UCLA

Posters

Title

A Study of Vocalization and Social Behavior of the Acorn Woodpecker (Melanerpes Formicivorus) Based on the Remote Sensor Network

Permalink

https://escholarship.org/uc/item/9r02g4jq

Authors

Yuan Yao Ying Lin Hanbiao Wang et al.

Publication Date

2003

Center for Embedded Networked Sensing

A Study of Vocalization and Social Behavior of the Acorn Woodpecker (*Melanerpes formicivorus*) Based on the Remote Sensor Network

Yuan Yao, Ying Lin, Hanbiao Wang, Edward Stabler, Kung Yao and Charles Taylor Adaptive Language Group - http://taylor0.biology.ucla.edu/al/research.html

Introduction

Acorn Woodpecker (Melanerpes formicivorus)

- · Nonmigratory, group-living picid
- · Common residents in the oak woodlands of California
- · Acorn storage habit

Acorns are stored in the holes drilled on the granary trees (Fig. 1)

· Extreme sociality

Each group contains 1-4 breeding males, 1-2 breeding females, and 0-10 nonbreeding helpers. Group members are engaged in social activities every day. (Fig. 2)

Fig 1 An Acom Woodnecker

Fig 2 Mating system of the Acorn Woodnecker

Problem Description: How are social behaviors of acorn woodpeckers organized by vocal signals?

Study of vocalization and Social Behavior of the Acorn Woodpecker

- Social behaviors of the acorn woodpecker are mediated by communication
- · Sociality drives the evolution of communicative complexity
- A complex vocal communication system is expected in the acorn woodpecker due to its high level of sociality
- Vocal signals in the acorn woodpecker are thought to transmit more information indicating the social events and social relationship between the signaller and the receiver
- This study will help us to understand the vocalization system of the acorn woodpecker and how the social behavior is organized through vocalization

Proposed Solution: Monitoring vocal activities by the sensor network

Vocal individual recognition by the sensor network

- Call Features and Call Variation Analysis: dominant frequency, call duration, frequency bandwidth
- Sound-spectrographic Cross-correlation(SSCC) Analysis:
- A Matlab program has been developed to calculate the SSCC value between two calls of acorn woodpeckers.(Fig. 3) A preliminary study demonstrates that SSCC has the potential to recognize the woodpeckers individually if the variations between individuals exist
- Hidden Markov Model (HMM):
- More efficient than SSCC method
- A program has been developed to build the HMMs for frog calls with a superb recognition rate
- The program will be modified to recognize the acorn woodpecker individually

Application of the Remote Distributed Sensor Network on Monitoring and Localization of the Acorn Woodpecker

- Advantages of the sensor network in the acorn woodpecker study:
- monitor more than one signaller simultaneously
- localize the object out of sight
- a passive study method: avoid the disturbance on focal animals
- allow a long-time continuous monitoring
- How the sensor system works (Fig. 4):
- Sensors are distributed in the territories of acorn woodpecker family (Fig. 5)
- Acoustic sensors collect the vocal signals emitted by the signeller
- Vocal signals are sent back to the base station, where the vocal signals are analyzed to illustrate the individual identity and the location of the signeller
- Environmental sensors collect the environmental parameters
- Visual sensors record the visual displays accompanied with the vocal signals

Fig 5 Placement of the sensors. Big squares: two territories. Green round dots: Granary trees. Red square dots: sensors in the "hot spot" of the study. Grey square dots: sensors evenly distributed in the habitat

Fig 3. Similarities between calls of acorn woodpeckers. 1-3. waka calls; 4-5. garrick calls; 6-7, 8-9, 10-12. three groups of different karrit-cut calls; 13-15. trtrr calls. Similarity values are indicated by different colors.

Fig. 4 Structure of the sensor network

- Biological studies of the acorn woodpecker based on the sensor network:
- Variability in the Vocalization of the Acorn Woodpecker
- Contexts and Patterns of Vocal Communication in the Acorn Woodpecker
- Individual Recognition through Vocal signals in the Acorn Woodpecker
- Territorial Defense through Vocal Communication by the Acorn Woodpecker
- Many other studies related with the ecological, behavioral, evolutionary characteristics of the Acom Woodpecker