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GPU

Stanley Tzeng†, Anjul Patney and John D. Owens

University of California, Davis

Abstract

We explore software mechanisms for managing irregular tasks on graphics processing units (GPUs). We demon-
strate that dynamic scheduling and efficient memory management are critical problems in achieving high efficiency
on irregular workloads. We experiment with several task-management techniques, ranging from the use of a single
monolithic task queue to distributed queuing with task stealing and donation. On irregular workloads, we show
that both centralized and distributed queues have more than 100 times as much idle times as our task-stealing
and -donation queues. Our preferred choice is task-donation because of comparable performance to task-stealing
while using less memory overhead. To help in this analysis, we use an artificial task-management system that
monitors performance and memory usage to quantify the impact of these different techniques. We validate our re-
sults by implementing a Reyes renderer with its irregular split-and-dice workload that is able to achieve real-time
framerates on a single GPU.

1. Introduction

Current hardware-accelerated graphics pipelines exploit am-
ple parallelism, both regular and irregular. Historically, the
programmable parts of the pipeline—vertex and fragment
shaders—have been fairly regular, generally following a
single-primitive-in, single-primitive-out model. Newer pro-
grammable stages, such as geometry shaders, can target
more irregular parallelism. Yet the complexity of manag-
ing this irregular parallelism is invisible: the details of work
distribution across parallel units, scheduling, work queuing,
load balancing, and memory management are all hidden
from the programmer. Just like current irregularly-parallel
fixed-function units (such as rasterizers and clippers), the
GPU’s hardware, assisted by low-level drivers, handles these
details with special-purpose, customized hardware queues
and schedulers.

Today, the increasing general-purpose programmabil-
ity of the GPU is allowing developers to explore pro-
grammable pipelines [Pha06] in which programmers spec-
ify not only individual stages but also the overall struc-
ture of the pipeline. Both industry and academia are rac-
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ing toward providing the hardware, tools, and software pro-
totypes to make such custom pipelines possible and us-
able [SCS∗08, LHLW10, ZHR∗09]. Crucially, implement-
ing these programmable pipelines moves the complexity
of managing parallel workloads from the hardware onto
software, from vendors to programmers. Our work focuses
on how to support these parallel workloads, particularly
full pipelines featuring irregularly-parallel workloads, on to-
day’s programmable GPUs.

Informally, we see a future where developers can use
a wide selection of stages in constructing programmable
pipelines: texture samplers, tessellators, compositors, and so
on. These developers can use existing stages or write their
own. If we think of these stages as bricks, we are interested
in providing the mortar between these bricks: how can we as-
semble a set of parallel tasks into a pipeline that efficiently
utilizes the resources of the hardware in providing a high-
performance implementation? Such a contribution would not
be limited only to programmable graphics pipelines but also
target irregularly parallel computing problems like adaptive
multiresolution data structures or tree and graph traversal
and construction.

The challenges of such a task management system include
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Figure 1: This diagram shows images rendered at 800×800 using our CUDA-based Reyes renderer. The Killeroo (left) and
bubbles (right) were rendered with 16 jittered samples per pixel, and the teapot (center) was rendered with 42 jittered samples
per pixel. Killeroo and bubbles render at approximately 20 frames/sec, while teapot with motion blur achieves 3 frames/sec.

the following: (1) work distribution to parallel units; (2)
load balancing across these parallel units; (3) work schedul-
ing; and (4) memory management, particularly in the con-
text of the modest amount of memory on modern GPUs.
These goals are particularly challenging because we target
our system not to conventional processor architectures but
instead to the data-parallel GPU, which lacks comprehensive
hardware support for native task parallelism. Our solution to
these challenges is a parallel task queuing system combined
with a pipeline authored in an uberkernel/persistent-kernel
style. Our system provides the basis of a robust infrastruc-
ture for inter-stage data queuing by efficiently managing ir-
regular tasks in programmable pipelines.

We evaluate our system on both a synthetic work gener-
ator, capable of modeling various kinds of irregular work-
loads, and on the Reyes graphics pipeline [CCC87], a high-
quality rendering pipeline originally designed for cinematic
rendering. Our contributions are as follows:

• In the context of our parallel task queue implementation,
we analyze different load-balancing schemes for the GPU
and their effect on different types of workloads. We show
that a task-donating scheme is the most suitable for work-
loads with irregular parallelism.
• We demonstrate real-time performance on simple Reyes

workloads by using our dynamic task management
scheme. In contrast to previous work, our implementation
schedules all irregular workloads on the GPU.

2. Previous Work

Parallel Work Management Dynamic work-management
in parallel systems is often achieved through queues that
contain information about pending work items. In the sim-
plest setup, a single queue contains all work items. Execu-
tion units access this block queue in parallel to either fetch
work items for execution, or append new work items based
on past execution. In 2009, Aila and Laine [AL09] dis-
cussed such a setup in the context of ray tracing. A mono-
lithic queue, however, tends to introduce a single point of

synchronization for all parallel units, resulting in inefficient
queue transactions as the number of parallel units grows. In
general, previous research that manages irregularly parallel
work [AL09, PEO09, ZHR∗09] uses monolithic queues and
would benefit from the techniques that we propose in this
paper.

Load Balancing, Task Stealing, and Donation One way
to avoid the synchronization inefficiencies of a single queue
is to divide it into multiple parts, one for each execution unit.
Now each unit has exclusive access to its queue, without any
requirement for a single synchronization point. However, ir-
regular parallelism of work items leads to load imbalance,
as some queues will empty faster than others, leaving many
processors idle while work is still remaining.

As a result, some sort of load-balancing is critical in a
distributed queuing scenario. In our work, we draw many
inspirations and insights from early work done on CPU mul-
tiprocessor and multithreaded programming. Work stealing
is a popular multiprocessor scheduling scheme and we re-
fer interested readers to the seminal work done by Blumfe
and Leiserson [BL99]. Work sharing [HS08] or work dona-
tion is another scheduling scheme which is made popular
by OpenMP [CJvdP07]. While work stealing is important
in ensuring that no processors go unused, work sharing can
not only help distribute load even while all processors are
busy but also reduce overall memory usage. These core load
balancing schemes are crucial in understanding how newer
programmable graphics pipelines can maximize throughput.

In the context of graphics, parallel ray tracing was some
of the first work to require load balancing. Heirich and Arvo
explore parallel ray tracing across CPU clusters and exam-
ine how different load balancing schemes designed for clus-
ters affects ray tracing efficiency [HA98]. More recently,
work management in NVIDIA’s interactive ray tracer Op-
tiX [PBD∗10] provides an example of a GPU-based ap-
plication with dynamic load balancing. Load balancing on
the GPU has become a recent topic of interest with the ad-
vent of more sophisticated synchronization operations such
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as atomics. Cederman and Tsigas implemented four load-
balancing techniques in the context of a single irregularly-
parallel task, octree partitioning [CT08], concluding that
their implementation of Arora et al.’s CPU-based task-
stealing method [ABP98] had the best performance and scal-
ability. Their excellent work was the first to introduce more
sophisticated queue management techniques to the GPU,
though their design decisions are substantially different than
ours (Section 3). The GRAMPS programming [SFB∗09]
model for graphics hardware is an abstraction on how to
design different graphical pipelines on data parallel sys-
tems. Aila and Laine [AL09] explored the efficiency of
block-queue-based work distribution in a GPU-based ray
tracer, concluding that a persistent-thread approach rather
than hardware work distribution was the most efficient.

Reyes on the GPU Programmable GPUs are becoming in-
creasingly suitable platforms for implementing non-standard
rendering strategies, and have been employed for research in
real-time Reyes rendering. Most notable is Zhou et al.’s soft-
ware Reyes renderer, RenderAnts [ZHR∗09], which maps all
stages of Reyes to a GPU. RenderAnts is an order of magni-
tude faster than RenderMan, but does not run at interactive
rates. It features a novel CPU-based task scheduler for dic-
ing, shading and sampling, a shader compiler with out-of-
core texturing, and multi-GPU rendering capabilities. Ren-
derAnts, however, does not address task management on the
GPU, especially for the irregular parts of the pipeline like
surface subdivision.

Other researchers have concentrated on GPU implemen-
tations of specific stages of the Reyes pipeline. Patney et
al. [PO08, PEO09] explored smooth surface subdivision for
a real-time GPU-based Reyes renderer, using a centralized
queue for work distribution. Fatahalian et al. [FLB∗09] and
Eisenacher and Loop [EL10] studied rasterization of micro-
polygons on a massively-parallel platform. Fisher et al.’s Di-
agSplit [FFB∗09] extends Reyes-style surface subdivision to
a crack-free scheme, and exploits tessellation hardware in
the Direct3D 11 pipeline to achieve high performance. De-
spite the volume of literature in this area, there has been lit-
tle focus on work management for irregular Reyes stages. In
this paper we attempt to address this problem as it is both
interesting and crucial to understand how to map irregular
workloads , such as Reyes, onto a GPU programming model.

3. Dynamic Task-Management on a Modern GPU

A software task scheduler must fulfill the same goals as its
hardware counterpart: it should optimally utilize processor
resources while minimizing memory usage. We wish to de-
sign a task management system that can keep data flowing
through pipeline stages while maintaining maximum proces-
sor utilization and balance. In this section, we discuss our
design decisions of how we implement GPU dynamic task
management in the context of work granularity, processor

utilization, scheduler emulation, and memory management.
Returning to the brick and mortar analogy, this section dis-
cusses the ingredients of our mortar recipe and our justifica-
tions for our design choices.

At a high level, our system is structured as a work queue.
Work units, which can be either regular or irregular, and
which can come from a single task or many tasks, are placed
in the queue. Processors then consume these work units, pos-
sibly producing additional work units that are added to the
queue. We make four key design decisions in our implemen-
tation that together distinguish our work from previous sys-
tems: (1) work units of the size of a warp; (2) the use of
persistent kernels to better address irregularly parallel work;
(3) uberkernels to eliminate the overhead of switching ker-
nels; and (4) a task-stealing and -donating queuing system to
minimize memory usage.

Warp size work granularity While GPU programming
models typically use a single thread/work-item as the core
unit of parallelism, we instead choose the size of a SIMD-
group (known in the CUDA programming model as a warp).
Our task queues store work in warps, not individual threads,
and we dispatch work in warp-sized chunks. Blocks greater
than one warp require explicit synchronization to ensure
proper shared memory accesses and this can be hard to
achieve within control flow statements. Since warps run in
lockstep, this obivates any requirement for explicit thread
synchronization and can help with more efficient coding.
Secondly, we can now view a warp as a single MIMD thread.
This granularity allows us to maintain the efficiency of
SIMD execution (within a warp) while granting us MIMD-
style granularity of warp-sized independent operations. In
other words, we can view the hardware that executes a
SIMD-group as a processor and throughout the rest of this
paper we will use this term.

Persistent thread scheduler emulation Modern GPU pro-
gramming environments have poor support for kernels that
generate and then consume irregular amounts of work. The
static model of GPU execution would require programmers
to run one kernel for each pass through the work, requiring
a global barrier between each kernel and likely a round-trip
to the CPU to size and call the next kernel iteration.

An alternate approach, and the one we adopt, is the per-
sistent threads model [AL09]. This model launches only
enough warps to fill the machine but leaves those warps
alive throughout the entire kernel; each warp thus processes
many work units. Persistent threads can append work to the
end of a queue and then consume work from the front of
the queue, all within the same kernel call; thus avoiding
the overhead of a global synchronization. Persistent threads
are well-suited for efficient production and consumption of
irregularly-parallel work and we leverage them in our imple-
mentation.
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Uberkernels for processor utilization The ideal scheduler
keeps each processor as busy as possible throughout the ex-
ecution of the pipeline. Traditional methods of mapping one
pipeline stage to one GPU kernel introduce explicit barriers
between pipeline stages, which hinders processor utilization.
Furthermore, since our focus is on pipelines with irregular
workloads, we cannot predict where this barrier will occur.
We wish to eliminate this barrier altogether and allow work
that has been processed in one stage to flow directly to the
next.

Our solution is to combine multiple pipeline stages into
one kernel with the uberkernel programming model [TK09].
Uberkernels pack multiple different tasks into a single phys-
ical kernel, expressing task parallelism within that one ker-
nel without the overhead of switching between kernels. In
an uberkernel, a work unit can be processed by one path of
the uberkernel, pushed back onto the input queue, and then
processed down another path of the uberkernel, effectively
going through multiple stages of the pipeline within one ker-
nel.

Task donation memory management GPUs do not have
the same amount of memory as CPUs, so a task manage-
ment system must rely only on a modest amount of mem-
ory, especially if the queues are required to be stored in on-
chip memory. However, since we are dealing with irregular
workloads, we must handle the case when the memory allo-
cated to a specific processor runs out and must spill over to
the next. Our memory management system is a distributed
queueing scheme in which each processor has its own pri-
vate dequeue (a bin). When a processor’s bin is empty, the
processor may take work out of another processor’s bin (task
stealing) to avoid idling that processor. In addition, when its
own bin is about to overflow, the processor may push work
out of its own bin into another processor’s bin (task dona-
tion). The result is less memory per bin than a system that
lacks donation.

Summary We combine our four design decisions to build a
task-stealing and -donating scheduler that can support mul-
tiple pipeline stages within a single kernel. Our scheduler
runs with a granularity of 32 threads, corresponding to the
SIMD width of our target machine, and can support as many
pipeline stages as resources allow. Our task-donating scheme
reduces the overall memory usage for our queues.

The combination of persistent threads and uberkernels di-
rectly addresses the problem of high processor utilization
on irregular workloads. Persistent threads allow us to cycle
work multiple times through a kernel by consuming from
and writing to the same queue; they are thus well-suited
for irregular workloads in pipelines. Uberkernels allow task
divergence in execution routine behavior, allowing proces-
sors to switch between executing two different stages of the
pipeline at once and also eliminating the need for a global
barrier between pipeline stages.

To enforce accuracy and performance, we enforce two ex-
tra constraints on each block:

Coherence All threads in a warp must execute the same
path. Threads executing one branch of the uberkernel can-
not be in the same warp as threads executing a different
branch.

Contingency Only one block of threads has access to a unit
of work at a time. A work unit cannot be processed by two
processors at once.

We achieve our coherence constraint by scaling the size
of each block such that one block contains exactly one warp
of threads. The contingency constraint is maintained by the
use of atomic operations that synchronize between blocks
fetching and writing data.

For our testing purposes in the synthetic work scheduler
(Section 4) and the Reyes pipeline (Section 4.4), we used
two distinct kernels (split and dice) within the same uber-
kernel, which is well within the resource limits on a modern
graphics card.

4. Implementation

In this section we discuss the load balancing schemes that
we investigate in this paper followed by implementation of
our Reyes renderer. We encapsulate each scheme in our syn-
thetic work generator so that we can measure performance
and memory footprints under different workloads.

We are given n processors p1 . . . pn and initially q work
units w1 . . .wq stored in global memory as input. The output
is an output queue o that stores work which has been pro-
cessed. Each work unit may generate more work with char-
acteristics determined by the synthetic work generator.

4.1. Synthetic Work Generator

Our synthetic work generator takes in, for each processor,
a random number x ∈ [0,1], an exit probability p, and the
spawn amount m. The spawn amount is the amount of work
that this work unit will spawn. Upon fetching a unit of work,
the processor tests if x > p. If so, then the current unit of
work is flushed out of the system into the output queue o.
If not so, then the processor will push m− 1 units of work
back onto the input queue while holding onto one work unit
itself so it does not need to fetch from the queue again. We
define a trial as the process of all n processors processing
the q units of work and the work that any work unit may
spawn. An iteration of the trial is defined as one processor
processing one unit of work. At the end of the trial the input
queue is empty and all work units are flushed out to o.

4.2. Queuing Strategies

Block Queuing The block queuing model consists of a
global memory dequeue d where processes remove work
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from d through the tail and insert work through the head.
One single lock lhead locks the head of d for exclusive read
and write access. Processors are free to read from the tail of
the dequeue up until when d contains exactly one work unit.
In this situation, every processor that wishes to read the final
work unit must grab lhead . The processor that successfully
obtains lhead reads the final unit of work from d and every
other process that queries d will see that there is no work
left.

While block queuing is the simplest and most straightfor-
ward to implement, it has heavy lock contention. This occurs
when many processors want to write back work into d at the
same time. Adding data back into a block queue is a serial
process since there is only one lock.

Distributed Queuing In the distributed queuing scheme,
instead of a global dequeue, each processor has its own pri-
vate dequeue (a bin) d1 . . .dn with a lock l1 . . . ln. We dis-
tribute the initial work evenly into each bin. Each processor
has complete access to its own dequeue and thus no locks are
needed. All bin sizes are equal. The problem with distributed
queuing is that it is static. Once a processor has processed all
the work in its bin, it idles. The distributed queuing scheme
is held back by the slowest processor.

Task Stealing Task stealing is an extension to the dis-
tributed queuing scheme which allows communication be-
tween processors via locks to increase processor utilization.
When processor pi’s bin is empty, pi attempts to retrieve
work from another processor’s bin. This is stealing and pi
can only steal from the head of another bin. Each processor
comes with its own lock li which is used to lock the tail end
of its bin.

In the task stealing scheme, a processor has exclusive ac-
cess to its head for read and writes; the head is used for
stealing. When a workload spawns more work, the proces-
sor pushes the new work onto its own tail, and it only pushes
the work onto the head when it detects that there is no more
room in the tail. One can think of the dequeue’s tail being a
stack used only by its processor. When a processor attempts
to steal work it may only do so from the victim dequeue’s
head, in which case it must acquire the victim processor’s
lock first.

Lock contention is significantly less than the block queu-
ing case. Locks are only used in two conditions: when pi at-
tempts to steal work, or when the extra work generated by pi
cannot fit into the tail, in which case pi writes the work back
into the front. The head of di is either read from or written
to respectively. Victims are chosen in a round robin fashion;
while there are improvements to the bound done by random-
ness [BL99], a round robin fashion was simple enough for
our purposes.

The drawback to task stealing, as with distributed queu-
ing, is the memory usage—task stealing cannot handle bin

overflows. Each bin must have enough memory to fit the
worst case processor workload. If bin di cannot hold the
work generated by pi, then our solution is to stall pi until
another processor p j steals work out of di. However, this
can only occur if d j is empty and on a well-balanced sys-
tem, this condition may not occur until many iterations into
execution. Our variation of this work sharing scheme, which
we refer to as task donation, is a solution to this problem.

4.3. Task Sharing / Donation

The task donation scheme is designed using our design
choices from Section 3. In the regular work sharing scheme,
pi will randomly choose another processor p j and their re-
spective bins di and d j will have their work balanced out
(hence the term sharing). This scheme allows full bins to of-
fload work to other bins. However, such a scheme does not
adapt well onto the GPU due to lack of locality of processors
(i.e. accessing any bin is a trip to global memory). Instead we
adapt the following scheme: when processor pi detects that
it has spawned extra work which cannot fit into di, then it
selects a receiver processor pr and then pi will “donate” its
extra work to pr. To do so, pi acquires the lock lr and write
the work to the head of dr. Like task stealing, pi chooses pr
in a round robin fashion.

Task donation is a solution to bin overflowing, for it al-
lows full bins to spill work to other bins. This means that
this scheme can use a much lower bin size than task steal-
ing, which is especially important if work queues need to
be maintained in on-chip memory. However, this solution
comes at the cost of more lock usage. Each time a processor
donates, it may only do so after acquiring the lock to the re-
ceiving processor. Although there is a higher contention for
locks, our results show that the task donation scheme per-
forms better than task stealing when finding the balance of
memory vs. performance (see section 5).

4.4. Reyes Pipeline

In this subsection, we discuss how principles of dynamic
load balancing apply to a Reyes rendering pipeline. Fig-
ure 3 shows a basic diagram of a GPU-based Reyes ren-
derer. As mentioned previously, Reyes is a high quality
rendering pipeline extensively used in cinematic applica-
tions [CCC87].

4.5. Design of Individual Pipeline Stages

We implemented individual stages of the Reyes pipeline
around the previously described queuing infrastructure, tak-
ing into account the available queues for individual stages.
Except for subdivision which is a combination of split and
dice, each stage is implemented as a separate CUDA kernel
that occupies the entire GPU at once, and operates over el-
ements either taken from a queue or as forwarded from the
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Figure 2: This figure shows the surface patches gener-
ated after Reyes subdivision. During this operation, smooth
surface patches are adaptively subdivided to smaller ones,
which are diced to pixel-sized micropolygons. This recursive
operation results a very irregular execution pattern where
every unit is capable of producing different amounts of work.

CPU

GPU

Micropolygon Queue

Sample Queue

Final 

Pixels

Sample

Subdivide

Shade

Subdivision Queue

Composite

Filter

Figure 3: Basic diagram of the prototype Reyes renderer.
Note that the system is based on three main queues for sub-
division, output micropolygons, and sampling. Of these, the
subdivision queue is read-write, while others are write-only.

previous stage. The justification for this is twofold: firstly,
stages of shading and sampling are individually expected to
be sufficient to fill the device, and secondly, they are much
more regular than subdivision, since they are not usually ex-
pected to involve dynamic work creation. Also, there is a
hard synchronization requirement after sampling; i.e. they
must operate in strict sequence.

Block queuing is sufficient for the more regular stages of
the pipeline, that are either one-to-one mapped (shading),
irregular read-only (composite/filter) or irregular write-only
(sampling). However, subdivision involves irregular reading
as well as writing. Hence, as the most irregular stage in this
pipeline, we focus in depth on Bound/Split and Dice.

We perform subdivision in an GPU kernel that performs
either split or dice on the work items obtained from the dy-
namic subdivision queue. In this way, it is able to both create
work (split primitives) and output result (diced micropoly-
gons) as a part of the same kernel. Execution is organized

Figure 4: 1600 blades of grass (each with α = 0.4) rendered
using our renderer. At a resolution of 800×800 pixels and
16 samples per pixel, this scene runs at approximately 20
frames per second on a single NVIDIA GPU.

Figure 5: 10,000 blades of grass (α = 0.4) rendered using
our renderer at a resolution of 800×800 pixels and 16 sam-
ples per pixel. This scene runs at approximately 0.7 frames
per second on a single NVIDIA GPU.

into groups of 32-wide SIMD-coherent threads, which oper-
ate on individual bins of work. Whenever a group runs out
of work in its bin, it steals work from another non-empty
bin. Split and dice are parallelized over the 32 SIMD lanes
in order to maximize efficiency of the operation.

We perform micropolygon shading in a single pass over
all grids. Although shading in an actual application is ex-
pected to be complex and dominate the frame time, in this
paper we consider Phong and other simple shaders. Shading
is efficiently parallelized across the SIMD width of a GPU.

In our rendering system, we implement sampling as a
parallel kernel over all available micropolygons. In paral-
lel, the sampler evaluates bounds for given micropolygons,
and performs intersection tests with the samples contained.
The sampler uses an atomic counter to update a write-only
sample queue for output samples.

We implement composite and filter over the collected
samples through a sequence of CUDA kernels that evaluate
final colors for screen pixels. We first sort the generated sam-
ples to corresponding subpixels in increasing order of depth,
and then for each subpixel in parallel, we blend the respec-
tive samples. This is followed by a simple filtering kernel
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that uses blended sample values to calculate final pixel col-
ors and writes them to the output pixel buffer.

5. Results

Experimental Setup We measure the performance of our
scheduling routines by looking at several factors: utilization
in terms of processor idle time, load balance in terms of work
units processed per processor, and memory usage in terms
of memory used versus donation. We will discuss why these
factors are relevant to our setup.

Processor idle time measures two things: how long a pro-
cessor waits for a lock, and the number of iterations that the
processor is idle. The latter is a measure of processor uti-
lization, for the less a processor is idle, the more work it
is processing. We measure performance (throughput) by ex-
amining the total amount of work units processed for one
run over the time it took to process it. The resulting num-
ber is a good indicator of the overall efficiency of a task-
management scheme. To effectively measure the memory
usage benefit of task donation, we examine its performance
over varying bin sizes. The smaller the bin size, the more
likely a processor will overfill its bin and have to donate;
this implies a slower overall runtime.

Synthetic Work Generator Figure 6 shows the analysis of
our load balancing in terms of work processed with idle time
drawn over. From the results, we can see that when there is a
single block queue, all processors process the same amount
of work. Block queuing has perfect load balancing, but at
the cost of an alarming amount of wasted time, due to high
contention for the lock to write data back to the head. Dis-
tributed queuing also has high idle time for a different rea-
son: it has no contention but high wasted time due load im-
balance. Most processors wait for only a few processors to
finish. Note only a single processor has no idle time. Task
stealing and donation show similar performance character-
istics, but with more than two orders of magnitude less idle
time. Stealing and donation are excellent methods to main-
tain high processor utilization.

Figure 7 shows the analysis of performance as we use p
to vary the workload characteristics (see section 4.1) from
highly regular to highly irregular. We observe that as the
workload becomes more and more irregular, performance
of a single block queue is significantly slower than that of
task stealing or task donation. As workload is more irregular
more work units must be written back to the queue and this
creates high lock contention.

As mentioned before, task donation permits much lower
bin sizes, which is extremely important for implementations
where queues need to remain on on-chip memory, perhaps in
a cache. But what is the cost of ensuring on-chip access? Fig-
ure 8 shows the impact of task donation on the performance
and memory behavior for an irregular rendering workload.
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(c) Task Stealing
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(d) Task Donating

Figure 6: Synthetic work processed as a bar graph in grey
with processor idle time as a line graph in black. Note that
the two graphs on top have a different idle time scale (a
factor of 150 times greater) than the graphs on the bottom.
This is because there is much more idle time in the block
queue due to lock contention and there is much more idle
time in distributed queuing due to all processors waiting for
one processor to finish. With task stealing and task donation,
there is much less idle time due to processors being to steal
work to keep themselves busy.

We simulate a scenario with increasingly constrained upper-
limit of bin sizes, and redistribute overflowing bins using ei-
ther the proposed Task Donation or an approach based on
dynamic queue resizing, which we achieve using an addi-
tional overflow buffer. Rather than resizing the queues on the
GPU, which at the time of this writing is not supported, the
overflow buffer servers as a block queue where processors
with their bin full can offload work into and other processors
can steal from there.

As bin sizes are reduced, we see that dynamic queue re-
allocation suffers from significant performance overheads,
due to both imbalance in bin sizes and extra synchronization
required in the overflow buffer. Task Donation does not re-
quire such extra synchronization and still manages to main-
tain balance in bin sizes. As a result, subdivision time using
task donation is only slightly affected.

Reyes Our GPU implementation of work management is
able to achieve real-time performance for most scenes tested.
Table 1 shows statistics for some of the scenes tested. Fig-
ures 1, 4 and 5 show the obtained images. We are able to
achieve interactive framerates for scenes with up to 16–30
jittered samples per pixel. Detailed performance of the sub-
division step, which has been most extensively studied, com-
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Figure 7: Comparison of different task management
schemes’ performance against changing p with a fixed m =
2. p varies from a low value (high work regularity) to a high
value (high work irregularity). We keep p < 0.5 to ensure
that the system is stable and the trial will end. We measure
the time it takes for each load balancing scheme by clocking
how long it takes to process 15,000 work units. Task steal-
ing and task donation give relatively equal performance, but
as the work becomes more irregular, block queueing takes
longer. This is due to the higher lock contention that comes
along with the block queueing scheme.
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Figure 8: This plot quantifies the overhead of limiting bins
to fixed sizes. For an irregular rendering workload (teapot
subdivision), we show the impact of task donation on the
memory and performance behavior, and contrast it to an ap-
proach based on dynamic reallocation of queues that over-
flow. Going from left to right, we decrease the threshold bin
size for task management. We notice that as the bin sizes
are increasingly constrained (perhaps by the size of on-chip
memory), time taken for subdivision based on donation is
only slightly affected. However, with dynamic reallocation,
subdivision time increases significantly for small bin sizes.

SCENE PRIMS GRIDPTS SAMPLES PERF

(frames/s)

Grass 5.2K 446K 875K 19.30
Killeroo 11.5K 330K 649K 18.48
Bubbles 660 479K 1.46M 16.75
Teapot 268 218K 689K 23.35
Teapot

268 218K 690K 3.11
(motion)
Big Guy 3592 450K 1.36M 11.05
Big Grass 74K 9.5M 7.97M 0.70

PRIMS Total number of rendering primitives (after subdivision)
GRIDPTS Total number of shading points (after subdivision)
SAMPLES The number of subpixel samples (before composite)

Table 1: Rendering performance for the various scenes
tested. Each scene was rendered at 800×800 pixels with 16
samples per pixel. Note that for the teapot, introducing mo-
tion blur causes negligible change in the number of samples,
but the performance is significantly low. This is due to the
rise in the number of samples tested under motion.

pares favorably to previous work: we generate 100–256M
micropolygons per second (up/s). In comparison, Fisher et
al. [FFB∗09] achieve 129.9M up/s on an 8-core Intel CPU.

6. Discussion

From the results in section 5, we are able to observe the
advantages of our task management strategy for irregular
workloads. Firstly, from Figure 6 can see that distributed
queuing is better than block queuing due to a significant
reduction in the contention for memory locks. Secondly, a
simple distributed queue is not sufficient, because it wastes
execution cycles due to load imbalance, as most processors
end up waiting for a few to finish their work. Memory foot-
print is also high, especially when on-chip memory is lim-
ited. Task stealing significantly reduces the idle cycles for
waiting processors by fetching work from busy ones. Task
donation further improves the situation by essentially pre-
emptively stealing a task from a full queue, thereby reducing
the maximum memory footprint of the distributed queues.
The resulting system is a robust work manager that can effi-
ciently schedule workloads with a high degree of irregular-
ity.

7. Conclusion

The above results are based on the assumption, characteristic
of currently available hardware, that atomic operations and
mutual exclusion locks are expensive constructs. Though
these operations are inherently serial, newer hardware may
mitigate this cost; in particular, the latest AMD GPUs are
known to have high-performing atomic operations. Also,
GPUs like NVIDIA Fermi and Intel Larrabee have on-chip
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caching, which allows for fast resolution of atomic opera-
tions, making them and consequently locks much cheaper.
This change in our assumption, depending on its magnitude,
could make block queuing a much better alternative than its
current form. However, it also makes task stealing and dona-
tion cheaper, and block queuing still suffers from contention
for a single lock, which is likely to continue to affect perfor-
mance as chip-level parallelism grows in coming years. In
the long run, we expect that to some extent, it will remain
beneficial to distribute and load-balance work queues across
multiple processors to reduce contention. However, a hybrid
structure might be the best answer in the future.

Our work is the first to combine a work-stealing approach
for task queue management with uberkernel and persistent-
thread programming styles to exploit task parallelism and
ensure efficient scheduling for irregular work queuing. To-
gether these techniques can indeed effectively leverage the
large compute and bandwidth capabilities of the modern
GPU, while mitigating the difficulties of its more restrictive
programming model. In the future we hope to explore, and
hope others will explore, further abstractions and models for
continuing to improve the efficiency of the development and
the execution of programmable pipelines.
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