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Abstract: Laser tweezers Raman spectroscopy (LTRS) was used to acquire 
the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy 
drug doxorubicin at different time points over 72 hours. Changes observed 
in the Raman spectra were dependent on drug exposure time and 
concentration. The sequence of spectral changes includes an intensity 
increase in lipid Raman peaks, followed by an intensity increase in DNA 
Raman peaks, and finally changes in DNA and protein (phenylalanine) 
Raman vibrations. These Raman signatures are consistent with vesicle 
formation, cell membrane blebbing, chromatin condensation, and the 
cytoplasm of dead cells during the different stages of drug-induced 
apoptosis. These results suggest the potential of LTRS as a real-time single 
cell tool for monitoring apoptosis, evaluating the efficacy of 
chemotherapeutic treatments, or pharmaceutical testing. 
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1. Introduction 

Apoptosis is the natural biological process of programmed cell death in which extracellular or 
intracellular cell signals trigger internal cellular machinery to induce self-destruction of the 
cell [1]. Characteristic changes in cell morphology associated with apoptosis include blebbing, 
cell shrinkage, nuclear fragmentation, and chromatin condensation. Apoptosis plays an 
important role in cancer, both in its development and its treatment [2]. Dysregulation of the 
normal apoptotic pathway impairs the cell’s ability to undergo apoptosis [3–5]. This increases 
the likelihood of cancerous or diseased cells being formed as the cell replicates and passes 
genetic instabilities and gene mutations to its progeny. Defective apoptotic pathways also lead 
to the expansion of neoplastic cell populations due to the extension of cell life span. Apoptosis 
is also an important process in cancer treatment, since many chemotherapy drugs kill cancer 
cells by inducing apoptosis via different pathways. 

Current treatment of cancer is largely empirical and derived from the association of 
surrogate patient or disease markers with observed patient outcome. Chemotherapy is, 
therefore, chosen for an individual patient based on protocols developed from observations 
from prior clinical studies on other patients. This paradigm precludes the possibility of 
predicting either those cancers that will subsequently fail therapy or those that are over treated 
using a single regimen applied to a broad population of patients. The concept of in vitro assay-
directed, patient-specific therapy [6–9] is based on the premise that an individual’s cancer 
cells are unique, and therefore will be best managed using a personalized chemotherapy 
regimen. An in-vitro chemosensitivity assay that can test the response of a patient’s cell to 
different drugs to guide treatment and monitor therapy has the potential to improve the 
management of the disease by both improving efficacy and limiting unnecessary toxicity. 
Early stage detection of cellular response to treatment and applicability to samples containing 
small cell numbers are also desired in a diagnostic method [10,11]. 

A variety of apoptotic assays such as 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT), membrane, ATP, and protein based assays, which measure 
energy metabolism, membrane integrity, protein synthesis, enzymatic activity, or ATP content 
as endpoints related to cellular function associated with cell survival [7], have been 
investigated for in-vitro chemosensitivity testing, but their in-vivo correlation to accurately 
predict patient outcomes remains uncertain. Many of these assays are invasive and 
destructive, which prevent cellular dynamics associated with apoptosis from being monitored 
in individual living cells. Similarly, antibody based fluorescence imaging can only provide 
single endpoint measurements of the cell because they require cell fixation and 
permeabilization, which render the cells nonviable. Although standard white light microscopy 
(e.g. brightfield, phase contrast) does permit noninvasive morphological analysis of cells, it 
provides no biochemical information needed to study apoptosis at the molecular level. A new 
method based on elastic light scattering spectroscopy has been developed for real-time 
apoptosis monitoring in living cells [12] but it also provides no direct biochemical 
information. Therefore, new in-vitro chemosensitivity assays are needed that could provide 
new apoptotic markers for improving therapy monitoring and guiding patient treatment. 

Micro-Raman spectroscopy is an attractive optical technique for monitoring cell-drug 
interactions given its unique ability to provide biochemical information without the need to 
perturb the cell with chemical fixatives, labeling, or genetic modification. Detection of 
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Stokes-shifted inelastically scattered photons generates a Raman spectrum, a molecular 
fingerprint providing highly multiplexed biochemical information of DNA, RNA, proteins, 
and lipid content. While Raman spectroscopy has been used extensively for the 
characterization, identification, and discrimination of different cell types and to investigate 
cellular processes [13], it has, to a lesser extent, been applied for the study of cellular 
apoptosis induced by chemotherapy agents [14–18]. Here, we apply laser tweezers Raman 
spectroscopy (LTRS) [19,20], a variation of micro-Raman spectroscopy in which a tightly 
focused laser beam is used to both optically trap single suspension cells within the laser focus 
while probing the molecular bonds by Raman scattering, to monitor the cellular response of 
leukemia cells to the chemotherapeutical drug doxorubicin, with the aim of establishing time-
resolved Raman spectroscopic markers of white blood cells undergoing different phases of 
programmed cell death. 

2. Materials and methods 

2.1 Laser tweezers Raman spectroscopy system 

The LTRS system used in this study has been described previously [21]. A single laser beam 
from a 785 nm CW diode laser (80mW, CrystaLaser) coupled into an inverted microscope 
(Olympus IX71) was used to trap individual cells and generate Raman spectra. An optical 
isolator (Thorlabs, IO-5-780-HP) placed in front of the laser beam was used to stabilize the 
laser wavelength. A 10x Kepler-telescope expanded the beam to overfill the back aperture of 
the microscope objective (Olympus 60x/1.2 NA water immersion) in order to generate a 
tightly focused laser beam for stable optical trapping of the cells. A laser spot of about 1 μm 
diameter and 25 mW at the sample was achieved. The Raman signals from the probed cells 
were detected by a fiber-coupled spectrograph (Acton, SpectraPro 2300i) equipped with a 600 
grooves/mm grating and a thermoelectrically cooled CCD camera (PI/Acton, PIXIS 100). 

2.2 Cell culture 

Jurkat T cells were obtained from American Type Culture Collection (Jurkat clone E6-1, 
ATCC, Rockville, MD), a commonly used model system of T-cell leukemia, and maintained 
in culture with RPMI-1640 medium (ATCC) containing the supplements HEPES, sodium 
pyruvate, L-glutamine, 10% fetal bovine serum (GIBCO 10437), and 1 Vol% of the 
antibiotics Penicillin G (100 units per mL)/Streptomycin (100 μg per mL) (Gibco 1552) at a 
temperature of 37°C, a relative humidity of 90%, and 5% carbon dioxide content in air. Cell 
density was maintained between 7.5 x 105 and 2.5 x 106 cells per ml. 

2.3 Drug exposure of leukemia cells 

Jurkat T cells in culture were continuously exposed to 0.1 μM and 0.5 μM concentrations of 
the chemotherapeutical drug Doxorubicin (Adriamycin). The drug-exposed cells were kept in 
the incubator during the entire time of the experiment (72 hours) and 80 μl samples were 
extracted from the culture flask every 24h for Raman spectroscopic interrogation. The 80 μl 
cell sample (cells in media and drug) was diluted with 140 μl phosphate buffered saline (PBS) 
solution prior to Raman analysis. 

2.4 Raman spectroscopic measurements and data processing 

Drug-exposed cell samples diluted in PBS solution were placed into an investigation well 
(silicon isolator, Grace Bio-labs) on a poly-HEMA (2-hydroxyethyl methacrylate) coated, 
quartz microscope cover slip. The poly-HEMA coating was applied to the cover slip through 
spin coating (50 μl of 2% poly-HEMA in ethanol at 4200 rpm for 20s) to prevent the cells 
from adhering to the cover slip. Raman spectra of 30 individual, optically trapped Jurkat cells 
were recorded for cell samples at each time point (at 24, 48, 72 hours). The spectral 
acquisition time for each cell was 60s. Each spectrum was background corrected by 
subtracting the solvent background followed by an additional baseline correction using an 
iterative polynomial fitting approach [22] and normalized to the total area under the curve. 
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Principal component analysis (PCA) [23,24] was also performed on the Raman data set to 
reduce dimensionality while retaining maximum data variance to identify discrete data groups 
plotted in two-dimensional principal component scatter plots. All programs for data 
processing were programmed using MATLAB software. 

3. Results and discussion 

 

Fig. 1. Raman spectra of individual Jurkat cells after different times of drug exposure. Spectral 
data are shown (only 4 out of 30 per data point) for continuous doxorubicin exposure after 24h, 
48h, and 72h for drug concentrations of 0.1 μM and 0.5 μM. 

Figure 1 shows Raman spectra of individual Jurkat cells exposed to 0.1 μM and 0.5 μM 
doxorubicin, taken after 24h, 48h and 72h of initial exposure. Only 4 of the 30 Raman spectra 
are shown for each drug concentration and time point in order to maintain clarity in the figure. 
It is immediately clear that there is significant heterogeneity in the Raman spectra within each 
drug exposure time point, presumably reflecting the variability in drug sensitivity and cellular 
response due to the stochastic nature of cellular biochemical reactions [25]. This significant 
variability in the Raman spectra made it difficult to directly compare the spectral data groups 
at each time point to determine the spectral changes that occur as a function of drug exposure 
time. Rather, an alternative approach was used to identify Raman spectroscopic changes that 
correlate with different phases of drug induced cell response whereby PCA was performed on 
the entire Raman spectra data set inclusive of all time points for each drug concentration. 
Figure 2 is a scatter plot of principal component 2 (PC2) versus principal component 1 (PC1) 
for Jurkat cells exposed to 0.5 μM doxorubicin. The PCA results reveal that drug exposed 
cells undergo spectral changes leading to the formation of distinct groups in the scatter plot. 
By visual inspection, four clusters of Raman spectra can be delineated in the scatter plot, 
which are circled in Fig. 2 for clarity. Note that the boundaries of these circles were defined 
by grouping data points based on similarities in their Raman spectral features (to be discussed 
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below in Fig. 4). In general, there appears to be a trend of the clusters grouping according to 
drug exposure time. Jurkat cells unexposed to the drug and sampled over 72 hours are also 
plotted (blue circles), which serve as a control group that defines the region in the plot 
corresponding to cells exhibiting minimal spectral changes. The tight clustering of these 
points (circled in blue) excludes the possibility that cell culturing over 72 hours without the 
addition of fresh culture medium is responsible for the spectral changes observed in the drug 
exposed cells. 

 

Fig. 2. PCA scatter plot of Raman spectra of control (no drug exposure) and drug exposed (0.5 
μM doxorubicin) Jurkat cells over 72 h. Three groups are visible (circled in black) that are 
located apart from the control cell group (circled in blue). 

To further elucidate the sequence in which drug induced changes in the Raman spectra 
occur and to explore the dependence of these changes on drug concentration, Raman spectra 
of cells exposed to 0.1 and 0.5 μM doxorubicin from 24 to 72 h were simultaneously analyzed 
by PCA to generate the scatter plot (Fig. 3). Raman spectra of cells exposed to 0.1 μM after 
24 hours are strongly localized in only one cluster (other than the control group circled in 
blue) labeled group 1 in Fig. 3. This group signifies the first detectable spectral changes that 
occur. Spectra of cells after 48 h of drug (0.1 μm) exposure produce the second distinct cluster 
(group 2) in the PCA plot, based on the observation that these points were found in both the 
control group, group 1, and extended to group 2. Group 3 of the PCA plot was identified by 
the fact that spectra taken after 24 h of cell exposure to 0.5 μM drug were located only in 
groups 1 and 2 but group 3 only contains spectra taken after 48 and 72 h (0.5 μM). 

The results in Fig. 3 also illustrate that a relationship exists between the temporal 
evolution of the spectral changes and the drug concentration. While 24 h of exposure to 0.1 
μM doxorubicin results in cells clustering only in group 1 (other than the control), exposure to 
0.5 μM drug for the same duration leads to clustering of cells in both groups 1 and 2. This 
same trend is observed in the 48 h data, which shows that cells exposed to 0.1 μM drug leads 
to clustering in groups 1 and 2, while 0.5 μM drug exposure leads to localization in groups 2 
and 3. These observations indicate that Raman spectroscopy has the sensitivity to detect the 
faster drug response of cells exposed to higher drug concentrations leading eventually to cell 
death. Also note that the overlap in the data points between the 3 groups observed in both 
PCA plots (Fig. 2 and 3) reflects the significant cell-to-cell variability in the drug response 
behavior of individual cells. The overlap of some drug exposed cells and the control cells also 
indicates that not all drug exposed cells showed a change in their spectra, suggesting that 
some of these cells may have a slower drug response or may exhibit a drug-resistant 
phenotype. These results reinforce the importance of measuring single cells to capture 
heterogeneity. 
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Fig. 3. PCA scatter plot of 0.1 and 0.5 μM drug exposed and control (no drug exposure) cells at 
24, 48, and 72 h. Groups 1, 2, and 3 indicate the sequence in which these clusters are formed. A 
dependence between the temporal evolution of the spectral changes and drug concentration is 
also observed based on the distribution of data points in each of the groups. 

Figure 4 shows the average Raman spectra of all cells from each of the three groups in the 
PCA scatter plots for both drug concentrations. It should be emphasized that this analysis no 
longer groups the data by the exposure time of the cells to the drugs, due to the cell-to-cell 
heterogeneity in the drug response, but rather groups the data by similarity in spectral 
features. Figure 4A-C indicates that each group has a distinct spectral signature that is highly 
reproducible for all cells within that group and for both drug concentrations that were used. 
These unique, reproducible Raman spectral signatures can be used for time-resolved 
monitoring of the different stages of cellular development during drug-induced apoptosis. 

Figure 5 shows changes in the Raman spectra for each group (red spectra) compared to the 
spectrum of untreated (control) cells (blue spectra). A change in Raman peak intensity is 
indicated with black arrows (pointing up - increase, pointing down - decrease) and the 
molecular assignment of the peak is provided by a letter code (L - lipid, P - protein, D - 
DNA). In general, the major changes in the Raman spectra for the individual groups can be 

attributed to an increase of lipid signal in group 1 (e.g. 1266, 1303, 1445, 1656, 1740 cm1), 

an increase of DNA signal in group 2 (e.g. 785, 1094, 1215, 1254, 1378, 1578 cm1), and a 

decrease of DNA signal (e.g. 785, 1092, 1340, and 1578 cm1) accompanied by an increase in 

protein (Phe – Phenylalanine, 1004 cm1) signal for group 3. 
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Fig. 4. Mean Raman spectra of the cells in (A) Group 1, (B) Group 2, and (C) Group 3. 

 

Fig. 5. Comparison of mean Raman spectra from (A) Group 1 (B) Group 2 and (C) Group 3 
with the mean Raman spectra of control cells to visualize major spectral changes over time 
during drug cell interaction. An arrow pointing up or down indicates an increase or decrease in 
the peak, respectively, and peak assignments are provided: lipid (L), DNA (D), and protein (P). 
White light images of cells representative of each group and control cells are also shown. 

In some cases, morphological changes of the cells could also be observed with white light 
microscopy. Representative images of drug-exposed cells exhibiting spectra from each of the 
three groups are also shown in Fig. 5. Also shown is an image of an untreated control cell for 
comparison. The image assigned to group 1 (Fig. 5A) displays an accumulation of dark spots 
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within the cell that, considering the increased lipid related Raman signals, could indicate the 
presence of intracellular vesicles. This observation is consistent with the formation of lipid 
vesicles at the cell surface (e.g. phosphatidylserine, granule) [26] as well as blebbing of the 
cell membrane [27] that is known to occur during early stages of apoptosis of leukemic T-
lymphocytes (Jurkat) cells induced by doxorubicin [28–31]. Increase in the DNA specific 
Raman signals in group 2 (Fig. 5B) can be associated with chromatin condensation and 
nuclear fragmentation as part of the apoptosis process [32–34]. Since Raman signal intensities 
have a linear dependence on the concentration of molecular bonds in the laser interrogation 
focal volume, an increase in DNA density due to chromatin condensation would lead to an 
increase in the DNA peak intensities in the Raman spectra. The cell image in Fig. 5B shows 
dark regions in the cell that could indicate the formation of dense nuclear fragments. The 
decrease in intensity of DNA specific Raman peaks and increase in intensity of protein 
(phenylalanine) specific Raman peaks in the spectrum of group 3 (Fig. 5C) reflects the late 
stages of apoptosis where nuclear fragments are expelled from the cell leaving an empty shell 
of cellular membrane and cytoplasm (i.e. a dead cell). The cell image in Fig. 5C shows weak 
structural contrast, which coincides with this suggested apoptotic phase. The Raman spectra 
of the three groups in Fig. 5C are remarkably consistent with those of lipid vesicles (granules), 
nucleus, and cytoplasm of T lymphocytes, as reported in a Raman structural study of granules 
in lymphokine activated killer (LAK) cells and leukemic cells by Takai et al. [35]. A strong 
increase in DNA specific Raman bands has also been previously reported in taxol induced 
apoptosis of HeLa cells [17]. Moreover, spectral changes in lipid and DNA Raman bands 
consistent with the appearance of lipid vesicles at early stages of apoptosis and DNA 
condensation were also reported in a recent study [18] investigating apoptosis of breast cancer 
cells induced by etoposide using live cell Raman imaging over 6 h. Changes in DNA and 
protein associated Raman peaks of drug exposed cells have also been reported in other studies 
[14–16]. 

Our previous investigations using laser tweezers Raman spectroscopy (LTRS) of T 
lymphocytes [24,36] showed remarkable cell-to-cell reproducibility in the Raman spectra 
presumably due to the large ratio of the nuclear to cytoplasmic volume, which allowed for the 
nucleus to be probed and trapped consistently. However, the morphological changes that 
occur during cellular apoptosis may change the optical trapping behavior of the cell, which in 
turn would contribute to the Raman spectral changes. For example, the accumulation of large 
quantities of lipid vesicles in the cell may influence the laser trap to preferentially trap those 
particles leading to a dominant lipid specific Raman signature. We also suggest two 
mechanisms by which the increase in nuclear density induced by chromatin condensation may 
lead to an increase in DNA specific Raman signals. The relatively large, dense nuclear 
fragments could be repositioned to the center of the optical trap, thereby greatly reducing 
spectral contributions of other parts of the cell. The increased concentration of DNA 
molecules also could result in stronger DNA specific Raman signals. Additional studies are 
planned to further investigate the relationship between the morphological changes and the 
optical trapping behavior of the cell and their influence on the cell spectra. 

The potential of inducing cell photodamage using LTRS is always a concern given the 
laser intensities that are typically used [37]. In our studies however, no laser induced spectral 
changes were observed at the wavelength, power, and integration time that were used. This is 
consistent with other studies that have used near infrared (785 nm) LTRS to probe red blood 
cells [20], or a 660 nm laser to probe human lymphocytes and chromosomes [38]. Moreover, 
Zoladek et al. [18] did not report photodamage issues in their time-course Raman imaging 
studies of apoptotic cells over 6 hours using approximately the same excitation conditions as 
in this study. This does not eliminate the possibility that photodamage could still occur if a 
single cell is continuously interrogated over the course of 72 hours. In depth studies will need 
to be performed to investigate the dependence of the long-term viability of these cells on the 
total exposure time and laser intensities that are used. 
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4. Conclusions 

The use of LTRS to monitor the apoptotic response of leukemic T lymphocytes to 
chemotherapeutical drug treatment was demonstrated. The remarkable reproducibility of the 
Raman spectral evolution (starting with group 1 and ending with group 3) with exposure time 
and drug concentration suggests that LTRS, despite not providing a full spatial map of the 
biochemical components in the cell, is a viable technique for real-time monitoring of 
biochemical changes associated with apoptosis in individual suspension cells for potential 
clinical and pharmaceutical applications needing an in-vitro chemosensitivity assay for 
evaluating the efficacy of chemotherapy drug regimens. In this study, LTRS was especially 
important in order to physically capture the suspension cells, which do not naturally adhere to 
surfaces, for Raman analysis. In addition, it offers the convenience and simplicity for 
sampling many cells in solution without requiring extensive sample preparation, such as the 
need to modify surfaces to promote cell adhesion. We acknowledge that future studies will 
benefit from the use of dual beam LTRS systems [39] that use one laser beam to trap the cell 
while a second beam can probe different regions of the cell to obtain a Raman map of the cell 
or to obtain a spectrum more representative of the entire cell volume. The integration of 
microfluidic systems [40–43] and multi-focal LTRS (M-LTRS) designs [44] is also expected 
to be an important development for this technology to enable large populations of individual 
cells to be rapidly sampled and continuously monitored while maintaining fine control of their 
chemical environment. 
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