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Abstract

Firewalls are a cornerstone of how sites implement “defense in depth.” Many security policies
assume that outside attackers must first penetrate a firewall configured to block their access.
This paper examines what firewalls protect against, and whether those protections are sufficient
to warrant placing the current level of trust in firewalls.

1 Introduction

Individuals and corporations build multiple layers of security mechanisms to protect their comput-
ers. They use firewalls, intrusion detection systems, virus scanners, and other protective software,
and these mechanisms provide some level of assurance that the security policies for the site are
properly implemented. An active system administration staff, knowledgeable about security, adds
to this assurance. But is this assurance misplaced? How effective are the security mechanisms upon
which the individuals and the corporations rely?

Firewalls are the cornerstone of most computer and network security defenses. They are widely
deployed. But they are hard to configure properly, and those who configure them may not have
a good understanding of current threats and attacks. For example, an administrator may open a
hole in a firewall to accomplish some task, but in doing so enable attackers to enter through the
firewall. Or the firewall may have a vulnerability that enables attackers to defeat its prohibitions.

Additionally, by design, firewalls constrain use of systems and networks by blocking services.
The number of blocked services can clearly be quantified, as can the time spent by administrators
to attempt to circumvent the firewall by tunneling the service through the firewall, as well as the
performance degradation by using tunneling. But, without knowing how effective these protection
mechanisms are, it is very hard to define tradeoffs between cost, usability, and degree of protection.
In some cases, firewalls may not provide protection for a particular resource no matter how the
firewall is configured. The paradigm is sometimes simply inappropriate. For example, attacks may
originate internally, either by insiders or by bots which subvert the purpose of firewalls. Hence, it
is hard to quantify the amount of protection firewalls bring to a system.

Best practice suggests using both host-based and network-based firewalls, and keep them as
restrictive as possible. This follows the principle of fail-safe defaults, which says to deny access
by default [SS75]. Such a posture assumes that the rulesets controlling the firewalls are com-
plete, that the firewalls have no vulnerabilities that external attackers can exploit, that the insider
threat [Bis05] does not exist, and that the firewall runs only safe services.
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In this paper we examine the these assumptions empirically and determine for what and when
firewalls are appropriate and inappropriate. To do this, we look at vulnerability databases, lists of
most-attacked network ports, and sets of firewall rules used in practice.

We seek to answer the questions:

1. Is the rule set complete? If not, which rules are missing?
2. Given the known vulnerabilities and most-attacked network ports, what is a minimal set of

rules that will block the attacks?
3. Given the above information and a set of configuration rules and parameters, what services

are unsafe for a firewall to run?
4. Can we use multiple sets of known vulnerabilities and lists of most-attacked ports to generate

an ideal ruleset?

The rest of this paper continues as follows: Section 2 discusses related work, Section 3 discusses
our theoretical method of firewall analysis, Section 4 describes our experimental method and results,
Section 5 presents a discussion and analysis of the results, Section 6 presents our ideas on designing
and using firewalls more effectively, and Section 7 presents our conclusions and ideas for future
work.

2 Related Work

Firewall rules provide protection for sites. Recently, a number of studies have demonstrated how
errors or conflicts in rule sets can diminish protections [ASH04, CCBGA05, UC07, YMS+06].
Others have compared rulesets to “best practices” [BMNW04, EZ01, MWZ06, Woo01, Woo04].
These studies identify ways in which firewall configurations can be improved.

However, “best practices” are rapidly moving targets. For example, a recent community effort to
determine a set of recommended firewall rules for the host-based firewall ipfw on Mac OS X/FreeBSD
systems produced a large and complicated set of rules [MwL+07]. Complicating these rules is the
way Mac OS X handles the ipfw program; it is included in the Mac OS X version 10.5 (Leopard) and
10.6 (Snow Leopard) distributions, but is not the default firewall. Apple’s own Application Layer
Firewall [App07], the default firewall, has a simpler user interface than the BSD ipfw firewall, but
offers coarser filtering control. Given all this, how does one determine what the best practices for
such a system are, let alone whether the current configuration meets them?

We approach the problem from a different perspective. We want to determine empirically how
well firewalls thwart current attacks, and how well they protect against the exploitation of known
vulnerabilities. So we do not compare sets of firewall rules with one another for consistency. Instead,
we compare the rules against attacks and vulnerabilities.

3 Firewalls

The widespread deployment of firewalls have often given the impression that vulnerabilities in
network-facing programs are difficult to determine in order to exploit remotely, and therefore the
firewall ameliorates their severity. On the other hand, the widespread use of mobile computing
means systems behind a firewall may not remain behind that same firewall. Instead, they may
move to another network where there is no firewall or where the firewall rules are different. This
means that there is simply no longer a perimeter for computer systems and networks. There are only
“guards” over information flow [Smi94]. For example, consider a mobile host within a company,
where the network is administered by a company-wide IT department. The owner is a vendor
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from another company who takes that host into a conference room and connects to the network
in a specific company subdivision. That subdivision has more stringent security policies than the
company-wide policies (perhaps because it is working on a highly sensitive project). If the host is
compromised on the company-wide network, it functions as a classic insider on the subdivision’s
network: something that is trusted, yet betrays that trust [BEP+08, BEP+09, BEF+10]. This
notion of a compromised, mobile machine, moving freely behind firewalls, is a version of the insider
problem. As such, is more difficult to defend against than external threats because an insider attack
is hard to distinguish from legitimate use, and the security process should not prevent users from
doing their jobs.

Security policies, including the use of firewalls can be complicated to configure. In an ideal
situation, a formal analysis such as the one we describe now would be done. However, there is little
to no coordination of layers of defense in practice, including in the rulesets that we analyze in this
study. The set of firewalls that protect an organization can be represented as a graph G. In some
organizations, particularly large ones, this graph starts at the network entrance points, has a second
level to protect individual sub-domains, and a termination at host-based firewalls. We denote the
border and internal firewalls as network-based firewalls and represent them as internal nodes to
distinguish them from the leaf nodes representing host-based firewalls. One way to measure the
efficacy the defenses represented by graph G is to take a set of attacks and see at what points, and
at how many points, in G an attack a would be blocked. The number of points is critical because
it identifies the number of points at which the attack would be blocked. As most firewalls are
configured to “fail open” in order to remain usable, if only a single point blocks an attack, that one
point must not fail. Further, given the possibility of distributed firewalls, there could be multiple
paths that the attack could exploit, and each of these must be checked.

Define a node e to be an entry point at a gateway, which may also represent a firewall. Let m
be a machine, a be an attack, and let am contain sets of firewalls that lie on the path between the
exterior network(s) and m (inclusive). Initially, am = ∅. Then the following algorithm determines
the set of points at which the attack a on machine m could be blocked:

For each machine m:
For each entry node e:

For each path (m, e):
For each attack a:

if a can traverse (m, e) then:
Let n1, ..., ni where m = n1 and e = ni (if m and e are firewalls) be the set of
firewalls along (m, e) (inclusive). Then am = am ∪ {{n1, ..., ni}}

At the end of this algorithm, each set am contains sets of firewalls that lie on the path between
the exterior network(s) and m. If am is empty, then there is no path on which the attack will be
successful (without a firewall failing). If am is not empty, but there exists a set within am that is
empty, then an a can successfully traverse (m, e) without being blocked by any firewall. If am is
not empty and no set within am is empty then to determine the minimal set of points at which
the attack a on machine m can be blocked, choose the set of nodes with minimum cardinality and
having at least one node from each set in am.

Note that for mobile hosts, this calculation potentially changes each time the host moves. For
our purposes, we do not perform vulnerability analyses of the hosts themselves, since our purpose
is to study the usefulness of firewalls, not to quantify the overall security of the network. In our
study, because of the difficulty of obtaining large sets of firewall rules with multiple layers, and the
need to know when they hold with respect to the period during which a vulnerability is active, our
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graph G has a depth of one. Also, we ignore the question of whether vulnerabilities actually exist
on the hosts behind the firewalls. Even if the specific vulnerabilities do not exist on the hosts, we
assume that the ports that unknown or zero-day vulnerabilities will appear in roughly the same
distribution as the previous, known vulnerabilities.

4 Method and Results

As we discuss in this section, our findings on attacks and vulnerabilities show that firewall placement
and configuration can be challenging, and applying the algorithm that we described above is a
necessary component of a methodical approach for defending a set of assets from a set of threats.

Sites that do not protect against attacks and vulnerabilities are (knowingly or unknowingly)
more at risk than sites that are protected, even if the firewall rules protect against other vulnera-
bilities specific to the site. This suggests our methodology: we analyze the firewall rules using data
about known vulnerabilities and known attacks. Specifically, we compare the most vulnerable and
most attacked port numbers with port numbers protected by firewall rules.

Table 1: An analysis of which ports and protocols are most commonly blocked in the 794 firewall
rulesets.

Rank Protocol Port number # of FW rulesets Blocking % of FW rulesets Blocking

1 TCP 443 763 96.1%
2 TCP 80 734 92.4%
3 TCP 25 710 89.4%
4 TCP 23 700 88.2%
5 TCP 389 697 87.8%
6 UDP 53 695 87.5%
7 TCP 22 694 87.4%
8 TCP 110 694 87.4%
9 TCP 1494 693 87.3%
10 TCP 993 691 87.0%
11 TCP 995 690 86.9%
12 TCP 119 689 86.8%
13 TCP 563 688 86.6%
14 TCP 1503 688 86.6%
15 TCP 636 687 86.5%
16 TCP 143 686 86.4%
17 TCP 513 685 86.3%
18 TCP 514 685 86.3%
19 TCP 1352 677 85.3%
20 TCP 5190 663 83.5%

The 794 (anonymized) firewall rulesets that we used in this study, shown in Figure 1, comes are
real rulesets currently used by small to medium sized businesses (including non-profits, law firms,
car dealerships, medical offices, and more), and also local governments and schools. Networks
have between 10 and 400 users, with the median being apprixmately 30 users. In these instances,
internal technical resources are generally either small or entirely outsourced. The information about
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most vulnerable port numbers comes from the vulnerability database of the popular vulnerability
scanner, Nessus.1 We obtained the information about the most attacked port numbers from data
that the SANS Internet Storm Center collected over a 21-month period.

We considered several other sources of data, such as Foundstone’s database,2 but the data
was proprietary. Nessus contains a database of vulnerabilities and tests to determine whether the
target has that vulnerability. The tests may try to exploit the vulnerability (and hence Nessus is
often considered a “penetration testing” tool, even though this is not correct). New vulnerabilities
receive a new test in Nessus, but new exploits do not necessarily receive a new test, unless the exploit
tests a vulnerability not already in the database. Fortunately, Nessus uses an open, and relatively
easy-to-parse scripting and plugin language to create the tests for target systems. In addition to
considering the network ports that run software containing the most prominent vulnerabilities, we
also included the ports most commonly attacked, because firewall rulesets should handle these as
well.

Note that it is not sufficient to run the Nessus scanner and collect information using a firewall
logger or packet sniffer to obtain the vulnerabilities. Most vulnerability scanners fingerprint a ma-
chine first to determine the operating system in use. Then they run the scan to collect information.
So, the picture presented would be more limited because the results would include only the ports
scanned for the particular version of the operating system being tested.

We circumvent this problem by analyzing the scripts that the scanners use to probe for known
vulnerabilities. Unfortunately, analyzing thousands of scripts manually is impractical. So we use
two methods: first, we read the rules files directly and parse the service/port/protocol information;
second, we read the trace output of the nasl tool (a component of Nessus) on all of Nessus’s
vulnerability scripts. Because both methods rely on ad hoc parsers and use a collection of regular
expressions, there is a margin of error. Results of the two methods are similar, but we take the
union of port numbers. provided for a particular vulnerability by each method. We do this because
the parser is much more likely to miss a port indicated in a vulnerability—such as when the port
is assigned dynamically in the Nessus test script rather than statically—than it is to add one by
mistake. In a manual sampling of the data, we found no evidence of test scripts being incorrectly
parsed and having additional ports added as a result.

In principle, it would also be ideal to conduct the vulnerability part study using the largest and
most complete set of vulnerabilities as possible, such as those collected by US-CERT,3 the SANS
Internet Storm Center,4 or the Open Source Vulnerability Database.5 However, those databases do
not directly refer to network ports, and so the data in them is not directly comparable to firewall
rulesets. Network vulnerability scanners do this translation with some loss of the size of the
database as well as assumptions (e.g., that a particular service always runs on a particular port).
This appears to be a reasonable approximation. Indeed, using this data identifies discrepancies
between the apparent intent of the test firewall rulesets and the vulnerability and attack data, and
leading the firewall administrators to correct the test rulesets by adding several missing firewall
rules.

According to the Nessus database, approximately 5800 out of 21,725 total vulnerabilities are
remotely exploitable.6 In Table 2, we show the network ports that have the most vulnerabilities
associated with them, and the most commonly used program on that port. We also show the status

1http://www.nessus.org/
2http://www.foundstone.com/
3http://www.us-cert.gov/
4http://isc.sans.org/
5http://www.osvdb.org/
6http://nessus.org/plugins/index.php?view=all
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Table 2: Number of known vulnerabilities exploitable by accessing a given network port, in de-
scending order, as well as the percentage that were blocked in our survey of 794 firewall rulesets.
The high and low numbers for vulnerabilities indicated in our two parsing methods are also shown.
The Nessus data is from the database current on April 7, 2008.

Rank % Blocked in Survey Protocol Port Common service # of vulns. (high/low)

1 92.4% TCP 80 HTTP 2359/2300
2 2.2% TCP 445 Windows SMB 1792/896
3 17.5% TCP 139 Windows SMB 896/755
4 3.7% TCP 21 FTP 176/171
5 89.4% TCP 25 SMTP 119/118
6 20% TCP 161 SNMP 90/81
7 9.4% TCP 8080 HTTP 86/29
8 88.2% TCP 23 Telnet 65/63
9 86.4% TCP 143 IMAP 71/63
10 87.4% TCP 22 SSH 55/48
11 87.4% TCP 110 POP3 42/32
12 1.3% ICMP (ICMP) Ping 36/21
13 2.1% TCP 8000 HTTP 29/29
14 96.1% TCP 443 HTTPS 25/17
15 1.1% TCP 3306 MySQL 23/17
16 0.0% TCP 111 Sun RPC 21/3
17 0.1% TCP 69 TFTP 20/8
18 0.5% TCP 3128 Squid Proxy 19/13
19 0.2% TCP 79 Finger 16/16
20 87.5% UDP 53 DNS 15/8
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(open/closed) of the two firewalls that we tested as our example for each port.
The top 10 or so vulnerabilities clearly stand out from the rest, and indeed, the vulnerabilities

associated with ports 80, 445, and 139 (HTTP and Microsoft Windows SMB, respectively) dwarf
the remaining vulnerabilities by an order of magnitude.

Table 3: Top 10 attacked ports according to the SANS Internet Storm Center, using data from
October 27, 2006 to July 25, 2008.

Rank % Blocked in Survey Port Common service # of targets

1 0.1% 1434 Microsoft SQL 283,076,767
2 0.5% 135 Windows RPC 282,561,882
3 0.5% 1433 Microsoft SQL 263,007,700
4 1.1% 137 Microsoft NetBEUI 254,521,251
5 2.9% 445 Windows SMB 253,503,686
6 92.4% 80 HTTP 184,847,744
7 2.1% 139 Windows SMB 158,451,995
8 0.0% 9898 Sasser worm backdoor 110,535,147
9 87.4% 22 Secure Shell (ssh) 108,875,526
10 0.0% 5554 Sasser worm FTP server 102,437,806

Table 3 compares the ports in the firewall rulesets to the most attacked port numbers as indicated
by the SANS Internet Storm Center. This list coincides somewhat (but not entirely) with the list
of vulnerabilities. Two key distinctions are ports 9898 and 5554, which are commonly attacked
(due to worm activity) but do not have a large amount of vulnerabilities. Conversely, port 80
(HTTP) are ports 139 and 445 (SMB) are both commonly attacked and vulnerable. Note that
both the border and internal firewalls have the HTTP, SMB, and SSH ports open. Indeed, these
three protocols are among the most commonly used services by legitimate users.

5 Discussion

The number of vulnerabilities and attacks for port 80 is not surprising. These vulnerabilities do not
indicate that the web server programs Apache and Microsoft IIS themselves are extremely vulner-
able (indeed, they are not especially vulnerable); looking more closely at the vulnerabilities in the
Nessus database, most occur because of the CGI scripts and other third-party applications that run
in conjunction with a web server. Additionally, given the complexity of SMB (not only the protocol
but also the large variety of services that run over the protocol, such as NetBIOS and DCE/RPC),
the number of vulnerabilities and attacks for ports 139 and 445 are also unsurprising. Several of
the ports have been used by services that have been the targets of large-scale worm attacks, includ-
ing port 1434 (targeted by the Slammer worm [MPS+03]) and port 9898 (targeted by the Sasser
worm [SEVS04]), two substantial and widespread attacks during the time period of our analysis.
These results are also in line with the ports most commonly open and listening for connections on
hosts themselves. As recently reported in a study of millions of Internet nodes [Fyo08], the most
commonly open ports are 80 (HTTP), 23 (Telnet), 22 (SSH), and 443 (HTTPS), in that order.

One interesting outcome of our study is that while there is some overlap between top attacks and
vulnerabilities, there are also key distinctions where there there are commonly attacked ports that
are ordinarily not especially vulnerable. Those include ports 9898 and 5554, due to worm attacks.
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The conclusion is that worms sometimes attack obscure services, and so blocking commonly used
ports should not necessarily take precedence over blocking obscure ports, or even ports used by
security software. For example, the “Witty” worm—“the first widespread Internet worm to attack
a security product” [SM04]—attacked the BlackICE security suite’s ICQ parser, and carried a
destructive payload, resulting not just in a denial-of-service, but also frequently in permanently-
crashed machines.

Unfortunately, there appear to be few ways in which to improve the effectiveness of current
firewalls can improve effectiveness significantly because institutions use these ports to provide ser-
vices that they cannot shut off. Therefore, closing the ports and blocking those services is not
acceptable.

There are two less “binary,” and also less effective solutions that could be implemented. One
such solution is to use multiple layers of firewalls with the border router configured as a limited
filter and interior firewalls to provide more specific protection against particular services. A second
solution is distributed firewalls [IKBS00], which can be helpful at defeating attacks from the “inside”
(though if all the firewalls have the same rules, the distributed firewalls will be less useful, since all
firewalls enable the same services to run, and therefore allow the same attacks through). This might
also be particularly helpful in protecting legacy systems running non-secure protocols that cannot
be patched [KP07]. Both the multi-layered and distributed firewall approaches require careful
identification of the services running on each device and coordination among firewalls. Finally, any
of these solutions may simply provide a false sense of security, since the most vulnerable services
are still likely to be left open on firewalls. If users or administrators do not remember this and
assume that the firewall will protect them, then they will be more vulnerable if some element of
security fails.

Our results suggest that while network firewalls are suitable for protecting against unknown
network processes running on unpredictable ports, they are generally not effective at protecting
against known or unknown vulnerabilities running on common ports. As a result, administrators
might consider leaving protection against known vulnerabilities to host-based firewalls.

An interesting embellishment of this idea arises from the observation that a firewall is an
additional layer of security. But when and how are they appropriate and when are they hurt-
ful, because they provide a false sense of security [Sin03, Sin05]? Other layers that have par-
tially overlapping function and benefits are software tools such as anti-virus programs, wrap-
pers, network and host intrusion detection systems, and so forth. These extra layers also can
have security vulnerabilities; in fact, a number of vulnerabilities have been discovered in fire-
walls [Sec00, Sec01, Sec02a, Sec02b, Sec04a, Sec04b, Sec07a, Sec07b] as well as in other types of
security-related software, including anti-virus program sand intrusion detection systems. Our con-
clusion is that firewalls are useful when applied appropriately, because they can they add another
layer of security. If the inside tools have vulnerabilities, the firewall may block an exploit that
otherwise would succeed, and if a firewall has a vulnerability, another tool may block it. But coor-
dinating these tools, their redundancy, protection domains, and failure modes is very hard and is
rarely done.

6 Designing and Using Firewalls More Effectively

This paper used empirical data to show that firewalls do not block many network-based attacks,
and suggested ways in which existing firewalls could be used more effectively. How can we use
our results to design a better firewall? Addressing two key issues would ameliorate the problems
discussed earlier. The first is that many significant vulnerabilities lie at the application layer, and
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so application-level firewalls would be more effective for them rather transport- or network-layer
firewalls. The second issue is encryption, because many attacks that involve a local exploit occur
over an encrypted remote connection.

A firewall that does application-level analysis could address attacks that involve not just com-
munication with a particular port (e.g., port 80, running Apache or Microsoft IIS), but the contents
of the packets that are being sent to the program running on that port (e.g., CGI scripts). This
technology already exists. Many network-based intrusion prevention systems can reassemble and
analyze packets all the way from the network layer (e.g., IP) to the application layer (e.g., HTTP),
and can also address client-side attacks (e.g., cross-site scripting attacks) against systems behind
the IPS, as well as server-side attacks [KKVJ06]. “Application-layer firewalls” also reassemble pack-
ets, and are closely related to intrusion prevention systems, which generally do application-level
packet content analysis by default, even when the intrusion prevention system (IPS) is running as
a network device rather than directly on an end host. The lines between application firewalls and
IPSs have been blurred even further in recent years [LWKS05].

One of the challenges of using both IPSs and firewalls is coordinating the two devices. An
administrator should be able to configure all these devices so that overlap is minimized when
desired, redundancy is maximized when desired, and that all gaps are known (and, if possible,
closed). Our experience is that this is rare. Further, depending on the devices, there may not even
be a way to coordinate these devices, given that many IPSs and firewalls use proprietary languages
to describe their rulesets. In this case, an administrator may have a broad sense of what a given
IPS rule does, but may find it challenging to identify with enough precision what the rule does in
order to coordinate with the firewall rulesets.

One way to deal with encrypted traffic is to decrypt packets on the host (the end point), send
them back to the firewall, let the firewall filter the packets after decryption, and then return them
to the host. However, the latency and additional communication of doing this is prohibitive. A
second possibility, which avoids a roundtrip of the traffic in question, is to use the firewall (or
something very close to the firewall) as a proxy, have the firewall capture and buffer the traffic,
obtain only the session key from the host, and then decrypt and pass the decrypted traffic to the
host. By passing only the session key from the host behind the firewall to the proxy, the latency
would be reduced dramatically. Similar arrangements could be used with SMB and the variety of
applications that run on top of it.

The issue in dealing with both of these areas is speed. One can punch holes in firewalls to
deal specifically with high-bandwidth, low-latency applications such as multi-party videoconferenc-
ing. But these applications have had large numbers of vulnerabilities. For example, RealPlayer,
Windows Media, and QuickTime all support third-party codecs, and therefore act as a conduit for
vulnerabilities just as web servers do for CGI scripts. Since the third-party codecs are not neces-
sarily validated by the media players’ vendors, these codecs might be less trustworthy and more
vulnerable than if they came directly from the media players’ vendors.

Though speed is a challenge, it is partially surmountable. Specialized hardware exists that can
reassemble packets, decrypt streams, and process high-bandwidth network traffic all the way up to
the application layer, and in contexts where bandwidth is (relatively) low this hardware may provide
the support firewalls and IPS systems need. However, in contexts where bandwidth is particularly
high, or where attacks may even span multiple very high bandwidth types, and intrusion alerts
must be correlated before determining that an attack exists [VVKK04, ZHR+07], the use of these
firewalls or IPSs may not be acceptable.
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7 Conclusions and Future Work

The introduction to this paper posed four questions. The answers depend on the environment being
defended. As with computer security in general and indeed all of computer science, there are good
answers for specific environments, but there are few good answers, general for all, or even most
environments.

One result is clear: the current use of firewalls as a protection for highly-vulnerable services is
fundamentally flawed. The complexity of configuration, the insider problem, and a false sense of
security leading to lax internal security policies, are all serious issues.

What are firewalls—particularly border firewalls—useful for today? Certainly, they can protect
specific machines or sets of machines from access. That is, they can be used to create not just
a “demilitarized zone” (“DMZ”) between the Internet and the internal network, but an actual
partition of the internal network, blocking many insider attacks as well.

Also, firewalls can rate-limit the effects of fast-moving worms and denial-of-service attacks from
spreading behind the firewall. They can work with an intrusion prevention system to block specific
attacks (e.g., dictionary attacks against an sshd daemon), or do so themselves. Clearly, automated
methods of configuring multiple layers of network and host-based firewalls can be useful, providing
they take into account the machines behind those firewalls and the services running on those
machines. However, simply running fewer services and/or restricting those services with network-
based access control mechanisms (e.g., TCP Wrappers [Ven92] or hosts.allow/hosts.deny)
can be an equally effective, and potentially less vulnerable, than increasingly complex firewalls.

Not all damaging events can be predicted in advance, and it is important to allow employees to
do their jobs and to allow customers and partners to access necessary resources. So simply allowing
events to happen may be appropriate. On hosts, a very systematic and careful approach to forensic
logging enables the reconstruction of a system in case something goes wrong [Pei07, PBKM05,
PBKM07a, PBKM07b]. Similar techniques can work on a network, or a network of machines, by
logging packets as they pass through firewalls. Firewall logs already contain significant security
information ([Bac00], p.74),7 but if a systematic approach to logging were used, then one could
determine if the right information is being recorded.

Firewalls—application-based, distributed, or otherwise—will never be a panacea for defending
against attacks, but they can certainly be built, configured, and used more effectively than they
are now.

Empirical studies, such as ours, can also always be broader, deeper, and can analyze data over
a longer period of time. Our future work involves all of these areas. One set of questions that
we intend to examine is: are there any bugs in firewall implementations, and how many attacks
actually get through? This requires gathering a certain amount of empirical forensic information.
We also intend to study a broader collection of firewall rules.

In this paper, we have focused on analyzing a large set of attacks and vulnerabilities and a
small set of firewall rules. An ideal future study would look at a larger set of firewall rules from
a variety of different enterprises, security domains, and system administrators to determine how
different policies are implemented, and which are more or less effective at preventing attacks. These
studies can help us better understand the environments in which specific defenses are appropriate
and useful.

7Firewall logs are also used as evidence in court ([SB03], pp. 247–249).
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