.1 The cumulative proportion of all aligned contigs exceeding the contig size indi-
cated on the x-axis, for simulated data D1 (read length 101 bp). Results are for
SOAPdenovo on a variety of k. 67

A.2 Contig continuity results for real data D3. The left and right telomeric regions
(separated by the dotted line) for two different chromosomes are shown, with the
aligned contigs displayed for each assembly algorithm. Different colors represent
different contigs in the produced assembly, so more colors per method indicates
a larger number of contigs. 70

A.3 The fraction of reference covered, for contigs exceeding the contig size indicated
on the x-axis. These plots illustrate the continuity and completeness of different
assemblies. For any given minimum contig length, Telescoper covered more of
the reference. NG50 can be read from this graph as the x-coordinates at which
each curve hits the 50% mark of bases output relative to the reference. 71

B.1 Lactofidus. G = 2, 078, 001, `triple = 3027, `interleaved = 3313, `repeat = 5321. . . . 74
B.2 Buchnera. G = 642, 122, `triple = 27, `interleaved = 23, `repeat = 39. 75
B.3 Heli51. G = 1, 589, 954, `triple = 219, `interleaved = 2122, `repeat = 3478. 75
B.4 Salmonella. G = 2, 215, 568, `triple = 112, `interleaved = 163, `repeat = 1011. 76
B.5 Perkinsus marinus. G = 1, 440, 372, `triple = 770, `interleaved = 92, `repeat = 1784. . 76
B.6 Sulfolobus islandicus. G = 2, 655, 198, `triple = 734, `interleaved = 761, `repeat = 875. 77
B.7 Ecoli536. G = 4, 938, 920, `triple = 2267, `interleaved = 3245, `repeat = 3353. 77
B.8 Yesnina. G = 4, 504, 254, `triple = 3573, `interleaved = 3627, `repeat = 5358. 78
B.9 Resolution of X-node with a self-loop. 84

vii

List of Tables

2.1 Summary of assembly results based on simulated data from 32 telomeric regions
each of length 40 kb. “%Aligned” is the ratio of Total Aligned to Total Produced,
while “%Covered” is the fraction of the telomeric regions covered by contigs. . 14

2.2 Summary of results for real data D3. The contigs produced by each algorithm
were aligned to the 32 telomeric regions each of length 40 kb. As before, “%Cov-
ered” is the fraction of the telomeric regions covered by contigs. 15

3.1 Evaluation results using the GAGE evaluation script [Salzberg et al., 2012].
Please see Table 3.2 for the legend. 32

3.2 Legend for the GAGE evaluation [Salzberg et al., 2012] results table. Note that,
in Table 3.1, programs marked with superscript A assemble their own contigs,
while programs marked with superscript S use the contigs from Discovar. 33

A.1 Results for SOAPdenovo on D1 (101 bp reads), using a variety of different values
of the k-mer size k. 66

A.2 Runtime results for all algorithms on D1, D5, and D7, including version number. 69
A.3 Summary of results based on simulated data from 32 telomeric regions each of

length 40 kb. “%Aligned” is the ratio of Total Aligned to Total Produced, while
“%Covered” is the fraction of the telomeric regions covered by contigs. Celera
is excluded from both (a) and (b) since it is a Sanger-read assembler. SGA is
excluded from (a) and (c) since it did not run on 50 bp data. 73

viii

Acknowledgments

First, I can’t imagine a more dedicated adviser than Yun. Yun invests his whole self
in his students, embracing us as colleagues and friends, sacrificing sleep, and sharing, with
infinite generosity, his considerable technical wisdom and life advice. He’s passionate about
sharing his love of research with us, and is always there to direct us towards success.

I feel incredibly lucky to have had the opportunity to work with David Tse, and to
witness how he approaches research problems with curiosity, somehow transforming them
into meaning and order. I’m grateful beyond words to all the rest of my collaborators; these
are the peers I have been privileged to watch most closely, to depend upon most, and from
whom to learn the most in my time here. In the course of our work, I developed enormous
admiration for my collaborator-friends Sara Sheehan, Peter Jin, and Ravi Pandya, whose
kindness, positivity, enthusiasm and wisdom made working together a great pleasure. Guy
was all of this, and the best brother I can imagine. Andrew Chan kindly introduced me to
assembly.

I’m very grateful to my generous dissertation committee members Sandrine Dudoit and
Lior Pachter, and to Elchanan Mossel and Jasper Rhine for serving on my quals committee.
I’m grateful for helpful conversations with Nikolaj Bjorner on Z3 and optimization, and to
Oliver Zill and Devin Scannell for discussions on telomeres. I thank David Heckerman and
Ravi Pandya for a very enjoyable internship at Microsoft Research. I’ll always be grateful
to Mung Chiang, for an incredibly positive experience doing undergraduate research.

I’m grateful to so many of the inspiring colleagues and friends I met along the way; for the
moral support or advice of those in my group and the computational biology designated em-
phasis, including Anand, Josh, Paul, Jack, Kelley, Wei-Chun, Junming, Jasmine, Matthias,
Jonathan, Meromit, Adam, and Shannon; to friends and collaborators in the AMPLab in-
cluding Jesse, Kristal, Ameet, John, Lester, and Fabian; and to people in other areas of
the department including Vidya, Samarth, Urmila, Suman, Gireeja, Erin, Jeremy, Galen,
Dapo, Isabelle, and Tselil; and finally, for the friends and house-mates in other departments,
including Claire, Elizabeth, Andre, Jeff, Jiayue, Shelly, Sara A., and Sarah D. These people
made this place home.

Finally, I’m grateful to my parents Liora and Yoram.

1

Chapter 1

Introduction

Genome sequencing is a basic tool in biology, used to create reference genomes for new
species and to characterize whole-genome variations in multiple individuals of a population.
Sequencing was once hugely expensive (estimates of the cost of the Human Genome Project
run upwards of $3 billion), but advances in high-throughput sequencing (HTS) technologies
have completely reshaped the scene [Check Hayden, 2014]. The cost of generating raw
genome sequence data has fallen so much that the $1,000 genome – “full coverage human
genomes for less than $1,000” – has actually happened recently [Check Hayden, 2014].

The drop in sequencing cost means that a staggeringly large number of genomes will be
sequenced in coming years. Recently undertaken sequencing projects include i5k to sequence
5,000 insect genomes [Arthropod Genomic Consortium, 2014], Genome 10k to sequence
thousands of vertebrates [Genome 10K Community of Scientists, 2009], more than 12,000
sequencing projects listed at JGI [2014], and the 3 Million Genomes project to sequence all
the DNA of 1 million people, 1 million microorganisms, and 1 million plants and animals
announced by sequencing giant BGI (the Beijing Genomics Institute) [Diehl, 2013].

The generation of all this data is only half the story; in order to obtain an accurate whole
genome assembly, the data must be assembled. At the highest level, each chromosome can
be thought of as a single long string of base pairs (A, C, T, G). The data produced by Next
Generation Sequencers (NGS) is a set of substrings, generated at random from the genome,
referred to as reads. The task of genome assembly is to piece together reads to reconstruct
the original genome sequence.

Reads are obtained using various technologies, with varying read length, error rates, and
coverage. Sanger-chemistry reads range in length from around 500 to 1500 bp. Illumina
reads range from 100 to 250 bp, and cost significantly less, for much higher throughput.
Illumina currently occupies the majority of the sequencing market share. Other short-read
technologies include Complete Genomics [Drmanac et al., 2010], Helicos [Harris et al., 2008],
454 Life Sciences [Margulies et al., 2005], SOLiD [McKernan et al., 2009], and Ion Torrent
[Rothberg et al., 2011]. On the other end of the length spectrum, longer than Sanger reads,
are PacBio and Moleculo, both of which offer lower coverage than standard short-read tech-
nology, for a higher price, but are capable of generating reads up to 10 kbp long that can be

CHAPTER 1. INTRODUCTION 2

valuable in resolving similar regions [Huddleston et al., 2014], [Voskoboynik et al., 2013].
Initial improvements in assembly from short-read data focused on how to process the

sheer quantity of data and how to detect overlaps and correct for sequencing error. The
de Bruijn graph proved a useful data structure for this purpose [Pevzner et al., 2001], and
is used by pioneering short-read assemblers such as Velvet [Zerbino and Birney, 2008] and
EULER-USR [Chaisson et al., 2008], and many subsequent assemblers.

The length of the reads and the amount of overlap between them result in fundamental
limitations in the completeness and accuracy of the assembly, as we will discuss in more detail
in Chapter 2. In particular, if two consecutive reads along the genome fail to have sufficient
overlap, then it typically cannot be determined that they should be adjacent. Similarly, if
the genome has repeats, i.e. substrings that occur in multiple places in the genome, that
are longer than the overlap between adjacent reads, then again, usually the reads cannot be
uniquely ordered [Pevzner, 1995, Ukkonen, 1992]. The result is that assembly in repetitive
regions or low-coverage regions is poor.

The effect of short read-lengths can be somewhat mitigated through the production of
paired reads. After DNA fragmentation, both ends of each fragment are sequenced, yielding
a pair of reads separated by an unsequenced gap whose length is given by the fragment
size and is approximately known. Depending on the library construction method, these are
referred to as either paired-end or mate-pair reads, but we’ll use the term read-pairs to be
inclusive. The paired nature of these reads constitutes a powerful source of information,
making genome assembly possible in situations where it is infeasible using just unpaired-
reads of the same length or coverage parameters. However, employing paired reads adds an
additional computational and algorithmic challenge to the assembly problem.

The difficulty of the problem has led to a large number of genome assembly tools. An
incomplete list of genome assembly tools for short-read data includes SOAPdenovo [Li et al.,
2010], ALLPATHS 2 [MacCallum et al., 2009], ABySS [Simpson et al., 2009], Cortex [Iqbal
et al., 2012], ALLPATHS-LG [Gnerre et al., 2011], Discovar [Computational Research and
Development Group, Broad Institute of MIT and Harvard, 2014], the PE-Assembler [Ari-
yaratne and Sung, 2011], the Paired de Bruijn Graph [Medvedev et al., 2011], SPADES
[Bankevich et al., 2012], and IDBA [Peng et al., 2010]. And yet, despite the number of tools
available, we are a ways from being able to produce high-quality finished genome sequences.

Current assemblies are more fragmented, more incomplete, and more full of errors than
desirable. Salzberg and Yorke [2005] found that for every draft genome they examined,
there were hundreds to thousands of regions where sequences were incorrectly joined. Alkan
et al. [2011] reported that a de novo shotgun assembly of the human genome using short-
reads is 16% shorter than the reference assembled using much more expensive sequencing
approaches, and that less than 1% of segmental duplications are represented. Treangen and
Salzberg [2011] review different repeat types that pose challenges to assembly. More recently,
Baker [2012] offers a review of the field, the bottom line of which is that genome assemblies
produced using short-read technology should be regarded with care, as drafts.

There are major efforts to make order of the complicated state of assembly. The Assem-
blathon competitions [Bradnam et al., 2013, Earl et al., 2011] are intended to assess current

CHAPTER 1. INTRODUCTION 3

state-of-the-art methods in genome assembly, and to explore the question of what metrics
should be used to evaluate assemblies. The GAGE evaluation [Salzberg et al., 2012] is a an-
other effort to test multiple assemblers on the same data sets, and generates an automated
reference-based report of assembly quality. These efforts indicate the community’s increasing
emphasis on accurate assembly, and should help streamline assembly assessment, enabling a
focus on the development of good algorithms.

The repetitive regions that abound in the genome are not just computationally challeng-
ing, but also biologically significant. Segmental duplications are continuous portions of DNA
that map to two or more genomic locations, sometimes referred to as Low Copy Repeats
[Bailey and Eichler, 2006]. Typically, the term is used to refer to duplications longer than 1–
5kb with at least 90% sequence identify. Recent interchromosomal exchanges, which happen
most frequently in subtelomeric regions, have even higher sequence identity, often exceeding
99% identify. Segmental duplications are prevalent; in total, they account for 5–6% of the
genome. In recent years, they’ve gained recognition for being biologically important as well,
as they’re now believed to have played important roles in primate evolution and new gene
creation, as well as in determining disease susceptibility [Bailey and Eichler, 2006].

1.1 Contributions of this dissertation

In this thesis, we examine the problem of genome assembly from several different perspec-
tives. First, we begin by developing an algorithm, Telescoper, that is designed for long
segmental duplications such as those at the yeast telomere. Telescoper extends the assembly
in an iterative fashion, exploring multiple branches of conceivable solutions, and choosing
among them using statistical scores. It uses paired-reads from multiple libraries with different
fragment sizes to validate the assembly as it generates it. Although the current implemen-
tation of the algorithm is more of a proof-of-concept than a fully-functional assembler, it
suggests an interesting algorithmic approach with the potential to aid repetitive regions.
This chapter is based on joint work with Sara Sheehan, Andrew Chan, and Yun S. Song
[Bresler et al., 2012].

In the following chapter, we take a second crack at the realistic-data genome assembly
problem, again zooming in only on repetitive regions that thwart other algorithms. This
time we make several key changes. Whereas Telescoper strives for perfect reconstruction,
this time we try to more explicitly annotate uncertainty. In many instances the data are not
sufficient to yield perfect reconstruction; in this case, in order to include the true solution,
while still recognizing the uncertainty of the assembled output, we produce an enumeration
of multiple high-likelihood assemblies along with their likelihoods. We use a preliminary
approximation to the likelihood to find candidate assemblies, and then compute a likelihood
for each of the candidate assemblies using the assembly likelihood score from Rahman and
Pachter [2013]. Encouragingly, we find that in every instance in which the dataset is small
enough for the current implementation of our algorithm to run, it includes as output the true
solution, with a likelihood no worse than any of the generated alternatives. For the output to

CHAPTER 1. INTRODUCTION 4

be easily interpreted and compared with more traditional assembly outputs, we also produce
an encoding of the greatest common substrings of the assemblies, which is consistent with
the more familiar FASTA or FASTG assembly output format.

Our algorithm, Piper, takes as input an assembly graph produced by another program.
On small datasets of reads simulated from human segmental duplications, and using an
error-free input assembly graph, our algorithm improves upon the assembly, and produces
more accurate solutions than the other assembly algorithms against which we compare.
Future work will involve developing more heuristics to speed up the runtime and enable us
to increase the size of the problem on which Piper can be run, and include evaluation on
real data rather than simulated data. This chapter is based on joint work with Peter Jin,
Ravi Pandya, and Yun S. Song [Bresler et al., 2014].

Finally, we step back from realistic data, to ask a more fundamental question. Algorithms
aside, under what circumstances are the data sufficient for perfect assembly? Under what
circumstances is it impossible? We approach this question from an information-theoretic
perspective; given data parameters of read-length and coverage depth, what features of a
genome are sufficient to compute the probability of perfect reconstruction? We derive a
lower bound on the read length and the coverage depth necessary for perfect reconstruction
in terms of the repeat statistics of the genome. We then design a simple de Brujin graph
based assembly algorithm, building on earlier works. Using a set of necessary and sufficient
conditions for reconstruction that depend on the DNA sequence and on the reads, we show
that for the repeat statistics of a wide range of sequenced genomes, the simple proposed
algorithm requires only slightly longer and more numerous reads than the lower bound
required for perfect reconstruction. The aforementioned necessary and sufficient conditions
can be interpreted as analogues of Ukkonen and Pevzner’s conditions for sequencing by
hybridization [Pevzner, 1995, Ukkonen, 1992]. This chapter is based on joint work with Guy
Bresler and David Tse [Bresler et al., 2013].

1.2 Terminology

Throughout the thesis, we adopt the following terms commonly used to describe the output
of sequencing technologies and the resulting assemblies:

• Read-pair: a pair of sequenced reads from a fragment. The fragment size determines
the distance between the two reads, often called the insert size. The insert distribu-
tion is frequently approximated by a normal distribution. We use the term read-pair
regardless of whether the insert is short or long.

• Library: a collection of DNA fragments, from which read-pairs are created. Each
library has a distribution on the distance between the reads in a pair, called the insert
distribution.

CHAPTER 1. INTRODUCTION 5

• Mate: the partner of a read R in a read-pair. When R is oriented with respect to
a sequence, we know its mate’s relative position and can refer to it as a left-mate or
right-mate (or, as a left-read or right-read).

• Contig: a sequence, which ideally belongs to the original genome, produced from
assembling a group of reads. The standard output from an assembly algorithm is a set
of contigs. Contigs are often ordered to produce scaffolds, which may contain stretches
of unknown sequence between the contigs.

• Contig graph: a graph in which each vertex is a contig, and directed edges between
contigs represent overlapping sequence; i.e. the last k bases of one contig are the same
as the first k bases of its neighbor contig. A contig graph is perfect if the genome can
be spelled out as a path through the graph.

• Read-overlap graph: also called a read graph, is a graph in which each vertex is
a read, and directed edges between reads represent overlapping sequence; i.e., in the
error-free case, the last k bases of one read are the same as the first k bases of its
neighbor read, where k is greater than some threshold.

• Unitig: a path through the read graph that can be unambiguously merged into a single
sequence. A unitig graph is an extension of the read-overlap graph idea (similarly for
a unitig path), where the vertices are now unitigs.

• Coverage: Coverage is defined as the expected number of reads to cover a particular
base in the genome. If the genome has length G, read-length L, and number of reads
N , then the coverage is NL/G.

6

Chapter 2

Assembly Using Iterative Extension
with Paired-End Reads

2.1 Introduction

In this chapter, we describe a new algorithm to improve de novo assembly of highly repetitive
regions. Although the ideas presented here are applicable to the assembly of any genomic
region, this algorithm was developed with the specific aim of assembling highly repetitive
regions such as telomeres.

Telomeres are particularly complex and repetitive, and thus very difficult to assemble
correctly. Not only does each telomere contain repeats within itself, but often telomeres on
different chromosomes are very similar. Existing assembly algorithms thus frequently fail
to assemble telomeric regions from short-read data. Due to this lack of complete assembly,
telomere evolution has not been fully characterized, though a great deal is to be gained from
it, as telomeres have been linked to aging [McEachern et al., 2000]. High-quality telomere
assemblies could help us learn more about the variation in telomeres within and between
species. In addition, characterizing telomere gene families and their regulation could help us
clarify the function of telomeres and how they change as we age.

In our method, which we name Telescoper, we incorporate the following three algorithmic
ideas, the latter two of which make novel use of read-pairs:

1. Iterative extensions: A seed sequence is extended iteratively using reads localized
to a particular region by their mates, thus allowing for gradual extension into difficult
regions. See Section 2.2 for details. As mentioned above, this idea is not new, but
it has not yet been fully exploited in a well-used algorithm, despite several potential
advantages.

2. Simultaneous use of short-insert read-pairs in a statistical framework: Rather
than using read-pair information pair by pair to untangle the read-graph, we build

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 7

extensions through the graph and simultaneously consider all read-pairs mapping to
each extension to choose the most probable extension. See Section 2.2.

3. Simultaneous use of long-insert libraries: Rather than using long-insert read-
pairs only for scaffolding or for filling in gaps between easily assembled contigs, our
iterative extension procedure uses long-insert reads during assembly. We look for
support of assembled sequence at all insert sizes, so that incorrect assembly can result
only if the repetitive structure spans all libraries. See Section 2.2 for further details.

Each of the above ideas helps to resolve repetitive regions. Implicit throughout our
algorithm is the principle that in order to assemble difficult regions, one cannot make only
safe simplifications, but must also explore several alternative extensions, and use downstream
analysis to find and reject false extensions.

We tested the performance of our method on both real and simulated data from the
telomeres of the Saccharomyces cerevisiae genome, which consists of 16 chromosomes. This
is a particularly challenging problem since all such telomeres have a core repetitive component
called X (≈ 475 bp long), as well as several combinatorial repeats and sometimes a larger
repetitive component (see Saccharomyces Genome Database, www.yeastgenome.org). In
addition, because S. cerevisiae underwent an ancient genome duplication [Kellis et al., 2004],
telomeric regions of different chromosomes typically share highly similar repetitive regions.
We show that Telescoper is capable of generating more complete and continuous assemblies
in the telomeric regions than other state-of-the-art de novo assembly algorithms, especially
when longer long-insert libraries are used.

Related work

We compare our performance with a number of other assemblers, but notable exceptions that
also focus heavily on incorporating read-pair information include works such as ALLPATHS-
LG [Gnerre et al., 2011], the PE-Assembler [Ariyaratne and Sung, 2011], and the Paired de
Bruijn Graph [Medvedev et al., 2011].

ALLPATHS-LG requires reads of length around 100 bases sequenced from short fragments
of length ≈ 180 bp so that, on average, each read-pair overlaps by about 20 bases. This
means that in general each read-pair can be merged into a single longer read corresponding
to the fragment. A drawback of this approach is in the very specific type of data required,
which differs from the standard library construction of fragments 300 ∼ 500 bp in size.
The PE-Assembler builds short stretches in non-repetitive regions first, similar to unitigs
(see Section 1.2 for a definition) in a de Bruijn graph, and then extends these iteratively
using reads with mates that map to the increasing already-assembled portion. (A similar
idea is also used in Parrish et al. [2011] for resequencing with a reference, where insertions
are assembled as iterative extensions of existing sequences.) The Paired de Bruijn Graph
method entails building a so-called A-Bruijn graph in which vertices track pairs of reads
instead of single reads, with two vertices being merged only if the merging is consistent with

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 8

the associated pairs of reads. To our knowledge, this method remains largely theoretical at
this time, and it has been tested only on simulated data with perfect reads.

A theoretical observation from Medvedev et al. [2011] is that longer long-insert libraries
can substantially improve assembly. Recent innovations [Peng et al., 2012] in library con-
struction may bring such libraries into the mainstream, so it is timely to develop algorithms
that take full advantage of such data.

2.2 Methods

We have two main aims in our algorithm: (i) rather than performing a greedy read-by-read
assembly procedure, we build a number of alternative extensions, and score them according
to the alignment of read-pairs to each extension, and (ii) we use long-insert read-pairs not
only for scaffolding or gap filling, but also as part of the assembly itself, to check that the
local assembly is consistent on a longer scale.

Our algorithm begins with a set of non-repetitive seed strings, as could be taken from a
reference genome, if it exists, or be assembled from a de Bruijn graph. At present, we use
seeds of length 500 bp from the reference, at position 40 kb from the end of the chromosome,
although contigs produced from any other algorithm could be used. The goal is to then
independently extend each contig to produce a more complete assembly.

A high-level overview of the algorithm is illustrated in Figure 2.1. The algorithm proceeds
by extending the end of the contig iteratively by a fixed amount, Nnew, per iteration, as
detailed in Section 2.2. We fix the extension length (usually a few hundred bases) as a
conservative measure. Because multiple extensions are frequently possible, the result is an
“extension graph” (e-graph) in which each extension node (e-node) contains Nnew bases of
new sequence that serve as a possible extension for that e-node’s parent. A path from the
root (the seed string) to a leaf represents a series of extensions that form a single lengthened
contig. The aim is for the e-graph to contain a path corresponding to the true sequence,
ideally terminating close to the end of the desired chromosome, and for this path to be
identifiable as the best.

Our algorithm will be most tractable if the e-graph is sparse, so at each iteration there
are as few extensions as possible (and the true extension is among them). The criteria
for pruning and terminating the e-graph are discussed in Section 2.2. We first explain our
methods for (i) listing possible extensions for a given e-node in the e-graph, (ii) scoring each
extension based on the alignment of short-insert read-pairs, and (iii) scoring each extension
based on the alignment of long-insert read-pairs.

In the following description, we assume without loss of generality that we are extending
to the right.

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 9

Figure 2.1: High-level description of the algorithm. Beginning with the seed string S0, the
algorithm iteratively performs the steps described to construct an e-graph data structure,
from which a contig or contigs can be read. For simplicity, only a few example arcs are
shown; in reality, red arcs are present between each consecutive pair of e-nodes, and orange
arcs can be present between a given e-node and any of its preceding e-nodes.

Iterative extension of assembly

The extension step consists of finding possible extensions of a given e-node; the extensions
will in turn become e-nodes themselves. We fix the length of each e-node so that most right-
reads in the new extension will have left-mates mapping to the e-node rather than behind
it. In our implementation, we choose this length, denoted Ntot, to be the mean insert length
plus the standard deviation of the short-insert library. In the case of multiple short-insert
libraries, one can use the largest short-insert length for computing Ntot.

The extension step is depicted in Figure 2.2. It begins by mapping all the left-reads to the
e-node to obtain right-mates extending off the right end of the e-node into unknown region
yet to be assembled, i.e. the left-mate maps to the e-node and the right-mate dangles off
the end, as illustrated in Figure 2.2(a). We say that these right-mates form a read “cloud”.

The reads in the read cloud are error-corrected, then used to construct a read-overlap
graph, which is transformed into a unitig graph as depicted in Figure 2.2(b). More details
on error-correction and read-overlap graph construction are provided in the Supplementary

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 10

(a) (b) (c)

Figure 2.2: Illustration of step 1 of Figure 2.1, finding an e-node S’s possible extensions.
(a) A read “cloud” consists of those right-reads with left-mates that map to S. (b) The
reads in the cloud are then error corrected and organized into a read-graph, which is in turn
converted into a unitig graph. (c) Paths through the unitig graph correspond to possible
extensions.

Material. The unitig graph encodes a list of candidate extensions for the contig, as illustrated
in Figure 2.2(c). Each new e-node consists of Nnew bases of new extension plus (Ntot−Nnew)
bases from the end of the previous e-node.

There are several advantages to this localized assembly. First, it reduces ambiguities
caused by repeats. For a read-pair from another location to interfere with the area under
construction, its left-read must map to the previous e-node while the right-read must over-
lap with another read in the read cloud. Second, because it restricts assembly to a small
region, there is ample memory to store complicated information about the reads and their
relationships. This information can be thrown out as we move to other regions of the graph.
This local use of information enables more complex use of read-pairs, as described in the
rest of this section.

Simultaneous use of short-insert read-pairs in statistical scoring of
extensions

While existing assembly algorithms make use of read-pairs in various ways, the information
contained in read-pairs has not yet been fully exploited. In other assemblers, read-pairs are
used primarily to connect unitigs with expected insert sizes. We can obtain additional power
by scoring potential extensions according to the features derived from the aligned read-pairs.

We first evaluate extensions based on the likelihood of gaps in short-insert read-pair
coverage. Each extension consists of an ordered sequence of unitigs, as in Figure 2.2(c).
Each right-read in an assembled unitig will have a left-mate mapping to earlier sequence in
the previous e-node. The set of left-mates associated with reads in unitig U is denoted MU ;
see Figure 2.3(a).

In our model, we make the simplifying assumption of a uniform coverage distribution.
Let x denote the distance from the right end of a left-read relative to the start of unitig U ,
as pictured in Figure 2.3(b). We denote by fU(x) the expected number of left-reads in MU

spanning position x; see Figure 2.3(c). We compute fU(x) by convolving the expected insert
distribution h(·) with the uniform distribution over the stretch of U on which right-mates

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 11

(a) (b) (c)

Figure 2.3: Computing the expected number of left-reads mapping back from a unitig U2

to the previous e-node S. (a) MU2 denotes the set of reads mapping from unitig U2 to the
previous e-node S. (b) For a right-read Rr located at position t in unitig U2, the probability
of its left-mate Rl mapping to S at a distance x behind U2 is h(x + t), where h(·) is the
expected insert distribution. (c) The expected number of reads at position x behind unitig
U2 is given by fU(x) defined in (2.1).

can begin:

fU(x) =

L(U)−`∑
t=0

λ · h(x+ t), (2.1)

where L(U) is the length of U , ` is the read length, and λ is the probability of a read
arriving at position t; note that λ is equal to C/(2`), where C is the coverage. False unitigs
will typically have gaps in the empirical distribution f̂U(x), as illustrated in Figure 2.4(b).
Let Gap(U) denote the set of such gaps associated with U . For a gap g ∈ Gap(U) of length
≥ `/2, we compute a penalty equal to the number of mates expected in g, obtained by
summing fU(x) over g’s coordinates. The preliminary score for an extension is then the sum
of these penalties over all gaps and all unitigs in the extension:

pext =
∑

U∈extension

∑
g∈Gap(U)

∑
x∈g

fU(x). (2.2)

To produce a final score Pext for each possible extension, we add pext to a contig gap penalty,
equal to λ times the largest gap size (denoted by gc in Figure 2.4(c)) between two adjacent
unitigs, i.e. the expected number of reads to fall in that gap. The best extensions (i.e., those
with the lowest Pext scores) are kept, as described in more detail in Section 2.2.

Simultaneous use of long-insert libraries

Telescoper utilizes all libraries simultaneously during assembly, rather than using long-insert
libraries only during scaffolding or gap-filling, as is typical in other assembly algorithms. The
main idea is that once long paths have been formed in the e-graph, any further extension can
be evaluated on the basis of its agreement with the current e-graph according to each library.
Having produced and pruned a set of extensions using just the short-insert library in steps
1 and 2 of our algorithm (see Figure 2.1), the third step aims to confirm that a proposed
extension is supported by read-pair information from all other libraries simultaneously. For

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 12

(a) (b) (c)

Figure 2.4: Illustration of step 2 of Figure 2.1, scoring an e-node’s possible extensions using
short-insert read-pairs. (a) The penalty for unitig U2 is 0 because no gaps of size ≥ `/2 exist
(where ` is the read length). (b) The penalty for unitig U3 is > 0 because a gap, denoted
g, of size ≥ `/2 exists. (c) The size of contig gap gc is the distance between the reads that
define the end and start of two adjacent unitigs.

there to be ambiguity in extension choice, there must be repeats at lengths corresponding
to all library sizes.

To test for long-insert read-pair support of a potential extension, we first gather all read-
pairs of which right-reads map to the extension and left-reads map to the previous e-nodes
in the path up the e-graph. Then, if the right-reads fully cover the proposed extension, even
possibly without overlaps, we consider the extension to be fully supported. Partial support
is computed as a linear function of the fraction of the extension that is covered by the right-
reads. This support measure is then multiplied by the short-insert score Pext to obtain a
single final score.

Choosing extensions for continuation

For a given e-node, upon finding all its possible extensions, at most B top scoring (the
lower the better) extensions are retained for computational tractability. In our analysis we
use B = 4. We create a new e-node for each of these top scoring extensions, and assign a
running score equal to the sum of its extension score and its parent e-node’s running score.
Then, at each depth in the e-node graph, the B top scoring e-nodes are marked for pursuit.

An e-node is terminated if it cannot be lengthened by the extension operation, if its
extension score plus the scores of two previous ancestral extensions exceeds a threshold, or
if a specified maximum depth is reached.

To track the parallel success of alternative e-node paths and keep their number in check,
we use breadth first search to explore the e-graph. If two different sequences of e-nodes end
with equivalent e-nodes at a particular depth, we allow the two e-nodes to merge. This kind
of merging of e-nodes reduces the computational burden.

2.3 Empirical Results

In this section, we compare Telescoper’s performance with that of other short-read assembly
algorithms, including ABySS [Simpson et al., 2009], ALLPATHS 2 [MacCallum et al., 2009],

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 13

SGA [Simpson and Durbin, 2012], SOAPdenovo [Li et al., 2010], and Velvet [Zerbino and
Birney, 2008].

Because of limited space, we focus on short-read data in the ensuing discussion. However,
as detailed in the Supplementary Material, we also considered a combination of short-insert
short-read data and long-insert Sanger read data, and observed that Telescoper compares
favorably with other algorithms, including Celera [Myers, 2000], which was designed for
Sanger reads.

Data and experiment setup

We studied the performance on both simulated and real data from strain S288C of S.
cerevisiae. We obtained a reference genome from Saccharomyces Genome Database (www.
yeastgenome.org), which was created through extensive, systematic sequencing to produce
a very accurate assembly, including the telomeric regions. As mentioned earlier, because of
ancient genome duplication and complex yeast telomere structure, the telomeres of differ-
ent chromosomes typically share highly similar repetitive regions, which poses challenges to
assembly.

We considered different types of data to test the robustness of the algorithms and to
study the effect of insert distributions on performance:

Simulated Data D1 consisted of read-pairs with two insert distributions, one short and
one long. The read length was 101 bp for both types. The short-insert reads had coverage
depth 100X and an insert distribution with mean 400 bp and variance 75 bp. The long-insert
reads had coverage depth 20X and an insert distribution with mean 10 kb and variance 1 kb.
Simulation details are provided in the Supplementary Material.

Simulated Data D2 consisted of two read-pair data sets with the same insert distribu-
tions and coverages as D1, but with a reduced read length of 50 bp.

Real Data D3 consisted of Illumina read-pairs from a sequencing library preparation
using Cre-Lox recombination. The reads, as described in Van Nieuwerburgh et al. [2012],
were sorted using DeLoxer into reads categorized as short-insert (0 ∼ 400 bp fragments,
mean 220 bases) or long-insert (1 ∼ 5 kb, mean 2.3 kb). The reads varied in length from
30 ∼ 100 bp. We truncated reads to 50 bases in order to provide algorithms with high-
quality, uniform-length reads. We used coverage 120X for the short-insert data and 40X for
the long-insert data. The performance of Telescoper does not degrade with higher coverage
data.

We sought to assess assembly for the 40 kb telomeric regions at the ends of each of S.
cerevisiae’s 16 chromosomes. To this end, we simulated data only from this region. For
the real data we used the full data set, but restricted evaluation statistics of the produced
contigs to those alignable to the 32 telomeres, each of length 40 kb.

Details of running the various algorithms, including parameter settings and runtimes,
can be found in the Supplementary Material. To optimize the performance of the other

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 14

algorithms, insert distribution and coverage parameters were provided where appropriate.
We did not include SGA for D2 and D3 since it was designed for reads of at least 100 bp.

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 40.0 40.0 41.0 1208 40.0 40.0 40.0 1172 97.0 90.4
ABySS 31.0 31.0 39.0 1296 31.8 31.8 39.3 1244 95.9 84.7
ALLPATHS2 35.2 33.0 39.0 1047 35.2 33.4 40.0 1032 98.5 80.6
SOAPdenovo 25.0 24.0 39.0 1149 28.6 24.6 40.0 1068 92.9 82.3
Velvet 13.9 9.0 31.0 964 13.9 9.5 31.6 947 98.2 73.7
SGA 31.2 27.0 39.0 1110 31.6 27.2 40.0 1075 96.8 82.0

(a) Results for simulated data D1 (read length = 101 bp)

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 39.0 38.0 39.0 1162 38.8 38.3 39.8 1155 99.4 90.3
ABySS 12.1 8.0 31.0 1097 13.7 8.9 31.6 966 88.0 75.0
ALLPATHS2 32.0 27.0 39.0 968 32.8 27.7 40.0 950 98.2 74.3
SOAPdenovo 25.0 21.0 39.0 988 24.6 20.8 40.0 954 96.5 74.3
Velvet 14.0 9.0 31.0 955 14.2 9.5 31.9 939 98.3 73.2

(b) Results for simulated data D2 (read length = 50 bp)

Table 2.1: Summary of assembly results based on simulated data from 32 telomeric regions
each of length 40 kb. “%Aligned” is the ratio of Total Aligned to Total Produced, while
“%Covered” is the fraction of the telomeric regions covered by contigs.

Assembly performance

Several standard metrics exist for measuring assembly performance in the absence of a ref-
erence genome. They include the length of the largest contig, the total length of all contigs,
and N50 (which is equal to the longest contig length such that the sum of the lengths of all
longer contigs is half the total output assembly). An additional metric is NG50 [Earl et al.,
2011], which is similar to N50 but more comparable across assembly algorithms. When the
genome length is known, then rather than using each algorithm’s estimate of the genome
size, which can fluctuate widely depending on the threshold at which small contigs are out-
put, one can use the true genome size. Thus NG50 is defined as the length of the longest
contig such that the sum of all longer contigs is half the total genome size. We considered
the above-mentioned metrics in our study.

To investigate assembly accuracy, we mapped each contig to the reference genome using
NUCmer from the MUMMER package [Delcher, 2002]. For each contig, we determined to
which telomere it maps best according to the total number of aligned bases. The number of
aligned bases in each contig forms a more useful foundation for accuracy-informed continuity
statistics than the direct number of bases in each contig. Therefore, we also computed the
aforementioned metrics using these aligned lengths.

The results of our study for simulated data are summarized in Table 2.1, while the results
for the real data are shown in Table 2.2. These results are for the 32 telomeric regions, each

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 15

Aligned (kb)
Assembler N50 NG50 Max Total %Covered
Telescoper 34.5 32.8 39.2 980 75.8
ABySS 12.0 8.3 31.3 971 75.3
ALLPATHS2 26.3 16.5 40.0 923 70.1
SOAPdenovo 21.4 16.2 39.3 879 68.6
Velvet 11.8 6.9 31.3 928 72.2

Table 2.2: Summary of results for real data D3. The contigs produced by each algorithm
were aligned to the 32 telomeric regions each of length 40 kb. As before, “%Covered” is the
fraction of the telomeric regions covered by contigs.

of length 40 kb. As the tables show, Telescoper exhibited the best performance under most
metrics, with notable margins from the second best method. As shown in Table 2.1, reducing
the read length from 101 bp to 50 bp while keeping all other parameters the same worsened
the performance of most algorithms, with ABySS being the most affected.

Figure 2.5 provides a more detailed picture of contig length distribution. These plots
show the cumulative proportion for all aligned contigs exceeding the contig size indicated on
the x-axis. NG50 can be read from the plots as the x-coordinates at which each curve hits the
50% mark of bases output relative to the reference. The best possible curve is the constant
function y = 1, so the closer a curve is to that line, the better the performance. Note that for
any given minimum contig size (the x-axis value), Telescoper produced more alignable bases
than all other methods compared, for all three data sets. Furthermore, Figures 2.5(a)-(b)
illustrate that Telescoper is more robust to a decrease in read length than are the other
algorithms.

For Telescoper, the observed difference between the corresponding curve in Figure 2.5(b)
and that in Figure 2.5(c) is largely attributable to the difference in the insert-size distribution.
On simulated 50 bp data with long-inserts with mean length 2.2 kb and short-inserts with
mean length 400 bp, the performance of Telescoper was similar to that shown in Figure 2.5(c)
(see Supplementary Material), suggesting that Telescoper is robust the complications of
real data and that the observed good performance of Telescoper in Figure 2.5(b) is due
to its improved ability to take advantage of a longer (10 kb instead of 2.2 kb) long-insert
distribution.

Of further importance is the extent to which an algorithm produces false bases or contigs.
Because we forced each contig to align to a single telomere, chimeric contigs created by joining
portions of different telomeres were penalized as having bases that do not align. As shown
in the “% Aligned” column of Table 2.1, Telescoper was the top performer in this regard for
D2, and followed ALLPATHS 2 and Velvet closely for D1.

Finally, we considered visually examining the alignments of contigs onto each telomeric
region. Figure 2.6 shows the results for two chromosomes, with contigs from each assembly
algorithm aligned to them. For each algorithm, each contig is represented by a different

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 16

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(a) Simulated data D1: 101 bp reads, 10 kb
long-insert mean

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(b) Simulated data D2: 50 bp reads, 10 kb long-
insert mean

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(c) Real data D3: 50 bp reads, 2.3 kb long-insert
mean

(d) Legend.

Figure 2.5: The cumulative proportion of all aligned contigs exceeding the contig size in-
dicated on the x-axis. These plots illustrate the continuity and completeness of different
assemblies. For any given minimum contig length, Telescoper produced more aligned bases.
NG50 can be read from this graph as the x-coordinates at which each curve hits the 50%
mark of bases output relative to the reference. (a) Results on simulated data D1. (b) Results
on simulated data D2. (c) Results on real data D3. (d) The legend for subfigures (a)-(c).

color, so more colors per method indicates a larger number of contigs. For each telomeric
region shown, Telescoper produced a single contig for almost the entire region, while other
algorithms often produced many small contigs.

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 17

Figure 2.6: Contig continuity results for real data D3. The left and right telomeric regions
(separated by the dotted line) for two different chromosomes are shown, with the aligned
contigs displayed for each assembly algorithm. Different colors represent different contigs
in the produced assembly, so more colors per method indicates a larger number of contigs.
For each telomeric region shown, Telescoper produced a single contig for almost the entire
region, while other algorithms often produced many small contigs.

2.4 Conclusion

We have introduced several new ideas for de novo genome assembly, geared towards highly
repetitive regions. Our preliminary assembler, Telescoper, proceeds by iteratively extending
paths and selecting between them using the empirical distributions formed by both long-
insert and short-insert paired-end reads. Although our iterative extension step is similar to
the method from Parrish et al. [2011], we note that their method is designed for the targeted
assembly of an individual’s insertions relative to a reference genome.

The utility of Telescoper was validated in a study on both real and simulated data from
the 40 kb telomeric regions of each chromosome of S. cerevisiae. For all three data sets tested,
Telescoper produced more continuous assemblies than the other algorithms considered. In
our evaluations, we tried to include the strongest and most popular algorithms with available
implementation. Unfortunately, ALLPATHS-LG [Gnerre et al., 2011] could not be included,
because of its small-fragment library requirement mentioned in Introduction. We considered
several standard metrics for comparing assemblies, but we note that the task of comparing
genome assemblies is a large one, with several papers exclusively devoted to it [Earl et al.,

CHAPTER 2. ASSEMBLY USING ITERATIVE EXTENSION 18

2011, Salzberg et al., 2012].
Other researchers are currently working on algorithms for identifying assembly errors

using features derived from read-mapping. Rather than having this be a downstream process,
we believe that it would help to incorporate such features directly into an assembly algorithm.
Here we make an effort in this direction by scoring assembly extensions according to read-
mapping statistics. Although the scoring scheme used in this paper may not be optimal,
we have demonstrated that the idea of simultaneously pursuing multiple extensions, and
concurrently using multiple libraries to score and select among them is promising.

The current implementation of Telescoper can be used as a finishing algorithm to extend
contigs into repetitive regions and produce better assemblies for telomeres. Other applica-
tions include targeted de novo assembly of structural variants and highly variant regions such
as human leukocyte antigen. Future work would include extending the ideas presented here
to whole genome assembly, improving error-correction, producing more exhaustive listings
of potential paths, and more thorough evaluation of the alternate paths. Also, additional
validation metrics such as those explored by Salzberg et al. [2012] can be incorporated as
well.

We often see cases where, if we took the union of all assemblies, we could produce a
much better final product. This suggests that assembly is not a solved problem, and that the
strengths of different algorithms can potentially be combined to produce better assemblies.
We believe the ideas behind Telescoper have the potential to improve de novo assembly
significantly and provide a comprehensive picture of previously unresolved repetitive regions.

19

Chapter 3

Maximum Likelihood Assembly

3.1 Introduction

In this chapter we continue the theme of this thesis, and describe a new de novo assem-
bly algorithm targeted towards resolving repeats. Many types of repeats occur in genomic
sequences, including triple repeats, near-repeats, tandem repeats, inversions, and rearrang-
ments. Such repeats form a major barrier to perfect genome assembly, and current state-of-
the-art assembly algorithms produce sequences that are often very different from the original.

The vast majority of assembly algorithms take the same high-level approach. The al-
gorithm first generates a contig graph; next, the algorithm attempts to use mate-pair in-
formation to elongate the contigs, or at least to determine their relative position to create
scaffolds. Repeats result in a more fragmented contig graph with more complex relationships
between the contigs, creating a more challenging problem for the contig-elongation step. It
is desirable for a contig graph to be perfect ; a contig graph is said to be perfect if the ref-
erence sequence can be traced out as a path through the graph. Yet, even with a perfect
contig graph, most assemblers fail to generate long contigs in the presence of complicated
repeat structure. This holds true even if the mate-pair reads are, to a good approximation,
consistent with only one solution. Note that in such a situation the assembly problem is
statistically feasible, and the problem is largely a computational one.

The situation is of course made more challenging when there are read errors, or when
reads multi-map to multiple contigs, or when multiple solutions can explain the reads, but
some solutions are more likely than others.

One approach to creating longer contigs from a contig graph is to sequentially apply
heuristic steps. However, it can be challenging to know when to apply them or what heuris-
tics to use. An alternative, principled approach, is to pose the assembly problem as a
maximum-likelihood/optimization problem or as a constraint satisfaction problem, where in
the latter, the constraints are requirements that mapped read-pairs have a good orientation
and appropriate distance in the assembly.

The idea of treating assembly as a maximum-likelihood problem (i.e. choosing the as-

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 20

sembly that maximizes the probability of the observed reads) has been around for a while.
Maximimum likelihood assembly was proposed by Myers [1995]. It is also mentioned in
the Sanger assembler Celera [Myers, 2000] to identify collapsed repeats, in Medvedev and
Brudno [2009], and in metagenomics [Laserson et al., 2011] and quasi-species (ShoRAH
[Zagordi et al., 2011], ViSpA [Astrovskaya et al., 2011]).

A more developed framework, using mate pairs and errors, is discussed in recent assembly
evaluation papers CGAL [Rahman and Pachter, 2013], ALE [Clark et al., 2013], and Ghodsi
et al. [2013], which use the likelihood not to do assembly, but to compare assemblies produced
by different programs, or with different parameters. We will use CGAL in this chapter to
evaluate the assemblies we produce.

Other papers use likelihood to a limited extent, to choose between few alternatives.
For instance, Dindel [Albers et al., 2011] generates eight candidate haplotypes in a given
realignment window, and then considers each indel applied, and chooses the most likely one.

In our algorithm, called Piper, we begin with a contig graph produced by another assem-
bler, and search for a full assembly solution represented as a set of paths through the graph.
The problem is then reduced to choosing the correct path set through the graph, among the
many candidate path sets. Our method compares the potential path sets using a likelihood
framework: given a generative model, we keep only the solutions that produce the observed
reads with high likelihood. Because the large number of solutions prohibits evaluation of
likelihoods for them all, we impose a number of hard constraints to reduce the search space
of assemblies. In some instances, these hard constraints are actually sufficient to determine
a single assembly.

We draw our examples in this section from repeat-rich regions and segmental duplica-
tions, i.e. duplications followed by continued genome evolution. Such regions are difficult to
assemble, and many assembly algorithms output collapsed sequences that are shorter than
the truth, or simply fail to assemble at all. Genomic regions with similar content are bi-
ologically important, because they reflect different selective pressures from the rest of the
genome, which underscores the need to produce accurate assemblies despite the difficulty.

We compared Piper to existing algorithms as follows. We first generated a contig graph
using the assembler Discovar [Computational Research and Development Group, Broad In-
stitute of MIT and Harvard, 2014], and then ran our assembler on its output. Accord-
ing to results from Assemblathon 1 [Earl et al., 2011], SOAPdenovo [Li et al., 2010] and
ALLPATHS-LG [Gnerre et al., 2011] were the top two performing assemblers at the time.
Hence we compare the results of our likelihood-based assembly to ALLPATHS-LG [Gnerre
et al., 2011], SOAPdenovo2 (the successor to SOAPdenovo) [Luo et al., 2012], as well as
SGA [Simpson and Durbin, 2012].

Since the algorithm Piper takes a contig graph as input, comparison to other algorithms
that take a contig graph will be more accurate than comparison to algorithms which generate
a potentially inferior contig graph. Both SGA and SOAP-denovo separate their contig graph
creation and scaffolding stages, so we can run the scaffolding stages on the same Discovar
output that we input to Piper. Dedicated scaffolders that are not part of assemblers are
generally designed to solve a different problem: GRASS [Gritsenko et al., 2012] defines the

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 21

“contig scaffolding problem” (CSP) as being that of finding a single position and orientation
for each contig, so as to minimize the unsatisfied scaffolding constraints. Indeed, most of
the scaffolding algorithms described in Hunt et al. [2014] explicitly do not handle repeats;
for instance, GRASS [Gritsenko et al., 2012], OPERA [Gao et al., 2011] and MIP [Salmela
et al., 2011] remove contigs with read-depth coverage that suggests the contig may be a
repeat. Bambus [Pop, 2003] and SSPACE [Boetzer et al., 2011] are both greedy algorithms
that place each contig at only one location. Therefore, we compare Piper only with the
afore-mentioned assembly algorithms and their scaffolding procedures.

Our work is unique in that it is the first assembler of which we are aware that attempts
to do de novo assembly by explicitly generating a set of alternative assemblies, and choosing
amongst them using a likelihood computed using paired-reads. The results on small sim-
ulated datasets are very good: we are able to completely assemble regions that no other
algorithm does.

3.2 Methods

In this section, we describe in detail the Piper algorithm. The algorithm takes as input
a contig-graph and outputs a set of assemblies that are all likely solutions. Often more
than one assembly is equally likely, so we cannot narrow down the solution precisely. Each
assembly consists of a set of lists of overlapping contigs, i.e. a set of strings. Piper outputs
a set of contigs in which it is confident, i.e. the maximal substrings that appear in all of its
assemblies. Piper also outputs a graph connecting these lists of contigs, as is standard in
fastg format.

Likelihood formulation. A key component of the algorithm is computation of the
likelihood of an assembly, i.e., the probability of obtaining the given set of reads from a
proposed assembly. At this stage the contig graph is assumed to be fixed, and the only
variable is the assignment of multiplicities to the contigs and the paths through them.

Our computation of the likelihood of the assembly is based on the following generative
model. All genome assemblies are assumed to have the same prior probability. Long-insert
read-pairs are generated independently from the sequence as follows: a location is chosen for
the left read of a read-pair, uniformly at random from all positions along the sequence, and an
insert size is chosen according to a predetermined insert size distribution. If the right read’s
generated position is beyond the length of the sequence, the read-pair is discarded. Errors
in the read are generated according to some sequence-independent distribution. (Ideally,
errors in the read would be modeled as being generated according to a distribution that is a
function of the position in the read, the true base, and the quality score, but at present we
focus on a more tractable model.)

The probability of observing a particular set of N reads given the assembly is the product
of the probability of observing N reads given the assembly length A, the arrival rate λ
(i.e., the inverse of the expected distance between reads), and the read-pair probabilities.
Borrowing some notation from Rahman and Pachter [2013], and using Ppoiss(X|y) to indicate

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 22

the probability that a Poisson-distributed random variable with rate y takes on value X, the
likelihood is

l(A;R) = logPpoiss(N |λA) + log
N∏
i=1

p(ri|A), (3.1)

where A is the assembled sequence, and the ith read-pair has likelihood

p(ri|A) =

Mi∑
j=1

1

A
pF (li,j)pE(ei,j).

That is, the probability of generating a particular read-pair is the sum of the probabilities
of generating it from each of the A2 locations from which it could have been generated. We
approximate the locations from which it could have been generated as the genome locations
to which the read pair aligns with a small edit distance, and use just the Mi distinct mapping
locations j that are returned by a read-mapper which aligns the reads to the assembly A.
The probability of generating the read-pair from a particular location depends on the total
number of locations (A) from which it could have been drawn, the distribution of fragment
size, pF (·), and the distribution on error probabilities, pE(·). Each mapping location implies
a fragment size li,j, and (together with the sequence specified by A to be present at the
location j) a set of errors ei,j. This yields the read probability 1

A
pF (li,j)pE(ei,j).

This model is a somewhat coarser version than that used by Rahman and Pachter [2013],
who propose to compare whole genome assemblies produced by competing assemblers by
computing their likelihoods, rather than N50 or some other statistic. They also model
sequence-dependent error, as well as sequence-dependent arrival rate. They note that given
their model, the quantity is precise when all possible mapping locations are used, but can
be approximated by using just the top mappings.

In order to penalize assemblies with incorrect or missing sequence, Rahman and Pachter
[2013] force all reads to align somewhere, and then penalize according to the implied errors.
In our application, we simply discard the reads that do not align to the contig graph. This
is appropriate in our setting where the contig graph is fixed, and the assemblies differ only
in the multiplicity of the contigs and in the implied offsets between them, in which case the
poorly-aligned reads do not contain important differentiating information.

Decomposition

In order to make the assembly process more efficient, we do not consider all possible assem-
blies, a.k.a. sets of paths through the contigs, but only a subset. We restrict the subset of
possible assemblies in this section.

To begin with, we will want to work with a unitig graph in addition to the contig graph
that we are given as input. Recall that a unitig is an unbranched path in the read graph.
In order to obtain unitigs from a contig graph, we replace reads in this context with the set

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 23

of L-mers in the contigs and create edges between “reads” only when they overlap by L− 1
bases. Equivalently, we could define a unitig seeded around an L-mer x to be the longest
string containing x such that every other L-mer y in the unitig occurs, in a path through
the contig graph, only where the entire unitig appears. The unitig set corresponding to a
contig set is the set of unitigs seeded at all L-mers in the contigs. The unitig set has two
nice properties: First, every contig can be written (uniquely) as an ordered list of unitigs.
Second, every error-free read maps uniquely to a single unitig. Note that many unitigs are
present in more than one contig.

A read-pair spans a pair of unitigs (c, d) if one read maps to unitig c and the other maps
to unitig d, with orientations consistent with a path from c to d. We include the case where
c=d.

If we assume that reads can be correctly mapped to unitigs, then the formulation of the
likelihood simplifies. Each read-pair spans two unitigs (or one unitig), and, letting U denote
the set of all unitig pairs, and Rcd the subset of reads that span a unitig pair (c, d), we can
rewrite the likelihood as

l(A;R) = logPpoiss(N |λA) +
N∑
i=1

log p(ri|A)

= logPpoiss(N |λA) +
∑

(c,d)∈U

∑
i∈Rcd

log p(ri|A).

In other words, we partition the reads into sets according to the pair of unitigs which
they span. Now we wish to find the probability of generating the read-pairs spanning a
unitig pair. This will depend on the number of instances and gaps with which the unitig
pair appears in the assembly. To get these values, it is sufficient to know which of the paths
that connect the unitig pair appear in the assembly, along with the number of times they
appear.

Let M denote some length, e.g. the max insert size. Then define the set of pathlets
ZMf to be the set of paths through the contig graph starting at contig f and elongated until
the stopping condition is met, where the stopping condition is that the string as measured
from the start of the 2nd contig to the end of the pathlet has length at least M or until the
final contig in the pathlet has no outgoing edges. If M is the max insert length, then any
read-pair mapping with its left-read into f will have its right-read somewhere in the pathlet
(rather than to the right of the pathlet). Then

ZM :=
⋃
f

ZMf

is the set of all pathlets in the graph. We define the pathlets on the contig graph rather than
the unitig graph, because the contig graph has far fewer paths.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 24

We define the set of variables {mz : z ∈ ZM} to be the multiplicities of the pathlets, i.e.
mz is the number of times pathlet z’s contig sequence appears in the reconstructed genome.
If mz = 0 then that pathlet does not appear in the genome.

We can think of {mz : z ∈ ZM} as specifying the “filled-in reads” that we would have
observed if we knew the interior of every long-insert read-pair. In other words, just as the
unitig graph formed from the K-mer graph with K = L− 1 is the best we can do for single-
read assembly, {mz : z ∈ ZM} implies a graph that is the best we could do with complete
sequencing of the fragments from which the read-pairs were made. This is, of course, an
upper bound to how well we could hope to assemble using paired-end reads, since we will,
in general, find multiple such graphs that are consistent with the data.

The pathlets satisfy some basic flow constraints. In order to explain them, we introduce
a particular definition of a suffix of a path: suffix(z) is the contig-list created from z by
removing just the first contig in z’s contig-list. Due to how we defined ZM , we note that
pathlets in ZM that contain g as their second node can be thought of as the product-set of
choice of contig prior to g and choice of suffix beginning at g. Letting SM denote the set of
suffixes of paths in ZM that are also strict prefixes for some pathlet, we obtain the following
flow constraints, which essentially just enforce that flow into a path s ∈ SM is equal to the
flow out: ∑

z∈ZM | suffix(z)= s

mz =
∑

y∈ZM | prefix(y)=s

my ∀s ∈ SM . (3.2)

The flow constraints would be violated if a chromosome starts with a suffix, or ends in
a suffix that is the strict prefix of some pathlet. That will only happen if the end of a
chromosome (or assembled region) is identical to some sequence interior to another chromo-
some or scaffold. We could also consider permitting a fixed number of violations of the flow
constraints, with some penalty, but do not do so here. We note that given our definitions, it
is not a problem for two chromosomes to start with the same prefix or to end with the same
suffix.

For ease of exposition we assume for a moment that each unitig in a pathlet occurs
just once in that pathlet, though we shortly elaborate on the case where it does not. The
likelihood can be rewritten in terms of these variables {mz : z ∈ ZM}, as

l(A;R) ≈ logP (N |λ,A) +
∑
c,d∈U

∑
i∈Rcd

log
∑
z∈Zcd

mzp(ri|z)

= logP (N |λ,A) +
∑
c,d∈U

∑
i∈Rcd

log
∑
z∈Zcd

mz
1

A
pF (li,z)pE(ei,c,d),

where Zcd = {z s.t. d ∈ z|z ∈ ⋃f s.t. c∈f ZMf } is the set of pathlets that start at one of
the contigs (f) containing the unitig c and where the pathlet also contains the unitig d,
downstream of c, and li,z is the fragment size implied by mapping read-pair i to the pathlet
z (obtained by mapping the reads in read-pair i onto the unitigs c, d and mapping c, d onto

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 25

z) and ei,c,d is the errors implied in mapping the read-pair i to unitigs c, d. Note that the
definition of Zcd ensures that a particular unitig pair (c, d) is counted only once per path
that flows through it; any two pathlets in Zcd cannot come from the same physical place in
the genome.

The likelihood above can be easily modified when a unitig maps in multiple places to
z. If the unitig c appears twice in the first contig of z, or if the unitig d appears twice in
the pathlet, then we replace mz

1
A
pF (li,z)pE(ei,c,d) by mz

∑Mz

k=1
1
A
pF (li,z,k)pE(ei,c,d) where k

enumerates over the Mz pairs of mapping locations of the unitig c onto the contig f and of
the unitig d onto the pathlet z , and li,z,k is the implied fragment size from mapping read-pair
i onto the unitigs c, d and then using the kth mapping of (c, d) onto z.

We note that because we mapped each read to a unique unitig, the factor pE(ei,c,d) can
be pulled out into its own sum, which is independent of the assembly. Intuitively, this is
because once we made the approximation of being confident in the mapping of the read-pair
to the unitig pair, the errors no longer play a role.

Unitig multiplicity constraints: In order to limit the space of solutions over which
we must search, we can impose some hard constraints on the unitig multiplicities, which will
be satisfied with high probability. Specifically, we can place constraints on mc (multiplicity
of unitig c) that it lie in the interval m−c < mc < m+

c . We obtain m−c and m+
c as the min

and max values respectively of mc using

m−c = min

({
mc ∈ N

∣∣∣∣log
P (Nc|mcγc)

P (Nc|m∗cγc)
< T1

})
m+
c = max

({
mc ∈ N

∣∣∣∣log
P (Nc|mcγc)

P (Nc|m∗cγc)
< T1

})
(3.3)

for some user-input threshold T1, where γc is the expected number of reads Nc to arrive in
contig c (given its length, the read arrival rate λ, the read-length, and the read-mapping
error-rate, and assuming it occurs just once), and m∗c = argmaxmc

P (Nc|mcγc). We use the
heuristic of P (Nc|mcγc) = Ppoiss(Nc|mcγc)+ εNc (with a small value of ε), in order to account
for the fact that reads can be mismapped, and to allow a unitig c to have multiplicity mc = 0
even if a read mapped to it. All told, these heuristic bounds are very similar to the estimate
of multiplicity using the A-statistic in Myers [2000].

We then require that
∑

z∈Zc
m(z) fall within the hard constraints, where Zc = {z|z ∈⋃

f s.t. c∈f ZMf }. If the unitig appears more than once within a contig f , then we count the

pathlets in ZMf the corresponding number of times.
Unitig pair multiplicity constraints: Similarly, we can impose hard constraints on

the unitig-pair multiplicities. Define the variable ηcd(g) = E(Nc,d|lcd) to be the expected
number of read-pairs between unitigs c and d if the unitigs were to appear a single time in
the genome, given their separation distance lcd, their lengths, the read arrival rate λ, and the
read mapping error rate. We note that up to a constant factor related to the read-mapping
error,

ηcd ∝
∫ len(c)

s=0

∫ len(d)

t=0

λpF (lcd + s+ t)dtds.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 26

Then given the set of pathlets between c and d, we can find η+
cd and η−cd the max and min

values over the various values of lc,d.
Define mcd =

∑
z∈Zcd

mz. Then we can bound this quantity, by requiring that the relative
likelihood between the most likely multiplicity and the least not exceed some threshold T2.

Note that we could add additional, tighter constraints, by placing bounds on subsets of
the pathlets, but do not do so in our current implementation.

Further approximating the likelihood: For unitig pairs (c, d) ∈ U with all offsets
implied by pathlets containing the unitigs having very similar length, we can make the
approximation that pF (li,z) = const with respect to z. Dropping terms that are constant
with respect to the assembly, this yields∑

i∈Rcd

log

(∑
z∈Zcd

mz
1

A
pF (li,z)

)
=
∑
i∈Rcd

log
∑
z∈Zcd

1

A
mz + const

= Ncd log
∑
z∈Zcd

1

A
mz + const.

We note that
∑

c,d∈U mcdηcd = E(N |λ,A).
Doing some algebra (which we omit here), then assuming all unitig-pairs are connected

by a single-length path, we can rewrite the total likelihood function as

l(A;R) ≈
∑
c,d∈U

(
logE(Nc,d|λ) +

∑
i∈Rcd

log
∑
z∈Zcd

mzpF (li,z)

)
+ const

=
∑
c,d∈U

logPpoiss(Nc,d|mcdηcd) + const,

where the constant does not depend on the variables m(z).
One advantage of this formulation is that each term should be small, which can help in

the computation to minimize the total.
At present we actually do not include any contribution to the likelihood from unitig pairs

whose path-lengths differ by more than some threshold. We should do this though; we could
consider the breakdown of the multiplicity over the subsets of pathlets in Zcd partitioned
according to the implied offset between c and d and compute the likelihood contribution.

Finally, we add to the log-likelihood the log-likelihood that one would get based on just
single-end reads. Whereas in the previous step we excluded the contribution of some unitig
pairs, for this value it is easy to include all unitigs.

Optimization Having defined the variables, some hard constraints, and likelihood func-
tion, we would like to find the assemblies that maximize the likelihood. To this end we use
z3, a weighted constraint solver / theorem prover being developed at Microsoft Research
(https://z3.codeplex.com). z3 takes both hard constraints, which must be satisfied, and
soft-asserts, which when satisfied, contribute a weight. The sum of the weights from the
satisfied soft-asserts will yield our approximate likelihood.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 27

The problem as entered to z3 is

• variables are pathlet multiplicities {mz : z ∈ ZM}

• flow constraints imposed as hard constraints, Eq. 3.2

• hard constraints on flow through individual unitigs, Eq. 3.3

• hard constraints on flow through unitig pairs

• soft constraints on multiplicities of unitig-pairs. Our current implementation only
considers unitig pairs where the distance between the unitigs is pathlet-independent.
For each unitig-pair, for each value of the multiplicity that it can take, we incur some
weight. The weight comes from the probability that the unitig-pair multiplicity takes
on value I given the number of spanning read-pairs observed (Ncd), and is a term in
the likelihood. ∑

z∈Zcd

mz = I, I ∈ {0 . . .maxI},

each with weight
wcd(I) = − logPpoisson(Nc,d|rate =Iηcd),

for c 6= d

• soft constraints on single-unitigs: Similar to the above, but counting the reads mapping
within a single unitig, to measure its multiplicity.

The hard constraints do not change the likelihood, and are just there to help reduce the
search space. The weights of the satisfied soft-constraints add up to our approximation of
the likelihood.

We run the z3 solver on this input, obtaining the minimum-weight set of values for
{mz : z ∈ ZM}. We then exclude that solution, and search for the next likely one, repeating,
until we reach a solution with much smaller likelihood.

Processing the output from z3: Because we made many approximations in our
likelihood score computation, we also want to get a more accurate score for each assembly.
For a given set of pathlet multiplicities, we evaluate an assembly consistent with the pathlet
multiplicities (any such assembly; they should all have very similar likelihoods) using CGAL
[Rahman and Pachter, 2013].

We keep all the solutions within some user-defined distance of the top one (often there
are multiple solutions with similar likelihoods).

To convert from {mz : z ∈ ZM} to an assembly, we note that the {mz : z ∈ ZM}
variables form a “pathlet graph”, where nodes are pathlets and edges are generated when the
suffix and prefix of two pathlets match. If there is any subgraph with a single source/sink
in that subgraph, then if there is a single Hamiltonian cycle consistent with the pathlet
multiplicities, then we replace that subgraph with the Hamiltonian cycle. We merge any
unbranched chains in this graph, similarly to how we merged reads in unitig formation or

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 28

Kmers in the condensed Kmer graph in other chapters. The result of all this is a simplified
version of the pathlet graph, where each node is a contig.

We also create a consensus solution across all the assemblies. The consensus solution
is just a set of (greatest) substrings that are common to all solutions, which we output as
contigs. Any sequences of contigs that remain in some of the assemblies but not all of them
are also output as contigs, but annotated as uncertain. We also include information about
the edges between the contigs that we output.

Details: In order to speed up the computation of the ηcd’s, as well as to have fewer
constraints in z3, we do not print unitig-pair constraints if either unitig has length less than
150 or if the start-to-end distance between the unitigs is less than the min likely insert size
or if the end-to-start distance between the unitigs is more than the max likely insert size.

Rounding the weights makes the z3 computation run much faster, so we round them to
the nearest 0.2 (an ad-hoc choice of value).

In enumerating the pathlets, we avoid traversing a unitig more times than our estimate
of its max multiplicity; otherwise we had datasets on which the number of pathlets in the
graph was far too large to use.

3.3 Results

Data and comparisons

We evaluate our method’s performance on a few segmental duplications in the human
genome. For each region we simulate two different libraries from the haploid sequence from
NCBI:

• D1: a short-insert (600bp fragment) library of 250 bp reads (“Broad-style short insert
library”)

• D2: and a long-insert (2000bp fragment) library of 101 bp reads. (“long insert library”)

The first library is the required input library for the program Discovar, which is a state-
of-the-art de novo assembler that works with small datasets, and is intended for assembly
so accurate that SNPs and small structural variants (SVs) can be called. The second is a
long-insert library, such as is required by most whole genome de novo assemblers in order to
produce accurate assemblies. ALLPATHS-LG, for example, requires a long-insert library, in
addition to a short-insert library with fragment size no more than 3 times the read-length.
Discovar accepts only a short-insert library, with the same restrictions as ALLPATHS-LG’s
short-insert library. With the exception of ALLPATHS-LG and Discovar, most other whole
genome de novo assemblers are flexible and can use either a short-insert library alone, or a
short-insert library together with one or more long-insert libraries.

We evaluate our results using the GAGE evaluation script [Salzberg et al., 2012], which
returns a report on the assembly quality, including the information categories listed in 3.2.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 29

Genomic Regions

We consider a small number of datasets, ranging in size and complexity. We chose Nebulin
due to its mention by Jaffe et al. [2013]. The other datasets were obtained from Human
Segmental Duplication Database [Bailey et al., 2001]. For datasets without a perfect repeat
longer than 600 bp, we used only a short-insert library in evaluating Piper, in order to see
how well it could do with limited information. We gave the other algorithms both libraries
in every case (additional libraries should never degrade the assembly).

Isolated duplication 1 Our first example is the simplest possible. The genomic regions
chr4:99801213-99802294 and chr17:47500655-47501746 contain a perfect repeat of copy num-
ber 2, of length 1091. For our first example, we take these two regions, plus 5000bp on either
side, and simulate reads. The resulting contig graph produced by Discovar, and shown in
Fig 3.1(a) is very simple, and contains just 5 contigs: the repeat, the two preceding regions,
and the two following regions. The results for each algorithm are shown in Table 3.1(a);
Piper, ALLPATHS-LG, and SOAP all do well, with each of these producing one correct or
nearly-correct scaffold for each region from the two chromosomes. SOAP also produces an
extra short contig corresponding to the repeat. In other examples of a single perfect repeat
surrounded by non-repetitive sequence, we saw similar results.

Tandem duplication 1 The region chr3:197162964-197164034 contains a tandem seg-
mental duplication of length 1113, with some differences between the two copies. We sur-
rounded it with 10,000bp of flanking sequence on either end of the region, so that algorithms
could infer the insert distribution. For this dataset, we used only the short-insert library for
Piper, because none of the exact repeats were longer than 600bp.

The contig graph input to all the algorithms is shown in Fig 3.1(a). The results of
the scaffolding/assembly algorithms are summarized in Table 3.1(a). Using just the 600bp
library, we produced two assemblies with very similar CGAL likelihood scores (difference less
than 3.0, although the higher-likelihood solution was in fact the correct one), so our output
for this was a set of contigs present in both assemblies, including the output contigs created
from the input contigs (5, 2, 4, 8) and (5, 3, 7, 8).

Tandem duplication 2 The region chr9:35372441-35373492 contains a tandem segmen-
tal duplication of length 1055. While at first glance this dataset is not more interesting than
our “Tandem duplication 1”, it contains many many more repeats on the length scale of
101bp than at the length 250bp, making read-mapping ambiguous. For this dataset, we
used only the short-insert library for Piper, because none of the exact repeats were longer
than 600bp. The contig graph input to all the algorithms is shown in Fig 3.1(b). The results
of the scaffolding/assembly algorithms are summarized in Table 3.1(b). In this case we pro-
duced two assemblies that were equally likely according to our approximate likelihood score,
but which were markedly different according to their CGAL scores, allowing us to provide a
single likely assembly.

Nebulin Nebulin is a muscle protein gene that is roughly 249 kbp long and has undergone
two duplications. The resulting three regions are about 10.5 kbp each, have over 99%
sequence identity to one another, and no two of them are obviously more similar than the

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 30

other two, leading to the interpretation that the duplications date back to approximately
the same time [Björklund et al., 2010]. This gene is similar to other repetitive eukaryotic
genes: it is composed of protein domain repeats, and has undergone segmental duplications,
causing interesting repeat patterns. It also has an interesting evolutionary history across
different species [Björklund et al., 2010]. We will consider the human version.

The contig graph input to all the algorithms is shown in Fig 3.1(c). The results of
the scaffolding/assembly algorithms are summarized in Table 3.1(c). Piper’s results on this
dataset were very good; it correctly reproduce the entire gene’s sequence, whereas none of
the other assemblers or scaffolders, including ALLPATHS-LG, output more than a single
“consensus” sequence for the 3 copies of the repeat of interest.

ID:0, len=5125

ID:3, len=680

ID:1, len=5342 ID:4, len=5452

ID:2, len=5131

(a) Isolated duplication 1

ID:0, len=10100

ID:5, len=160

ID:2, len=1020 ID:3, len=326

ID:4, len=270

ID:8, len=137

ID:7, len=113

ID:6, len=131ID:1, len=10553

(b) Tandem duplication 1

ID:0, len=278

ID:1, len=10145ID:9, len=651

ID:7, len=270

ID:2, len=186

ID:4, len=472

ID:6, len=199 ID:8, len=199

ID:3, len=143

ID:5, len=10123

(c) Tandem duplication 2

Figure 3.1: To create each graph, reads were generated and input to Discovar. The graphs
pictured are the contig graphs after converting from an edge-string to node-string format.
Black edges denote overlap. Colored edges are superimposed on this black-and-white graph
to indicate the paths consistent with the reference, e.g. for Fig. 3.1(a), the true assembly
consists of the contigs ((0, 3, 1), (2, 3, 4)).

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 31

ID:1, len=158

ID:6, len=393

ID:2, len=199ID:7, len=199

ID:8, len=655

ID:12, len=500ID:14, len=491

ID:3, len=207

ID:4, len=192

ID:5, len=266

ID:13, len=1279

ID:9, len=109

ID:26, len=1290

ID:25, len=1080ID:28, len=1078

ID:10, len=300

ID:11, len=125657

ID:15, len=1488

ID:16, len=1598

ID:17, len=2615

ID:27, len=2323ID:0, len=94166

ID:18, len=200ID:24, len=201

ID:21, len=178

ID:19, len=903

ID:23, len=664

ID:20, len=217

ID:22, len=296

Figure 3.2: The output graph produced by Discovar for Nebulin. To create the graph,
reads were generated and input to Discovar. The graph pictured is the contig graph after
converting from an edge-string to node-string format. Black edges denote overlap. Colored
edges are superimposed on this black-and-white graph to indicate the paths consistent with
the reference.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 32

Contigs Coverage Errors
Asm N N50 MR CR DR Ch MA S I SV
D 5 / 5 / 0 5145 16 680 0 0 0 0 0 / 0 0 / 0 / 0
PS 2 / 2 / 0 10949 158 0 0 0 0 0 0 / 0 0 / 0 / 0
AA 2 / 5 / 0 10231 108 141 0 0 0 0 0 / 1 0 / 0 / 2
SgA 11 / 9 / 0 5214 258 679 1142 0 0 0 0 / 0 0 / 0 / 0
SoA 241 / 57 / 1 416 118 1247 51009 12808 291 3 0 / 0 0 / 0 / 0
SgS 5 / 5 / 0 5145 16 680 0 0 0 0 0 / 0 0 / 0 / 0
SoS 3 / 5 / 0 10712 268 605 0 0 736 0 18 / 0 0 / 0 / 0

(a) Running assemblers and scaffolders on the isolated duplication 1 data set.

Contigs Coverage Errors
Asm N N50 MR CR DR Ch MA S I SV
D 3 / 3 / 0 10073 33 651 1039 2243 0 0 0 / 0 0 / 0 / 0
PS 4 / 4 / 0 10100 0 0 131 131 0 0 0 / 0 0 / 0 / 0
AA 1 / 2 / 0 20340 339 2104 0 0 0 0 0 / 0 0 / 0 / 0
SgA 102 / 10 / 0 10017 146 0 24119 0 0 0 0 / 0 0 / 0 / 0
SoA 238 / 62 / 0 329 14 1569 49788 10901 29 0 0 / 0 0 / 0 / 0
SgS 3 / 3 / 0 10073 33 802 1190 2243 0 0 0 / 0 0 / 0 / 0
SoS 1 / 2 / 0 22486 108 457 1024 223 577 57 32 / 0 0 / 1 / 0

(b) Running assemblers and scaffolders on the tandem duplication 1 data set.

Contigs Coverage Errors
Asm N N50 MR CR DR Ch MA S I SV
D 6 / 6 / 0 10123 34 1020 329 727 0 0 0 / 0 0 / 0 / 0
PS 1 / 1 / 0 22498 34 0 0 0 0 0 0 / 0 0 / 0 / 0
AA 1 / 3 / 0 19569 811 2654 0 0 0 1 0 / 1 0 / 1 / 0
SgA 6 / 6 / 0 9937 195 1188 2638 2995 0 0 0 / 0 0 / 0 / 0
SoA 3 / 5 / 0 22166 7 1335 1808 2621 0 0 0 / 0 0 / 0 / 0
SgS 6 / 6 / 0 10123 34 1020 329 727 0 0 0 / 0 0 / 0 / 0
SoS 4 / 4 / 0 21734 109 788 1171 554 799 7 18 / 0 0 / 0 / 0

(c) Running assemblers and scaffolders on the tandem duplication 2 data set.

Contigs Coverage Errors
Asm N N50 MR CR DR Ch MA S I SV
D 102 / 82 / 0 11476 27 19774 18346 15742 1370 173 76 / 4 0 / 0 / 0
PS 1 / 1 / 0 249149 0 0 0 0 0 0 0 / 0 0 / 0 / 0
AA 4 / 10 / 0 88902 32648 5039 0 0 1 14 0 / 3 0 / 1 / 0
SgS 22 / 22 / 0 125657 0 14271 637 1035 0 0 0 / 0 0 / 0 / 0
SoS 13 / 14 / 0 231765 219 16025 97336 1184 7185 2 222 / 0 0 / 0 / 0

(d) Running assemblers and scaffolders on the nebulin data set.

Table 3.1: Evaluation results using the GAGE evaluation script [Salzberg et al., 2012]. Please
see Table 3.2 for the legend.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 33

Abbrev. Description
Asm Assemblies
D original Discovar contigs
P Piper
A ALLPATHS-LG
Sg SGA
So SOAPdenovo2

Contigs
N num. of final scaffolds /

post-correction contigs or scaffolds /
missing assembly contigs or scaffolds

N50 N50 statistic for final scaffolds
Coverage

MR missing reference bases
CR compressed reference bases
DR duplicated reference bases
Ch chaff bases
MA missing assembly bases

Errors
S SNPs
I indels < 5 bp / indels ≥ 5 bp
SV inversions / relocations / translocations

Table 3.2: Legend for the GAGE evaluation [Salzberg et al., 2012] results table. Note that, in
Table 3.1, programs marked with superscript A assemble their own contigs, while programs
marked with superscript S use the contigs from Discovar.

CHAPTER 3. MAXIMUM LIKELIHOOD ASSEMBLY 34

3.4 Conclusion

We have proposed an algorithm for generating a set of high-likelihood assemblies that are
consistent with an input contig graph and paired-read data. When the problem size is small
enough for the algorithm to run in at most a few minutes, we found that our algorithm was
able to produce a list of assemblies that always included the true assembly. Moreover, in
many cases, a single solution was found with higher likelihood score than the other assemblies,
even when other assemblers produced multiple contigs. This suggests that frequently the
data are sufficient for assembly, and the obstacle to assembly is a computational one.

The main challenge is to improve the run-time of the algorithm so that it scales to large
problems. One possible approach is to apply additional heuristics in order to rule out more
assemblies early in the search process. Another possibility is to apply a divide and conquer
approach by partitioning the problem, either into independent or overlapping components,
which can be optimized separately and then merged. Partitioning the problem into indepen-
dent components is not a new idea, e.g. Dayarian et al. [2010] observe, “If the removal of a
contig divides the scaffolding graph into two components, then the scaffolding can be solved
independently for these two components, both of which also include the removed node.”

An interesting open question centers on how the assembly performance varies with dif-
ferent library features, such as the mean and variance in insert size, the read length, and the
read number. Evaluating the change in reconstruction ability as a function of these param-
eters would be interesting, both for the likelihood-based approach, and for more traditional
assemblers. In general, it seems that a larger variance in insert size will negatively affect the
efficiency with which heuristics can be used to discard assemblies, but potentially improve
the resolution with which the likelihood score can distinguish competing assemblies.

In order to have practical use, our algorithm needs to be tested and validated on real
data. Whereas our simulated data was haploid, real genomes are diploid. Also, real sequence
data have systematic sequencing errors, and sequence-dependent coverage, which we do not
model. Furthermore, real data includes reads from the whole genome, unlike our simulated
data, where we only had reads from the relatively small region of interest. The incorporation
of additional heuristics as well as further testing are necessary to make the algorithm practical
for resolving segmental duplications.

Despite its current limitations, this assembly method shows superior performance on
small datasets, with simulated data: it can often resolve segmental duplications that other
algorithms cannot.

35

Chapter 4

Information-Theoretic Requirements
for Perfect Assembly

4.1 Introduction

We present a framework for the design of optimal assembly algorithms for shotgun sequenc-
ing under the criterion of complete reconstruction. We derive a lower bound on the read
length and the coverage depth required for reconstruction in terms of the repeat statistics
of the genome. Building on earlier works, we design a de Brujin graph based assembly
algorithm which can achieve very close to the lower bound for repeat statistics of a wide
range of sequenced genomes, including the GAGE datasets [Salzberg et al., 2012]. The re-
sults are based on a set of necessary and sufficient conditions on the DNA sequence and the
reads for reconstruction. The conditions can be viewed as the shotgun sequencing analogue
of Ukkonen-Pevzner’s necessary and sufficient conditions for Sequencing by Hybridization
[Pevzner, 1995, Ukkonen, 1992].

4.2 Approach

The difficulty of comparing algorithms is evidenced by the recent assembly evaluations As-
semblathon 1 [Earl et al., 2011] and GAGE [Salzberg et al., 2012], where which assembler is
“best” depends on the particular dataset as well as the performance metric used. In part this
is a consequence of metrics for partial assemblies: there is an inherent tradeoff between larger
contiguous fragments (contigs) and fewer mistakes in merging contigs (misjoins). But more
fundamentally, independent of the metric, performance depends critically on the dataset, i.e.
length, number, and quality of the reads, as well as the complexity of the genome sequence.
With an eye towards the near future, we seek to understand the interplay between these
factors by using the intuitive and unambiguous metric of complete reconstruction1. Note

1The notion of complete reconstruction can be thought of as a mathematical idealization of the notion
of “finishing” a sequencing project as defined by the National Human Genome Research Institute [National

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 36

that this objective of reconstructing the original DNA sequence from the reads contrasts
with the many optimization-based formulations of assembly, such as shortest common su-
perstring (SCS) [Kececioglu and Myers, 1995], maximum-likelihood [Myers, 1995], Medvedev
and Brudno [2009], and various graph-based formulations Pevzner et al. [2001], Myers [2005].
When solving one of these alternative formulations, there is no guarantee that the optimal
solution is indeed the original sequence.

Given the goal of complete reconstruction, the most basic questions are 1) feasibility:
given a set of reads, is it possible to reconstruct the original sequence? 2) optimality:
which algorithms can successfully reconstruct whenever it is feasible to reconstruct? The
feasibility question is a measure of the intrinsic information each read provides about the
DNA sequence, and for given sequence statistics depends on characteristics of the sequencing
technology such as read length and noise statistics. As such, it can provide an algorithm-
independent basis for evaluating the efficiency of a sequencing technology. Equally impor-
tant, algorithms can be evaluated on their relative read length and data requirements, and
compared against the fundamental limit.

In studying these questions, we consider the most basic shotgun sequencing model where
N noiseless reads2 of a fixed length L base pairs are uniformly and independently drawn
from a DNA sequence of length G. In this statistical model, feasibility is rephrased as the
question of whether, for given sequence statistics, the correct sequence can be reconstructed
with probability 1 − ε when N reads of length L are sampled from the genome. We note
that answering the feasibility question of whether each N,L pair is sufficient to reconstruct
is equivalent to finding the minimum required N (or the coverage depth c = NL/G) as a
function of L.

A lower bound on the minimum coverage depth needed was obtained by Lander and
Waterman [1988]. Their lower bound cLW = cLW(L, ε) is the minimum number of randomly
located reads needed to cover the entire DNA sequence with a given target success probability
1 − ε. While this is clearly a necessary condition, it is in general not tight: only requiring
the reads to cover the entire genome sequence does not guarantee that consecutive reads can
actually be stitched back together to recover the original sequence. Characterizing when the
reads can be reliably stitched together, i.e. determining feasibility, is an open problem. In
fact, the ability to reconstruct depends crucially on the repeat statistics of the DNA sequence.

An earlier work Motahari et al. [2012] has answered the feasibility and optimality ques-
tions under an i.i.d. model for the DNA sequence. However, real DNA, especially those
of eukaryotes, have much longer and complex repeat structures. Here, we are interested in
determining feasibility and optimality given arbitrary repeat statistics. This allows us to
evaluate algorithms on statistics from already sequenced genomes, and gives confidence in
predicting whether the algorithms will be useful for an unseen genome with similar statistics.

Our approach results in a pipeline, which takes as input a genome sequence and desired

Human Genome Research Institute, NIH, 2012], where finishing a chromosome requires at least 95% of the
chromosome to be represented by a contiguous sequence.

2Reads are thus exact subsequences of the DNA.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 37

success probability 1 − ε, computes a few simple repeat statistics, and from these statistics
computes a feasibility plot that indicates for which L,N reconstruction is possible. Fig. 4.1
displays the simplest of the statistics, the number of repeats as a function of the repeat
length `. Fig. 4.2 shows the resulting feasibility plot produced for the statistics of human
chromosome 19 (henceforth hc19) with success probability 99%. The horizontal axis signifies
read length L and the vertical axis signifies the normalized coverage depth c̄ := c/cLW,
the coverage depth c normalized by cLW, the coverage depth required as per Lander and
Waterman [1988] in order to cover the sequence.

0 1000 2000 3000 4000
0

5

10

15

Figure 4.1: For hc19, a log plot of number of repeats as a function of the repeat length `.
Red line is what would have been predicted by an i.i.d. fit.

Since the coverage depth must satisfy c ≥ cLW, the normalized coverage depth satisfies
c̄ ≥ 1, and we plot the horizontal line c̄ = 1. This lower bound holds for any assembly
algorithm. In addition, there is another lower bound, shown as the thick black nearly vertical

`repeat

1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8

9

10

`interleaved

Greedy

SimpleBridging

DeBruijn

MultiBridging

n
or

m
al

iz
ed

co
ve

ra
ge

d
ep

th
c̄

read length L

W

}

Figure 4.2: Thick black lines are lower bounds on feasibility which holds for all algorithms,
and colored curves are performance achieved by specific algorithms. Four such curves are
shown: the greedy algorithm and three de Brujin graph based algorithms.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 38

line in Fig. 4.2. In contrast to the coverage lower bound, this lower bound is a function of
the repeat statistics. It has a vertical asymptote at Lcrit := max{`interleaved, `triple}+ 1, where
`interleaved is the length of the longest interleaved repeats in the DNA sequence and `triple is
the length of the longest triple repeat (see Section 4.3 for precise definitions). Our lower
bound can be viewed as a generalization of a result of Ukkonen [1992] for Sequencing by
Hybridization to the shotgun sequencing setting.

Each colored curve in the feasibility plot is the lower boundary of the set of feasible
N,L pairs for a specific algorithm. The rightmost curve is the one achieved by the greedy
algorithm, which merges reads with largest overlaps first (used for example in TIGR [Sutton
et al., 1995], CAP3 [Huang, 1999], and more recently SSAKE [Warren et al., 2007]). As
seen in Fig. 4.2, its performance curve asymptotes at L = `repeat, the length of the longest
repeat. De Brujin graph based algorithms (e.g. Idury and Waterman [1995] and Pevzner
et al. [2001]) take a more global view via the construction of a de Brujin graph out of all the
K-mers of the reads. The performance curves of all K-mer graph based algorithms asymptote
at read length L = Lcrit, but different algorithms use read information in a variety of ways
to resolve repeats in the K-mer graph and thus have different coverage depth requirement
beyond read length Lcrit. By combining the ideas from several existing algorithms (including
Pevzner et al. [2001], Peng et al. [2010]) we designed MultiBridging, which is very close
to the lower bound for this dataset. Thus Fig. 4.2 answers, up to a very small gap, the
feasibility of assembly for the repeat statistics of hc19, where successful reconstruction is
desired with probability 99%.

We produce similar plots for a dozen or so datasets (see supplementary material). For
datasets where `interleaved is significantly larger than `triple (the majority of the datasets we
looked at, including those used in the recent GAGE assembly algorithm evaluation Salzberg
et al. [2012]), MultiBridging is near optimal, thus allowing us to characterize the funda-
mental limits for these repeat statistics (Fig. 4.9). On the other hand, if `triple is close to or
larger than `interleaved, there is a gap between the performance of MultiBridging and the
lower bound (see for example Fig. 4.3). The reason for the gap is explained in Section 4.4.

200 400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

5

6

7

8

9

10

`repeat`triple

Figure 4.3: Performance of MultiBridging on P Marinus, where `triple > `interleaved.

An interesting feature of the feasibility plots is that for typical repeat statistics exhibited
by DNA data, the minimum coverage depth is characterized by a critical phenomenon: If
the read length L is below Lcrit = `interleaved, reliable reconstruction of the DNA sequence

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 39

is impossible no matter what the coverage depth is, but if the read length L is slightly
above Lcrit, then covering the sequence suffices, i.e. c̄ = c/cLW = 1. The sharpness of the
critical phenomenon is described by the size of the critical window, which refers to the range
of L over which the transition from one regime to the other occurs. For the case when
MultiBridging is near optimal, the width W of the window size can be well approximated
as:

W ≈ Lcrit

2r + 1
, where r :=

log G
Lcrit

log ε−1
. (4.1)

For the hc19 dataset, the critical window size evaluates to about 19% of Lcrit.
In Sections 4.3 and 4.4, we discuss the underlying analysis and algorithm design support-

ing the plots. The curves are all computed from formulas, which are validated by simulations
in Section 4.5. We return in Section 4.6 to put our contributions in a broader perspective
and discuss extensions to the basic framework. All proofs can be found in the appendix.

4.3 Lower bounds

In this section we discuss lower bounds, due to coverage analysis and certain repeat patterns,
on the required coverage depth and read length. The style of analysis here is continued in
Section 4.4, in which we search for an assembly algorithm that performs close to the lower
bounds.

Coverage bound

Lander and Waterman’s coverage analysis [Lander and Waterman, 1988] gives the well known
condition for the number of reads NLW required to cover the entire DNA sequence with
probability at least 1−ε. In the regime when L� G, one may make the standard assumption
that the starting locations of the N reads follow a Poisson process with rate λ = N/G, and
the number NLW is to a very good approximation given by the solution to the equation

NLW =
G

L
log

NLW

ε
. (4.2)

The corresponding coverage depth is cLW = NLWL/G. This is our baseline coverage depth
against which to compare the coverage depth of various algorithms. For each algorithm, we
will plot

c̄ :=
c

cLW

=
N

NLW

,

the coverage depth required by that algorithm normalized by cLW. Note that c̄ is also the
ratio of the number of reads N required by an algorithm to NLW. The requirement c̄ ≥ 1 is
due to the lower bound on the number of reads obtained by the Lander-Waterman coverage
condition.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 40

Ukkonen’s condition

A second constraint on reads arises from repeats. A lower bound on the read length L follows
from Ukkonen’s condition [Ukkonen, 1992]: if there are interleaved repeats or triple repeats
in the sequence of length at least L−1, then the likelihood of observing the reads is the same
for more than one possible DNA sequence and hence correct reconstruction is not possible.
Fig. 4.4 shows an example with interleaved repeats. (Note that we assume 1 − ε > 1/2, so
random guessing between equally likely sequences is not viable.)

L!1# L!1#

L!1# L!1#

Figure 4.4: The likelihood of observing the reads under two possible sequences (the green
and magenta segments swapped) is the same. Here, the two red subsequences form a repeat
and the two orange subsequences form another repeat.

We take a moment to carefully define the various types of repeats. Let s`t denote the
length-` subsequence of the DNA sequence s starting at position t. A repeat of length ` is
a subsequence appearing twice, at some positions t1, t2 (so s`t1 = s`t2) that is maximal (i.e.
s(t1 − 1) 6= s(t2 − 1) and s(t1 + `) 6= s(t2 + `)). Similarly, a triple repeat of length ` is a
subsequence appearing three times, at positions t1, t2, t3, such that s`t1 = s`t2 = s`t3 , and such
that neither of s(t1 − 1) = s(t2 − 1) = s(t3 − 1) nor s(t1 + `) = s(t2 + `) = s(t3 + `) holds3.
A copy is a single one of the instances of the subsequence’s appearances. A pair of repeats
refers to two repeats, each having two copies. A pair of repeats, one at positions t1, t3 with
t1 < t3 and the second at positions t2, t4 with t2 < t4, is interleaved if t1 < t2 < t3 < t4 or
t2 < t1 < t4 < t3 (Fig. 4.4). The length of a pair of interleaved repeats is defined to be the
length of the shorter of the two repeats.

Ukkonen’s condition implies a lower bound on the read length,

L > Lcrit := max{`interleaved, `triple}+ 1 .

Here `interleaved is the length of the longest pair of interleaved repeats on the DNA sequence
and `triple is the length of the longest triple repeat.

Ukkonen’s condition says that for read lengths less than Lcrit, reconstruction is impossible
no matter what the coverage depth is. But it can be generalized to provide a lower bound
on the coverage depth for read lengths greater than Lcrit, through the important concept of
bridging as shown in Figure 4.5. We observe that in Ukkonen’s interleaved or triple repeats,
the actual length of the repeated subsequences is irrelevant; rather, to cause confusion it is
enough that all the copies of the pertinent repeats are unbridged. This leads to the following
theorem.

3Note that a subsequence that is repeated f times gives rise to
(
f
2

)
repeats and

(
f
3

)
triple repeats.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 41

s`ts

L

`L� `� 1

read

Figure 4.5: A subsequence s`t is bridged if and only if there exists at least one read which
covers at least one base on both sides of the subsequence, i.e. the read arrives in the preceding
length L− `− 1 interval.

Theorem 1. Given a DNA sequence s and a set of reads, if there is a pair of interleaved
repeats or a triple repeat whose copies are all unbridged, then there is another sequence s′ of
the same length under which the likelihood of observing the reads is the same.

For brevity, we will call a repeat or a triple repeat bridged if at least one copy of the
repeat is bridged, and a pair of interleaved repeats bridged if at least one of the repeats is
bridged. Thus, the above theorem says that a necessary condition for reconstruction is that
all interleaved and triple repeats are bridged.

How does Theorem 1 imply a lower bound on the coverage depth? Focus on the longest
pair of interleaved repeats and suppose the read length L is between the lengths of the
shorter and the longer repeats. The probability this pair is unbridged is (punbridged

`interleaved
)2, where

punbridged
` := P[`-length subseq. is unbridged]

= e
N
G

(L−`−1)+ . (4.3)

Theorem 1 implies that the probability of making an error in the reconstruction is at least
1/2 if this event occurs. Hence, the requirement that Perror ≤ ε implies a lower bound on the
number of reads N :

N ≥ G

(L− `interleaved − 1) ln(1/(2ε))
. (4.4)

A similar lower bound can be derived using the longest triple repeat. A slightly tighter lower
bound can be obtained by taking into consideration the bridging of all the interleaved and
triple repeats, not only the longest one, resulting in the black curve in Fig. 4.2.

4.4 Towards optimal assembly

We now begin our search for algorithms performing close to the lower bounds derived in
the previous section. Algorithm assessment begins with obtaining deterministic sufficient
conditions for success in terms of repeat-bridging. We then find the necessary N and L
in order to satisfy these sufficient conditions with a target probability 1 − ε. The required
coverage depth for each algorithm depends only on certain repeat statistics extracted from
the DNA data, which may be thought of as sufficient statistics.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 42

Greedy algorithm

The greedy algorithm, denoted Greedy, with pseudocode in section B.3, is described as
follows. Starting with the initial set of reads, the two fragments (i.e. subsequences) with
maximum length overlap are merged, and this operation is repeated until a single fragment
remains. Here the overlap of two fragments x,y is a suffix of x equal to a prefix of y, and
merging two fragments results in a single longer fragment.

Theorem 2. Greedy reconstructs the original sequence s if every repeat is bridged.

Theorem 2 allows us to determine the coverage depth required by Greedy: we must
ensure that all repeats are bridged. By the union bound,

P[some repeat is unbridged] ≤
∑
m

am
(
punbridged
m

)2
, (4.5)

where punbridged
m is defined in (4.3) and am is the number of repeats of length m. Setting the

right-hand side of (4.5) to ε ensures Perror ≤ ε and yields the performance curve of Greedy
in Fig. 4.2. Note that the repeat statistics {am} are sufficient to compute this curve.

Greedy requires L > `repeat + 1, whereas the lower bound has its asymptote at L =
`interleaved +1. In chromosome 19, for instance, there is a large difference between `interleaved =
2248 and `repeat = 4092, and in Fig 4.2 we see a correspondingly large gap. Greedy is
evidently sub-optimal in handling interleaved repeats. Its strength, however, is that once
the reads are slightly longer than `repeat, coverage of the sequence is sufficient for correct
reconstruction. Thus if `repeat ≈ `interleaved, then Greedy is close to optimal.

K-mer algorithms

The greedy algorithm fails when there are unbridged repeats, even if there are no unbridged
interleaved repeats, and therefore requires a read length much longer than that required by
Ukkonen’s condition. As we will see, K-mer algorithms do not have this limitation.

Background

In the introduction we mention Sequencing By Hybridization (SBH), for which Ukkonen’s
condition was originally introduced. In the SBH setting, an optimal algorithm matching
Ukkonen’s condition is known, due to Pevzner [1995].

Pevzner’s algorithm is based on finding an appropriate cycle in a K-mer graph (also
known as a de Bruijn graph) with K = L − 1 (see e.g. Compeau et al. [2011] for an
overview). A K-mer graph is formed by first creating a node in the graph for each unique
K-mer (length K subsequence) in the set of reads, and then adding an edge with overlap
K−1 between any two nodes representing K-mers that are adjacent in a read, i.e. offset by a
single nucleotide. Edges thus correspond to unique (K + 1)-mers in s and paths correspond

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 43

to longer subsequences obtained by merging the constituent nodes. There exists a cycle
corresponding to the original sequence s, and reconstruction entails finding this cycle.

As is common, we will replace edges corresponding to an unambiguous path by a single
node (c.f. Fig. 4.6). Since the subsequences at some nodes are now longer than K, this is no
longer a K-mer graph, and we call the more general graph a sequence graph. The simplified
graph is called the condensed sequence graph.

p1

p2

pk

q1

q2

qj

p1

p2

pk

q1

q2

qj

TCGCA GCAAC

3

TCGCAAC

Figure 4.6: Contracting an edge by merging the incident nodes. Repeating this operation
results in the condensed graph.

The condensed graph has the useful property that if the original sequence s is recon-
structible, then s is determined by a unique Eulerian cycle:

Theorem 3. Let G0 be the K-mer graph constructed from the (K + 1)-spectrum SK+1 of
s, and let G be the condensed sequence graph obtained from G0. If Ukkonen’s condition is
satisfied, i.e. there are no triple or interleaved repeats of length at least K, then there is a
unique Eulerian cycle C in G and C corresponds to s.

Theorem 3 characterizes, deterministically, the values of K for which reconstruction from
the (K+1)-spectrum is possible. We proceed with application of the K-mer graph approach
to shotgun sequencing data.

Basic K-mer algorithm

Starting with Idury and Waterman [1995], and then euler algorithm of Pevzner et al. [2001],
most current assembly algorithms for shotgun sequencing are based on the K-mer graph.
Idury and Waterman [1995] made the key observation that SBH with subsequences of length
K + 1 can be emulated by shotgun sequencing if each read overlaps the subsequent read
by K: the set of all (K + 1)-mers within the reads is equal to the (K + 1)-spectrum SK+1.
The resultant algorithm DeBruijn which consists of constructing the K-mer graph from
the (K + 1)-spectrum observed in the reads, condensing the graph, and then identifying an
Eulerian cycle, has sufficient conditions for correct reconstruction as follows.

Theorem 4. DeBruijn with parameter choice K reconstructs the original sequence s if:

(a) K > `interleaved

(b) K > `triple

(c) adjacent reads overlap by at least K

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 44

Lander and Waterman’s coverage analysis applies also to Condition (c) of Theorem 4,
yielding a normalized coverage depth requirement c̄ = 1/(1−K/L). The larger the overlap
K, the higher the coverage depth required. Conditions (a) and (b) say that the smallest K
one can choose is K = max{`triple, `interleaved}+ 1, so

c̄ =
1

1− max{`triple,`interleaved}+1

L

. (4.6)

The performance of DeBruijn is plotted in Fig. 4.2. DeBruijn significantly improves
on Greedy by obtaining the correct first order performance: given sufficiently many reads,
the read length L may be decreased to max{`triple, `interleaved} + 1. Still, the number of
reads required to approach this critical length is far above the lower bound. The following
subsection pursues reducing K in order to reduce the required number of reads.

Improved K-mer algorithms

Algorithm DeBruijn ignores a lot of information contained in the reads, and indeed all of
the K-mer based algorithms proposed by the sequencing community (including Idury and
Waterman [1995], Pevzner et al. [2001], Simpson et al. [2009], Gnerre et al. [2011], MacCallum
et al. [2009], Zerbino and Birney [2008]) use the read information to a greater extent than
the naive DeBruijn algorithm. Better use of the read information, as described below
in algorithms SimpleBridging and MultiBridging, will allow us to relax the condition
K > max{`interleaved, `triple} for success of DeBruijn, which in turn reduces the high coverage
depth required by Condition (c).

Existing algorithms use read information in a variety of distinct ways to resolve repeats.
For instance, Pevzner et al. [2001] observe that for graphs where each edge has multiplicity
one, if one copy of a repeat is bridged, the repeat can be resolved through what they call
a “detachment”. The algorithm SimpleBridging described below is very similar, and
resolves repeats with two copies if at least one copy is bridged.

Meanwhile, other algorithms are better suited to higher edge multiplicities due to higher
order repeats; IDBA (Iterative DeBruijn Assembler) Peng et al. [2010] creates a series of K-
mer graphs, each with larger K, and at each step uses not just the reads to identify adjacent
K-mers, but also all the unbridged paths in the K-mer graph with smaller K. Although not
stated explicitly in their paper, we observe here that if all copies of every repeat are bridged,
then IDBA correctly reconstructs.

However, it is suboptimal to require that all copies of every repeat up to the maximal
K be bridged. We introduce MultiBridging, which combines the aforementioned ideas to
simultaneously allow for single-bridged double repeats, triple repeats in which all copies are
bridged, and unbridged non-interleaved repeats.

SimpleBridging

SimpleBridging improves on DeBruijn by resolving bridged 2-repeats (i.e. a repeat
with exactly two copies in which at least one copy is bridged by a read). Condition (a)

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 45

K > `interleaved for success of DeBruijn (ensuring that no interleaved repeats appear in
the initial K-mer graph) is updated to require only no unbridged interleaved repeats, which
matches the lower bound. With this change, Condition (b) K > `triple forms the bottleneck
for typical DNA sequences. Thus SimpleBridging is optimal with respect to interleaved
repeats, but it is suboptimal with respect to triple repeats.

SimpleBridging deals with repeats by performing surgery on certain nodes in the
sequence graph. In the sequence graph, a repeat corresponds to a node we call an X-node,
a node with in-degree and out-degree each at least two (e.g. Fig. 4.7). A self-loop adds one
each to the in-degree and out-degree. The cycle C(s) traverses each X-node at least twice, so
X-nodes correspond to repeats in s. We call an X-node traversed exactly twice a 2-X-node;
these nodes correspond to 2-repeats, and are said to be bridged if the corresponding repeat
in s is bridged.

In the repeat resolution step of SimpleBridging (illustrated in Fig. 4.7), bridged 2-X-
nodesare duplicated in the graph and incoming and outgoing edges are inferred using the
bridging read, reducing possible ambiguity.

bridging read

bridging read
…AATTGCAAG… …GATTGCAAC…

ATTGCAA

ATTGCAA

ATTGCAA
AATT

GATT

CAAG

CAAC

AATT

GATT

CAAG

CAAC

Figure 4.7: An example of the bridging step in SimpleBridging.

Theorem 5. SimpleBridging with parameter choice K reconstructs the original sequence
s if:

(a) all interleaved repeats are bridged

(b) K > `triple

(c) adjacent reads overlap by at least K.

By the union bound,

P[some interleaved repeat is unbridged]

≤
∑
m,n

bm,n
(
punbridged
m

)2 (
punbridged
n

)2
(4.7)

where bm,n is the number of interleaved repeats in which one repeat is of length m and the
other is of length n. To ensure that condition (a) in the above theorem fails with probability
no more than ε, the right hand side of (4.7) is set to be ε; this imposes a constraint on the
coverage depth. Furthermore, conditions (b) and (c) imply that the normalized coverage
depth c̄ ≥ 1/(1− (`triple +1)/L). These two constraints together yield the performance curve
of SimpleBridging in Figure 4.2.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 46

MultiBridging

We now turn to triple repeats. As previously observed, it can be challenging to resolve
repeats with more than one copy [Pevzner et al., 2001], because an edge into the repeat may
be paired with more than one outgoing edge. As discussed above, our approach here shares
elements with IDBA [Peng et al., 2010]: we note that increasing the node length serves to
resolve repeats. Unlike IDBA, we do not increase the node length globally.

As noted in the previous subsection, repeats correspond to nodes in the sequence graph
we call X-nodes. Here the converse is false: not all repeats correspond to X-nodes. A repeat
is said to be all-bridged if all repeat copies are bridged, and an X-node is called all-bridged
if the corresponding repeat is all-bridged.

AATT

GATT

CATT

CAAC

CAAG

AACG

AACT

AATT

GATT

CATT CAAC

CAAG

AACG

AACT

ATTGCAA

bridging read

…AATTGCAAG… …GATTGCAACG… …CATTGCAACT…

GATTGCAA

AATTGCAA

CATTGCAA

ATTGCAAG

ATTGCAAC

Figure 4.8: MultiBridging resolves an X-node with label ATTGCAA corresponding to a
triple repeat.

The requirement that triple repeats be all-bridged allows them to be resolved locally
(Fig. 4.8). The X-node resolution procedure given in Step 4 of MultiBridging can be
interpreted in the K-mer graph framework as increasing K locally so that repeats do not
appear in the graph. In order to do this, we introduce the following notation for extending
nodes: Given an edge (v,q) with weight av,q, let v→q denote v extended one base to the
right along (v,q), i.e. v→q = v q1

avq+1 (notation introduced in Sec. 4.3). Similarly, let
p→v = p1

end−apv v. MultiBridging is described as follows.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 47

Algorithm 1 MultiBridging. Input: reads R, parameter K. Output: sequence ŝ.
K-mer steps 1-3:
1. For each subsequence x of length K in a read, form a node with label x.
2. For each read, add edges between nodes representing adjacent K-mers in the read.
3. Condense the graph (c.f. Fig. 4.6).
4. Bridging step: (See Fig. 4.8). While there exists a bridged X-node v: (i) For each edge
(pi,v) with weight api,v, create a new node ui = pi→v and an edge (pi,ui) with weight
1 + api,v. Similarly for each edge (v,qj), create a new node wj = v→qj and edge (wj,qj).
(ii) If v has a self-loop (v,v) with weight av,v, add an edge (v→v, v→v) with weight av,v + 2.
(iii) Remove node v and all incident edges. (iv) For each pair ui,wj adjacent in a read, add
edge (ui,wj). If exactly one each of the ui and wj nodes have no added edge, add the edge.
(v) Condense graph.
5. Finishing step: Find an Eulerian cycle in the graph and return the corresponding sequence.

Theorem 6. The algorithm MultiBridging reconstructs the sequence s if:

(a) all interleaved repeats are bridged

(b) all triple repeats are all-bridged

(c) the sequence is covered by the reads.

A similar analysis as for SimpleBridging yields the performance curve of MultiB-
ridging in Figure 4.2.

Gap to lower bound

The only difference between the sufficient condition guaranteeing the success of MultiB-
ridging and the necessary condition of the lower bound is the bridging condition of triple
repeats: while MultiBridging requires bridging all three copies of the triple repeats, the
necessary condition requires only bridging a single copy. When `triple is significantly smaller
than `interleaved, the bridging requirement of interleaved repeats dominates over that of triple
repeats and MultiBridging achieves very close to the lower bound. This occurs in hc19
and the majority of the datasets we looked at. (See Fig. 4.9 and the plots in the supplemen-
tary material.) A critical phenomenon occurs as L increases: for L < Lcrit reconstruction
is impossible, over a small critical window the bridging requirement of interleaved repeats
(primarily the longest) dominates, and then for larger L, coverage suffices.

On the other hand, when `triple is comparable or larger than `interleaved, then MultiB-
ridging has a gap in the coverage depth to the lower bound (see for example Fig. 4.3). If
we further assume that the longest triple repeat is dominant, then this gap can be calculated
to be a factor of 3 · log 3ε−1

log ε−1 ≈ 3.72 for ε = 10−2. This gap occurs only within the critical
window where the repeat-bridging constraint is active. Beyond the critical window, the cov-
erage constraint dominates and MultiBridging is optimal. Further details are provided
in the appendices.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 48

1000 1500 2000 2500 30000

1

2

3

4

5

6

7

8

9

10

95

99

98

99

98

98

97

95

97
96 93

93

98

94

97

93

94

95

94

95

96
94 96

94 95 93

 97

 99

 96

 93

100

 98

 97

 97

 91
 94

 93
 95 94 95

 94
 91

 93100

100

 99

 98

 99

100

 93

 97

 96
 95 92 97 96 95 92 95 98n

or
m

al
iz

ed
co

ve
ra

ge
d
ep

th
c̄

read length L

`repeat`interleaved

(a) S. Aureus

100 200 300 400 500 600 700 8000

1

2

3

4

5

6

7

8

9

10

96

98

98

96

98

97

98

98

99

94

96
95

95

95

96

95
96

94 96 9598

99

97

98

96 97 95 94 94 98
99

99

98

98

84 88 89 93 93 95n
or

m
al

iz
ed

co
ve

ra
ge

d
ep

th
c̄

read length L

(b) R. sphaeroides

`repeat`interleaved

93 94

97

98

n
or

m
al

iz
ed

co
ve

ra
ge

d
ep

th
c̄

read length L

97

 90

 97

 98

 94
 98

 96 97

95

98

97

97

99

98

95
92

94

97

97

97

96

94

96

94

98

91

9795

97

93

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

9

10

(c) hc14

Figure 4.9: Simulation results for each of the GAGE reference genomes. Each simulated
(N,L) point is marked with the number of correct reconstructions (e.g. 93, 98, 95) on
100 simulated read sets. All four algorithms (Greedy, DeBruijn, SimpleBridging, and
MultiBridging) were run on S. Aureus, R. sphaeroides and hc14. Note that MultiB-
ridging is very close to the lower bound on all 3 datasets.

4.5 Simulations and complexity

In order to verify performance predictions, we implemented and ran the algorithms on simu-
lated error-free reads from sequenced genomes. For each algorithm, we sampled (N,L) points
predicted to give < 5% error, and recorded the number of times correct reconstruction was
achieved out of 100 trials. Fig. 4.9 shows results for the three GAGE reference sequences.

We now estimate the run-time of MultiBridging. The algorithm has two phases: the

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 49

K-mer graph formation step, and the repeat resolution step. The K-mer graph formation
runtime can be easily bounded by O((L − K)NK), assuming O(K) look-up time for each
of the (L−K)N K-mers observed in reads. This step is common to all K-mer graph based
algorithms, so previous works to decrease the practical runtime or memory requirements are
applicable.

The repeat resolution step depends on the repeat statistics and choice of K. It can be

loosely bounded as O
(∑L

`=K L
∑

max repeats x
of length `

dx

)
. The second sum is over distinct maximal

repeats x of length ` and dx is the number of (not necessarily maximal) copies of repeat x.
The bound comes from the fact that each maximal repeat of length K < ` < L is resolved
via exactly one bridged X-node, and each such resolution requires examining at most the Ldx
distinct reads that contain the repeat. We note that

∑L
`=K L

∑
max repeats x

of length `
dx < L

∑L
`=K a` ,

and the latter quantity is easily computable from our sufficient statistics.
For our data sets, with appropriate choice of K, the bridging step is much simpler than

the K-mer graph formation step: for R. sphaeroides we use K = 40 to get
∑L

`=K La` = 412;
in contrast, N > 22421 for the relevant range of L. Similarly, for hc14, using K = 300,∑L

`=K La` = 661 while N > 733550; for S. Aureus,
∑L

`=K La` = 558 while N > 8031.

4.6 Conclusion

The notion of optimal shotgun assembly is not commonly discussed in the literature. One
reason is that there is no universally agreed-upon metric of success. Another reason is that
most of the optimization-based formulations of assembly have been shown to be NP-hard,
including Shortest Common Superstring [Gallant et al., 1980], Kececioglu and Myers [1995],
De Bruijn Superwalk [Pevzner et al., 2001], Medvedev et al. [2007], and Minimum s-Walk on
the string graph [Myers, 2005], [Medvedev et al., 2007]. Thus, it would seem that optimal
assembly algorithms are out of the question from a computational perspective. What we
show in this paper is that if the goal is complete reconstruction, then one can define a clear
notion of optimality, and moreover there is a computationally efficient assembly algorithm
(MultiBridging) that is near optimal for a wide range of DNA repeat statistics. So while
the reconstruction problem may well be NP-hard, typical instances of the problem seem much
easier than the worst-case, a possibility already suggested by Nagarajan and Pop [2009].

The MultiBridging algorithm is near optimal in the sense that, for a wide range of re-
peat statistics, it requires the minimum read length and minimum coverage depth to achieve
complete reconstruction. However, since the repeat statistics of a genome to be sequenced
are usually not known in advance, this minimum required read length and minimum required
coverage depth may also not be known in advance. In this context, it would be useful for
the MultiBridging algorithm to validate whether its assembly is correct. More gener-
ally, an interesting question is to seek algorithms which are not only optimal in their data
requirements but also provide a measure of confidence in their assemblies.

CHAPTER 4. INFORMATION-THEORETIC REQUIREMENTS 50

How realistic is the goal of complete reconstruction given current-day sequencing tech-
nologies? The minimum read lengths Lcrit required for complete reconstruction on the
datasets we examined are typically on the order of 500 − 3000 base pairs (bp). This is
substantially longer than the reads produced by Illumina, the current dominant sequencing
technology, which produces reads of lengths 100-200bp; however, other technologies pro-
duce longer reads. PacBio reads can be as long as several thousand base pairs, and as
demonstrated by Koren et al. [2012], the noise can be cleaned by Illumina reads to enable
near-complete reconstruction. Thus our framework is already relevant to some of the current
cutting edge technologies. To make our framework more relevant to short-read technologies
such as Illumina, an important direction is to incorporate mate-pairs in the read model,
which can help to resolve long repeats with short reads. Other extensions to the basic
shotgun sequencing model:
Heterogenous read lengths: This occurs in some technologies where the read length
is random (e.g. Pacbio) or when reads from multiple technologies are used. Generalized
Ukkonen’s conditions and the sufficient conditions of MultiBridging extend verbatim to
this case, and only the computation of the bridging probability (4.3) has to be slightly
modified.
Non-uniform read coverage: Again, only the computation of the bridging probability
has to be modified. One issue of interest is to investigate whether reads are sampled less
frequently from long repeat regions. If so, our framework can quantify the performance hit.
Double strand: DNA is double-stranded and consists of a length-G sequence u and its
reverse complement ũ. Each read is either sampled from u or ũ. This more realistic scenario
can be mapped into our single-strand model by defining s as the length-2G concatenation of
u and ũ, transforming each read into itself and its reverse complement so that there are 2N
reads. Generalized Ukkonen’s conditions hold verbatim for this problem, and MultiBridg-
ing can be applied, with the slight modification that instead of looking for a single Eulerian
path, it should look for two Eulerian paths, one for each component of the sequence graph
after repeat-resolution. An interesting aspect of this model is that, in addition to interleaved
repeats on the single strand u, reverse complement repeats on u will also induce interleaved
repeats on the sequence s.

51

Chapter 5

Conclusion

There are several challenging properties of the assembly problem: handling the quantity of
data, creating an accurate read-graph given low coverage and errors, and resolving repetitive
regions. Our emphasis is on the resolution of repeats. In this dissertation, we have proposed
two novel algorithms for assembly, and we have analyzed theoretically some necessary and
sufficient conditions for perfect assembly in the presence of repeats.

Both of our assembly algorithms use paired reads to generate assemblies compatible
with the data. Our approaches avoid the following requirements, which are typical in other
assembly algorithms: (1) the requirement that there must be a unique appropriate-length
path between the reads in a pair in order for the read-pair to be used for repeat resolution,
and (2) the requirement that the reads must fall into non-repetitive contigs in order to be
used for repeat resolution. As a result, our algorithm is able to use individual long-insert
reads in places where other algorithms may not.

Our two algorithms take different approaches, each with their own set of advantages and
disadvantages. Telescoper, our iterative algorithm, assembles somewhat aggressively, and so
can make mistakes if there are multiple solutions and the choice among them is ambiguous
according to its criteria. However, when the reads have high coverage and contain few errors,
and when the long insert is longer than the longest repeats, it can often unambiguously
assemble where other algorithms cannot. Piper, the maximum likelihood approach, should
eventually have superior handling of rare read errors and low coverage, due to both its more
principled likelihood calculation, and to the fact that it is designed to handle uncertainties
in the data by explicitly listing the most likely alternative solutions along with ranking of
their relative likelihood. Its primary downside is that it does not yet scale well. On large
datasets with combinatorial explosion, Piper may fail to run to completion.

The requirements for either a Telescoper-like algorithm to succeed, or a Piper-like algo-
rithm to succeed are fairly different from those of other assemblers, as evidenced by their
different domains of success relative to other assembly algorithms. From this perspective,
they are a positive contribution to the field, and it would be interesting to explore the
sufficient conditions under which they assemble correctly.

The fact that Piper does well on simulated data of sufficiently small size, even in regions

CHAPTER 5. CONCLUSION 52

where other assembly algorithms do not assemble, suggests that at least in some regions of
the genome, the problem is an algorithmic problem, rather than one arising from a lack of
information.

We have also theoretically analyzed the fundamental limits of assembly in the presence of
repeats in terms of the repeat statistics, number of reads, and length of reads for single end
reads. We conclude that for realistic repeat statistics, for almost any values of read length
and read number for which it is fundamentally possible to perform perfect assembly with
high probability, such perfect assembly can be performed with high probability by a simple
algorithm.

An incredibly appealing open line of work is to identify the fundamental limits of paired-
end assembly, and to suggest a simple, computationally tractable algorithm that can assemble
correctly for realistic genome sequences and their read-pair parameters. Going further,
the final aim would be to go from theoretically-motivated algorithms to robust versions
employable on real data, thereby bridging the gap between theoretical analysis and practical
tool design.

53

Bibliography

C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwehand, and R. Durbin.
Dindel: Accurate indel calls from short-read data. Genome Research, 21(6):961–973, Jun
2011. ISSN 1088-9051. doi: 10.1101/gr.112326.110. URL http://dx.doi.org/10.1101/

gr.112326.110.

C. Alkan, S. Sajjadian, and E. E. Eichler. Limitations of next-generation genome sequence
assembly. Nature Methods, 8(1):61–65, Jan 2011. ISSN 1548-7105. doi: 10.1038/nmeth.
1527. URL http://dx.doi.org/10.1038/nmeth.1527.

P. N. Ariyaratne and W.-k. Sung. PE-Assembler: de novo assembler using short paired-
end reads. Bioinformatics, 27(2):167–174, Jan 2011. ISSN 1460-2059. doi: 10.1093/
bioinformatics/btq626. URL http://dx.doi.org/10.1093/bioinformatics/btq626.

Arthropod Genomic Consortium. i5k Insect and other Arthropod Genome Sequencing Ini-
tiative. http://www.arthropodgenomes.org/wiki/i5K, 2014. Last accessed April 21,
2014.

I. Astrovskaya, B. Tork, S. Mangul, K. Westbrooks, I. Mndoiu, P. Balfe, and A. Zelikovsky.
Inferring viral quasispecies spectra from 454 pyrosequencing reads. BMC Bioinformatics,
12(Suppl 6):S1, 2011. ISSN 1471-2105. doi: 10.1186/1471-2105-12-s6-s1. URL http:

//dx.doi.org/10.1186/1471-2105-12-S6-S1.

J. A. Bailey and E. E. Eichler. Primate segmental duplications: crucibles of evolution,
diversity and disease. Nature Reviews Genetics, 7(7):552–564, Jul 2006. ISSN 1471-0064.
doi: 10.1038/nrg1895. URL http://dx.doi.org/10.1038/nrg1895.

J. A. Bailey, A. M. Yavor, H. F. Massa, B. J. Trask, and E. E. Eichler. Segmental Duplica-
tions: Organization and Impact Within the Current Human Genome Project Assembly.
Genome Research, 11(6):1005–1017, 2001.

M. Baker. De novo genome assembly: what every biologist should know. Nature Methods,
9(4):333–337, Mar 2012. ISSN 1548-7105. doi: 10.1038/nmeth.1935. URL http://dx.

doi.org/10.1038/nmeth.1935.

BIBLIOGRAPHY 54

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. SPAdes: A New Genome Assem-
bly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational
Biology, 19(5):455–477, May 2012. ISSN 1557-8666. doi: 10.1089/cmb.2012.0021. URL
http://dx.doi.org/10.1089/cmb.2012.0021.

A. K. Björklund, S. Light, R. Sagit, and A. Elofsson. Nebulin: A Study of Protein Repeat
Evolution. Journal of Molecular Biology, 402(1):38–51, Sep 2010. ISSN 0022-2836. doi:
10.1016/j.jmb.2010.07.011. URL http://dx.doi.org/10.1016/j.jmb.2010.07.011.

M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics, 27(4):578–579, Feb 2011. ISSN
1460-2059. doi: 10.1093/bioinformatics/btq683. URL http://dx.doi.org/10.1093/

bioinformatics/btq683.

K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner, I. Birol, S. Boisvert,
J. A. Chapman, G. Chapuis, R. Chikhi, et al. Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. Giga Sci, 2(1):10, 2013. ISSN 2047-217X.
doi: 10.1186/2047-217x-2-10. URL http://dx.doi.org/10.1186/2047-217X-2-10.

G. Bresler, M. Bresler, and D. Tse. Optimal assembly for high throughput shotgun sequenc-
ing. BMC Bioinformatics, 14(Suppl 5):S18, 2013.

M. Bresler, S. Sheehan, A. H. Chan, and Y. S. Song. Telescoper: de novo assembly of highly
repetitive regions. Bioinformatics, 28(18):i311–i317, Sep 2012. ISSN 1460-2059. doi:
10.1093/bioinformatics/bts399. URL http://dx.doi.org/10.1093/bioinformatics/

bts399.

M. Bresler, P. Jin, R. Pandya, and Y. S. Song. Piper: likelihood-based assembly (tentative
title). In preparation, 2014.

M. J. Chaisson, D. Brinza, and P. A. Pevzner. De novo fragment assembly with short mate-
paired reads: Does the read length matter? Genome Research, 19(2):336–346, Dec 2008.
ISSN 1088-9051. doi: 10.1101/gr.079053.108. URL http://dx.doi.org/10.1101/gr.

079053.108.

E. Check Hayden. Is the $1,000 genome for real? Nature, Jan 2014. ISSN 1476-4687. doi:
10.1038/nature.2014.14530. URL http://dx.doi.org/10.1038/nature.2014.14530.

S. C. Clark, R. Egan, P. I. Frazier, and Z. Wang. ALE: a generic assembly likelihood
evaluation framework for assessing the accuracy of genome and metagenome assemblies.
Bioinformatics, 29(4):435–443, Feb 2013. ISSN 1460-2059. doi: 10.1093/bioinformatics/
bts723. URL http://dx.doi.org/10.1093/bioinformatics/bts723.

BIBLIOGRAPHY 55

P. Cliften. Finding Functional Features in Saccharomyces Genomes by Phylogenetic Foot-
printing. Science, 301(5629):71–76, Jul 2003. ISSN 1095-9203. doi: 10.1126/science.
1084337. URL http://dx.doi.org/10.1126/science.1084337.

P. E. C. Compeau, P. A. Pevzner, and G. Tesler. How to apply de Bruijn graphs to genome
assembly. Nature Biotechnology, 29(11):987–991, Nov 2011. ISSN 1546-1696. doi: 10.
1038/nbt.2023. URL http://dx.doi.org/10.1038/nbt.2023.

Computational Research and Development Group, Broad Institute of MIT and Harvard.
Discovar. http://www.broadinstitute.org/software/discovar/blog, 2014. Last ac-
cessed January 2014.

A. Dayarian, T. P. Michael, and A. M. Sengupta. SOPRA: Scaffolding algorithm for paired
reads via statistical optimization. BMC Bioinformatics, 11(1):345, 2010. ISSN 1471-2105.
doi: 10.1186/1471-2105-11-345. URL http://dx.doi.org/10.1186/1471-2105-11-345.

A. L. Delcher. Fast algorithms for large-scale genome alignment and comparison. Nucleic
Acids Research, 30(11):2478–2483, Jun 2002. ISSN 1362-4962. doi: 10.1093/nar/30.11.
2478. URL http://dx.doi.org/10.1093/nar/30.11.2478.

P. Diehl. BGI Plans to Sequence the World. http://biotech.about.com/od/

investinginbiotech/a/Bgi-Plans-To-Sequence-The-World.htm, 2013. Last accessed
September 2013.

R. Drmanac, A. B. Sparks, M. J. Callow, A. L. Halpern, N. L. Burns, B. G. Kermani,
P. Carnevali, I. Nazarenko, G. B. Nilsen, G. Yeung, et al. Human Genome Sequencing
Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science, 327(5961):
78–81, Jan 2010. ISSN 1095-9203. doi: 10.1126/science.1181498. URL http://dx.doi.

org/10.1126/science.1181498.

D. Earl, K. Bradnam, J. St. John, A. Darling, D. Lin, J. Fass, H. O. K. Yu, V. Buffalo, D. R.
Zerbino, M. Diekhans, et al. Assemblathon 1: A competitive assessment of de novo short
read assembly methods. Genome Research, 21(12):2224–2241, Dec 2011. ISSN 1088-9051.
doi: 10.1101/gr.126599.111. URL http://dx.doi.org/10.1101/gr.126599.111.

J. Gallant, D. Maier, and J. Astorer. On finding minimal length superstrings. Journal of
Computer and System Sciences, 20(1):50–58, Feb 1980. ISSN 0022-0000. doi: 10.1016/
0022-0000(80)90004-5. URL http://dx.doi.org/10.1016/0022-0000(80)90004-5.

S. Gao, W.-K. Sung, and N. Nagarajan. Opera: Reconstructing Optimal Genomic Scaffolds
with High-Throughput Paired-End Sequences. Journal of Computational Biology, 18(11):
1681–1691, Nov 2011. ISSN 1557-8666. doi: 10.1089/cmb.2011.0170. URL http://dx.

doi.org/10.1089/cmb.2011.0170.

Genome 10K Community of Scientists. Genome 10K: A Proposal to Obtain Whole-Genome
Sequence for 10,000 Vertebrate Species. J Hered., 100(6):659–674, 2009.

BIBLIOGRAPHY 56

M. Ghodsi, C. M. Hill, I. Astrovskaya, H. Lin, D. D. Sommer, S. Koren, and M. Pop. De
novo likelihood-based measures for comparing genome assemblies. BMC Res Notes, 6(1):
334, 2013. ISSN 1756-0500. doi: 10.1186/1756-0500-6-334. URL http://dx.doi.org/

10.1186/1756-0500-6-334.

S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker, T. Sharpe,
G. Hall, T. P. Shea, S. Sykes, et al. High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of the National Academy of Sciences,
108(4):1513–1518, Jan 2011. ISSN 1091-6490. doi: 10.1073/pnas.1017351108. URL http:

//dx.doi.org/10.1073/pnas.1017351108.

A. A. Gritsenko, J. F. Nijkamp, M. J. T. Reinders, and D. D. Ridder. GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics, 28(11):
1429–1437, Jun 2012. ISSN 1460-2059. doi: 10.1093/bioinformatics/bts175. URL http:

//dx.doi.org/10.1093/bioinformatics/bts175.

T. D. Harris, P. R. Buzby, H. Babcock, E. Beer, J. Bowers, I. Braslavsky, M. Causey,
J. Colonell, J. DiMeo, J. W. Efcavitch, et al. Single-Molecule DNA Sequencing of a Viral
Genome. Science, 320(5872):106–109, Apr 2008. ISSN 1095-9203. doi: 10.1126/science.
1150427. URL http://dx.doi.org/10.1126/science.1150427.

X. Huang. CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9):868–877,
Sep 1999. ISSN 1088-9051. doi: 10.1101/gr.9.9.868. URL http://dx.doi.org/10.1101/

gr.9.9.868.

J. Huddleston, S. Ranade, M. Malig, F. Antonacci, M. Chaisson, L. Hon, P. H. Sudmant,
T. A. Graves, C. Alkan, M. Y. Dennis, et al. Reconstructing complex regions of genomes
using long-read sequencing technology. Genome Research, 24(4):688–696, Apr 2014. ISSN
1088-9051. doi: 10.1101/gr.168450.113. URL http://dx.doi.org/10.1101/gr.168450.

113.

M. Hunt, C. Newbold, M. Berriman, and T. D. Otto. A comprehensive evaluation of assembly
scaffolding tools. Genome Biology, 15(3):R42, 2014. ISSN 1465-6906. doi: 10.1186/
gb-2014-15-3-r42. URL http://dx.doi.org/10.1186/gb-2014-15-3-r42.

R. M. Idury and M. S. Waterman. A New Algorithm for DNA Sequence Assembly. Journal
of Computational Biology, 2(2):291–306, Jan 1995. ISSN 1557-8666. doi: 10.1089/cmb.
1995.2.291. URL http://dx.doi.org/10.1089/cmb.1995.2.291.

Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and genotyping
of variants using colored de Bruijn graphs. Nature Genetics, 44(2):226–232, Jan 2012. ISSN
1546-1718. doi: 10.1038/ng.1028. URL http://dx.doi.org/10.1038/ng.1028.

D. B. Jaffe, T. Sharpe, S. Yin, N. Weisenfeld, B. Lau, L. Williams, D. Tabbaa, A. Gnirke,
C. Russ, C. Nusbaum, and I. MacCallum. Highly accurate determination of indels (and

BIBLIOGRAPHY 57

SNPs) from human resequencing data with an assembly-based approach. Unpublished
talk, May 2013.

JGI. JGI - Project List. http://genome.jgi.doe.gov/genome-projects, 2014. Last
accessed April 21, 2014.

J. D. Kececioglu and E. W. Myers. Combinatorial algorithms for DNA sequence assembly.
Algorithmica, 13(1-2):7–51, Feb 1995. ISSN 1432-0541. doi: 10.1007/bf01188580. URL
http://dx.doi.org/10.1007/BF01188580.

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander. Sequencing and comparison
of yeast species to identify genes and regulatory elements. Nature, 423(6937):241–254, May
2003. ISSN 0028-0836. doi: 10.1038/nature01644. URL http://dx.doi.org/10.1038/

nature01644.

M. Kellis, B. W. Birren, and E. S. Lander. Proof and evolutionary analysis of ancient
genome duplication in the yeast Saccharomyces cerevisiae. Nature, 428(6983):617–624,
Apr 2004. ISSN 1476-4679. doi: 10.1038/nature02424. URL http://dx.doi.org/10.

1038/nature02424.

S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang, D. A.
Rasko, W. R. McCombie, E. D. Jarvis, et al. Hybrid error correction and de novo assembly
of single-molecule sequencing reads. Nature Biotechnology, 30(7):693–700, Jul 2012. ISSN
1546-1696. doi: 10.1038/nbt.2280. URL http://dx.doi.org/10.1038/nbt.2280.

E. S. Lander and M. S. Waterman. Genomic mapping by fingerprinting random clones: A
mathematical analysis. Genomics, 2(3):231–239, Apr 1988. ISSN 0888-7543. doi: 10.1016/
0888-7543(88)90007-9. URL http://dx.doi.org/10.1016/0888-7543(88)90007-9.

J. Laserson, V. Jojic, and D. Koller. Genovo: De Novo Assembly for Metagenomes . Journal
of Computational Biology, 18(3):429–443, Mar 2011. ISSN 1557-8666. doi: 10.1089/cmb.
2010.0244. URL http://dx.doi.org/10.1089/cmb.2010.0244.

R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen,
et al. De novo assembly of human genomes with massively parallel short read sequencing.
Genome Research, 20(2):265–272, Feb 2010. ISSN 1088-9051. doi: 10.1101/gr.097261.109.
URL http://dx.doi.org/10.1101/gr.097261.109.

R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, et al.
SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.
Giga Sci, 1(1):18, 2012. ISSN 2047-217X. doi: 10.1186/2047-217x-1-18. URL http:

//dx.doi.org/10.1186/2047-217X-1-18.

I. MacCallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter, A. Gnirke, J. Malek,
K. McKernan, S. Ranade, T. P. Shea, et al. ALLPATHS 2: small genomes assembled

BIBLIOGRAPHY 58

accurately and with high continuity from short paired reads. Genome Biology, 10(10):
R103, 2009. ISSN 1465-6906. doi: 10.1186/gb-2009-10-10-r103. URL http://dx.doi.

org/10.1186/gb-2009-10-10-r103.

M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka,
M. S. Braverman, Y.-J. Chen, Z. Chen, et al. Genome sequencing in microfabricated high-
density picolitre reactors. Nature, Jul 2005. ISSN 1476-4679. doi: 10.1038/nature03959.
URL http://dx.doi.org/10.1038/nature03959.

M. J. McEachern, A. Krauskopf, and E. H. Blackburn. Telomeres and their control. Annu.
Rev. Genet., 34(1):331–358, Dec 2000. ISSN 1545-2948. doi: 10.1146/annurev.genet.34.1.
331. URL http://dx.doi.org/10.1146/annurev.genet.34.1.331.

K. J. McKernan, H. E. Peckham, G. L. Costa, S. F. McLaughlin, Y. Fu, E. F. Tsung, C. R.
Clouser, C. Duncan, J. K. Ichikawa, C. C. Lee, et al. Sequence and structural variation
in a human genome uncovered by short-read, massively parallel ligation sequencing using
two-base encoding. Genome Research, 19(9):1527–1541, Sep 2009. ISSN 1088-9051. doi:
10.1101/gr.091868.109. URL http://dx.doi.org/10.1101/gr.091868.109.

P. Medvedev and M. Brudno. Maximum Likelihood Genome Assembly. Journal of Computa-
tional Biology, 16(8):1101–1116, Aug 2009. ISSN 1557-8666. doi: 10.1089/cmb.2009.0047.
URL http://dx.doi.org/10.1089/cmb.2009.0047.

P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of Models for Se-
quence Assembly. Lecture Notes in Computer Science, pages 289–301, 2007. ISSN
1611-3349. doi: 10.1007/978-3-540-74126-8 27. URL http://dx.doi.org/10.1007/

978-3-540-74126-8_27.

P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner. Paired de Bruijn Graphs:
A Novel Approach for Incorporating Mate Pair Information into Genome Assemblers.
Journal of Computational Biology, 18(11):1625–1634, Nov 2011. ISSN 1557-8666. doi:
10.1089/cmb.2011.0151. URL http://dx.doi.org/10.1089/cmb.2011.0151.

S. Motahari, G. Bresler, and D. Tse. Information theory of DNA sequencing. 2012. URL
arXiv:1203.6233.

E. W. Myers. Toward Simplifying and Accurately Formulating Fragment Assembly. Journal
of Computational Biology, 2(2):275–290, Jan 1995. ISSN 1557-8666. doi: 10.1089/cmb.
1995.2.275. URL http://dx.doi.org/10.1089/cmb.1995.2.275.

E. W. Myers. A Whole-Genome Assembly of Drosophila. Science, 287(5461):2196–2204,
Mar 2000. ISSN 1095-9203. doi: 10.1126/science.287.5461.2196. URL http://dx.doi.

org/10.1126/science.287.5461.2196.

BIBLIOGRAPHY 59

E. W. Myers. The fragment assembly string graph. Bioinformatics, 21(Suppl 2):ii79–ii85,
Sep 2005. ISSN 1460-2059. doi: 10.1093/bioinformatics/bti1114. URL http://dx.doi.

org/10.1093/bioinformatics/bti1114.

N. Nagarajan and M. Pop. Parametric Complexity of Sequence Assembly: Theory and
Applications to Next Generation Sequencing. Journal of Computational Biology, 16(7):
897–908, Jul 2009. ISSN 1557-8666. doi: 10.1089/cmb.2009.0005. URL http://dx.doi.

org/10.1089/cmb.2009.0005.

National Human Genome Research Institute, NIH. Human Genome Sequence Quality Stan-
dards. http://www.genome.gov/10000923, 2012. Last accessed December 12, 2012.

N. Parrish, F. Hormozdiari, and E. Eskin. Assembly of non-unique insertion content
using next-generation sequencing. BMC Bioinformatics, 12(Suppl 6):S3, 2011. ISSN
1471-2105. doi: 10.1186/1471-2105-12-s6-s3. URL http://dx.doi.org/10.1186/

1471-2105-12-S6-S3.

Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. IDBA - A Practical Iterative de
Bruijn Graph De Novo Assembler. Lecture Notes in Computer Science, pages 426–440,
2010. ISSN 1611-3349. doi: 10.1007/978-3-642-12683-3 28. URL http://dx.doi.org/

10.1007/978-3-642-12683-3_28.

Z. Peng, Z. Zhao, N. Nath, J. L. Froula, A. Clum, T. Zhang, J.-f. Cheng, A. C. Copeland,
L. A. Pennacchio, and F. Chen. Generation of Long Insert Pairs Using a Cre-LoxP Inverse
PCR Approach. PLoS ONE, 7(1):e29437, Jan 2012. ISSN 1932-6203. doi: 10.1371/journal.
pone.0029437. URL http://dx.doi.org/10.1371/journal.pone.0029437.

P. A. Pevzner. 1-Tuple DNA sequencing: computer analysis. J Biomol Struct Dyn., 7(1):
63–67, 1989.

P. A. Pevzner. DNA physical mapping and alternating Eulerian cycles in colored graphs.
Algorithmica, 13(1-2):77–105, Feb 1995. ISSN 1432-0541. doi: 10.1007/bf01188582. URL
http://dx.doi.org/10.1007/BF01188582.

P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to DNA frag-
ment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, Aug
2001. ISSN 1091-6490. doi: 10.1073/pnas.171285098. URL http://dx.doi.org/10.

1073/pnas.171285098.

M. Pop. Hierarchical Scaffolding With Bambus. Genome Research, 14(1):149–159, Dec
2003. ISSN 1088-9051. doi: 10.1101/gr.1536204. URL http://dx.doi.org/10.1101/gr.

1536204.

A. Rahman and L. Pachter. CGAL: computing genome assembly likelihoods. Genome
Biology, 14(1):R8, 2013. ISSN 1465-6906. doi: 10.1186/gb-2013-14-1-r8. URL http:

//dx.doi.org/10.1186/gb-2013-14-1-r8.

BIBLIOGRAPHY 60

J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey, J. H. Leamon,
K. Johnson, M. J. Milgrew, M. Edwards, et al. An integrated semiconductor device
enabling non-optical genome sequencing. Nature, 475(7356):348–352, Jul 2011. ISSN
1476-4687. doi: 10.1038/nature10242. URL http://dx.doi.org/10.1038/nature10242.

L. Salmela, V. Makinen, N. Valimaki, J. Ylinen, and E. Ukkonen. Fast scaffolding with
small independent mixed integer programs. Bioinformatics, 27(23):3259–3265, Dec 2011.
ISSN 1460-2059. doi: 10.1093/bioinformatics/btr562. URL http://dx.doi.org/10.

1093/bioinformatics/btr562.

S. L. Salzberg and J. A. Yorke. Beware of mis-assembled genomes. Bioinformatics, 21
(24):4320–4321, Dec 2005. ISSN 1460-2059. doi: 10.1093/bioinformatics/bti769. URL
http://dx.doi.org/10.1093/bioinformatics/bti769.

S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J. Treangen, M. C.
Schatz, A. L. Delcher, M. Roberts, et al. GAGE: A critical evaluation of genome assemblies
and assembly algorithms. Genome Research, 22(3):557–567, Mar 2012. ISSN 1088-9051.
doi: 10.1101/gr.131383.111. URL http://dx.doi.org/10.1101/gr.131383.111.

J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using compressed
data structures. Genome Research, 22(3):549–556, Mar 2012. ISSN 1088-9051. doi:
10.1101/gr.126953.111. URL http://dx.doi.org/10.1101/gr.126953.111.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol. ABySS: A
parallel assembler for short read sequence data. Genome Research, 19(6):1117–1123, Jun
2009. ISSN 1088-9051. doi: 10.1101/gr.089532.108. URL http://dx.doi.org/10.1101/

gr.089532.108.

G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage. TIGR Assembler: A New Tool
for Assembling Large Shotgun Sequencing Projects. Genome Science and Technology, 1
(1):9–19, Jan 1995. ISSN 1070-2830. doi: 10.1089/gst.1995.1.9. URL http://dx.doi.

org/10.1089/gst.1995.1.9.

T. J. Treangen and S. L. Salzberg. Repetitive DNA and next-generation sequencing: com-
putational challenges and solutions. Nature Reviews Genetics, Nov 2011. ISSN 1471-0064.
doi: 10.1038/nrg3117. URL http://dx.doi.org/10.1038/nrg3117.

E. Ukkonen. Approximate string-matching with q-grams and maximal matches. Theoretical
Computer Science, 92(1):191–211, Jan 1992. ISSN 0304-3975. doi: 10.1016/0304-3975(92)
90143-4. URL http://dx.doi.org/10.1016/0304-3975(92)90143-4.

F. Van Nieuwerburgh, R. C. Thompson, J. Ledesma, D. Deforce, T. Gaasterland, P. Or-
doukhanian, and S. R. Head. Illumina mate-paired DNA sequencing-library preparation
using Cre-Lox recombination. Nucleic Acids Research, 40(3):e24–e24, Feb 2012. ISSN
1362-4962. doi: 10.1093/nar/gkr1000. URL http://dx.doi.org/10.1093/nar/gkr1000.

BIBLIOGRAPHY 61

A. Voskoboynik, N. F. Neff, D. Sahoo, A. M. Newman, D. Pushkarev, W. Koh, B. Passarelli,
H. C. Fan, G. L. Mantalas, K. J. Palmeri, et al. The genome sequence of the colonial
chordate, Botryllus schlosseri. eLife, 2(0):e00569–e00569, Jan 2013. ISSN 2050-084X. doi:
10.7554/elife.00569. URL http://dx.doi.org/10.7554/eLife.00569.

R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt. Assembling millions of
short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, Feb 2007. ISSN
1460-2059. doi: 10.1093/bioinformatics/btl629. URL http://dx.doi.org/10.1093/

bioinformatics/btl629.

O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel. ShoRAH: estimating
the genetic diversity of a mixed sample from next-generation sequencing data. BMC
Bioinformatics, 12(1):119, 2011. ISSN 1471-2105. doi: 10.1186/1471-2105-12-119. URL
http://dx.doi.org/10.1186/1471-2105-12-119.

D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research, 18(5):821–829, Feb 2008. ISSN 1088-9051. doi:
10.1101/gr.074492.107. URL http://dx.doi.org/10.1101/gr.074492.107.

62

Appendix A

Appendix: Assembly Using Iterative
Extension

A.1 Data simulation

In our simulation study, we generated three distinct types of simulated reads: 50 bp short-
reads, 101 bp short-reads, and Sanger-reads. Each type was generated with different error
profiles.

50 bp data: For all the reads of length 50 bp, we simulated using a uniform coverage
distribution. Errors and corresponding quality scores were generated by mimicking standard
short-read data of φX174 virus, sequenced on the Illumina GA-II platform. Specifically, for
each simulated read, a randomly sampled φX174 read provided error positions and quality
scores. The average per-base error rate was 1.2%.

101 bp data: For all the reads of length 101 bp, we used the simulator simNGS
(www.ebi.ac.uk/goldman-srv/simNGS), which uses Illumina templates for reads of this length.

Sanger-reads: The Sanger-reads were simulated using a read length distribution equal to
that of the Sanger-reads from Kellis et al. [2003] and Cliften [2003]. This amounted to
coverage depth of 6.5X, with mean read length 593 bp. Insert size was modeled as normally
distributed with mean 5 kb and standard deviation 1 kb. Errors were introduced uniformly
at a rate of 0.1%.

A.2 Additional data sets for benchmarking

In addition to the data sets D1–D3 described in the main text, we were interested in a closer
look at how assembly performance is affected by the insert distribution and the type of read
data. We simulated four additional data sets with shorter insert lengths for the long-insert
reads, and with Sanger-reads. These data sets are as follows:

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 63

Simulated Data D4: was intended to mimic our real data set. It consisted of two libraries,
one short-insert and one long-insert, each with reads of length 50 bp. The short-insert short-
reads were the same as those in D2. The long-insert short-reads had coverage depth 20X,
with an insert size normally distributed with mean 2.2 kb and variance 800 bp.

Simulated Data D5: is similar to data set D4 but with longer read lengths. It consisted
of the short-insert short-reads in data D1 (101 bp) combined with a long-insert short-read
library with reads of length 101 bp, coverage depth 40X, and an insert size with mean 2.2 kb
and variance 500 kb.

Simulated Data D6: consisted of the short-insert short-reads in D2 and Sanger-reads.

Simulated Data D7: consisted of the short-insert short-reads in D1 and the Sanger-reads
from D6.

A.3 Running the assembly algorithms

We compared Telescoper to six other assembly algorithms, ABySS [Simpson et al., 2009],
ALLPATHS 2 [MacCallum et al., 2009], SGA [Simpson and Durbin, 2012], SOAPdenovo
[Li et al., 2010], Velvet [Zerbino and Birney, 2008], and where appropriate, the Sanger-
read assembler Celera [Myers, 2000]. Below we describe the general approach we used to
run each algorithm, using the data set D7 as an example. We tried to provide the other
algorithms with as much useful information as possible to optimize their results. Given our
computational resources, we tried to optimize over parameter ranges for the more important
parameters and the faster assemblers. We largely used SOAPdenovo to guide our parameter
choices for other algorithms, since it was very fast to run. Whenever possible we selected the
output file with the most continuous contigs (i.e., if an algorithm produced both a contigs
file and a scaffolds file, we chose the scaffolds file). We were unable to run every algorithm on
every data set, but included as many as we could to improve the larger evaluation picture.

ABySS:

abyss-pe k=64 n=10 name=Scer_sanger lib=’short long’

short=’Scer_short_A.fasta Scer_short_B.fasta’

long=’Scer_sanger_A.fasta Scer_sanger_B.fasta’ np=16

The main parameter for ABySS is k, which we were unable to set higher than 64, so we
chose this value for D1, D5, and D7 (101 bp reads). We chose k = 31 for D2 and D6, and
k = 21 for D3 (real data) based on the optimal parameters for SOAPdenovo. We used a
lower k for real data due to the more complex error distribution. ABySS does not take in
parameters for the insert distribution, but rather infers them (usually quite successfully) on
its own. We chose n=10 (recommended value in the manual) as the number of paired-reads
needed to join two contigs, and np=16 as the number of processors to use.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 64

ALLPATHS:

ulimit -s 100000

RunAllPaths PRE=. RUN=rundir REFERENCE_NAME=Scer_sanger/ K=24

DATA_SUBDIR=output SOURCE_DIR=./Scer_sanger/data/ GC_BIAS_CORRECTION=False

MAXPAR=16 PARALLEL_BATCHES=16

The ulimit was set to give ALLPATHS 2 more stack space. The main parameter here is
K, the k-mer size for building a de Brujin graph, which could not be set higher than 24 (which
is what we selected) for D1, D5, and D7. For D2, D3, and D6 we used K = 20 since the short-
reads were shorter. ALLPATHS 2 also takes an “expected lib stats” file, where we described
the location of the data, the paired-end nature, and provided the expected separation and
standard deviation of insert distribution. For simulated data, the GC_BIAS_CORRECTION

module did not run correctly, but we did include this step for D3. ALLPATHS 2 requires
quality scores, which we generated for the simulated data sets, and provided for D3. We
allotted 16 cores to ALLPATHS 2. For the real data set D3, ALLPATHS 2 ran out of
memory, so we thinned reads to half the coverage.

SGA:

sh runSGA.sh Scer_short Scer_sanger 75

For SGA we used a shell script to run the main modules. The first parameter is the
short-insert library, the second is the long-insert library, and the third is the k-mer size. Due
to the relatively long runtime of SGA, we were unable to optimize over a large range of k, so
we used the parameter values given in SGA’s example script sga-celegans.sh for 100 bp data:
k = 75, and error correction parameter 41. This k is very similar to that of SOAPdenovo
for D1, D5, and D7. SGA is designed for read of length 100 bp or greater and did not run
our 50 bp data sets, so we did not include it for D2, D3, D4, or D6.

SOAPdenovo:

SOAPdenovo-127mer all -s data/Scer_sanger.config -o output/Scer_sanger -K 77

SOAPdenovo has three executables for k ≤ 127, k ≤ 63, and k ≤ 31, which we used as
appropriate. Since SOAPdenovo runs very quickly, we tried k = 49, · · · , 85 (odd) to select
the best k for the 101 bp data sets, as shown for D1 in Figure A.1 and Table A.1. We chose
the k that produced the highest % Aligned + % Covered, although as shown, k’s close to the
optimal value produced very similar results. We also optimized SOAPdenovo for the 50 bp
data using k = 21, · · · , 31 (odd). From these optimization we chose k = 77 for D1, k = 79 for
D5 and D7, k = 31 for D2, D4, and D6, and k = 21 for D3. These choices helped select k for
other algorithms. While ideally every algorithm would be optimized over every parameter,
in practice close values of k did not substantially affect the results. In the config file we

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 65

specified the location of the data and the expected separation size, as well as the maximum
read length for all reads. We also had to specify an asm_flag for each library which encodes
the stages where the reads should be used. For most libraries we set this flag to 3, except
for sanger libraries where we set it to 2. We specified that the short-insert libraries should
be used first for scaffolding, for D1-D6, since this generally gave better results, and that the
Sanger reads should be used first for D6-D7, without which the scaffolding step frequently
failed.

Velvet:

velveth Scer_sanger/ 31 -shortPaired -fastq Scer_short.A.fastq Scer_short.B.fastq

-longPaired -fasta Scer_sanger.fasta

velvetg Scer_sanger/ -ins_length 400 -cov_cutoff 33 -min_contig_lgth 200

-ins_length_long 5000 -ins_length_sd 75 -ins_length_long_sd 1000

We were unable to compile Velvet for higher k than 31, so for all data sets besides D3 we
used k = 31. For D3 we selected k = 21, following SOAPdenovo. We provided information
about the insert distributions of the different libraries, and specified a cov_cutoff of 1/3
the expected coverage, for removing nodes of low coverage. A high coverage cutoff made the
results worse, but as long as it was reasonably low the results were virtually identical.

Celera:

runCA -d Scer_sanger/ -p Scer_sanger Scer_sanger.frg

For Celera there are few parameters to select. The frg file encodes the data, so we wrote
scripts to convert fasta and quality files into the frg format, providing insert distribution
statistics.

Telescoper:

For each seed string j = 1, . . . , 32 (16 chromosomes, 2 telomeres each):

Telescoper -shortInsReads Scer_short.fasta -longInsReads Scer_sanger.fasta

-mean 400 -std 75 -meanLong 5000 -stdLong 1000 -seedSource seed(j).fasta

-outdir Scer_sanger/ -outname (j)

-ErrCorrnK 20 -ErrFreeKneiHigh 31 -ErrCorrminoverlap 20

For each data set the appropriate mean and variance of the insert distributions were used.
The rest of the parameters varied only by read length. Specifically, for 50 bp reads, the pa-
rameters used were: ErrCorrnK = 20 for the k-mer used to detect overlapping reads for er-
ror correction, ErrCorrminoverlap = 20 for the minimum overlap (possibly with errors) at
which reads were considered neighbors, and

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 66

ErrFreeK_neiHigh = 31 for the initial threshold for overlapping reads in the read-graph.
For 101 bp reads these values were ErrCorrnK = 21, ErrCorrminoverlap = 21, and
ErrFreeKneiHigh = 51. Other parameters are optional, and were not specified, so that
default values were used.

A.4 Optimizing over k

As described above, we tried to choose parameters to optimize performance for the other
algorithms. Table A.1 and Figure A.1 summarize the performance of SOAPdenovo for dif-
ferent values of the parameter k between 61 and 89. We chose the row in Table A.1 with the
best value for % Aligned + % Covered, although we note that results do not vary as much
as they do between algorithms.

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
SOAP, K=61 25.0 23.0 39.0 1127 28.7 23.2 40.0 1051 93.2 81.0
SOAP, K=63 26.1 25.0 39.0 1129 27.7 23.2 40.0 1053 93.3 81.2
SOAP, K=65 28.8 25.0 39.0 1128 30.0 25.3 40.0 1054 93.4 81.2
SOAP, K=67 30.0 25.0 39.0 1130 30.1 25.7 40.0 1055 93.4 81.4
SOAP, K=69 28.4 25.0 39.0 1133 30.5 25.7 40.0 1057 93.3 81.5
SOAP, K=71 26.0 25.0 39.0 1130 26.6 25.4 40.0 1060 93.7 81.7
SOAP, K=73 28.0 25.0 39.0 1143 30.5 25.4 40.0 1063 92.9 82.0
SOAP, K=75 26.2 25.0 39.0 1150 26.9 25.4 40.0 1064 92.5 82.1
SOAP, K=77 25.0 24.0 39.0 1149 28.6 24.6 40.0 1068 92.9 82.3
SOAP, K=79 25.0 22.0 39.0 1155 25.6 22.8 40.0 1070 92.6 82.4
SOAP, K=81 26.2 25.0 39.0 1159 28.6 25.4 40.0 1069 92.3 82.3
SOAP, K=83 28.3 26.0 39.0 1165 30.5 26.2 40.0 1071 91.9 82.6
SOAP, K=85 28.5 26.0 39.0 1169 31.0 26.3 40.0 1072 91.6 82.7
SOAP, K=87 28.0 28.0 39.0 1170 30.6 26.6 40.0 1067 91.1 82.4
SOAP, K=89 26.0 23.0 39.0 1169 28.6 23.8 40.0 1067 91.2 82.4

Table A.1: Results for SOAPdenovo on D1 (101 bp reads), using a variety of different values
of the k-mer size k.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 67

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

Figure A.1: The cumulative proportion of all aligned contigs exceeding the contig size indi-
cated on the x-axis, for simulated data D1 (read length 101 bp). Results are for SOAPdenovo
on a variety of k.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 68

A.5 Telescoper implementation details

Read mapping: We employ a hash-based read mapping for computational efficiency. To
accommodate sequencing errors, we allow up to δ mismatches in mapping left-mates to the
e-node. Because we are interested in repetitive regions, the fact that a read-pair maps to
one location need not preclude it mapping to another. Each time we map to an e-node, we
use all reads, not just all unused reads.

Error correction: We perform error correction on the set of left-reads that map to a given
e-node plus their associated right-reads. For each read R in the set, we find its neighbor
reads (also in the set) meeting certain overlap criteria. Then, we perform error correction
at each position of read R using the information of its neighbors’ bases that overlap that
position: If a given base call is confirmed by enough neighboring reads, or if no alternative
base call has strong support, then no error correction is made; otherwise, the base is corrected
to the majority vote. These conditions are similar to those used in ALLPATHS-LG’s error
correction algorithm [Gnerre et al., 2011].

Read-overlap graph construction: The coverage and error profiles are such that very
rarely consecutive reads in the read-overlap graph overlap only by very small amount, such
as 5 bp. Therefore, in introducing edges in the read-overlap graph, Telescoper proceeds by
two passes: The first pass adds directed edges between reads overlapping by at least k bp.
The second pass adds directed edges between the set of reads lacking outgoing edges and
the set of reads lacking incoming edges; edges are simply added one at a time, starting with
the most overlapping read pair, until either set of edge-less reads is empty. This step can be
thought of as employing a partial greedy algorithm for overlapping reads and is motivated
by the work of Motahari et al. [2012] showing that for non-repetitive sequence, the greedy
algorithm is asymptotically optimal in terms of its coverage requirements. The sequence here
is repetitive, of course, but with some probability the repetitive parts will have read-overlaps
large enough to be added by the first pass.

A.6 Runtimes and memory requirements

We ran each algorithm on a Linux machine with 128 GB of memory, and 24 cores, although
the algorithms’ number of processors was set at 16 for parallelizable algorithms. The results
are shown in Table A.2.

Telescoper’s memory requirements are dominated by storing the reads and the hash table
that indexes the reads by their first k-mer. This will scale asymptotically as O(C ·G), where
C is the coverage and G is the genome size. For the short-reads in data set D3, with coverage
100X and genome size G = 12 Mb, this consisted of 1.4 GB for the short reads, and 386 MB
for the accompanying hash table. Future work to reduce the memory requirements may
borrow ideas from memory-efficient algorithms such as SGA.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 69

Assembler D1: 10kb insert D5: 2.2kb insert D7: Sanger
ABySS 1.3.3 11m 9m 8m
ALLPATHS 2.2 87m 57m 40m
Celera 6.1 N/A N/A 1m29s
SGA 6/3/2012 59m 31m 26m
SOAPdenovo 1.05 1m14s 1m35s 1m40s
Telescoper 0.9 35m 36m 36m
Velvet 1.2.06 3m18s 3m53s 2m36s

Table A.2: Runtime results for all algorithms on D1, D5, and D7, including version number.

A.7 Contig continuity plots for real yeast data D3

Below we include all the chromosome plots for D3 (real yeast data), where all the produced
contigs have been aligned to the reference.

0 left telomere 40k 190k right telomere 230k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 1

0 left telomere 40k 773k right telomere 813k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 2

0 left telomere 40k 276k right telomere 316k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 3

0 left telomere 40k 1491k right telomere 1531k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 4

0 left telomere 40k 536k right telomere 576k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 5

0 left telomere 40k 230k right telomere 270k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 6

0 left telomere 40k 1050k right telomere 1090k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 7

0 left telomere 40k 522k right telomere 562k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 8

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 70

0 left telomere 40k 399k right telomere 439k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 9

0 left telomere 40k 705k right telomere 745k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 10

0 left telomere 40k 626k right telomere 666k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 11

0 left telomere 40k 1038k right telomere 1078k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 12

0 left telomere 40k 884k right telomere 924k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 13

0 left telomere 40k 744k right telomere 784k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 14

0 left telomere 40k 1051k right telomere 1091k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 15

0 left telomere 40k 908k right telomere 948k

Telescoper

ABySS

ALLPATHS
2

SOAP
denovo

Velvet

Chromosome 16

Figure A.2: Contig continuity results for real data D3. The left and right telomeric regions
(separated by the dotted line) for two different chromosomes are shown, with the aligned
contigs displayed for each assembly algorithm. Different colors represent different contigs in
the produced assembly, so more colors per method indicates a larger number of contigs.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 71

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(a) D4: 50 bp reads, long-insert 2.2 kb

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(b) D5: 101 bp reads, long-insert 2.2 kb

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(c) D6: 50 bp short-reads with Sanger-
reads

0 10000 20000 30000 40000
Minimum Contig Size (aligned)

0

.25

.5

.75

1

C
u
m
u
la
ti
v
e
 A
ss
e
m
b
ly
 P
ro
p
o
rt
io
n
 (
a
lig

n
e
d
)

(d) D7: 101 bp short-reads with Sanger-
reads

Figure A.3: The fraction of reference covered, for contigs exceeding the contig size indicated
on the x-axis. These plots illustrate the continuity and completeness of different assemblies.
For any given minimum contig length, Telescoper covered more of the reference. NG50 can
be read from this graph as the x-coordinates at which each curve hits the 50% mark of bases
output relative to the reference.

A.8 Results on additional data sets D4–D7

Results on additional data D4–D7 are shown in Figure A.3 and Table A.3. These results
highlight different features.

Results on D4 show that Telescoper’s weaker performance on the real data D3 as com-
pared to its performance on simulated data sets D2 and D5 can largely be explained by the
data parameters (shorter reads than D5, shorter long-insert distribution than D2), rather
than being exclusively the result of the non-uniformities of real data.

Sanger reads (data D6 and D7) used in place of short-read long-insert libraries have a
surprisingly modest effect on performance; the tradeoff between coverage and continuity of
reads is fairly balanced. This is somewhat less true for other leading algorithms, which are
not designed to run on Sanger reads. None of the algorithms other than Telescoper had

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 72

higher NG50 than the Sanger-read assembler Celera.
Telescoper’s %Aligned is somewhat low for some of the data sets. This occurs when

Telescoper is incorrect in determining which extension to pursue after a repetitive region.
Figure A.2 shows that after irresolvable repeats Telescoper frequently produces no aligned
output, whereas other assemblers do. For instance, on the left telomere of chromosome 2,
no algorithm is able to scaffold the interior contig to the rest, but the other algorithms
produce the sequence further towards the end of the telomere as a separate contig. If
Telescoper pursues a false extension path following the irresolvable choice, then not only is
its %Covered heavily penalized, but so is its %Aligned. Better identification of ambiguity in
extension paths would allow Telescoper to produce multiple contigs instead of single contigs,
and thereby improve its %Aligned and %Covered, with only a slight potential decrease in
NG50. The problem is exacerbated for the Sanger read data sets, for which the long-insert
coverage is lower, so that one extension path might appear better than another by chance.

APPENDIX A. APPENDIX: ASSEMBLY USING ITERATIVE EXTENSION 73

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 36.0 35.0 39.0 1032 34.8 32.9 39.7 1003 97.2 77.8
ABySS 21.1 19.0 39.0 1136 22.8 19.4 39.7 1024 90.1 77.3
ALLPATHS2 33.0 28.0 52.0 993 32.9 27.6 40.0 935 94.0 72.9
SOAPdenovo 18.9 13.0 39.0 994 20.3 13.3 40.0 966 97.2 74.9
Velvet 13.0 8.0 31.0 968 14.2 8.9 31.9 946 97.6 73.6

(a) Results for simulated data D4: 50 bp reads, long-insert 2.2 kb

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 39.1 38.0 40.0 1164 38.3 38.1 40.0 1114 95.7 87.1
ABySS 29.0 29.0 39.0 1240 29.3 29.0 39.4 1200 96.7 85.3
ALLPATHS2 33.4 30.0 50.0 987 33.4 27.3 40.0 947 96.0 73.9
SGA 32.1 26.0 39.0 1111 32.2 26.7 40.0 1076 96.7 82.1
SOAPdenovo 19.3 17.0 39.0 1175 20.5 17.2 40.0 1090 92.7 82.9
Velvet 13.9 9.0 33.0 964 14.4 9.5 33.9 948 98.3 73.8

(b) Results for simulated data D5: 101 bp reads, long-insert 2.2kb

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 38.0 38.0 39.0 1021 37.5 32.7 39.2 955 93.5 74.6
ABySS 12.0 8.0 31.0 1096 13.7 8.9 31.6 965 88.1 75.0
ALLPATHS2 24.0 18.0 39.0 894 24.1 18.5 39.1 888 99.2 68.5
SOAPdenovo 18.6 13.0 39.0 1009 18.9 13.3 40.0 979 97.0 74.9
Velvet 26.0 20.0 75.0 1009 23.1 14.0 37.2 895 88.6 69.6
Celera 27.5 24.0 41.0 930 27.6 23.8 37.0 917 98.5 71.5

(c) Results for simulated data D6: 50 bp short-reads with Sanger-reads

Produced (kb) Aligned (kb)
Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered
Telescoper 40.0 40.0 41.0 1245 39.6 38.6 40.0 1158 92.9 88.8
ABySS 22.0 21.0 39.0 1194 22.8 21.8 39.0 1154 96.6 83.6
ALLPATHS2 29.0 21.0 39.0 886 29.7 22.0 39.1 880 99.3 68.7
SGA 21.0 20.0 39.0 1110 22.6 20.1 40.0 1078 97.1 82.1
SOAPdenovo 20.7 14.0 39.0 936 20.7 14.0 39.6 928 99.1 72.5
Velvet 24.0 17.0 59.0 1000 21.4 11.0 33.8 895 89.5 69.6
Celera 27.5 24.0 41.0 930 27.6 23.8 37.0 917 98.5 71.5

(d) Results for simulated data D7: 101 bp short-reads with Sanger-reads

Table A.3: Summary of results based on simulated data from 32 telomeric regions each of
length 40 kb. “%Aligned” is the ratio of Total Aligned to Total Produced, while “%Covered”
is the fraction of the telomeric regions covered by contigs. Celera is excluded from both (a)
and (b) since it is a Sanger-read assembler. SGA is excluded from (a) and (c) since it did
not run on 50 bp data.

74

Appendix B

Appendix: Information-Theoretic
Requirements

B.1 Supplementary Material

In this supplementary material, we display the output of our pipeline for 9 datasets (in
addition to hc19, whose output is in the introduction, and the GAGE datasets R. sphaeroides,
S. Aureus, and hc14). For each dataset we plot

log(1 + a`),

the log of one plus the number of repeats of each length `. From the repeat statistics am,
bm,n, and cm, we produce a feasibility plot. The thick black line denotes the lower bound on
feasible N,L, and the green line is the performance achieved by MultiBridging.

0 1000 2000 3000 4000 5000
0

5

10

15

1000 2000 3000 4000 5000 60000

1

2

3

4

5

6

7

8

9

10

`repeat`interleaved

Figure B.1: Lactofidus. G = 2, 078, 001, `triple = 3027, `interleaved = 3313, `repeat = 5321.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 75

0 10 20 30 40
0

5

10

15

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10

`repeat`triple

Figure B.2: Buchnera. G = 642, 122, `triple = 27, `interleaved = 23, `repeat = 39.

0 500 1000 1500 2000 2500 3000
0

5

10

15

500 1000 1500 2000 2500 3000 3500 40000

1

2

3

4

5

6

7

8

9

10

`interleaved `repeat

Figure B.3: Heli51. G = 1, 589, 954, `triple = 219, `interleaved = 2122, `repeat = 3478.

B.2 Lower bounds on coverage depth

The lower bounds are based on a generalization of Ukkonen’s condition to shotgun sequenc-
ing, as described in Theorem 1. The proof of Theorem 1 follows by a straightforward
modification to the argument in Ukkonen [1992] and is omitted here.

Theorem 1. Given a DNA sequence s and a set of reads, if there is a pair of interleaved
repeats or a triple repeat whose copies are all unbridged, then there is another sequence s′ of
the same length under which the likelihood of observing the reads is the same.

Lower bound due to interleaved repeats

In this section we derive a necessary condition on N and L in order that the probability of
correct reconstruction be at least 1− ε.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 76

0 200 400 600 800 1000
0

5

10

15

200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

`repeat`interleaved

Figure B.4: Salmonella. G = 2, 215, 568, `triple = 112, `interleaved = 163, `repeat = 1011.

0 500 1000 1500
0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

5

6

7

8

9

10

`repeat`triple

Figure B.5: Perkinsus marinus. G = 1, 440, 372, `triple = 770, `interleaved = 92, `repeat = 1784.

Recall that a pair of repeats, one at positions t1, t3 with t1 < t3 and the second at
positions t2, t4 with t2 < t4, is interleaved if t1 < t2 < t3 < t4 or t2 < t1 < t4 < t3. From the
DNA we may extract a (symmetric) matrix of interleaved repeat statistics bmn, the number
of pairs of interleaved repeats of lengths m and n.

We proceed by fixing both N and L and checking whether or not unbridged interleaved
repeats occur with probability higher than ε. We will break up repeats into 2 categories:
repeats of length at least L− 1 (these are always unbridged), and repeats of length less than
L− 1 (these are sometimes unbridged). We assume that L > `interleaved + 1, or equivalently
bij = 0 for all i, j ≥ L − 1, since otherwise there are (with certainty) unbridged interleaved
repeats and Ukkonen’s condition is violated.

First, we estimate the probability of error due to interleaved repeats of lengths i < L− 1
and j ≥ L − 1. The repeat of length j is too long to be bridged, so an error occurs if the

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 77

0 200 400 600 800
0

5

10

15

200 400 600 800 1000 12000

1

2

3

4

5

6

7

8

9

10

`interleaved `repeat⇡ `triple

Figure B.6: Sulfolobus islandicus. G = 2, 655, 198, `triple = 734, `interleaved = 761, `repeat =
875.

0 500 1000 1500 2000 2500 3000
0

5

10

15

500 1000 1500 2000 2500 3000 3500 4000 45000

1

2

3

4

5

6

7

8

9

10

`interleaved `repeat

Figure B.7: Ecoli536. G = 4, 938, 920, `triple = 2267, `interleaved = 3245, `repeat = 3353.

repeat of length i is unbridged. For a repeat, as long as the two copies’ locations are not
too nearby1, each copy is bridged independently and hence the probability that both copies
of the repeat of length i are unbridged is punbridged

i = e−2N
G

(L−i−1). (Recall that a repeat is
unbridged if both copies are unbridged.)

1More precisely, for the two copies of a a repeat of length ` to be bridged independently requires that no
single read can bridge them both. This means their locations t and t+d must have separation d ≥ L− `−2.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 78

0 1000 2000 3000 4000 5000
0

5

10

15

1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

`repeat⇡ `triple

`interleaved

Figure B.8: Yesnina. G = 4, 504, 254, `triple = 3573, `interleaved = 3627, `repeat = 5358.

A union bound estimate2 gives a probability of error

Perror ≈
1

2

∑
m<L−1
n≥L−1

bmne
−2λ(L−m−1) . (B.1)

Requiring the error probability to be less than ε and solving for L gives the necessary
condition

L ≥ 1

2λ
log

γ1

2ε
=

G

2N
log

γ1

2ε
, (B.2)

where γ1 :=
∑

m<L−1
n≥L−1

bmne
2(N/G)(m+1) is a simple function of the interleaved repeat statistic

bmn.
We now estimate the probability of error due to interleaved repeat pairs in which both

repeats are shorter than L− 1. In this case only one repeat of each interleaved repeat pair
must be bridged. Again a union bound estimate gives

Perror ≈
1

2

∑
m,n<L−1

bmne
−2λ(L−m−1)e−2λ(L−n−1) .

Requiring the error probability to be less than ε gives the necessary condition

L ≥ 1

4λ
log

γ2

2ε
=

G

4N
log

γ2

2ε
, (B.3)

where γ2 :=
∑

m,n<L−1 bmne
2(N/G)(m+n+2) and similarly to γ1 is computed from bmn.

2The union bound on probabilities gives an upper bound, so its use here is only an approximation. To get a
rigorous lower bound we can use the inclusion-exclusion principle, but the difference in the two computations
is negligible for the data we observed. For ease of exposition we opt to present the simpler union bound
estimate.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 79

Lower bound due to triple repeats

We translate the generalized Ukkonen’s condition prohibiting unbridged triple repeats into
a condition on L and N . Let cm denote the number of triple repeats of length m. Then a
union bound estimate gives

P(E) ≈ 1

2

∑
m

cme
−3λ(L−m−1) . (B.4)

Requiring P(E) ≤ ε and solving for L gives

L ≥ 1

3λ
log

γ3

2ε
=

G

3N
log

γ3

2ε
, (B.5)

where γ3 :=
∑

m cme
3(N/G)(m+1).

Remark 7. As discussed here and in Section 4.3, if the DNA sequence is not covered by the
reads or there are unbridged interleaved or triple repeats, then reconstruction is not possible.
But there is another situation which must be ruled out. Without knowing its length a priori,
it is impossible to know how many copies of the DNA sequence are actually present: if the
sequence s to be assembled consists of multiple concatenated copies of a shorter sequence,
rather than just one copy, the probability of observing any set of reads will be the same.
Since it is unlikely that a true DNA sequence will consist of the same sequence repeated
multiple times, we assume this is not the case throughout the paper. Equivalently, if s does
consist of multiple concatenated copies of a shorter sequence, we are content to reconstruct
a single copy. If available, knowledge of the approximate length of s would then allow to
reconstruct.

B.3 Proofs for algorithms

Proof of Theorem 2 (Greedy)

The greedy algorithm’s underlying data structure is the overlap graph, where each node
represents a read and each (directed) edge (x,y) is labeled with the overlap ov(x,y) (defined
as the the length of the shared prefix/suffix) between the incident nodes’ reads. For a node
v, the in-degree [out-degree] is the number of edges in the graph directed towards [away
from] v. The greedy algorithm is described as follows.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 80

Algorithm 2 Greedy. Input: reads R. Output: sequence ŝ.

1. For each read with sequence x, form a node with label x.
Greedy steps 2-3:
2. Consider all pairs of nodes x1,x2 in G satisfying dout(x1) = din(x2) = 0, and add an edge
(x1,x2) with largest value ov(x1,x2).
3. Repeat Step 2 until no candidate pair of nodes remains.
Finishing step:
4. Output the sequence corresponding to the unique cycle in G.

Theorem 2. Given a sequence s and a set of reads, Greedy returns s if every repeat is
bridged.

Proof. We prove the contrapositive. Suppose Greedy makes its first error in merging reads
ri and rj with overlap ov(ri, rj) = `. Now, if rj is the successor to ri, then the error is due to
incorrectly aligning the reads; the other case is that rj is not the successor of ri. In the first
case, the subsequence s`tj is repeated at location s`ti+L−`, and no read bridges either repeat
copy.

In the second case, there is a repeat s`tj = s`ti+L−`. If s`ti+L−` is bridged by some read
rk, then ri has overlap at least ` + 1 with rk, implying that read ri has already found its
successor before step ` (either rk or some other read with even higher overlap). A similar
argument shows that s`tj cannot be bridged, hence there is an unbridged repeat.

Proofs for K-mer algorithms

Background

We give some mathematical background leading to the proof of Theorem 3 (restated below).

Lemma 8. Fix an arbitrary K and form the K-mer graph from the (K+ 1)-spectrum SK+1.
The sequence s corresponds to a unique cycle C(s) traversing each edge at least once.

To prove the lemma, note that all (K + 1)-mers in s correspond to edges and adjacent
(K + 1)-mers in s are represented by adjacent edges. An induction argument shows that s
corresponds to a cycle. The cycle traverses all the edges, since each edge represents a unique
(K + 1)-mer in s.

In both SBH and shotgun sequencing the number of times each edge e is traversed by
C(s) (henceforth called the multiplicity of e) is unknown a priori, and finding this number
is part of the reconstruction task. Repeated (K + 1)-mers in s correspond to edges in the
K-mer graph traversed more than once by C(s), i.e. having multiplicity greater than one.
In order to estimate the multiplicity, previous works seek a solution to the so-called Chinese
Postman Problem (CPP), in which the goal is to find a cycle of the shortest total length
traversing every edge in the graph (see e.g. Pevzner [1989], Idury and Waterman [1995],
Pevzner et al. [2001], Medvedev and Brudno [2009]). It is not obvious under what conditions

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 81

the CPP solution correctly assigns multiplicities in agreement with C(s). For our purposes,
as we will see in Theorem 3, the multiplicity estimation problem can be sidestepped (thereby
avoiding solving CPP) through a modification to the K-mer graph.

Ignoring the issue of edge multiplicities for a moment, Pevzner [1995] showed for the SBH
model that if the edge multiplicities are known with multiple copies of each edge included
according to the multiplicities, and moreover Ukkonen’s condition is satisfied, then there
is a unique Eulerian cycle in the K-mer graph and the Eulerian cycle corresponds to the
original sequence. (An Eulerian cycle is a cycle traversing each edge exactly once.) Pevzner’s
algorithm is thus to find an Eulerian cycle and read off the corresponding sequence. Both
steps can be done efficiently.

Lemma 9 (Pevzner [1995]). In the SBH setting, if the edge multiplicities are known, then
there is a unique Eulerian cycle in the K-mer graph with K = L− 1 if and only if there are
no unbridged interleaved repeats or unbridged triple repeats.

Most practical algorithms (e.g. Idury and Waterman [1995], MacCallum et al. [2009],
Zerbino and Birney [2008]) condense unambiguous paths (called unitigs by Myers [2000] in
a slightly different setting) for computational efficiency. The more significant benefit for us,
as shown in Theorem 3, is that if Ukkonen’s condition is satisfied then condensing the graph
obviates the need to estimate multiplicities. Condensing a K-mer graph results in a graph
of the following type.

Definition 10 (Sequence graph). A sequence graph is a graph in which each node is labeled
with a subsequence, and edges (u,v) are labeled with an overlap auv such the subsequences u
and v overlap by auv (the overlap is not necessarily maximal). In other words, an edge label
auv on e = (u,v) indicates that the auv-length suffix of u is equal to the auv-length prefix of
v.

The sequence graph generalizes both the overlap graph used by Greedy in Section 4.4
(nodes correspond to reads, and edge overlaps are maximal overlaps) as well as the K-mer
algorithms discussed in this section (nodes correspond to K-mers, and edge overlaps are
K − 1).

In order to speak concisely about concatenated sequences in the sequence graph, we
extend the notation s`t (denoting the length-` subsequence of the DNA sequence s starting
at position t) which was introduced in Section 4.3; we abuse notation slightly, and write
send
t to indicate the subsequence of s starting at position t and having length so that its end

coincides with the end of s.
We will perform two basic operations on the sequence graph. For an edge e = (u,v) with

overlap auv, merging u and v along e produces the concatenation uend
1 vend

auv+1. Contracting an
edge e = (u,v) entails two steps (c.f. Fig. 4.6): first, merging u and v along e to form a new
node w = uend

1 vend
auv+1, and, second, edges to u are replaced with edges to w, and edges from v

are replaced by edges from w. We will only contract edges (u,v) with dout(u) = din(v) = 1.
The condensed graph is defined next.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 82

Definition 11 (Condensed sequence graph). The condensed sequence graph replaces un-
ambiguous paths by single nodes. Concretely, any edge e = (u, v) with dout(u) = din(v) = 1
is contracted, and this is repeated until no candidate edges remain.

For a path P = v1,v2, . . . ,vq in the original graph, the corresponding path in the con-
densed graph is obtained by contracting an edge (vi,vi+1) whenever it is contracted in the
graph, replacing the node v1 by w whenever an edge (u,v1) is contracted to form w, and
similarly for the final node vq. It is impossible for an intermediate node vi, 2 ≤ i < q, to be
merged with a node outside of P , as this would violate the condition dout(u) = din(v) = 1
for edge contraction in Defn. 11.

In the condensed sequence graph G obtained from a sequence s, nodes correspond to
subsequences via their labels, and paths in G correspond to subsequences in s via merging
the constituent nodes along the path. If the subsequence corresponding to a node v appears
twice or more in s, we say that v corresponds to a repeat. Conversely, subsequences of length
` ≥ K in s correspond to paths P of length `−K + 1 in the K-mer graph, and thus by the
previous paragraph also to paths in the condensed graph G.

We record a few simple facts about the condensed sequence graph obtained from a K-mer
graph.

Lemma 12. Let G0 be the K-mer graph constructed from the (K + 1)-spectrum of s and
let C0 = C0(s) be the cycle corresponding to s. In the condensed graph G, let C be the cycle
obtained from C0 by contracting the same edges as those contracted in G0.

1. Edges in G0 can be contracted in any order, resulting in the same graph G, so the
condensed graph is well-defined. Similarly C is well-defined.

2. The cycle C in G corresponds to s and is the unique such cycle.

3. The cycle C in G traverses each edge at least once.

Theorem 3. Let SK+1 be the (K+ 1)-spectrum of s and G0 be the K-mer graph constructed
from SK+1, and let G be the condensed sequence graph obtained from G0. If Ukkonen’s
condition is satisfied, i.e. there are no triple repeats or interleaved repeats of length at least
K, then there is a unique Eulerian cycle C in G and C corresponds to s.

Proof. We will show that if Ukkonen’s condition is satisfied, the cycle C = C(s) in G corre-
sponding to s (constructed in Lemma 12) traverses each edge exactly once in the condensed
K-mer graph, i.e. C is Eulerian. Arguments by Pevzner [1995] show that if there are multi-
ple Eulerian cycles then Ukkonen’s condition is violated, so it is sufficient to prove that C is
Eulerian. As noted in Lemma 12, C traverses each edge at least once, and thus it remains
only to show that C traverses each edge at most once.

To begin, let C0 be the cycle corresponding to s in the original K-mer graph G0. We argue
that every edge (u,v) traversed twice by C0 in the K-mer graph G0 has been contracted in
the condensed graph G and hence in C. Note that the cycle C0 does not traverse any node

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 83

three times in G0, for this would imply the existence of a triple repeat of length K, violating
the hypothesis of the Lemma. It follows that the node u cannot have two outgoing edges
in G0 as u would then be traversed three times; similarly, v cannot have two incoming
edges. Thus dout(u) = din(v) = 1 and, as prescribed in Defn. 11, the edge (u,v) has been
contracted.

Proofs for SimpleBridging

Since bridging reads extend one base to either end of a repeat, it will be convenient to use
the following notation for extending sequences: Given an X-node v with an incoming edge
(p,v) and an outgoing edge (v,q), let

v→q = v q1
avq+1, and p→v = p1

end−apvv . (B.6)

Here v→q denotes the subsequence v appended with the single next base in the merging of
v and q and p→v the subsequence v prepended with the single previous base in the merging
of p and v. For example, if v = ATTC, p = TCAT, apv = 2, q = TTCGCC, and avq = 3,
then v→q = ATTCG, p→v = CATTC, and p→v→q = CATTCG.

The idea is that a bridging read is consistent with only one pair p→v and v→q and thus
allows to match up edge (p,v) with (v,q). This is recorded in the following lemma.

Lemma 13. Suppose C corresponds to a sequence s in a condensed sequence graph G. If a
read r bridges an X-node v, then there are unique edges (p,v) and (v,q) such that p→v and
v→q are adjacent in r.

SimpleBridging is described as follows.

Algorithm 3 SimpleBridging. Input: reads R, parameter K. Output: sequence ŝ.
K-mer steps 1-3:
1. For each subsequence x of length K in a read, form a node with label x.
2. For each read, add edges between nodes representing adjacent K-mers in the read.
3. Condense the graph as described in Defn. 11.
4. Bridging step: See Fig. 4.7. While there exists an X-node v with din(v) = dout(v) = 2
bridged by some read r: (i) Remove v and edges incident to it. Add duplicate nodes v1,v2.
(ii) Choose the unique pi and qj s.t. pi→v and v→qj are adjacent in r and add edges (pi,v1)
and (v1,qj). Choose the unused pi and qj, add edges (pi,v2) and (v2,qj). (iii) Condense
the graph.
5. Finishing step: Find an Eulerian cycle in the graph and return the corresponding sequence.

Proofs for MultiBridging

In this subsection we recall Theorem 6 stating sufficient conditions for correct reconstruction,
and derive the corresponding required coverage depth and read length to meet a target prob-
ability of correct reconstruction. The subsection concludes with a proof that the sufficient
conditions are correct.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 84

CATTGCATT

GATT

TATT

ATTC

bridging read

…GATTGCATTGCATTC… …TATTGCATTT...

ATTGCATTC

ATTGCATTG

TATTGCATT

GATTGCATT

TATT

GATT

5

ATTT

ATTGCATT

ATTGCATTT

TATT

GATT

5

GATTGCATTG

CATTGCATTC

CATTGCATT

ATTGCATTC

ATTGCATTG

TATTGCATT

GATTGCATT

ATTGCATTT

Figure B.9: Resolution of X-node with a self-loop.

Theorem 6. The algorithm MultiBridging reconstructs the sequence s if:

(a) all interleaved repeats are bridged

(b) all triple repeats are all-bridged

(c) the sequence is covered by the reads.

Remark 14. Unlike the previous K-mer algorithms, DeBruijn and SimpleBridging, it
is unnecessary to specify a parameter K for MultiBridging. Implicitly MultiBridging
uses K = 1, which makes the condition that reads overlap by K equivalent to coverage of the
genome.

Figure 4.2 plots the performance of MultiBridging, obtained by solving for the re-
lationship between G,N,L, and ε in order to satisfy the conditions of Lemma 6. We first
perform the requisite calculations, and then prove the Lemma.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 85

Condition (a) is already dealt with in (B.2) and (B.3), and Condition (c) amounts to the
requirement that N

NLW
≥ 1.

We turn to Condition (b) that all triple repeats are all-bridged. Let cm denote the number
of triple repeats of length m. A union bound estimate over triple repeats for the event that
one such triple repeat fails to be all-bridged gives

Perror ≈
∑
m

3 · cme−λ(L−m−1)+ , (B.7)

and requiring Perror ≤ ε and solving for L yields

L ≥ 1

λ
log

γ3

ε
=
G

N
log

γ3

ε
, (B.8)

where γ3 :=
∑

m 3cme
(N/G)·(m+1) is computed from the triple repeat statistics cm.

In order to understand the cost of all-bridging triple repeats, compared to simply bridging
one copy as required by our lower bound, it is instructive to study the effect of the single
longest triple repeat. Setting c`triple = 1 and cm = 0 for m 6= `triple makes γ3 = 3e(N/G)·(`triple+1)

in (B.8) and

L ≥ Lall
3 := `triple + 1 +

G

N
log 3ε−1 . (B.9)

Bridging the longest triple repeat, as shown in Section B.2, requires

L ≥ L3 := `triple + 1 +
G

3N
log ε−1 . (B.10)

Solving for N in equations (B.10) and (B.9) gives

N3 ≥
G

3
· log ε−1

L− `triple − 1
(B.11)

Nall
3 ≥ G · log ε−1 + log 3

L− `triple − 1
. (B.12)

The ratio is
Nall

3

N3

= 3 · log 3ε−1

log ε−1
≈ 3.72 for ε = 10−2 . (B.13)

This means that if the longest triple repeat is dominant, then for L slightly larger than `triple,
MultiBridging needs a coverage depth approximately 3.72 times higher than required by
our lower bound.

The remainder of this subsection is devoted to the proving Lemma 6.
We will use mC(v) to denote the multiplicity (traversal count) a cycle C assigns a node

v. The multiplicity mC(v) is also equal to the number of times the subsequence v appears
in the sequence corresponding to C. For an edge e, we can similarly let mC(e) be the number
of times C traverses the edge. The following key lemma relates node multiplicities with the
existence of X-nodes.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 86

Lemma 15. Let C be a cycle in a condensed sequence graph G, where G itself is not a cycle,
traversing every edge at least once. If v is a node with maximum multiplicity at least 2, i.e.
mC(v) = maxu∈GmC(u) ≥ 2, then v is an X-node. As a consequence, if mC(v) ≥ 3 for some
v, i.e. C traverses some node at least three times, then mC(u) ≥ 3 for some X-node u.

Proof. Let v be a node with maximum multiplicity mC(v) = maxu∈GmC(u). We will show
that v is an X-node, i.e. dout(v) ≥ 2 and din(v) ≥ 2.

We prove that dout(v) ≥ 2 by supposing that dout(v) = 1 and deriving a contradiction.
Denote the outgoing edge from v by e = (v,u), where u is distinct from v since otherwise
G is a cycle. If din(u) ≥ 2, then u must be traversed more times than v, contradicting the
maximality of mC(v), and if din(u) = 1, then the existence of the edge e contradicts the
fact that G is condensed. The argument showing that din(v) ≥ 2 is symmetric to the case
din(v) ≥ 2.

Proof of Lemma 6. We assume that all triple repeats are all-bridged, that there are no un-
bridged interleaved repeats, and that all reads overlap their successors by at least 1 base
pair. We wish to show that MultiBridging returns the original sequence.

Consider the condensed sequence graph G0 constructed in steps 1-3 of MultiBridging.
Suppose all X-nodes that are either all-bridged or correspond to bridged 2-repeats have been
resolved according to repeated application of the procedure in step 4 of MultiBridging,
resulting in a condensed sequence graph G. We claim that 1) s corresponds to a cycle C in
G traversing every edge at least once, 2) C is Eulerian, and 3) C is the unique Eulerian cycle
in G.

Proof of Claim 1. Let Gn be the graph after n resolution steps, and suppose that Cn is a
cycle in Gn corresponding to the sequence s and traversing all edges. We will show that there
exists a cycle Cn+1 in Gn+1 corresponding to s and traversing all edges, and that Gt = G for
a finite t, so by induction, there exists a cycle C in G corresponding to s and traversing all
edges. The base case n = 0 was shown in Lemma 8. Moving on to arbitrary n > 0, let v be
an X-node in Gn labeled as in Fig. 4.6. The X-node resolution step is constructed precisely
to preserve the existence of a cycle corresponding to s. Each traversal of v by the cycle Cn
assigns an incoming edge (piv) to an outgoing edge (v,qj), and the resolution step correctly
determines this pairing by the assumption on bridging reads.

Note that all X-nodes in the graph Gn+1 continue to correspond to repeats in s. The
process terminates: let L(Gi) =

∑
v∈Gi

mCi(v)1mCi (v)>1 and observe that L(Gi) is strictly
decreasing in i. Thus s corresponds to a cycle C in G traversing each edge at least once.

Proof of Claim 2. We next show that C is an Eulerian cycle. If G is itself a cycle, and
s is not formed by concatenating multiple copies of a shorter subsequence (assumed not to
be the case, see discussion at end of Section 4.3), then C traverses G exactly once and is an
Eulerian cycle. Otherwise, if G is not a cycle, then we may apply Lemma 15 to see that any
node with mC(v) ≥ 3 implies the existence of an X-node u with mC(u) ≥ 3. Node u must

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 87

be all-bridged, by hypothesis, which means that an additional X-node resolution step can be
applied to G, a contradiction. Thus each node v in G has multiplicity mC(v) ≤ 2.

We can now argue that no edge e = (u,v) is traversed twice by C in the condensed
sequence graph G, as it would have been contracted. Suppose mC(e) ≥ 2. The node u
cannot have two outgoing edges as this implies mC(u) ≥ 3; similarly, v cannot have two
incoming edges. Thus dout(u) = din(v) = 1, but by Defn. 11 the edge e = (u,v) would have
been contracted.

Proof of Claim 3. It remains to show that there is a unique Eulerian cycle in G. All X-
nodes in G must be unbridged 2-X-nodes (correspond to 2-repeats in s), as all other X-nodes
were assumed to be bridged and have thus been resolved in G.

We will map the sequence s to another sequence s′, allowing us to use the characteri-
zation of Lemma 9 for SBH with known multiplicities. Denote by G′ the graph obtained
by relabeling each node in G by a single unique symbol (no matter the original node label
length), and setting all edge overlaps to 0. Through the relabeling, C corresponds to a cycle
C ′ in G′, and let s′ be the sequence corresponding to C ′. Writing S ′2 for the 2-spectrum of
s′, the graph G′ is by construction precisely the 1-mer graph created from S ′2, and there is
a one-to-one correspondence between X-nodes in G′ and unbridged repeats in s′. Through
the described mapping, every unbridged repeat in s′ maps to an unbridged repeat in s, with
the order of repeats preserved.

There are multiple Eulerian cycles in G only if there are multiple Eulerian cycles in G′
since the graphs have the same topology, and by Lemma 9 the latter occurs only if there are
unbridged interleaved repeats in s′, which by the correspondence in the previous paragraph
implies the existence of unbridged interleaved repeats in s .

Truncation estimate for bridging repeats (Greedy and
MultiBridging)

The repeat statistics am and cm used in the algorithm performance curves are potentially
overestimates. This is because a large repeat family—one with a large number of copies
f—will result in a contribution

(
f
2

)
≈ f 2/2 to am and

(
f
3

)
≈ f 3/6 to cm.

We focus here on deriving an estimate for the required N,L for bridging all repeats with
probability 1− ε. This upper bound reduces the sensitivity to large families of short repeats.
The analogous derivation for all-bridging all triple-repeats is very similar and is omitted.

Suppose there are am repeats of length m. The probability that some repeat is unbridged
is approximately, by the union bound estimate,

P(E) ≈
∑
m

ame
−2λ(L−m) . (B.14)

Requiring P(E) ≤ ε and solving for L gives

L ≥ 1

2λ
log

γ

ε
=

G

2N
log

γ

ε
, (B.15)

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 88

where γ :=
∑

m ame
2(N/G)m. Now, if am overcounts the number of repeats for small values

of m, the bound in (B.15) might be loose. In order for each read to overlap the subsequent
read by x nucleotides, with probability of failure ε/2, it suffices to take

L ≥ LK-cov

(
x,
ε

2

)
:= x+

1

λ
log

2N

ε
. (B.16)

Thus, for any x < L, we may replace (B.15) by

L ≥ min
x

max

{
1

2λ
log

2γ(x)

ε
, LK-cov

(
x,
ε

2

)}
, (B.17)

where γ(x) =
∑

m>x ame
2(N/G)m, and obtain a looser bound.

B.4 Critical window calculations

Window size if `interleaved � `triple

We focus here on the bound due to interleaved repeats (rather than triple repeats, treated
subsequently), and furthermore assume that the effect of the single largest interleaved repeat
is dominant. In this case `interleaved = Lcrit − 1 is the length of the shorter of the pair of
interleaved repeats, and let `1 be the length of the longer of the two. For Lcrit < L ≤ `1 + 1,
we are in the setting of (B.2) but with a redefined γ1 = e2(N/G)(Lcrit−1). Thus,

L ≥ Lcrit +
G

2N
log ε−1 , (B.18)

and solving for N gives

Nrepeat =
G

2

log ε−1

L− `2 − 1
(B.19)

Let L∗ be the value of L at which the curve described by constraint (B.19) intersects the
Lander-Waterman coverage value, i.e. Nrepeat(L

∗) = NLW(L∗) := N∗. This is the minimum
read length for which coverage of the sequence suffices for reconstruction.

We now solve for L∗

Lcrit
. First, the Lander-Waterman equation (4.2) at N = N∗ is

N∗ =
G

L∗
log

N∗

ε
, (B.20)

and setting equal the right-hand sides of (B.20) and (B.19) at L = L∗ gives

G

L∗
log

N∗

ε
=
G

2

log ε−1

L∗ − `2 − 1
.

A bit of algebra yields
L∗

Lcrit

=
2

2− x , (B.21)

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 89

where

x := · log ε−1

logN∗ + log ε−1
. (B.22)

Since x ≤ 1
2
, equation (B.21) implies L∗ ≤ 2Lcrit, and combined with the obvious inequality

L∗ ≥ Lcrit, we have Lcrit ≤ L∗ ≤ 2Lcrit. Thus

NLW(2Lcrit) ≤ N∗ ≤ NLW(Lcrit) , (B.23)

and applying the Lander-Waterman fixed-point equation (4.2) yet again gives

G

2Lcrit

log
NLW(2Lcrit)

ε
≤ N∗ ≤ G

Lcrit

log
NLW(Lcrit)

ε
. (B.24)

Writing this out gives

log ε−1

log G
Lcrit

+ log log NLW(Lcrit)
ε

+ log ε−1
≤ x

≤ log ε−1

log G
Lcrit
− 1 + log log NLW(2Lcrit)

ε
+ log ε−1

,

and this can be relaxed to

log ε−1

log G
Lcrit

+ log ε−1 + log log G
εLcrit

≤ x

≤ log ε−1

log G
Lcrit
− 1 + log ε−1

.

(B.25)

Letting

r :=
log G

Lcrit

log ε−1
, (B.26)

we have to a very good approximation

L∗

Lcrit

≈ 2(r + 1)

2(r + 1)− 1
. (B.27)

For G ∼ 108, Lcrit ∼ 1000, and ε = 5%, we get log G
Lcrit
≈ 13.8 and log ε−1 ≈ 3.0, so

r ≈ 4.6 and
L∗

Lcrit

=
2(r + 1)

2(r + 1)− 1
≈ 1.1 .

From (B.26) we see that the relative size of log ε−1 and log G
Lcrit

determines the size of the

critical window. If in the previous example ε = 10−5, say, then L∗

Lcrit
increases to 1.3. As ε

tends to zero, r approaches zero as well and L∗

Lcrit
→ 2.

APPENDIX B. APPENDIX: INFORMATION-THEORETIC REQUIREMENTS 90

Window size if `triple � `interleaved

We now suppose the single longest triple repeat dominates the lower bound and estimate
the size of the critical window. In this case `triple = Lcrit − 1 is the length of the longest
triple repeat. Since we don’t have matching lower and upper bounds for triple repeats, we
separately compute the critical window size for each.

We start with the lower bound. For L > Lcrit, the minimum value of N required in order
to bridge the longest triple repeat is given by (B.11) and repeated here:

Ntriples =
G

3
· log ε−1

L− Lcrit

. (B.28)

As for the interleaved repeats case considered earlier, we let L∗ be the value of L at which
the curve described by constraint (B.28) intersects the Lander-Waterman coverage value, i.e.
Ntriple(L

∗) = NLW(L∗) := N∗. This is the minimum read length for which coverage of the
sequence suffices for reconstruction.

A similar procedure as leading to (B.21) gives L∗/Lcrit = 3/(3 − x) with x defined in
(B.22). One can check that the estimates on x in (B.25) continue to hold, and we therefore
get

L∗

Lcrit

≈ 3(r + 1)

3(r + 1)− 1
. (B.29)

For the same example as before, G ∼ 108, Lcrit ∼ 1000, and ε = 5%, we get r ≈ 4.6 and

L∗

Lcrit

=
3(r + 1)

3(r + 1)− 1
≈ 1.06 .

Changing ε to 10−5 makes L∗

Lcrit
≈ 1.17, and as ε (and hence also r) tends to zero, L∗

Lcrit
→ 3

2
.

The analogous computation for L∗/Lcrit for the upper bound, as given by Nall
3 in (B.11),

yields
L∗

Lcrit

=
r + 1

r + log 3
log ε−1

≈ 1.12 , (B.30)

for the example with G ∼ 108, Lcrit ∼ 1000, and ε = 5%. The critical window size of the
upper bound is about twice as large as that of the lower bound for typical values of G and
Lcrit, with ε moderate. But as ε → 0, we see from (B.30) that L∗/Lcrit → ∞, markedly
different to the L∗/Lcrit → 3

2
observed for the lower bound.

