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ABSTRACT

This paper presents a complete set of coupled equations that govern the bubble transport in

three-dimensional gravity driven flow. The model accounts for bubbles growth or shrinkage

due to pressure and temperature changes as well as for multiple gas diffusion in and out of

the bubbles but neglects bubble coalescence, break-up, and nucleation. The model applies

to glass melting furnaces but it could be extended to other two-phase flow applications such

as metal and polymer processings, passive cooling systems, and two-phase flow around naval

surface ship. Governing equations are given for the key variables which are, in the present

case, (1) the refining agent concentration, (2) the gas species dissolved in the liquid phase,

and (3) the bubble radius, gas molar fraction, and density function. The method of solution

is discussed and based on the modified method of characteristics.

Keywords: soda-lime silicate glass, population balance theory, glass properties, refining,

bubbles, seeds
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NOMENCLATURE

A Frequency factor in Arrhenius equation

C Mass concentration

D Diffusion coefficient

Deff |f Effective diffusion coefficient of the foam layer

E Activation energy

f Fugacity

f1 Bubble density function

g Specific gravity

h Bubble generation rate per unit volume in the state space

H∞ Steady-state foam thickness

~i,~j,~k Unit vectors in the physical space

j, k Oxidation indices of the refining agent

j(x, y) Superficial gas velocity at the glassmelt surface

kr Refining reaction rate constant

K Mass transfer coefficient

l Number of gas species diffusing into and out of the bubbles

ṁ Mass flux

M Refining agent ion

Mi Molecular mass of gas species “i”

M̄ Mean molecular mass

p Pressure

pi Partial pressure of gas species “i”

q Order of the refining reaction

r Bubble radius

R Universal gas constant = 8.314J/molK

S Solubility of the gas species in the molten glass

T Temperature

t Time
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u Projection of the velocity vector on the x-axis

v Projection of the velocity vector on the y-axis

V Volume

~v Velocity vector

w Projection of the velocity vector on the z-axis

wr Vertical upward velocity of the bubble relative to the glassmelt

~x Spatial or external coordinates

x Longitudinal location (see Figure 1)

y Spanwise location (see Figure 1)

z Local depth within the glassmelt (see Figure 1)

Greek symbols

α Parameter [Equation (20)]

γi Molar fraction of gas species ”i” inside the bubble

σ Surface tension

ρ Density

µ Kinematic viscosity

Subscripts

b Refers to the bubbles

batch Refers to the batch

comb Refers to the combustion space

diff Refers to gas diffusion from the the glassmelt to the gas bubbles

e Equilibrium property at the bubble/glassmelt interface

i Index of the gas species

int Refers to the surface of the glassmelt

M Refers to the refining agent

n Index of the bubble group

O2 Refers to the oxygen

ref Refers to refining reaction

∞ Refers to the bulk of the glassmelt

Notation
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[X] Molar concentration of species X in the glassmelt

Ẋ Derivative of property X with respect to time
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1 Introduction

The quality of glass products is degraded if gas bubbles and unfused silica grains remain in

the molten glass as it is being pulled from of the furnace [1, 2]. Fewer defects, especially

fewer remaining bubbles, has become a major requirement in the new quality standards for

many commercial glass products. For example, in the TV-glass production, a presence of six

bubbles per ton of glass results in 10% rejection rate of the final product, and for new products

such as High Definition Television, the quality requirements are even more stringent [3]. For

automotive window glass, the most demanding specification requires that gas bubbles be less

than 0.5 mm in diameter for transparency purposes [4]. Moreover, for automobile windshield

glass, reducing by half the defect density would increase the profitability by more than 2

millions dollars per year per plant [4].

Radiation transfer is main mode of heat transfer in glass melting furnaces. As shown

by Pilon and co-workers [5–7] even a small number of entrapped bubbles can affect the

radiation characteristics of semitransparent media provided that the bubble radius is much

larger than the wavelength of radiation and that the medium is weakly absorbing. Moreover,

these bubbles may accumulate or rise to the free liquid surface and form a foam layer which

has significant negative effects on the energy efficiency, the glass quality, the productivity,

the pollutant emissions, and the furnace integrity [8].

The goal of the present work is to develop a general model for bubble transport, growth

and shrinkage in three-dimensional flows. The flow is assumed to be laminar for the sake of

simplicity. The bubbles can grow or shrink due to diffusion of gases in and out of the bubbles.

The analysis presented is as general as possible and can find applications in many materials

processing situations for at least one of the following reasons: (1) for predicting the radiation

transfer in liquid containing bubbles, (2) for predicting the foam formation, and/or (3) for

improving the quality of manufactured products. Applications to glass melting furnaces

appear to be the most natural one since glass is one of the most common and available

semitransparent media that is weakly absorbing in the infrared spectral region from 0.2 to

4.5 µm [9, 10]. Moreover, radiation transfer is main mode of heat transfer in glass melting

furnaces, and the quality of glass products is degraded if gas bubbles and unfused silica
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grains remain in the molten glass as it is being pulled from of the furnace [1, 2].

1.1 General Description of The Glass Melting Process

Figure 1 shows a schematic of a typical glass melting furnace. During the glass making

process, the glass batch is introduced in the glass melting furnace where it spreads due to

convection currents in the molten glass and melts due to the heating from the flames in

the combustion space and/or from Joule heating in electric melters. Melting of raw batch

materials is a complex physicochemical process which involves a large number of chemical

reactions and phase transformations occurring over the wide temperature range from 800 to

1200oC [11]. For example, in the typical container glass manufacturing the basic and most

important reaction in the batch involve silica, sodium carbonate, and calcium carbonate [12],

CaCO3 +Na2CO3 → Na2Ca(CO3)2 around 550oC (1)

Na2Ca(CO3)2 + 2SiO2 → Na2O · SiO2 + CaO · SiO2 + 2CO2 600-830oC (2)

Na2CO3 + SiO2 → Na2 · SiO2 + CO2 720-900oC (3)

2CaCO3 + SiO2 → CaO · SiO2 + 2CO2 600-900oC (4)

Carbon dioxide gas is produced as a result of the last three reactions and it mainly diffuses in

the melt [1]. A small fraction of the gas contributes to heterogeneous nucleation of bubbles

within or just below the batch. Some of these bubbles pass through the batch and reach

the combustion space, while the others are trapped in the melt and are carried with the

convection currents in the glass bath. Refining agents, which are involved in the equilibrium

redox reactions producing or consuming gases, are usually added to the batch in order to

remove undesirable bubbles from the glassmelt [1,13,14]. Three types of refining agents are

commonly used [15]:

1. Variable-valence metal oxides which release only oxygen, e.g., the antimony oxide

(Sb2O5/Sb2O3), the arsenic oxide (As2O5/As2O3), and the cesium oxide (CeO3/CeO2) [14,

16–19].
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2. Sulphates and sulphites which release a mixture of sulfure dioxide (SO2) and oxy-

gen [19]. For example, sodium sulfate, (Na2SO4) is used as a refining agent at high

temperatures (around 1800oC) but it also accelerates the melt formation if introduced

in suitable proportions [20]. However, a detailed explanation of the beneficial effects

of sulphate is not yet available.

3. Chlorides, bromides, and iodines which evaporate at refining temperature [15].

The fusion of raw materials in the batch and the fining reactions taking place in the glassmelt

generate a large number of gas bubbles. A fraction of these bubbles is entrapped on the free

surface of the glass to produce the primary foam [12]. Resorption of the remaining small

fining gas bubbles, taking place during the conditioning of the glassmelt as it flows from

the hot spot in the middle towards the throat of the furnace, also leads to formation of the

so-called secondary foam [12]. Visual observations and laboratory scale studies of furnace

operations indicate that the foam layers of various thickness can cover a large fraction of the

free surface of the molten glass [12,21].

1.2 Literature Review

Previous studies of the bubble behavior in glassmelt were mainly concerned with individual

bubbles in an infinitely large quiescient pool of molten glass at a uniform temperature. The

simplest of such studies consists of studying the shrinkage or growth of a stationary bubble

containing a single gas [22, 23] sometimes accounting for refining reactions [16, 17]. Other

studies were concerned with a stationary bubble containing several gases with or without

refining reactions [17, 24, 25]. More realistic situations were investigated by accounting for

the bubble rise due to buoyancy for a single gas bubble [2,26] or a bubble containing several

gases [27, 28], including the presence of refining reactions [14, 15, 18]. All of these studies

show that in the presence of refining agents, only two mechanisms are mainly responsible for

the removal of gas bubbles from the melt. They are:

• First, in high temperature regions, the equilibrium of the refining reaction shifts to

gas production [1]. Then, the fining gas produced diffuses from the molten glass into
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already existing gas bubbles. In addition, gases already contained in bubbles are being

diluted by the incoming fining gas [1, 29], and, in turn, this enhances the diffusion of

gases from the melt into the growing bubbles. Diffusion of fining gases makes bubbles

grow in size until the buoyancy force is large enough to enable them to rise to the

glassmelt free surface.

• Second, at low temperatures, the equilibrium of the fining reaction shifts to gas con-

sumption resulting in gas diffusion from the bubbles to the melt. Small bubbles, which

did not yet grow to a sufficiently large size, then dissolve in the glassmelt [19]. How-

ever, recent studies [30, 31] demonstrate that the refining reaction involving antimony

oxide in TV panel glass was complete and irreversible, i.e., bubble shrinkage due to

gas consumption at low temperatures was not clearly evident.

Even though modeling the behavior of individual bubbles gives an insight into the mechanism

of bubble generation, growth, and shrinkage, it does not lead to any conclusions about

the overall performance of the refining process. To accomplish the latter objective, one

approach is to trace bubbles as they grow and shrink while being transported in the glass

bath through regions of different temperatures, gas concentrations and pressures [1,13,29,30].

In this approach, bubbles are introduced at the batch/glassmelt interface and are followed

individually. All the studies reported [1,13,29,30] assume that probabilistic events such as the

bubble coalescence or breakage or bubble nucleation are negligible. Moreover, they neglected

the interdependence of gas concentration in the glassmelt and mass transfer in and out of the

bubbles thus enabling them to solve successively (1) the glass flow and thermal structure,

(2) the gas concentrations dissolved in the glassmelt, and (3) the trajectory and growth or

shrinkage of a large number of individual single or multicomponent gas bubbles. The results

are analyzed using statistical methods [1] in order to assess the degasing efficiency of a new

tank design or new process conditions. The tracing method is a useful technique to elucidate

the bubble trajectories in the molten glass. However, it is tedious to implement and does

not provide detailed information about the number of bubbles and their size distribution

at any given location throughout the tank. Therefore, the bubble-tracing approach cannot

account for the coupling between the concentration of gases dissolved in the molten glass,
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the bubble density function, the growth rate, and the glass flow and temperature fields. In

addition, it can hardly be used to predict foaming at the surface of the glassmelt.

An alternative approach has been proposed by Ungan et al. [32] that consists of solving

the conservation equation for the total number of bubbles and taking into account the effect

of bubbles on the flow and temperature fields of the molten glass through the reduction of

the effective density of the two-phase mixture. However, only monodispersed bubbles with

constant radius were considered and refining reactions and bubble growth due to pressure

change and gas diffusion were neglected.

In contrast, the population balance theory [33] allows one to predict in detail the radius

and gas content of polydispersed bubbles and their density function throughout the glass

melter. The only attempts to employ population balance theory to the bubble dynamics in

glass tanks are due to Roi et al. [34] and Balkanli and Ungan [35]. Roi et al. [34] proposed

a two-dimensional model for calculating the time dependence of the bubble size distribution

assuming that the bubble growth rate is independent of the bubble radius. However, the

authors admitted that their model “contains substancial simplifications and cannot be used

for the exact quantitative modeling of concrete melting vessels”. Balkanli and Ungan [35]

presented a more realistic study based on a discretized formulation of the three-dimensional

steady state population balance equation (PBE). However, the practical application of both

works appear to be very limited since several highly simplifying assumptions have been made

such as: (1) refining reactions are not considered, (2) bubble nucleation in the melt and at

the refractory walls is neglected, (3) each gas bubble contains only one diffusing gas, and

(4) the governing equations for the gas concentration in the molten glass, the bubble growth

rate, and bubble population equation are solved independently, i.e., the coupling between

these equations is neglected. Moreover, Balkanli and Ungan [35] solved the discretized form

of the bubble population balance equation with a coarse grid in the bubble radius space. The

limitations of these approaches have been discussed by Kumar and Ramkrishna [36]. In brief,

the discrete formulation lacks of internal consistency, i.e., some of the moments of the bubble

density function f1 cannot be predicted accurately [36]. In other words, the calculation is

designed for certain selected moments of the bubble density function rather than for an

estimate of the bubble density function accurate enough for estimating all moments of the
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population [33,37].

The purpose of the present work is to propose a simplified yet realistic analysis of the

bubble behavior in glass melting furnaces by using the population balance theory [33]. For

the first time, it presents a complete set of coupled conservation equations for i) the refining

agent concentration, ii) the concentrations of the gases dissolved in the glassmelt, and iii)

the bubble density function along with the associated boundary conditions and the closure

laws. The model accounts for the three-dimensional convective transport of refining agent,

gases, and bubbles as well as for bubble growth due to multiple gas diffusion and by taking

into account bubble nucleation along the refractory walls and refining reactions. Finally,

the method of characteristics and the associated numerical scheme used for solving the

population balance equation in terms of the bubble density function f1 are briefly described.

2 Physical Model

The present analysis simplifies the mathematical formulation by decoupling the liquid and

gas phase equations, i.e., the conservation equations for the liquid and gas phases are solved

independently and the momentum and energy equation are solved only for the liquid phase

assuming that no bubbles are present. Moreover, unlike previous studies [32,35,38] the study

predicts the bubble density function f1 of polydispersed bubbles and enables the accurate

post-processing calculation of all the moments of the distribution.

2.1 Assumptions

In order to make the problem of bubble generation and transport in the glass melting tank

mathematically tractable the following assumptions are made:

1. All the processes are steady state or time independent.

2. The effects of bubbles and dissolved gases on the velocity and on the temperature fields

as well as on the thermophysical properties of the glassmelt are not considered.

3. Bubbles are perfectly spherical in shape. This assumption holds for air-molten glass

flows at the pressures encountered in the glass melting tank.
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4. The bubbles have negligible inertia (ρb ¿ ρ∞). This hypothesis is reasonable since

very small bubbles are present in the glass bath.

5. The components of the bubble velocity vector, are taken to be the same as those of the

molten glass (u∞, v∞, w∞), except in the vertical direction where the buoyancy force

has to be taken into account. In other words, the slip between the bubble and the

glassmelt velocity is neglected except in the vertical direction. This can be justified by

the fact that bubble are assumed to be small.

6. The molten glass is considered to be incompressible.

7. Local thermal equilibrium exists between the gas and liquid phases, i.e., T∞ = Tb = T .

8. Coalescence and break up of bubbles are not considered.

9. The gases in a bubble are perfectly mixed, and the gas mixture inside the bubbles

behave as an ideal gas.

10. The bubbles are assumed to contain l different gas species.

11. The diffusing gas species “i” is weakly soluble in the condensed phase (i.e., the Henry’s

law is applicable at the bubble/glassmelt interface).

12. The pressure in the bubbles remains close to the atmospheric pressure (maximum 5

atm [39]) so that the ideal gas approximation for fugacity is valid.

13. The diffusing gases neither react with the condensed phase nor undergo dissociation

or association.

14. Neither chemical reactions between gases inside a bubble nor dissociation of gas molecules

are taken into account.

15. The equilibration kinetics at the bubble surface is assumed to be very rapid, so that

the rate limiting process is diffusion of gases in the melt.

16. The analysis presented is restricted to fining reactions that involve variable-valence

metal oxides and produce oxygen only (in particular, the antimony oxide Sb2O5).
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The above assumptions are commonly used in the treatment of bubble transport in three-

dimensional laminar gravity driven flow of molten glass [13,29–31,35]. Assumptions regard-

ing the bubble velocity and neglect of the effects of bubbles on the liquid phase flow and

temperature fields are the most severe one and their limitations will be discussed later. They

have been used to decouple the conservation, momentum, and energy equations of the liquid

and gas phases. This approach can be justified by the facts that bubble radius and concen-

tration are small and that the alternative approach solving the coupled governing equations

using the two-fluid model lacks mechanistic closure laws accounting, for example, for the

interfacial momentum transfer [40]. Moreover, the effect of bubbles on the thermophysical

properties of the glassmelt such as the dynamic viscosity, the thermal conductivity, and the

specific heat are not clearly known. This is particularly true for the effect of bubbles on the

radiation characteristics of molten glass that have been addressed in Ref. [5–7].

2.2 Refining Agent Concentration in the Glassmelt

2.2.1 Refining Reaction

As mentioned in the Introduction, the refining agent is introduced into the melting tank as

part of the batch. As the agent is carried by the flow of the molten glass and encounters high

temperature regions, the following reversible chemical reaction for variable-valence metal

oxides, written in a generalized form, takes place [41]:

Mk+ +
k− j

2
O2− ⇀↽

k− j

4
O2 +Mj+ (5)

In the case of antimony oxide as a refining agent, Kawachi and Kawase [13,30] and Kawachi

and Kato [31] showed that the rate of the forward reaction can be neglected in the production

of TV panel glass. Therefore, the refining reaction can be considered as irreversible with

only the decomposition of the refining agent taking place. By assuming a constant oxygen

ion activity and by defining q as the order of the refining reaction occurring at constant

volume, the rate of the decomposition reaction can be expressed as [13,31]

−
∂[Mk+]

∂t
=

(

k − j

4

)

∂[O2]

∂t
= kr[M

k+]q (6)
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where the reaction rate constant kr is calculated from the Arrhenius’ law [30,31],

kr = Aexp
(

−
E

RT

)

(7)

The pre-exponential parameter A and the activation energy E are constants determined

experimentally.

2.2.2 Fining Agent Concentration

As follows from Equation (6), the oxygen generation rate depends on the concentration of the

dissociated form of the refining agent Mk+. Therefore, the local refining agent concentration

[Mk+] is required in order to predict the transport of oxygen dissolved in the glass bath as

well as the bubble generation rate. The species conservation equation for the refining agent

in the glassmelt is given by

∂[Mk+]

∂t
+∇ · (~v∞[Mk+]) = ∇ ·

(

DM∇[M
k+]
)

− kr[M
k+]q (8)

where [Mk+] is the molar concentration of metal ions and ~v∞ is the local glassmelt velocity

vector. The first term on the right hand side of Equation (8) accounts for the metal ion

diffusion through the melt, while the last term represents the mass sink due to consumption

of ions Mk+ by the refining reaction. Although the steady-state solution of the problem is

sought, the transient term (∂[M k+]/∂t) has been retained for performing iterative numerical

integration which results in the steady-state solution of the molar concentration [Mk+].

2.2.3 Boundary Conditions

Equation (8) can be solved provided that boundary conditions are defined. The batch

consists of the raw materials and cullet mixed with the refining agent in the form of oxides

such as Sb2O5. The dissociation of the oxide occurs as the temperature increases leading to

production of cations and anions such as Mk+ and O2−, respectively. Furthermore, assuming

that the concentration of the refining agent is uniform within the batch, and the dissociation

reaction at the batch/hot molten glass interface is instantaneous, complete, and irreversible,

the concentration of the cations [Mk+] should be constant everywhere at the batch/glassmelt

interface:

[Mk+] = constant at the batch/glassmelt interface (9)
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The specific value of [Mk+] depends on the process and the type of glass produced; it can be

determined from operating data. Typically, antimony oxide is added in 0.1 to 1.0 wt.% [19].

Finally, the gradient of the concentration [Mk+] is taken to vanish at the glass/refractory

walls and at the free surface of the molten glass

∇~n[M
k+] = ~0 at the glassmelt/refractories interface (10)

∇~n[M
k+] = ~0 at the glassmelt/combustion space interface (11)

Such boundary conditions can be justified by the fact that the diffusion of the cations from

the glassmelt to the refractory walls and to the combustion space is negligible.

2.3 Dissolved Gas Transport in the Glassmelt

The growth and shrinkage of the bubbles is, in part, caused by gas diffusion into and out of

the bubbles due to a difference in concentration of a given gas species between the glassmelt

and the gas bubbles. Therefore, one needs to predict the local concentration of each gas

species dissolved in the glassmelt.

2.3.1 Species Concentration Equation

The transport of major gas species (O2, H2O, CO2, and N2) in the glassmelt is governed by

the following general species concentration equation [13,42,43],

∂C∞,i

∂t
+∇ · (~v∞C∞,i) = ∇ · (Di∇C∞,i) + ṁref,i − ṁdiff,i (12)

Here, C∞,i and Di are the mass concentration and the diffusion coefficient of the dissolved

gas species “i” in the glassmelt, respectively. The first term on the right hand side of

Equation (12) accounts for mass diffusion of the dissolved gas species “i” in the glassmelt.

The source term ṁref,i is the volumetric gas production rate due to the refining reaction,

and the sink term ṁdiff,i accounts for the volumetric diffusion rate of gas species “i” from

the glassmelt into the bubbles. As before, the transient term [∂C∞,i/∂t] has been retained

to enable iterative numerical integration of Equation (12). Note that the last two terms on

the right-hand side of Equation (12) have been neglected by Balkanli and Ungan [42], while
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Kawachi and Kawase [13] neglected only the last term.

As stated in assumption 2, the analysis presented here is restricted to refining reactions

that are complete and irreversible and produce oxygen only. Then, the source term ṁref,i

vanishes in the case of all gas species but oxygen. Solving Equation (8) for [Mk+] enables

one to compute the oxygen generation rate per unit volume of glassmelt at every location in

the glassmelt since

kr[M
k+]q =

(

4

k − j

)

1

MO2

∂C∞,O2

∂t
=

(

4

k − j

)

ṁref,O2

MO2

(13)

After some rearrangement,

ṁref,O2
=

(

k − j

4

)

MO2
kr[M

k+]q (14)

The sink term ṁdiff,i is the total mass of dissolved gas species “i” diffusing from the

glassmelt into the bubbles per unit volume of the glassmelt and per unit of time at location

~x and instant of time t. It is given by

ṁdiff,i(~x, t) =
∫ 1

0
...
∫ 1

0

[
∫ ∞

0
Ki(C∞,i − Ce,i)f1dr

]

dγi,1...dγi,l−1 (15)

where Ki(C∞,i − Ce,i) is the total mass flow rate of the gas species “i” from the glassmelt

across the surface of a bubble of radius r expressed in [kg/s/bubble]. The concentration

difference of gas species “i” between the glassmelt and the bubble/glassmelt interface is

(C∞,i − Ce,i). The bubble density function, i.e., the number of bubbles per unit volume at

location ~x and time t having equivalent radii that lie within the range r to r + dr, and the

molar fraction of gas species “i” ranges between γi and γi +dγi with 1 ≤ i ≤ l− 1 is denoted

f1 = f1 [~x, r, t, (γi)1≤i≤l−1]. Note that all the molar fractions of gas species “i” γi sum up to

unity. Thus, γl can be expressed as a function of the remaining (l − 1) others and cannot

be treated as an independent variable. When C∞,i > Ce,i the gas species “i” diffuses from

the glassmelt in the bubbles, whereas when C∞,i < Ce,i it diffuses from the gas bubbles to

the glassmelt. Then, ṁdiff,i(~x, t) behaves either as a sink (if C∞,i > Ce,i) or as a source (if

C∞,i < Ce,i). To complete the formulation, the closure laws must be specified as well as the

boundary conditions.
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2.3.2 Closure Laws

To make the problem well-posed, the total mass flow of the gas species from the glassmelt

to the bubbles and particularly the mass transfer coefficient Ki, and the gas concentrations

at the bubble glassmelt interface, Ce,i, should be defined.

According to Levich [44], for bubbles moving at low relative velocities wr (Reynolds

number much smaller than unity) in a quiescent liquid containing diffusing gases, the coef-

ficient Ki can be expressed as

Ki = 7.98D
2/3
i w1/3

r r4/3 (in m3/s) (16)

Here, Di is the diffusion coefficient of gas species “i” in the glassmelt while wr is the relative

velocity of the bubble of radius r with respect to the liquid. Extensive studies have shown

that in molten glass small bubbles behave like solid sphere while large spherical bubbles

behave like fluid spheres (see Ref. [19] for an in-depth review). According to the Stokes’ law

for solid spheres, the small gas bubbles rise in the molten glass with the relative vertical

velocity given by:

wr =
2

9

ρ∞gr
2

µ∞
(17)

On the other hand, in the case of large spherical bubbles in the molten glass, the vertical

velocity relative to the molten glass follows the Hadamar-Rybczynski formula [19,45]:

wr =
1

3

ρ∞gr
2

µ∞
(18)

Unfortunately, there is no clear criteria regarding what bubbles should be considered as large

or small. Experimental results suggested that bubbles of diameter larger than 1 mm can be

considered as large and their velocity follows Equation (18) [45]. In brief, the bubble rise

velocity with respect to liquid phase can be written as

wr = α
ρ∞gr

2

µ∞
(19)

where α is a parameter that depends on the bubble size according to Equations (17) and

(18):

α =











2/9 for small bubbles (2r ≤ 1mm)

1/3 for large bubbles (2r ≥ 1mm)
(20)
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Note that Equations (17) to (19) correspond to the terminal (i.e., steady state) velocity of

spherical bubbles, i.e., the transient motion of bubbles have not been considered for the sack

of simplificity and since its formulation is still incomplete and quite involved [46].

In the present analysis, the magnitude of the mass flux is assumed to be relatively small,

so that the variations of mass concentration of gas species “i” in both phases are small as

well. Then, the local quasi-equilibrium can be assumed to exist at the bubble/molten glass

interface [47], which implies the equality of the chemical potentials of the diffusing gas on

both sides of the interface. This fact, combined with assumptions 3, 8 and 10, allows us to

apply the generalized Henry’s law and obtain the relationship between species concentrations

on both sides of the bubble/glassmelt interface [48],

Ce,i = SiMifb,i (21)

Here, Ce,i is the concentration of the diffusing gas “i” at the interface (assumed to be at

equilibrium) and Si is the solubility of gas species “i” in the glass melt, Mi is the molecular

weight of the species “i”, and fb,i the fugacity of the species “i” in the bubble. Provided

that the pressure is low enough and the ideal gas approximation holds (assumption 9), the

fugacity fb,i is approximately equal to the partial pressure of species “i” (pb,i) on the gas side

of the interface [39], so that

Ce,i = SiMipb,i (22)

Using an ideal-gas equation of state (assumption 7), the partial pressure of the gas species

“i” in the bubble is given by the Raoult’s law:

pb,i = γipb (23)

where γi is the molar fraction of gas species“i” inside the bubble and is such that

l
∑

i=1

γi = 1 (24)

This results in the following jump condition for the species concentrations at the bub-

ble/glassmelt interface:

Ce,i = γiSiMipb (25)
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2.3.3 Boundary Conditions

According to Balkanli and Ungan [35], the concentration of carbon dioxide (CO2) at the

batch/glassmelt interface can be taken as being the saturation concentration owing to the

very high intensity of gas generation due to fusion and melting of the raw batch materials.

Also, as speculated by Kawachi and Kawase [13], oxygen (O2) is supplied in sufficiently large

amounts from the combustion space or by refining reactions taking place in the batch to

saturate the glassmelt beneath the batch/glassmelt interface; similarly, for nitrogen (N2) in

air fired furnaces. However, transport of nitrogen can be neglected in oxy-fired furnaces since

it is present in very small amount.

At the glass/refractory wall interface, the gradient of the concentration of gas species

“i” in the glassmelt is assumed to vanish owing to the absence of mass transfer through the

refractory walls:

∇~nC∞,i = ~0 at the glassmelt/refractories interface (26)

In cases when the free surface of the glassmelt is in direct contact with the combustion

gases, the gas concentration at the free surface is given by the Henry’s law [13,31,42], i.e.,

C∞,i = SiMipi|int at the glassmelt/combustion space interface (27)

where pi|int is a partial pressure of gas species “i” on the combustion side of the glass-

melt/combustion space interface and is obtained from the calculation of the gas species

concentrations as well as the flow and temperature fields in the combustion space.

However, if the free surface is covered by a foam blanket then the effect of foam should

be accounted for by equating the mass fluxes on both sides of the foam/glassmelt interface,

i.e.,

Di(∇C∞,i) = Deff |f,i∇(C∞,i) at the glassmelt/foam interface (28)

where Deff |f,i is the effective diffusion coefficient of gas species “i” through the foam layer

and Ci|int is the gas concentration at the foam/glassmelt interface. The left-hand side of

Equation (28) represents the gas diffusion mass flux on the glass side, while the right-hand

side represents that on the foam side. Assuming that the foam thickness is small, a linear
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approximation of the gas concentration in the foam layer yields the following mixed boundary

condition,

Di∇C∞,i = Deff |f,i

(

Ci|comb − C∞,i

H∞

)

at the glassmelt/foam interface (29)

where H∞ is the steady-state foam thickness (see Ref. [49]) and Ci|comb the gas concentration

at the foam/combustion space interface, i.e., at the top of the foam layer. A model for the

effective diffusion coefficient of gas species “i” through the foam layer, Deff |f,i can be found

in the literature [50].

2.4 Bubble Density Population

2.4.1 Single Bubble Environment

A schematic of a single bubble in mechanical and thermal equilibrium with the surrounding

molten glass is given in Figure 2, along with the corresponding p-T diagram. The Young-

Laplace equation relates the pressure (pb) inside a spherical bubble of radius r with the

pressure (p∞) in the surrounding glassmelt and the surface tension σ by

pb = p∞ +
2σ

r
(30)

Since the velocity of the viscous molten glass in the glass bath is very small (of the order of

1 cm/s) the pressure field in the tank can be assumed to be purely hydrostatic. Thus, the

total pressure inside the bubble is expressed as

pb = p0 + ρ∞gz +
2σ

r
(31)

where p0 is the pressure at the free surface of the molten glass and z is the local depth within

the glassmelt.

Based on Assumption 5, the components of the bubble velocity vector ~vb can be ex-

pressed as

~vb(~x) = u∞~i+ v∞~j + (w∞ − wr)~k (32)

with wr being the upward bubble velocity relative to the molten glass due to the buoyancy

force given by Equation (19). Note that according to our convention, the vertical axis

is oriented downward. Values of u∞, v∞, and w∞, are obtained from the thermal-flow

computation of molten glass circulation in the bath (see, for example, Ref. [51–55]).
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2.4.2 Population Balance Equation

As discussed in detail by Ramkrishna [33, 56], the bubble population can be described by

a state vector defined in a so-called state space. Each bubble in the glassmelt is charac-

terized by its radius r and the molar fraction of gas species “i” contained in the bubble

γi. Let f1[~x, t, r, (γi)1≤i≤l−1] be the average number density function of bubbles. As already

discussed, γl cannot be treated as an independent variable. The average number density

function f1[~x, t, r, (γi)1≤i≤l−1] is assumed to be sufficiently smooth to allow differentiation

with respect to any of its variables as many times as necessary [33]. Note that the tempera-

ture of the bubbles is assumed to be the same as that of the glassmelt, i.e., the local thermal

equilibrium prevails. Therefore, although the temperature is important to determining the

growth rate of a bubble, it is a continuous phase (glassmelt) variable and hence does not

enter the characterization of the bubble state. Considering the bubbles generated and trans-

ported by the flow of the glassmelt, and assuming that there are l gases diffusing into or out

of each bubble, the state vector ~S can be expressed as ~S = [x, y, z, t, r, (γi)1≤i≤l−1]. Then,

the population balance equation can be expressed as

∂f1

∂t
+

∂

∂x
(u∞f1) +

∂

∂y
(v∞f1) +

∂

∂z
[(w∞ − wr)f1] +

∂

∂r
(ṙf1) +

l−1
∑

i=1

∂

∂γi

(γ̇if1) = h (33)

where, wr is given by Equation (19). The time rate of change of the bubble radius and of

the molar fraction of gas species “i” inside the bubble are denoted by ṙ and γ̇i, respectively.

The transient term ∂f1/∂t represents the time rate of change of the bubble density, and the

other two terms on the left-hand side of Equation (33) represent advection of the bubble

density function in the physical space and in the property space, respectively. Finally, the

term h represents the net rate of production of bubbles of a particular state (~x, (γi)1≤i≤l−1])

at time t.

The molar fraction of gas species “i” can be expressed as a function of the mass con-

centrations Cb,i since by definition

γi =
Cb,i/Mi

l
∑

j=1
(Cb,j/Mj)

=
Cb,iRT

Mipb

(34)
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Then, the time derivative of the molar fraction of gas species “i” in the bubble γi can be

expressed as

γ̇i = γi

[

Ċb,i

Cb,i

−
ρ∞g(w∞ − wr)− 2σṙ/r2

pb

]

(35)

where ṙ and Ċb,i are the time rate of change of the bubble radius and of the mass concen-

tration of gas species “i” contained in the bubbles, respectively. Expressions for ṙ and Ċb,i

can be derived from assumptions 8 to 10 by writing the time rate of change of the mass of

gas species “i” contained in a spherical bubble of radius r as [44]

dmi

dt
=

d (Cb,iVb)

dt
= Ki (C∞,i − γiSiMipb) (36)

where Cb,i and C∞,i are the mass concentrations of gas species “i” in the bubble and in the

glassmelt, respectively. Equation (36) indicates that if a bubble contains a single gas, the

bubble can only shrink since the concentration of gas dissolved in the glassmelt C∞,i (in

kg/m3) cannot be larger than the gas solubility given by SiMi(p0 + ρ∞gz). Substituting

the expression for Ki given by Equation (16) and that of Ce,i given by Equation (25) and

differentiating the left-hand side of Equation (36) yields

4π

3
r3Ċb,i + Cb,i4πr

2ṙ = 7.98(C∞,i − γiSiMipb)D
2/3
i w1/3

r r4/3 (37)

Then, solving for Ċb,i results in

Ċb,i =
1.905

r

(

αρ∞gD
2
i

µ∞

)1/3

(C∞,i − γiSiMipb)−
3ṙ

r
Cb,i (38)

According to the Dalton’s law for ideal gases, the total pressure of the gas mixture in the

bubble is given by

pb =
l
∑

i=1

(pb,i) =

[

l
∑

i=1

(

Cb,i

Mi

)

]

RT (39)

The derivative of Equation (39) with respect to the time t using the expression for Ċb,i given

by Equation (38) results in

∂pb

∂t
=

1.905RT

r

(

αρ∞g

µ∞

)1/3 l
∑

i=1

D
2/3
i

Mi

[(C∞,i − γiSiMipb)]−
3ṙ

r
pb (40)

The temperature T is obtained from the steady-state solution of the thermal-flow calculations

of the glassmelt. Substituting the expression for pb given by Equation (31) into Equation
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(40), assuming that ∂p0/∂t = 0 (steady-state), and solving for the growth rate ṙ gives

ṙ =

0.635RT
(αρ∞g

µ∞

)1/3 l
∑

i=1

[

D
2/3
i
Mi

(C∞,i − γiSiMipb)

]

− ρ∞g(w∞ − wr)r/3

p0 + ρ∞gz + 4σ/3r
(41)

The first term in the numerator of Equation (41) takes into account the change of radius

due to mass transfer at the bubble interface, while the second term accounts for the change

in pressure as the bubbles are transported in the glass bath. Such an expression has been

previously derived by Balkanli and Ungan [2], but the expression for the term accounting

for growth due to the change in pressure appears to be in error as also confirmed by other

studies for quescient glassmelt (w∞ = 0) [14,28].

Note that the gas and liquid momentum equations have been decoupled and

it was assumed that the vertical component of the bubble velocity vector was given by

wb = w∞ − wr. Thus, assumption 5 implies that the bubble velocity field does not satisfy

the continuity equation in steady-state, i.e., ∇ ·~vb 6= 0 [37]. Therefore, Assumptions 2 and 5

introduce an artificial source in the population balance equation. In order to approximately

conserve the total number of bubbles the bubble velocity vector ~vb should satisfy

∇ · ~vb = ~v∞ −
∂wr

∂z
≈ 0 (42)

Since the molten glass is treated as incompressible, Equation (42) is satisfied if ∂wr/∂z ¿ 1.

Physically, this corresponds to situation where the bubble growth rate and liquid velocity

does not vary significantly along the bubble pathline during the time interval t and t+ dt.

2.4.3 Bubble Generation

Finally, heterogeneous nucleation can occur on the surface of undissolved sand grains or on

refractory walls [1]. Nemec [57]observed in an experimental crucible under uniform temper-

ature conditions that heterogeneous bubble nucleation occurs at the surface of undissolved

sand grains only if refining agent is present while homogeneous bubble nucleation could never

be observed. It indicates that bubble nucleation takes place if the glassmelt is supersatu-

rated with refining gases, i.e., if the local gas concentration dissolved in the molten glass

exceeds the solubility at the local temperature and pressure. Cable and Rasul [58] reported
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that heterogeneous bubble nucleation occured at the surface of the refractory even at small

supersaturations. Finally, Roi et al. [59] have discussed bubble generation and formation of

a bubble curtain consisting of very small bubbles located close to the refractory walls. The

authors attributed the formation of a bubble curtain to the combination of an unfavourable

temperature distribution and bubble growth rate.

Solving the gas species concentration equation [Equation (12)] for oxygen could pos-

sibly yield oxygen concentrations higher than solubility within the glass bath due to the

source from the refining reactions. However, such cases are expected only in the refining sec-

tion of the tank where the number of undissolved sand grains is predicted to be small [60],

thus limiting the number of available nucleation sites. Instead, the main mechanism for

dissolved oxygen removal from the glassmelt is the diffusion in already existing bubbles to

make them grow and rise at the surface. Note also that from a thermodynamics point of

view gas diffusion is favored over heterogeneous nucleation. Therefore, given the complexity

of the physical phenomena and the controversy regarding the significance and mechanisms

of heterogeneous nucleation in glass melting furnaces, heterogeneous nucleation has not been

considered in the present study. The validity of this assumption will be examined in view

of the numerical results presented in the second part of this document. Moreover, very fine

grids close to the walls should be used to account for the entrainment by the flowing liquid

of the very small bubbles generated at the refractory walls. Then, the grid size should be

smaller than the typical size of a generated bubble making the calculation even more time

consuming.

2.4.4 Boundary Conditions

Boundary conditions for the bubble density function f1 are required to solve the population

balance equation (33) and are expressed as follows:

• At the batch/glassmelt interface bubbles exist in significant numbers due to the fu-

sion/melting transformations taking place in the batch. The batch coverage is assumed

to be known and the gas composition and the bubble density function are the same

under the entire surface covered by the batch and does not vary with time. Then, the
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boundary condition at the batch/glassmelt interface is expressed as

f1 = f1,0 at the glassmelt/batch interface (43)

where f1,0 = f1,0[r, (γi)1≥i≥l−1] is the bubble density function depending on the fu-

sion/melting process and determined experimentally.

• At the glassmelt/refractory wall interface the boundary conditions appear to be con-

troversial. Balkanli and Ungan [35], suggested the use of the weak boundary conditions

at the refractory walls. However, Swarts [4] mentioned that the number of bubbles per

unit volume generated at the glass/refractory interfaces is significant. Until further

experimental results are obtained we will assume that the gradient of f1 in the normal

direction vanishes,

∇~nf1 = ~0 at the glassmelt/refractories interface (44)

• At the free surface of the glassmelt Balkanli and Ungan [35] used the same boundary

condition as that used at the glass/melt/refractory wall interface, i.e., ∇~nf1 = ~0.

Physically, such a boundary condition means that no bubble can escape through the

glassmelt free surface. Obviously, such a boundary condition does not represent the

physical phenomena occuring since a single bubble reaching a free interface can either

merge with the interface almost instantaneously or bounce back one or several times

before stabilizing at the free interface to finally burst [61]. Additional complications

appear when bubbles accumulate to form a foam layer at the glassmelt surface. Then,

rising bubbles aggregate and coalescence with bubbles in the foams. This phenomena

is suspected to be of major importance for onset of foaming. To the best of our

knowledge, no boundary conditions for the bubble density function f1 at the glassmelt

free surface and at the glassmelt/foam interface accounting for the physical phenomena

described above are available in the literature. Note that the finite difference algorithm

needs the definition of these boundary conditions. On the other hand, the method of

characteristics used in the present study does not require specification of any boundary

condition at the glass/combustion space interface.
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The local superficial gas velocity j(x, y) at the glassmelt surface can be computed from the

bubble density function:

j(x, y) =
∫ 1

0
...
∫ 1

0

(

∫ ∞

0
f1[x, y, z = 0, r, (γi)1≥i≥l−1]

(

4πr3

3

)

(w∞ − wr)dr

)

dγ1...dγl−1 (45)

Then, the transient and steady-state foam thickness can be predicted from the analysis by

Pilon et al. [49, 62] for liquid foams generated from viscous liquids. However, the spreading

of the foam over the glassmelt surface is not accounted for. The foam layer strongly affects

the radiation heat transfer from the combustion space to the glass bath and can significantly

reduce the glassmelt temperature [8, 55]. Model for radiation transfer through foam and

combined conduction and radiation transfer have been proposed recently [8,63–66] and should

be used to recompute the glassmelt flow and thermal structures. However, this task is beyond

the scope of the present work, and the presence of a foam layer will not be considered further.

3 Method of Solution of Model Equations

Figure 3 shows the block diagram of essential steps in the procedure which is used to calculate

the bubble transport in the glass melting furnace. Previous studies computed the dissolved

gas concentration in the melt by neglecting the source term in Equation (12) due to the dif-

fusion of gases in and out of the bubbles [35] and assumed that bubbles contain only one gas

species. This simplification reduces the number of independent variables and implies that

the dissolved gas concentrations C∞,i, the bubble radius r, and the bubbles density function

f1 can be computed consecutively and independently. In this study, the variables C∞,i, r, γi,

and f1 are interdependent and determined iteratively until all the solutions are converged as

shown in Figure 3. Considering refining reactions that are complete and irreversible enables

us to compute the refining agent concentration [M k+] independently.

The governing conservation equations and boundary conditions for the thermal-fluid

calculations of the molten glass along with the numerical method of solution can be found

elsewhere [51–54]. The governing partial differential equations for the refining agent con-

centration [Mk+] and the gas concentrations C∞,i, are of parabolic type with the transient

term included as an iteration parameter. For the purpose of numerical solution, the equa-

tions are discretized over the spatial coordinates by means of the control volume integration
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technique [67]. The resulting finite-difference approximation of derivatives produces a sys-

tem of linear algebraic equations, which are then solved using line-by-line iterative method.

The method solves a line of nodes by applying the tri-diagonal matrix inversion algorithm

and sweeps the domain of integration in alternating directions along the coordinates axes.

A fully implicit and unconditionally stable Euler method with very large time steps is em-

ployed to integrate the equations in time until steady-state solution is achieved. Numerical

integration of the source/sink terms corresponding to gas diffusion in and out of the bubbles

and given by Equation (15) was performed using Simpson’s rule for unequally spaced data

1. The steady-state conditions for the refining agent concentration and the dissolved gas

concentrations was assumed to be reached when the residual for each of these variables was

less than an arbitrary small value.

The population balance equation [Equation (33)] is solved using the backward (or

modified) method of characteristics described by Pilon et al., [37]. In brief, the partial

differential equation (33) is transformed into a system of ordinary differential equations by

solving it along the characteristic curves in the particle state space defined as

dx

dt
= u∞(x, y, z) (46)

dy

dt
= v∞(x, y, z) (47)

dz

dt
= w∞(x, y, z)− wr(x, y, z, r) (48)

dr

dt
= ṙ[x, y, z, , r, (γi)1≤i≤l−1, t] (49)

dγi

dt
= γ̇i[x, y, z, r, (γi)1≤i≤l−1, t] for i = 1, ..., l − 1 (50)

where wr, ṙ, and γ̇i are given by Equations (19), (41), and (35), respectively. If we assume

that the liquid phase can be treated as incompressible, then, along the characteristic curves,

the population balance equation (33) can be written as [37]

Df1

Dt
= h+ f1

[

∂wr

∂z
−
∂ṙ

∂r
−

l−1
∑

i=1

∂γ̇i

∂γi

]

(51)

1The Fortran subroutine is available at

http : //www.sali.freeservers.com/engineering/fortrancodes/unequalsimps.html
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where Df1/Dt denotes the substantial derivative or the total time derivative along the path-

line of the bubbles. The partial derivatives of wr, ṙ, and γ̇i with respect to z, r, and γi,

respectively, are derived from Equations (19), (41), and (35) and expressed as

∂wr

∂z
=

2αρ∞grṙ

µ∞(w∞ − wr)
−
αρ∞gr

2

µ2
∞

∂µ∞
∂z

(52)

∂ṙ

∂r
=

0.63RT
(αρ∞g

µ∞

)1/3 l
∑

i=1

(

2σγiSiD
2/3
i /r2

)

−
ρ∞g(w∞ − 3wr)

3

p0 + ρ∞gz + 4σ/3r
+

4σ

3r2

ṙ

p0 + ρ∞gz + 4σ/3r
(53)

∂γ̇i

∂γi

= −
3ṙ

r
−

1.905SiRT

r

(

αρ∞g

µ∞

)1/3 [

1−
γi(p0 + ρ∞gz)

p0 + ρ∞gz + 4σ/3r

]

−

ρ∞g(w∞ − wr)− 2σṙ/r2

pb

(54)

Equations (46) to (51) represent a system of ordinary differential equations that can be

solved along the characteristic curves by the method of characteristics using inverse march-

ing method with the same staggered grids as those used for computing the glassmelt velocity

~v∞, temperature T , refining agent [M k+], and dissolved gas concentrations C∞,i fields en-

abling the coupling between all the variables. A detailed description of the numerical scheme

has been presented by Pilon and Viskanta [37] and need not be repeated here.

The backward method of characteristics (or inverse marching method) is an interpreta-

tion of the Lagrangian approach that overcomes the difficulties related to mesh deformation.

Based on a prespecified grid, it follows the particles backward in time as opposed to foward

in the case of direct marching method. The backward method of characteristics uses a fixed

grid that is also used for solving other transport equations such the momentum equation, the

energy equation or the gas concentration in the continuous phase by finite-difference meth-

ods using a staggered grid as suggested by Patankar [67]. Thus, interactions between the

particles or bubbles and the surrounding fluid can be easily accounted for in the numerical

scheme. But unlike finite-difference methods that propagate the information along coordi-

nate lines, the method of characteristics propagates the information along the pathlines and

thus matches the physics of the flow resulting in accurate numerical results [37]. Other ad-

vantages of the method of characteristics are to overcome the numerical diffusion introduced

by finite-difference methods [67] and to eliminate the need for outflow boundary conditions
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particularly at the glass free surface and glassmelt/foam interface. Moreover, the modified

method of characteristics can be used for both transient and steady-state calculations with

great accuracy and without problems of numerical instability.

4 Conclusion

This paper presented the mathematical formulation of bubble transport and generation in

three-dimensional laminar gravity driven flow. The mathematical model has been developed

but is not limited to glass manufacturing and can be readily applied to other materials

processing problems such as steel, aluminum, and polymers. After careful statement of

the physical assumptions, the governing equations for (1) the refining agent concentration,

(2) the gas species dissolved in the liquid phase, and (3) the bubble density function are

derived. To the best of our knowledge, this study is the first one presenting a complete set of

coupled governing equations for the key variables essential to assess the refining performances

of a furnace. The method of solution and the convergence criteria are briefly discussed.

The results will enable one to predict the quality of the glass, to simulate foaming of the

glassmelt, and to determined the number and size distribution of bubbles in the glassmelt

which are critical for accurately predicting heat transfer from the combustion space to the

glass bath [8,63,64]. The second part of this paper presents the results of sample calculations.
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Figure 1: Schematic of a glass melting furnace and the coordinate system.
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Figure 2: Schematic of a single bubble in thermal equilibrium with the glassmelt and the

corresponding p-T diagram.
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Figure 3: Schematic lock diagram of the computational procedure.
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